1
|
Gebeyehu ZM, Mišeikis V, Forti S, Rossi A, Mishra N, Boschi A, Ivanov YP, Martini L, Ochapski MW, Piccinini G, Watanabe K, Taniguchi T, Divitini G, Beltram F, Pezzini S, Coletti C. Decoupled High-Mobility Graphene on Cu(111)/Sapphire via Chemical Vapor Deposition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404590. [PMID: 39248701 DOI: 10.1002/adma.202404590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/17/2024] [Indexed: 09/10/2024]
Abstract
The growth of high-quality graphene on flat and rigid templates, such as metal thin films on insulating wafers, is regarded as a key enabler for technologies based on 2D materials. In this work, the growth of decoupled graphene is introduced via non-reducing low-pressure chemical vapor deposition (LPCVD) on crystalline Cu(111) films deposited on sapphire. The resulting film is atomically flat, with no detectable cracks or ripples, and lies atop of a thin Cu2O layer, as confirmed by microscopy, diffraction, and spectroscopy analyses. Post-growth treatment of the partially decoupled graphene enables full and uniform oxidation of the interface, greatly simplifying subsequent transfer processes, particularly dry-pick up - a task that proves challenging when dealing with graphene directly synthesized on metallic Cu(111). Electrical transport measurements reveal high carrier mobility at room temperature, exceeding 104 cm2 V-1 s-1 on SiO2/Si and 105 cm2 V-1 s-1 upon encapsulation in hexagonal boron nitride (hBN). The demonstrated growth approach yields exceptional material quality, in line with micro-mechanically exfoliated graphene flakes, and thus paves the way toward large-scale production of pristine graphene suitable for high-performance next-generation applications.
Collapse
Affiliation(s)
- Zewdu M Gebeyehu
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Vaidotas Mišeikis
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Stiven Forti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Antonio Rossi
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Neeraj Mishra
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Alex Boschi
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Yurii P Ivanov
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Leonardo Martini
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Michal W Ochapski
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Giulia Piccinini
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, 56127, Italy
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, Castelldefels, Barcelona, 08860, Spain
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Giorgio Divitini
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Fabio Beltram
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, 56127, Italy
| | - Sergio Pezzini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, 56127, Italy
| | - Camilla Coletti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
2
|
Maji K, Sarkar J, Mandal S, H S, Hingankar M, Mukherjee A, Samal S, Bhattacharjee A, Patankar MP, Watanabe K, Taniguchi T, Deshmukh MM. Superconducting Cavity-Based Sensing of Band Gaps in 2D Materials. NANO LETTERS 2024; 24:4369-4375. [PMID: 38393831 DOI: 10.1021/acs.nanolett.3c04990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The superconducting coplanar waveguide (SCPW) cavity plays an essential role in various areas like superconducting qubits, parametric amplifiers, radiation detectors, and studying magnon-photon and photon-phonon coupling. Despite its wide-ranging applications, the use of SCPW cavities to study various van der Waals 2D materials has been relatively unexplored. The resonant modes of the SCPW cavity exquisitely sense the dielectric environment. In this work, we measure the charge compressibility of bilayer graphene coupled to a half-wavelength SCPW cavity. Our approach provides a means to detect subtle changes in the capacitance of the bilayer graphene heterostructure, which depends on the compressibility of bilayer graphene, manifesting as shifts in the resonant frequency of the cavity. This method holds promise for exploring a wide class of van der Waals 2D materials, including transition metal dichalcogenides (TMDs) and their moiré, where DC transport measurement is challenging.
Collapse
Affiliation(s)
- Krishnendu Maji
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Joydip Sarkar
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Supriya Mandal
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Sriram H
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Mahesh Hingankar
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Ayshi Mukherjee
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Soumyajit Samal
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Anirban Bhattacharjee
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Meghan P Patankar
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Mandar M Deshmukh
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| |
Collapse
|
3
|
Liu A, Zhang X, Liu Z, Li Y, Peng X, Li X, Qin Y, Hu C, Qiu Y, Jiang H, Wang Y, Li Y, Tang J, Liu J, Guo H, Deng T, Peng S, Tian H, Ren TL. The Roadmap of 2D Materials and Devices Toward Chips. NANO-MICRO LETTERS 2024; 16:119. [PMID: 38363512 PMCID: PMC10873265 DOI: 10.1007/s40820-023-01273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 02/17/2024]
Abstract
Due to the constraints imposed by physical effects and performance degradation, silicon-based chip technology is facing certain limitations in sustaining the advancement of Moore's law. Two-dimensional (2D) materials have emerged as highly promising candidates for the post-Moore era, offering significant potential in domains such as integrated circuits and next-generation computing. Here, in this review, the progress of 2D semiconductors in process engineering and various electronic applications are summarized. A careful introduction of material synthesis, transistor engineering focused on device configuration, dielectric engineering, contact engineering, and material integration are given first. Then 2D transistors for certain electronic applications including digital and analog circuits, heterogeneous integration chips, and sensing circuits are discussed. Moreover, several promising applications (artificial intelligence chips and quantum chips) based on specific mechanism devices are introduced. Finally, the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed, and potential development pathways or roadmaps are further speculated and outlooked.
Collapse
Affiliation(s)
- Anhan Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Xiaowei Zhang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Ziyu Liu
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yuning Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Xueyang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Li
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Yue Qin
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Chen Hu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanqing Qiu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Han Jiang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yang Wang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yifan Li
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Hao Guo
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Tao Deng
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China.
- IMECAS-HKUST-Joint Laboratory of Microelectronics, Beijing, 100029, People's Republic of China.
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| |
Collapse
|
4
|
Sarkar J, Salunkhe KV, Mandal S, Ghatak S, Marchawala AH, Das I, Watanabe K, Taniguchi T, Vijay R, Deshmukh MM. Quantum-noise-limited microwave amplification using a graphene Josephson junction. NATURE NANOTECHNOLOGY 2022; 17:1147-1152. [PMID: 36309589 DOI: 10.1038/s41565-022-01223-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Josephson junctions (JJs) and their tunable properties, including their nonlinearities, play an important role in superconducting qubits and amplifiers. JJs together with the circuit quantum electrodynamics architecture form many key components of quantum information processing1. In quantum circuits, low-noise amplification of feeble microwave signals is essential, and Josephson parametric amplifiers (JPAs)2 are the widely used devices. The existing JPAs are based on Al-AlOx-Al tunnel junctions realized in a superconducting quantum interference device geometry, where magnetic flux is the knob for tuning the frequency. Recent experimental realizations of two-dimensional (2D) van der Waals JJs3-5 provide an opportunity to implement various circuit quantum electrodynamics devices6-8 with the added advantage of tuning the junction properties and the operating point using a gate potential. While other components of a possible 2D van der Waals circuit quantum electrodynamics architecture have been demonstrated, a quantum-noise-limited amplifier, an essential component, has not been realized, to the best of our knowledge. Here we implement a quantum-noise-limited JPA using a graphene JJ, that has a linear resonance gate tunability of 3.5 GHz. We report 24 dB amplification with 10 MHz bandwidth and -130 dBm saturation power, a performance on par with the best single-junction JPAs2,9. Importantly, our gate-tunable JPA works in the quantum-limited noise regime, which makes it an attractive option for highly sensitive signal processing. Our work has implications for novel bolometers; the low heat capacity of graphene together with JJ nonlinearity can result in an extremely sensitive microwave bolometer embedded inside a quantum-noise-limited amplifier. In general, this work will open up the exploration of scalable device architectures of 2D van der Waals materials by integrating a sensor with the quantum amplifier.
Collapse
Affiliation(s)
- Joydip Sarkar
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India
| | - Kishor V Salunkhe
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India
| | - Supriya Mandal
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India
| | - Subhamoy Ghatak
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India
| | - Alisha H Marchawala
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India
| | - Ipsita Das
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - R Vijay
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India.
| | - Mandar M Deshmukh
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
5
|
Schmitt TW, Connolly MR, Schleenvoigt M, Liu C, Kennedy O, Chávez-Garcia JM, Jalil AR, Bennemann B, Trellenkamp S, Lentz F, Neumann E, Lindström T, de Graaf SE, Berenschot E, Tas N, Mussler G, Petersson KD, Grützmacher D, Schüffelgen P. Integration of Topological Insulator Josephson Junctions in Superconducting Qubit Circuits. NANO LETTERS 2022; 22:2595-2602. [PMID: 35235321 DOI: 10.1021/acs.nanolett.1c04055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The integration of semiconductor Josephson junctions (JJs) in superconducting quantum circuits provides a versatile platform for hybrid qubits and offers a powerful way to probe exotic quasiparticle excitations. Recent proposals for using circuit quantum electrodynamics (cQED) to detect topological superconductivity motivate the integration of novel topological materials in such circuits. Here, we report on the realization of superconducting transmon qubits implemented with (Bi0.06Sb0.94)2Te3 topological insulator (TI) JJs using ultrahigh vacuum fabrication techniques. Microwave losses on our substrates, which host monolithically integrated hardmasks used for the selective area growth of TI nanostructures, imply microsecond limits to relaxation times and, thus, their compatibility with strong-coupling cQED. We use the cavity-qubit interaction to show that the Josephson energy of TI-based transmons scales with their JJ dimensions and demonstrate qubit control as well as temporal quantum coherence. Our results pave the way for advanced investigations of topological materials in both novel Josephson and topological qubits.
Collapse
Affiliation(s)
- Tobias W Schmitt
- Institute for Semiconductor Nanoelectronics, Peter Grünberg Institute 9, Forschungszentrum Jülich & Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich and RWTH Aachen University, 52428 Jülich, Germany
- JARA-Institute for Green IT, Peter Grünberg Institute 10, Forschungszentrum Jülich and RWTH Aachen University, 52062 Aachen, Germany
| | - Malcolm R Connolly
- Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
- London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1H 0AH, United Kingdom
| | - Michael Schleenvoigt
- Institute for Semiconductor Nanoelectronics, Peter Grünberg Institute 9, Forschungszentrum Jülich & Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich and RWTH Aachen University, 52428 Jülich, Germany
| | - Chenlu Liu
- Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| | - Oscar Kennedy
- London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1H 0AH, United Kingdom
| | - José M Chávez-Garcia
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Abdur R Jalil
- Institute for Semiconductor Nanoelectronics, Peter Grünberg Institute 9, Forschungszentrum Jülich & Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich and RWTH Aachen University, 52428 Jülich, Germany
| | - Benjamin Bennemann
- Institute for Semiconductor Nanoelectronics, Peter Grünberg Institute 9, Forschungszentrum Jülich & Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich and RWTH Aachen University, 52428 Jülich, Germany
| | - Stefan Trellenkamp
- Helmholtz Nano Facility, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Florian Lentz
- Helmholtz Nano Facility, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Elmar Neumann
- Helmholtz Nano Facility, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Tobias Lindström
- National Physical Laboratory, Teddington TW11 0LW, United Kingdom
| | | | - Erwin Berenschot
- MESA+ Institute, University of Twente, 7500AE Enschede, The Netherlands
| | - Niels Tas
- MESA+ Institute, University of Twente, 7500AE Enschede, The Netherlands
| | - Gregor Mussler
- Institute for Semiconductor Nanoelectronics, Peter Grünberg Institute 9, Forschungszentrum Jülich & Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich and RWTH Aachen University, 52428 Jülich, Germany
| | - Karl D Petersson
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Detlev Grützmacher
- Institute for Semiconductor Nanoelectronics, Peter Grünberg Institute 9, Forschungszentrum Jülich & Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich and RWTH Aachen University, 52428 Jülich, Germany
- JARA-Institute for Green IT, Peter Grünberg Institute 10, Forschungszentrum Jülich and RWTH Aachen University, 52062 Aachen, Germany
| | - Peter Schüffelgen
- Institute for Semiconductor Nanoelectronics, Peter Grünberg Institute 9, Forschungszentrum Jülich & Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich and RWTH Aachen University, 52428 Jülich, Germany
| |
Collapse
|
6
|
Wang JIJ, Yamoah MA, Li Q, Karamlou AH, Dinh T, Kannan B, Braumüller J, Kim D, Melville AJ, Muschinske SE, Niedzielski BM, Serniak K, Sung Y, Winik R, Yoder JL, Schwartz ME, Watanabe K, Taniguchi T, Orlando TP, Gustavsson S, Jarillo-Herrero P, Oliver WD. Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and qubits. NATURE MATERIALS 2022; 21:398-403. [PMID: 35087240 DOI: 10.1038/s41563-021-01187-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Dielectrics with low loss at microwave frequencies are imperative for high-coherence solid-state quantum computing platforms. Here we study the dielectric loss of hexagonal boron nitride (hBN) thin films in the microwave regime by measuring the quality factor of parallel-plate capacitors (PPCs) made of NbSe2-hBN-NbSe2 heterostructures integrated into superconducting circuits. The extracted microwave loss tangent of hBN is bounded to be at most in the mid-10-6 range in the low-temperature, single-photon regime. We integrate hBN PPCs with aluminium Josephson junctions to realize transmon qubits with coherence times reaching 25 μs, consistent with the hBN loss tangent inferred from resonator measurements. The hBN PPC reduces the qubit feature size by approximately two orders of magnitude compared with conventional all-aluminium coplanar transmons. Our results establish hBN as a promising dielectric for building high-coherence quantum circuits with substantially reduced footprint and with a high energy participation that helps to reduce unwanted qubit cross-talk.
Collapse
Affiliation(s)
- Joel I-J Wang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Megan A Yamoah
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qing Li
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amir H Karamlou
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thao Dinh
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bharath Kannan
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jochen Braumüller
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Kim
- MIT Lincoln Laboratory, Lexington, MA, USA
| | | | - Sarah E Muschinske
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Youngkyu Sung
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roni Winik
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Terry P Orlando
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Simon Gustavsson
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - William D Oliver
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- MIT Lincoln Laboratory, Lexington, MA, USA.
| |
Collapse
|
7
|
Critical current fluctuations in graphene Josephson junctions. Sci Rep 2021; 11:19900. [PMID: 34615964 PMCID: PMC8494814 DOI: 10.1038/s41598-021-99398-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/21/2021] [Indexed: 11/08/2022] Open
Abstract
We have studied 1/f noise in critical current [Formula: see text] in h-BN encapsulated monolayer graphene contacted by NbTiN electrodes. The sample is close to diffusive limit and the switching supercurrent with hysteresis at Dirac point amounts to [Formula: see text] nA. The low frequency noise in the superconducting state is measured by tracking the variation in magnitude and phase of a reflection carrier signal [Formula: see text] at 600-650 MHz. We find 1/f critical current fluctuations on the order of [Formula: see text] per unit band at 1 Hz. The noise power spectrum of critical current fluctuations [Formula: see text] measured near the Dirac point at large, sub-critical rf-carrier amplitudes obeys the law [Formula: see text] where [Formula: see text] and [Formula: see text] at [Formula: see text] Hz. Our results point towards significant fluctuations in [Formula: see text] originating from variation of the proximity induced gap in the graphene junction.
Collapse
|
8
|
Kringhøj A, Winkler GW, Larsen TW, Sabonis D, Erlandsson O, Krogstrup P, van Heck B, Petersson KD, Marcus CM. Andreev Modes from Phase Winding in a Full-Shell Nanowire-Based Transmon. PHYSICAL REVIEW LETTERS 2021; 126:047701. [PMID: 33576664 DOI: 10.1103/physrevlett.126.047701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
We investigate transmon qubits made from semiconductor nanowires with a fully surrounding superconducting shell. In the regime of reentrant superconductivity associated with the destructive Little-Parks effect, numerous coherent transitions are observed in the first reentrant lobe, where the shell carries 2π winding of superconducting phase, and are absent in the zeroth lobe. As junction density was increased by gate voltage, qubit coherence was suppressed then lost in the first lobe. These observations and numerical simulations highlight the role of winding-induced Andreev states in the junction.
Collapse
Affiliation(s)
- A Kringhøj
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Microsoft Quantum Lab-Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - G W Winkler
- Microsoft Quantum, Station Q, University of California, Santa Barbara, California 93106-6105, USA
| | - T W Larsen
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Microsoft Quantum Lab-Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - D Sabonis
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Microsoft Quantum Lab-Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - O Erlandsson
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Microsoft Quantum Lab-Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - P Krogstrup
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Microsoft Quantum Materials Lab-Copenhagen, 2800 Lyngby, Denmark
| | - B van Heck
- Microsoft Quantum Lab Delft, Delft University of Technology, 2600 GA Delft, Netherlands
| | - K D Petersson
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Microsoft Quantum Lab-Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - C M Marcus
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Microsoft Quantum Lab-Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Chiu KL, Qian D, Qiu J, Liu W, Tan D, Mosallanejad V, Liu S, Zhang Z, Zhao Y, Yu D. Flux Tunable Superconducting Quantum Circuit Based on Weyl Semimetal MoTe 2. NANO LETTERS 2020; 20:8469-8475. [PMID: 33174417 DOI: 10.1021/acs.nanolett.0c02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Weyl semimetals have drawn considerable attention for their exotic topological properties in many research fields. When in combination with s-wave superconductors, the supercurrent can be carried by their topological surface channels, forming junctions mimicking the behavior of Majorana bound states. Here, we present a transmon-like superconducting quantum intereference device (SQUID) consisting of lateral junctions made of Weyl semimetal Td-MoTe2 and superconducting leads of niobium nitride (NbN). The SQUID is coupled to a readout cavity made of molybdenum rhenium (MoRe), whose response at high power reveals the existence of the constituting Josephson junctions (JJs). The loop geometry of the circuit allows the resonant frequency of the readout cavity to be tuned by the magnetic flux. We demonstrate a JJ made of MoTe2 and a flux-tunable transmon-like circuit based on Weyl semimetals. Our study provides a platform to utilize topological materials in SQUID-based quantum circuits for potential applications in quantum information processing.
Collapse
Affiliation(s)
- Kuei-Lin Chiu
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Degui Qian
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiawei Qiu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiyang Liu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dian Tan
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Vahid Mosallanejad
- Key Lab of Quantum Information, University of Science and Technology of China, Hefei 230026, China
| | - Song Liu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zongteng Zhang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yue Zhao
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
Kringhøj A, van Heck B, Larsen TW, Erlandsson O, Sabonis D, Krogstrup P, Casparis L, Petersson KD, Marcus CM. Suppressed Charge Dispersion via Resonant Tunneling in a Single-Channel Transmon. PHYSICAL REVIEW LETTERS 2020; 124:246803. [PMID: 32639819 DOI: 10.1103/physrevlett.124.246803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate strong suppression of charge dispersion in a semiconductor-based transmon qubit across Josephson resonances associated with a quantum dot in the junction. On resonance, dispersion is drastically reduced compared to conventional transmons with corresponding Josephson and charging energies. We develop a model of qubit dispersion for a single-channel resonance, which is in quantitative agreement with experimental data.
Collapse
Affiliation(s)
- A Kringhøj
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - B van Heck
- Microsoft Quantum, Station Q, University of California, Santa Barbara, California 93106-6105, USA
- Microsoft Quantum Lab Delft, Delft University of Technology, 2600 GA Delft, The Netherlands
| | - T W Larsen
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - O Erlandsson
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - D Sabonis
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - P Krogstrup
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
- Microsoft Quantum Materials Lab Copenhagen, Kanalvej 7, 2800 Lyngby, Denmark
| | - L Casparis
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - K D Petersson
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - C M Marcus
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Kringhøj A, Larsen TW, van Heck B, Sabonis D, Erlandsson O, Petkovic I, Pikulin DI, Krogstrup P, Petersson KD, Marcus CM. Controlled dc Monitoring of a Superconducting Qubit. PHYSICAL REVIEW LETTERS 2020; 124:056801. [PMID: 32083909 DOI: 10.1103/physrevlett.124.056801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Creating a transmon qubit using semiconductor-superconductor hybrid materials not only provides electrostatic control of the qubit frequency, it also allows parts of the circuit to be electrically connected and disconnected in situ by operating a semiconductor region of the device as a field-effect transistor. Here, we exploit this feature to compare in the same device characteristics of the qubit, such as frequency and relaxation time, with related transport properties such as critical supercurrent and normal-state resistance. Gradually opening the field-effect transistor to the monitoring circuit allows the influence of weak-to-strong dc monitoring of a "live" qubit to be measured. A model of this influence yields excellent agreement with experiment, demonstrating a relaxation rate mediated by a gate-controlled environmental coupling.
Collapse
Affiliation(s)
- A Kringhøj
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - T W Larsen
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - B van Heck
- Microsoft Quantum, Station Q, University of California, Santa Barbara, California 93106-6105, USA
- Microsoft Quantum Lab Delft, Delft University of Technology, 2600 GA Delft, Netherlands
| | - D Sabonis
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - O Erlandsson
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - I Petkovic
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - D I Pikulin
- Microsoft Quantum, Station Q, University of California, Santa Barbara, California 93106-6105, USA
| | - P Krogstrup
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
- Microsoft Quantum Materials Lab Copenhagen, Kanalvej 7, 2800 Lyngby, Denmark
| | - K D Petersson
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - C M Marcus
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
12
|
Wang JIJ, Rodan-Legrain D, Bretheau L, Campbell DL, Kannan B, Kim D, Kjaergaard M, Krantz P, Samach GO, Yan F, Yoder JL, Watanabe K, Taniguchi T, Orlando TP, Gustavsson S, Jarillo-Herrero P, Oliver WD. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. NATURE NANOTECHNOLOGY 2019; 14:120-125. [PMID: 30598526 DOI: 10.1038/s41565-018-0329-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Quantum coherence and control is foundational to the science and engineering of quantum systems1,2. In van der Waals materials, the collective coherent behaviour of carriers has been probed successfully by transport measurements3-6. However, temporal coherence and control, as exemplified by manipulating a single quantum degree of freedom, remains to be verified. Here we demonstrate such coherence and control of a superconducting circuit incorporating graphene-based Josephson junctions. Furthermore, we show that this device can be operated as a voltage-tunable transmon qubit7-9, whose spectrum reflects the electronic properties of massless Dirac fermions travelling ballistically4,5. In addition to the potential for advancing extensible quantum computing technology, our results represent a new approach to studying van der Waals materials using microwave photons in coherent quantum circuits.
Collapse
Affiliation(s)
- Joel I-Jan Wang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Daniel Rodan-Legrain
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Landry Bretheau
- Laboratoire des Solides Irradiés, Ecole Polytechnique, CNRS, CEA, Palaiseau, France
| | - Daniel L Campbell
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bharath Kannan
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Kim
- Massachusetts Institute of Technology (MIT) Lincoln Laboratory, Lexington, MA, USA
| | - Morten Kjaergaard
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Philip Krantz
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gabriel O Samach
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology (MIT) Lincoln Laboratory, Lexington, MA, USA
| | - Fei Yan
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonilyn L Yoder
- Massachusetts Institute of Technology (MIT) Lincoln Laboratory, Lexington, MA, USA
| | - Kenji Watanabe
- Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan
| | - Terry P Orlando
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Simon Gustavsson
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - William D Oliver
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Massachusetts Institute of Technology (MIT) Lincoln Laboratory, Lexington, MA, USA.
| |
Collapse
|