1
|
Thiers I, Lissens M, Langie H, Lories B, Steenackers H. Salmonella biofilm formation diminishes bacterial proliferation in the C. elegans intestine. Biofilm 2024; 8:100225. [PMID: 39469492 PMCID: PMC11513601 DOI: 10.1016/j.bioflm.2024.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Non-typhoidal Salmonella serovars are a significant global cause of foodborne infections, owing their transmission success to the formation of biofilms. While the role of these biofilms in Salmonella's persistence outside the host is well understood, their significance during infection remains elusive. In this study, we investigated the impact of Salmonella biofilm formation on host colonization and virulence using the nematode model Caenorhabditis elegans. This infection model enables us to isolate the effect of biofilm formation on gut colonization and proliferation, as no gut microbiome is present and Salmonella cannot invade the intestinal tissue of the nematode. We show that a biofilm-deficient ΔcsgD mutant enhances gut proliferation compared to the wild-type strain, while the pathogen's virulence, the host's immune signaling pathways, and host survival remain unaffected. Hence, our work suggests that biofilm formation does not significantly contribute to Salmonella infection in C. elegans. However, complementary assays in higher-order in vivo models are required to further characterize the role of biofilm formation during infection and to take into account the impact of biofilm formation on competition with gut microbiome and epithelial invasion.
Collapse
Affiliation(s)
- Ines Thiers
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Kasteelpark Arenberg 20, 3001, Belgium
| | - Maries Lissens
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Kasteelpark Arenberg 20, 3001, Belgium
| | - Hanne Langie
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Kasteelpark Arenberg 20, 3001, Belgium
| | | | | |
Collapse
|
2
|
Xue Y, Xie Y, Cao X, Zhang L. The marine environmental microbiome mediates physiological outcomes in host nematodes. BMC Biol 2024; 22:224. [PMID: 39379910 PMCID: PMC11463140 DOI: 10.1186/s12915-024-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Nematodes are the most abundant metazoans in marine sediments, many of which are bacterivores; however, how habitat bacteria affect physiological outcomes in marine nematodes remains largely unknown. RESULTS: Here, we used a Litoditis marina inbred line to assess how native bacteria modulate host nematode physiology. We characterized seasonal dynamic bacterial compositions in L. marina habitats and examined the impacts of 448 habitat bacteria isolates on L. marina development, then focused on HQbiome with 73 native bacteria, of which we generated 72 whole genomes sequences. Unexpectedly, we found that the effects of marine native bacteria on the development of L. marina and its terrestrial relative Caenorhabditis elegans were significantly positively correlated. Next, we reconstructed bacterial metabolic networks and identified several bacterial metabolic pathways positively correlated with L. marina development (e.g., ubiquinol and heme b biosynthesis), while pyridoxal 5'-phosphate biosynthesis pathway was negatively associated. Through single metabolite supplementation, we verified CoQ10, heme b, acetyl-CoA, and acetaldehyde promoted L. marina development, while vitamin B6 attenuated growth. Notably, we found that only four development correlated metabolic pathways were shared between L. marina and C. elegans. Furthermore, we identified two bacterial metabolic pathways correlated with L. marina lifespan, while a distinct one in C. elegans. Strikingly, we found that glycerol supplementation significantly extended L. marina but not C. elegans longevity. Moreover, we comparatively demonstrated the distinct gut microbiota characteristics and their effects on L. marina and C. elegans physiology. CONCLUSIONS Given that both bacteria and marine nematodes are dominant taxa in sedimentary ecosystems, the resource presented here will provide novel insights to identify mechanisms underpinning how habitat bacteria affect nematode biology in a more natural context. Our integrative approach will provide a microbe-nematodes framework for microbiome mediated effects on host animal fitness.
Collapse
Affiliation(s)
- Yiming Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yusu Xie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Xuwen Cao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liusuo Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| |
Collapse
|
3
|
Gonzalez X, Irazoqui JE. Distinct members of the Caenorhabditis elegans CeMbio reference microbiota exert cryptic virulence that is masked by host defense. Mol Microbiol 2024; 122:387-402. [PMID: 38623070 PMCID: PMC11480257 DOI: 10.1111/mmi.15258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
Microbiotas are complex microbial communities that colonize specific niches in the host and provide essential organismal functions that are important in health and disease. Understanding the ability of each distinct community member to promote or impair host health, alone or in the context of the community, is imperative for understanding how differences in community structure affect host health and vice versa. Recently, a reference 12-member microbiota for the model organism Caenorhabditis elegans, known as CeMbio, was defined. Here, we show the differential ability of each CeMbio bacterial species to activate innate immunity through the conserved PMK-1/p38 MAPK, ACh-WNT, and HLH-30/TFEB pathways. Although distinct CeMbio members differed in their ability to activate the PMK-1/p38 pathway, the ability to do so did not correlate with bacterial-induced lifespan reduction in wild-type or immunodeficient animals. In contrast, most species activated HLH-30/TFEB and showed virulence toward hlh-30-deficient animals. These results suggest that the microbiota of C. elegans is rife with bacteria that can shorten the host's lifespan if host defense is compromised and that HLH-30/TFEB is a fundamental and key host protective factor.
Collapse
Affiliation(s)
- Xavier Gonzalez
- Immunology and Microbiology graduate program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester MA 01605
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester MA 01605
| | - Javier E. Irazoqui
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester MA 01605
| |
Collapse
|
4
|
Kumar A, Saha MK, Kumar V, Bhattacharya A, Barge S, Mukherjee AK, Kalita MC, Khan MR. Heat-killed probiotic Levilactobacillus brevis MKAK9 and its exopolysaccharide promote longevity by modulating aging hallmarks and enhancing immune responses in Caenorhabditis elegans. Immun Ageing 2024; 21:52. [PMID: 39095841 PMCID: PMC11295351 DOI: 10.1186/s12979-024-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Proteostasis is a critical aging hallmark responsible for removing damaged or misfolded proteins and their aggregates by improving proteasomal degradation through the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS). Research on the impact of heat-killed probiotic bacteria and their structural components on aging hallmarks and innate immune responses is scarce, yet enhancing these effects could potentially delay age-related diseases. RESULTS This study introduces a novel heat-killed Levilactobacillus brevis strain MKAK9 (HK MKAK9), along with its exopolysaccharide (EPS), demonstrating their ability to extend longevity by improving proteostasis and immune responses in wild-type Caenorhabditis elegans. We elucidate the underlying mechanisms through a comprehensive approach involving mRNA- and small RNA sequencing, proteomic analysis, lifespan assays on loss-of-function mutants, and quantitative RT-PCR. Mechanistically, HK MKAK9 and its EPS resulted in downregulation of the insulin-like signaling pathway in a DAF-16-dependent manner, enhancing protein ubiquitination and subsequent proteasomal degradation through activation of the ALP pathway, which is partially mediated by microRNA mir-243. Importantly, autophagosomes engulf ubiquitinylated proteins, as evidenced by increased expression of the autophagy receptor sqst-3, and subsequently fuse with lysosomes, facilitated by increased levels of the lysosome-associated membrane protein (LAMP) lmp-1, suggesting the formation of autolysosomes for degradation of the selected cargo. Moreover, HK MKAK9 and its EPS activated the p38 MAPK pathway and its downstream SKN-1 transcription factor, which are known to regulate genes involved in innate immune response (thn-1, ilys-1, cnc-2, spp-9, spp-21, clec-47, and clec-266) and antioxidation (sod-3 and gst-44), thereby reducing the accumulation of reactive oxygen species (ROS) at both cellular and mitochondrial levels. Notably, SOD-3 emerged as a transcriptional target of both DAF-16 and SKN-1 transcription factors. CONCLUSION Our research sets a benchmark for future investigations by demonstrating that heat-killed probiotic and its specific cellular component, EPS, can downregulate the insulin-signaling pathway, potentially improving the autophagy-lysosome pathway (ALP) for degrading ubiquitinylated proteins and promoting organismal longevity. Additionally, we discovered that increased expression of microRNA mir-243 regulates insulin-like signaling and its downstream ALP pathway. Our findings also indicate that postbiotic treatment may bolster antioxidative and innate immune responses, offering a promising avenue for interventions in aging-related diseases.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | | | - Vipin Kumar
- Application Specialist, Research Business Cytiva, Gurugram, Haryana, India
| | - Anupam Bhattacharya
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | - Sagar Barge
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | - Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India
| | - Mohan C Kalita
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India.
| |
Collapse
|
5
|
Yao FC, Jin CX, Liang H, Zhang Y, Gu Y, Song FB, Zhou Z, Sun JL, Luo J. Microplastics weaken the digestion and absorption functions in the golden pompano (Trachinotus blochii) by affecting the intestinal structure, bacteria and metabolites. CHEMOSPHERE 2024; 362:142415. [PMID: 38838870 DOI: 10.1016/j.chemosphere.2024.142415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Microplastics are difficult to degrade and widespread environmental pollutants. Coastal areas are hardest hit of microplastic pollution as they receive significant amounts of microplastics discharged from inland sources. Golden pompano (Trachinotus blochii) is a high commercial valuable marine aquaculture fish species, most of the golden pompano are raised in coastal areas, which means they are at significant risk of exposure to microplastics. Therefore, we exposed golden pompano to 10 μg/L, 100 μg/L and 1000 μg/L of 5 μm spherical polystyrene microplastics and conducted a 14-day stress experiment. Histopathology results showed the intestinal villi shrank. The 16s sequencing analysis revealed that microplastics significantly impacted the abundance and community structure of intestinal microorganisms, which may affect the metabolic function of the gastrointestinal tract. Metabolomics sequencing of the intestinal contents showed that microplastics caused disruptions in lipid, glucose, and amino acid metabolism, thus compromising the normal digestion and absorption functions in the intestinal system. In addition, the activation of various pathways, including the intestinal endocrine system, proline metabolism, and signal transduction, which can lead to the occurrence of several diseases. This study combined various methods to investigate the adverse effects of microplastics on intestinal digestion and absorption, and provided new insights into the toxic mechanisms of microplastics.
Collapse
Affiliation(s)
- Fu Cheng Yao
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Chun Xiu Jin
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Huan Liang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Yu Zhang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Yue Gu
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Fei Biao Song
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Zhi Zhou
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Jun Long Sun
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Jian Luo
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
6
|
Marulanda-Gomez AM, Ribes M, Franzenburg S, Hentschel U, Pita L. Transcriptomic responses of Mediterranean sponges upon encounter with symbiont microbial consortia. BMC Genomics 2024; 25:674. [PMID: 38972970 PMCID: PMC11229196 DOI: 10.1186/s12864-024-10548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. RESULTS D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors. CONCLUSION Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply "fine-tuning" of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host's traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.
Collapse
Affiliation(s)
| | - Marta Ribes
- Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain
| | - Sören Franzenburg
- Research Group Genetics and Bioinformatics/Systems Immunology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Ute Hentschel
- RD3 Marine Ecology, RU Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Lucia Pita
- Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain.
| |
Collapse
|
7
|
Wu CY, Davis S, Saudagar N, Shah S, Zhao W, Stern A, Martel J, Ojcius D, Yang HC. Caenorhabditis elegans as a Convenient Animal Model for Microbiome Studies. Int J Mol Sci 2024; 25:6670. [PMID: 38928375 PMCID: PMC11203780 DOI: 10.3390/ijms25126670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Microbes constitute the most prevalent life form on Earth, yet their remarkable diversity remains mostly unrecognized. Microbial diversity in vertebrate models presents a significant challenge for investigating host-microbiome interactions. The model organism Caenorhabditis elegans has many advantages for delineating the effects of host genetics on microbial composition. In the wild, the C. elegans gut contains various microbial species, while in the laboratory it is usually a host for a single bacterial species. There is a potential host-microbe interaction between microbial metabolites, drugs, and C. elegans phenotypes. This mini-review aims to summarize the current understanding regarding the microbiome in C. elegans. Examples using C. elegans to study host-microbe-metabolite interactions are discussed.
Collapse
Affiliation(s)
- Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.W.); (J.M.)
| | - Scott Davis
- Department of Endodontics, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| | - Neekita Saudagar
- Doctor of Dental Surgery Program, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (N.S.); (S.S.); (W.Z.)
| | - Shrey Shah
- Doctor of Dental Surgery Program, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (N.S.); (S.S.); (W.Z.)
| | - William Zhao
- Doctor of Dental Surgery Program, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (N.S.); (S.S.); (W.Z.)
| | - Arnold Stern
- Grossman School of Medicine, New York University, New York, NY 10016, USA;
| | - Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.W.); (J.M.)
| | - David Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.W.); (J.M.)
- Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 30041, Taiwan
| |
Collapse
|
8
|
Singh A, Luallen RJ. Understanding the factors regulating host-microbiome interactions using Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230059. [PMID: 38497260 PMCID: PMC10945399 DOI: 10.1098/rstb.2023.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/01/2024] [Indexed: 03/19/2024] Open
Abstract
The Human Microbiome Project was a research programme that successfully identified associations between microbial species and healthy or diseased individuals. However, a major challenge identified was the absence of model systems for studying host-microbiome interactions, which would increase our capacity to uncover molecular interactions, understand organ-specificity and discover new microbiome-altering health interventions. Caenorhabditis elegans has been a pioneering model organism for over 70 years but was largely studied in the absence of a microbiome. Recently, ecological sampling of wild nematodes has uncovered a large amount of natural genetic diversity as well as a slew of associated microbiota. The field has now explored the interactions of C. elegans with its associated gut microbiome, a defined and non-random microbial community, highlighting its suitability for dissecting host-microbiome interactions. This core microbiome is being used to study the impact of host genetics, age and stressors on microbiome composition. Furthermore, single microbiome species are being used to dissect molecular interactions between microbes and the animal gut. Being amenable to health altering genetic and non-genetic interventions, C. elegans has emerged as a promising system to generate and test new hypotheses regarding host-microbiome interactions, with the potential to uncover novel paradigms relevant to other systems. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Anupama Singh
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Robert J. Luallen
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
9
|
Nauta KM, Gates D, Mechan-Llontop M, Wang X, Nguyen K, Isaguirre CN, Genjdar M, Sheldon RD, Burton NO. A high-throughput screening platform for discovering bacterial species and small molecules that modify animal physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591726. [PMID: 38746390 PMCID: PMC11092615 DOI: 10.1101/2024.04.29.591726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The gut microbiome has been proposed to influence many aspects of animal development and physiology. However, both the specific bacterial species and the molecular mechanisms by which bacteria exert these effects are unknown in most cases. Here, we established a high throughput screening platform using the model animal Caenorhabditis elegans for identifying bacterial species and mechanisms that influence animal development and physiology. From our initial screens we found that many Bacillus species can restore normal animal development to insulin signaling mutant animals that otherwise do not develop to adulthood. To determine how Bacilli influence animal development we screened a complete non-essential gene knockout library of Bacillus subtilis for mutants that no longer restored development to adulthood. We found the Bacillus gene speB is required for animal development. In the absence of speB, B. subtilis produces excess N1-aminopropylagmatine. This polyamine is taken up by animal intestinal cells via the polyamine transporter CATP-5. When this molecule is taken up in sufficient quantities it inhibits animal mitochondrial function and causes diverse species of animals to arrest their development. To our knowledge, these are the first observations that B. subtilis can produce N1-aminopropylagmatine and that polyamines produced by intestinal microbiome species can antagonize animal development and mitochondrial function. Given that Bacilli species are regularly isolated from animal intestinal microbiomes, including from humans, we propose that altered polyamine production from intestinal Bacilli is likely to also influence animal development and metabolism in other species and potentially even contribute developmental and metabolic pathologies in humans. In addition, our findings demonstrate that C. elegans can be used as a model animal to conduct high throughput screens for bacterial species and bioactive molecules that alter animal physiology.
Collapse
Affiliation(s)
- Kelsie M. Nauta
- Van Andel Research Institute, Department of Metabolism and Nutritional Programing, Grand Rapids, MI, 49503, USA
| | - Darrick Gates
- Van Andel Research Institute, Department of Metabolism and Nutritional Programing, Grand Rapids, MI, 49503, USA
| | - Marco Mechan-Llontop
- Van Andel Research Institute, Department of Metabolism and Nutritional Programing, Grand Rapids, MI, 49503, USA
| | - Xiao Wang
- Van Andel Research Institute, Department of Metabolism and Nutritional Programing, Grand Rapids, MI, 49503, USA
| | - Kim Nguyen
- Van Andel Research Institute, Department of Metabolism and Nutritional Programing, Grand Rapids, MI, 49503, USA
| | | | - Megan Genjdar
- Van Andel Research Institute, Mass Spectrometry Core, Grand Rapids, MI, 49503, USA
| | - Ryan D. Sheldon
- Van Andel Research Institute, Mass Spectrometry Core, Grand Rapids, MI, 49503, USA
| | - Nicholas O. Burton
- Van Andel Research Institute, Department of Metabolism and Nutritional Programing, Grand Rapids, MI, 49503, USA
| |
Collapse
|
10
|
Choi R, Bodkhe R, Pees B, Kim D, Berg M, Monnin D, Cho J, Narayan V, Deller E, Savage-Dunn C, Shapira M. An Enterobacteriaceae bloom in aging animals is restrained by the gut microbiome. AGING BIOLOGY 2024; 2:20240024. [PMID: 38736850 PMCID: PMC11085993 DOI: 10.59368/agingbio.20240024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The gut microbiome plays important roles in host function and health. Core microbiomes have been described for different species, and imbalances in their composition, known as dysbiosis, are associated with pathology. Changes in the gut microbiome and dysbiosis are common in aging, possibly due to multi-tissue deterioration, which includes metabolic shifts, dysregulated immunity, and disrupted epithelial barriers. However, the characteristics of these changes, as reported in different studies, are varied and sometimes conflicting. Using clonal populations of Caenorhabditis elegans to highlight trends shared among individuals, we employed 16s rRNA gene sequencing, CFU counts and fluorescent imaging, identifying an Enterobacteriaceae bloom as a common denominator in aging animals. Experiments using Enterobacter hormaechei, a representative commensal, suggested that the Enterobacteriaceae bloom was facilitated by a decline in Sma/BMP immune signaling in aging animals and demonstrated its potential for exacerbating infection susceptibility. However, such detrimental effects were context-dependent, mitigated by competition with commensal communities, highlighting the latter as determinants of healthy versus unhealthy aging, depending on their ability to restrain opportunistic pathobionts.
Collapse
Affiliation(s)
- Rebecca Choi
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rahul Bodkhe
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Barbara Pees
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Dan Kim
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Maureen Berg
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - David Monnin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Juhyun Cho
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Vivek Narayan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ethan Deller
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, City University of New York, Flushing NY, USA
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
11
|
Griem-Krey H, Petersen C, Hamerich IK, Schulenburg H. The intricate triangular interaction between protective microbe, pathogen and host determines fitness of the metaorganism. Proc Biol Sci 2023; 290:20232193. [PMID: 38052248 PMCID: PMC10697802 DOI: 10.1098/rspb.2023.2193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
The microbiota shapes host biology in numerous ways. One example is protection against pathogens, which is likely critical for host fitness in consideration of the ubiquity of pathogens. The host itself can affect abundance of microbiota or pathogens, which has usually been characterized in separate studies. To date, however, it is unclear how the host influences the interaction with both simultaneously and how this triangular interaction determines fitness of the host-microbe assemblage, the so-called metaorganism. To address this current knowledge gap, we focused on a triangular model interaction, consisting of the nematode Caenorhabditis elegans, its protective symbiont Pseudomonas lurida MYb11 and its pathogen Bacillus thuringiensis Bt679. We combined the two microbes with C. elegans mutants with altered immunity and/or microbial colonization, and found that (i) under pathogen stress, immunocompetence has a larger influence on metaorganism fitness than colonization with the protective microbe; (ii) in almost all cases, MYb11 still improves fitness; and (iii) disruption of p38 MAPK signalling, which contributes centrally to immunity against Bt679, completely reverses the protective effect of MYb11, which further reduces nematode survival and fitness upon infection with Bt679. Our study highlights the complex interplay between host, protective microbe and pathogen in shaping metaorganism biology.
Collapse
Affiliation(s)
- Hanne Griem-Krey
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
| | - Carola Petersen
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
| | - Inga K. Hamerich
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
- Antibiotic resistance group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
12
|
Yang RQ, Chen YH, Wu QY, Tang J, Niu SZ, Zhao Q, Ma YC, Zou CG. Indole produced during dysbiosis mediates host-microorganism chemical communication. eLife 2023; 12:e85362. [PMID: 37987602 PMCID: PMC10691800 DOI: 10.7554/elife.85362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
An imbalance of the gut microbiota, termed dysbiosis, has a substantial impact on host physiology. However, the mechanism by which host deals with gut dysbiosis to maintain fitness remains largely unknown. In Caenorhabditis elegans, Escherichia coli, which is its bacterial diet, proliferates in its intestinal lumen during aging. Here, we demonstrate that progressive intestinal proliferation of E. coli activates the transcription factor DAF-16, which is required for maintenance of longevity and organismal fitness in worms with age. DAF-16 up-regulates two lysozymes lys-7 and lys-8, thus limiting the bacterial accumulation in the gut of worms during aging. During dysbiosis, the levels of indole produced by E. coli are increased in worms. Indole is involved in the activation of DAF-16 by TRPA-1 in neurons of worms. Our finding demonstrates that indole functions as a microbial signal of gut dysbiosis to promote fitness of the host.
Collapse
Affiliation(s)
- Rui-Qiu Yang
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Yong-Hong Chen
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Qin-yi Wu
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Traditional Chinese MedicineKunmingChina
| | - Jie Tang
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Shan-Zhuang Niu
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Qiu Zhao
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Yi-Cheng Ma
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Cheng-Gang Zou
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| |
Collapse
|
13
|
Gonzalez X, Irazoqui JE. Distinct members of the C. elegans CeMbio reference microbiota exert cryptic virulence and infection protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565327. [PMID: 37961109 PMCID: PMC10635080 DOI: 10.1101/2023.11.02.565327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Microbiotas are complex microbial communities that colonize specific niches in the host and provide essential organismal functions that are important in health and disease. A key aspect is the ability of each distinct community member to promote or impair host health, alone or in the context of the community, in hosts with varied levels of immune competence. Understanding such interactions is limited by the complexity and experimental accessibility of current systems and models. Recently, a reference twelve-member microbiota for the model organism C. elegans, known as CeMbio, was defined to aid the dissection of conserved host-microbiota interactions. Understanding the physiological impact of the CeMbio bacteria on C. elegans is in its infancy. Here, we show the differential ability of each CeMbio bacterial species to activate innate immunity through the conserved PMK-1/p38 MAPK, ACh/WNT, and HLH-30/TFEB pathways. Using immunodeficient animals, we uncovered several examples of bacterial 'cryptic' virulence, or virulence that was masked by the host defense response. The ability to activate the PMK-1/p38 pathway did not correlate with bacterial virulence in wild type or immunodeficient animals. In contrast, ten out of twelve species activated HLH-30/TFEB, and most showed virulence towards hlh-30-deficient animals. In addition, we identified Pseudomonas lurida as a pathogen in wild type animals, and Acinetobacter guillouiae as avirulent despite activating all three pathways. Moreover, short pre-exposure to A. guillouiae promoted host survival of infection with P. lurida, which was dependent on PMK-1/p38 MAPK and HLH-30/TFEB. These results suggest that the microbiota of C. elegans is rife with "opportunistic" pathogens, and that HLH-30/TFEB is a fundamental and key host protective factor. Furthermore, they support the idea that bacteria like A. guillouiae evolved the ability to induce host innate immunity to improve host fitness when confronted with pathogens, providing new insights into how colonization order impacts host health.
Collapse
Affiliation(s)
- Xavier Gonzalez
- Immunology and Microbiology graduate program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester MA 01605
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester MA 01605
| | - Javier E. Irazoqui
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester MA 01605
| |
Collapse
|
14
|
Madhu B, Lakdawala MF, Gumienny TL. The DBL-1/TGF-β signaling pathway tailors behavioral and molecular host responses to a variety of bacteria in Caenorhabditis elegans. eLife 2023; 12:e75831. [PMID: 37750680 PMCID: PMC10567113 DOI: 10.7554/elife.75831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/25/2023] [Indexed: 09/27/2023] Open
Abstract
Generating specific, robust protective responses to different bacteria is vital for animal survival. Here, we address the role of transforming growth factor β (TGF-β) member DBL-1 in regulating signature host defense responses in Caenorhabditis elegans to human opportunistic Gram-negative and Gram-positive pathogens. Canonical DBL-1 signaling is required to suppress avoidance behavior in response to Gram-negative, but not Gram-positive bacteria. We propose that in the absence of DBL-1, animals perceive some bacteria as more harmful. Animals activate DBL-1 pathway activity in response to Gram-negative bacteria and strongly repress it in response to select Gram-positive bacteria, demonstrating bacteria-responsive regulation of DBL-1 signaling. DBL-1 signaling differentially regulates expression of target innate immunity genes depending on the bacterial exposure. These findings highlight a central role for TGF-β in tailoring a suite of bacteria-specific host defenses.
Collapse
Affiliation(s)
- Bhoomi Madhu
- Department of Biology, Texas Woman’s UniversityDentonUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Mohammed Farhan Lakdawala
- Department of Biology, Texas Woman’s UniversityDentonUnited States
- AbbVie (United States)WorcesterUnited States
| | - Tina L Gumienny
- Department of Biology, Texas Woman’s UniversityDentonUnited States
| |
Collapse
|
15
|
Yamamoto KK, Savage-Dunn C. TGF-β pathways in aging and immunity: lessons from Caenorhabditis elegans. Front Genet 2023; 14:1220068. [PMID: 37732316 PMCID: PMC10507863 DOI: 10.3389/fgene.2023.1220068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
The Transforming Growth Factor-β (TGF-β) superfamily of signaling molecules plays critical roles in development, differentiation, homeostasis, and disease. Due to the conservation of these ligands and their signaling pathways, genetic studies in invertebrate systems including the nematode Caenorhabditis elegans have been instrumental in identifying signaling mechanisms. C. elegans is also a premier organism for research in longevity and healthy aging. Here we summarize current knowledge on the roles of TGF-β signaling in aging and immunity.
Collapse
Affiliation(s)
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, and PhD Program in Biology, The Graduate Center, City University of New York, New York City, NY, United States
| |
Collapse
|
16
|
Maizels RM, Newfeld SJ. Convergent Evolution in a Murine Intestinal Parasite Rapidly Created the TGM Family of Molecular Mimics to Suppress the Host Immune Response. Genome Biol Evol 2023; 15:evad158. [PMID: 37625791 PMCID: PMC10516467 DOI: 10.1093/gbe/evad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
The Transforming Growth Factor-β mimic (TGM) multigene family was recently discovered in the murine intestinal parasite Heligmosomoides polygyrus. This family was shaped by an atypical set of organismal and molecular evolutionary mechanisms along its path through the adaptive landscape. The relevant mechanisms are mimicry, convergence, exon modularity, new gene origination, and gene family neofunctionalization. We begin this review with a description of the TGM family and then address two evolutionary questions: "Why were TGM proteins needed for parasite survival" and "when did the TGM family originate"? For the former, we provide a likely answer, and for the latter, we identify multiple TGM building blocks in the ruminant intestinal parasite Haemonchus contortus. We close by identifying avenues for future investigation: new biochemical data to assign functions to more family members as well as new sequenced genomes in the Trichostrongyloidea superfamily and the Heligmosomoides genus to clarify TGM origins and expansion. Continued study of TGM proteins will generate increased knowledge of Transforming Growth Factor-β signaling, host-parasite interactions, and metazoan evolutionary mechanisms.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Stuart J Newfeld
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
17
|
Kim D, Pérez-Carrascal OM, DeSousa C, Jung DK, Bohley S, Wijaya L, Trang K, Khoury S, Shapira M. Microbiome remodeling through bacterial competition and host behavior enables rapid adaptation to environmental toxins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545768. [PMID: 37646003 PMCID: PMC10462140 DOI: 10.1101/2023.06.21.545768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Human activity is altering the environment in a rapid pace, challenging the adaptive capacities of genetic variation within animal populations. Animals also harbor extensive gut microbiomes, which play diverse roles in host health and fitness and may help expanding host capabilities. The unprecedented scale of human usage of xenobiotics and contamination with environmental toxins describes one challenge against which bacteria with their immense biochemical diversity would be useful, by increasing detoxification capacities. To explore the potential of bacteria-assisted rapid adaptation, we used Caenorhabditis elegans worms harboring a defined microbiome, and neomycin as a model toxin, harmful for the worm host and neutralized to different extents by some microbiome members. Worms raised in the presence of neomycin showed delayed development and decreased survival but were protected when colonized by neomycin-resistant members of the microbiome. Two distinct mechanisms facilitated this protection: gut enrichment driven by altered bacterial competition for the strain best capable of modifying neomycin; and host avoidance behavior, which depended on the conserved JNK homolog KGB-1, enabling preference and acquisition of neomycin-protective bacteria. We further tested the consequences of adaptation, considering that enrichment for protective strains may represent dysbiosis. We found that neomycin-adapted gut microbiomes caused increased susceptibility to infection as well as an increase in gut lipid storage, suggesting metabolic remodeling. Our proof-of-concept experiments support the feasibility of bacteria-assisted host adaptation and suggest that it may be prevalent. The results also highlight trade-offs between toxin adaptation and other traits of fitness.
Collapse
Affiliation(s)
- Dan Kim
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | | | - Catherin DeSousa
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Da Kyung Jung
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Seneca Bohley
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Lila Wijaya
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Kenneth Trang
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Sarah Khoury
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
18
|
Li Q, Xiao M, Li N, Cai W, Zhao C, Liu B, Zeng F. Application of
Caenorhabditis elegans
in the evaluation of food nutrition: A review. EFOOD 2023. [DOI: 10.1002/efd2.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Affiliation(s)
- Quancen Li
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Meifang Xiao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Na Li
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Wenwen Cai
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Chao Zhao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing Fujian Agriculture and Forestry University Fuzhou China
| | - Bin Liu
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing Fujian Agriculture and Forestry University Fuzhou China
- National Engineering Research Center of JUNCAO Technology Fujian Agriculture and Forestry University Fuzhou China
| | - Feng Zeng
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
19
|
He Y, Hao F, Fu H, Tian G, Zhang Y, Fu K, Qi B. N-glycosylated intestinal protein BCF-1 shapes microbial colonization by binding bacteria via its fimbrial protein. Cell Rep 2023; 42:111993. [PMID: 36662624 DOI: 10.1016/j.celrep.2023.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Microbial colonization plays an instrumental role in the health of the host. However, the host factors that facilitate the establishment of the microbial colonization remain unclear. Here, we establish a screening method to identify host factors regulating E. coli colonization in C. elegans. We find that a BCF-1 possessing N-glycosylation promotes E. coli colonization by directly binding to E. coli via its fimbrial protein, YdeR. BCF-1 is activated by the bacteria and interacts with an oligosaccharyl transferase, OSTB-1, which is critical for regulating E. coli colonization. We also show that the N-glycosylation of BCF-1 is critical for E. coli colonization. In addition, we find that the microbiota composition is shaped by BCF-1. In summary, this study shows a "scaffold model" for bacterial colonization between a host glycoprotein and E. coli, and it also introduces a powerful research approach to identify individual host factors involved in modulating bacterial colonization.
Collapse
Affiliation(s)
- Yongjuan He
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Fanrui Hao
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Herui Fu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Guojing Tian
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Yingyang Zhang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Kai Fu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Bin Qi
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
20
|
Ma N, Chen X, Johnston LJ, Ma X. Gut microbiota-stem cell niche crosstalk: A new territory for maintaining intestinal homeostasis. IMETA 2022; 1:e54. [PMID: 38867904 PMCID: PMC10989768 DOI: 10.1002/imt2.54] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 06/14/2024]
Abstract
Intestinal epithelium undergoes rapid cellular turnover, relying on the local niche, to support intestinal stem cells (ISCs) function and self-renewal. Research into the association between ISCs and disease continues to expand at a rapid rate. However, the detailed interaction of ISCs and gut microbes remains to be elucidated. Thus, this review witnessed major advances in the crosstalk between ISCs and gut microbes, delivering key insights into (1) construction of ISC niche and molecular mechanism of how to jointly govern epithelial homeostasis and protect against intestinal diseases with the participation of Wnt, bone morphogenetic protein, and Notch; (2) differentiation fate of ISCs affect the gut microbiota. Meanwhile, the presence of intestinal microbes also regulates ISC function; (3) microbiota regulation on ISCs by Wnt and Notch signals through pattern recognition receptors; (4) how do specific microbiota-related postbiotics influence ISCs to maintain intestinal epithelial regeneration and homeostasis that provide insights into a promising alternative therapeutic method for intestinal diseases. Considering the detailed interaction is still unclear, it is necessary to further explore the regulatory role of gut microbiota on ISCs to utilize microbes to alleviate gut disorders. Furthermore, these major advances collectively drive us ever closer to breakthroughs in regenerative medicine and cancer treatment by microbial transplantation in the clinic.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiyue Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Lee J. Johnston
- West Central Research & Outreach CenterUniversity of MinnesotaMorrisMinnesotaUSA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
21
|
Gang SS, Grover M, Reddy KC, Raman D, Chang YT, Ekiert DC, Barkoulas M, Troemel ER. A pals-25 gain-of-function allele triggers systemic resistance against natural pathogens of C. elegans. PLoS Genet 2022; 18:e1010314. [PMID: 36191002 PMCID: PMC9560605 DOI: 10.1371/journal.pgen.1010314] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/13/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
Regulation of immunity throughout an organism is critical for host defense. Previous studies in the nematode Caenorhabditis elegans have described an "ON/OFF" immune switch comprised of the antagonistic paralogs PALS-25 and PALS-22, which regulate resistance against intestinal and epidermal pathogens. Here, we identify and characterize a PALS-25 gain-of-function mutant protein with a premature stop (Q293*), which we find is freed from physical repression by its negative regulator, the PALS-22 protein. PALS-25(Q293*) activates two related gene expression programs, the Oomycete Recognition Response (ORR) against natural pathogens of the epidermis, and the Intracellular Pathogen Response (IPR) against natural intracellular pathogens of the intestine. A subset of ORR/IPR genes is upregulated in pals-25(Q293*) mutants, and they are resistant to oomycete infection in the epidermis, and microsporidia and virus infection in the intestine, but without compromising growth. Surprisingly, we find that activation of PALS-25 seems to primarily stimulate the downstream bZIP transcription factor ZIP-1 in the epidermis, with upregulation of gene expression in both the epidermis and in the intestine. Interestingly, we find that PALS-22/25-regulated epidermal-to-intestinal signaling promotes resistance to the N. parisii intestinal pathogen, demonstrating cross-tissue protective immune induction from one epithelial tissue to another in C. elegans.
Collapse
Affiliation(s)
- Spencer S. Gang
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Manish Grover
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Kirthi C. Reddy
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Deevya Raman
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Ya-Ting Chang
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Damian C. Ekiert
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, New York, United States of America
| | | | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
22
|
Matthewman C, Narin A, Huston H, Hopkins CE. Systems to model the personalized aspects of microbiome health and gut dysbiosis. Mol Aspects Med 2022; 91:101115. [PMID: 36104261 DOI: 10.1016/j.mam.2022.101115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023]
Abstract
The human gut microbiome is a complex and dynamic microbial entity that interacts with the environment and other parts of the body including the brain, heart, liver, and immune system. These multisystem interactions are highly conserved from invertebrates to humans, however the complexity and diversity of human microbiota compositions often yield a context that is unique to each individual. Yet commonalities remain across species, where a healthy gut microbiome will be rich in symbiotic commensal biota while an unhealthy gut microbiota will be experiencing abnormal blooms of pathobiont bacteria. In this review we discuss how omics technologies can be applied in a personalized approach to understand the microbial crosstalk and microbial-host interactions that affect the delicate balance between eubiosis and dysbiosis in an individual gut microbiome. We further highlight the strengths of model organisms in identifying and characterizing these conserved synergistic and/or pathogenic host-microbe interactions. And finally, we touch upon the growing area of personalized therapeutic interventions targeting gut microbiome.
Collapse
|
23
|
Li XY, Wang Z, Jiang JG, Shen CY. Role of polyphenols from Polygonum multiflorum Caulis in obesity-related disorders. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115378. [PMID: 35562092 DOI: 10.1016/j.jep.2022.115378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygoni Multiflori Caulis (PMC) has been widely consumed as folk medicine in China for anti-obesity, sleep-enhancing and many other pharmacological effects. However, the material basis and underlying mechanism of PMC on obesity-related disorders were still not clear. AIM OF THE STUDY To screen active constituents from PMC and explore their multitarget mechanisms in the treatment of obesity and its associated disorders. MATERIALS AND METHODS Several major constituents were extracted from PMC and LC-MS assay were used to identify the compounds. The lipase inhibitory activity and lipid accumulation in 3T3-L1 preadipocytes were determined. Furthermore, Caenorhabditis elegans (C. elegans) and high-fat diet (HFD)-induced mice were established to explore the potential pharmacological functions and related mechanisms using kits, RT-qPCR and biochemical analysis. RESULTS Regarding the lipase inhibitory activity, the inhibition rate of EA and n-Bu extracts at 4 mg/mL reached over 80%. Effects on 3T3-L1 preadipocytes proliferation and differentiation were also obvious, indicating that EA and n-Bu extracts might exert potential anti-obesity functions. LC-MS assay further showed that polyphenols including emodin and physcion comprised majority of EA and n-Bu extracts. EA and n-Bu extracts treatment could significantly modulate the antioxidant response and lipid accumulation in C. elegans, as evidenced by increased SOD and CAT contents, reduced MDA levels, higher TG contents and changes of related mRNA expression levels. In HFD-induced mice, the inhibition ratio of body weight as well as the histological and biochemical indexes of liver, plasma and epididymal adipose tissues were also reversed by EA and n-Bu extracts treatment. Moreover, EA and n-Bu extracts administration increased the microbial diversity, reshaped the microbiota structure and enhanced the relative abundance of Bifidobacterium. CONCLUSIONS This study demonstrated the multicomponent and multitarget characteristics of PMC in preventing obesity related disorders. The results provided novel insights for the development and utilization of PMC.
Collapse
Affiliation(s)
- Xiao-Yi Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, PR China
| | - Zheng Wang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | - Chun-Yan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, PR China.
| |
Collapse
|
24
|
Pérez-Carrascal OM, Choi R, Massot M, Pees B, Narayan V, Shapira M. Host Preference of Beneficial Commensals in a Microbially-Diverse Environment. Front Cell Infect Microbiol 2022; 12:795343. [PMID: 35782135 PMCID: PMC9240469 DOI: 10.3389/fcimb.2022.795343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Gut bacteria are often described by the neutral term commensals. However, the more we learn about their interactions with hosts, the more apparent it becomes that gut commensals often contribute positively to host physiology and fitness. Whether hosts can prefer beneficial bacteria, and how they do so, is not clear. This is of particular interest in the case of the bacterivore C. elegans, which depends on bacteria as food source, but also as gut colonizers that contribute to its physiology, from development to immunity. It is further unclear to what extent worms living in their microbially-diverse habitats can sense and distinguish between beneficial bacteria, food, and pathogens. Focusing on Enterobacteriaceae and members of closely related families, we isolated gut bacteria from worms raised in compost microcosms, as well as bacteria from the respective environments and evaluated their contributions to host development. Most isolates, from worms or from the surrounding environment, promoted faster development compared to the non-colonizing E. coli food strain. Pantoea strains further showed differential contributions of gut isolates versus an environmental isolate. Characterizing bacterial ability to hinder pathogenic colonization with Pseudomonas aeruginosa, supported the trend of Pantoea gut commensals being beneficial, in contrast to the environmental strain. Interestingly, worms were attracted to the beneficial Pantoea strains, preferring them over non-beneficial bacteria, including the environmental Pantoea strain. While our understanding of the mechanisms underlying these host-microbe interactions are still rudimentary, the results suggest that hosts can sense and prefer beneficial commensals.
Collapse
|
25
|
Ryu EP, Davenport ER. Host Genetic Determinants of the Microbiome Across Animals: From Caenorhabditis elegans to Cattle. Annu Rev Anim Biosci 2022; 10:203-226. [PMID: 35167316 PMCID: PMC11000414 DOI: 10.1146/annurev-animal-020420-032054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animals harbor diverse communities of microbes within their gastrointestinal tracts. Phylogenetic relationship, diet, gut morphology, host physiology, and ecology all influence microbiome composition within and between animal clades. Emerging evidence points to host genetics as also playing a role in determining gut microbial composition within species. Here, we discuss recent advances in the study of microbiome heritability across a variety of animal species. Candidate gene and discovery-based studies in humans, mice, Drosophila, Caenorhabditis elegans, cattle, swine, poultry, and baboons reveal trends in the types of microbes that are heritable and the host genes and pathways involved in shaping the microbiome. Heritable gut microbes within a host species tend to be phylogenetically restricted. Host genetic variation in immune- and growth-related genes drives the abundances of these heritable bacteria within the gut. With only a small slice of the metazoan branch of the tree of life explored to date, this is an area rife with opportunities to shed light into the mechanisms governing host-microbe relationships.
Collapse
Affiliation(s)
- Erica P Ryu
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA; ,
| | - Emily R Davenport
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA; ,
- Huck Institutes of the Life Sciences and Institute for Computational and Data Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
26
|
Kissoyan KAB, Peters L, Giez C, Michels J, Pees B, Hamerich IK, Schulenburg H, Dierking K. Exploring Effects of C. elegans Protective Natural Microbiota on Host Physiology. Front Cell Infect Microbiol 2022; 12:775728. [PMID: 35237530 PMCID: PMC8884406 DOI: 10.3389/fcimb.2022.775728] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
The Caenorhabditis elegans natural microbiota was described only recently. Thus, our understanding of its effects on nematode physiology is still in its infancy. We previously showed that the C. elegans natural microbiota isolates Pseudomonas lurida MYb11 and P. fluorescens MYb115 protect the worm against pathogens such as Bacillus thuringiensis (Bt). However, the overall effects of the protective microbiota on worm physiology are incompletely understood. Here, we investigated how MYb11 and MYb115 affect C. elegans lifespan, fertility, and intestinal colonization. We further studied the capacity of MYb11 and MYb115 to protect the worm against purified Bt toxins. We show that while MYb115 and MYb11 affect reproductive timing and increase early reproduction only MYb11 reduces worm lifespan. Moreover, MYb11 aggravates killing upon toxin exposure. We conclude that MYb11 has a pathogenic potential in some contexts. This work thus highlights that certain C. elegans microbiota members can be beneficial and costly to the host in a context-dependent manner, blurring the line between good and bad.
Collapse
|
27
|
Wu F, Wang S, Zeng Q, Liu J, Yang J, Mu J, Xu H, Wu L, Gao Q, He X, Liu Y, Zhou H. TGF-βRII regulates glucose metabolism in oral cancer-associated fibroblasts via promoting PKM2 nuclear translocation. Cell Death Dis 2022; 8:3. [PMID: 35013150 PMCID: PMC8748622 DOI: 10.1038/s41420-021-00804-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are highly heterogeneous and differentiated stromal cells that promote tumor progression via remodeling of extracellular matrix, maintenance of stemness, angiogenesis, and modulation of tumor metabolism. Aerobic glycolysis is characterized by an increased uptake of glucose for conversion into lactate under sufficient oxygen conditions, and this metabolic process occurs at the site of energy exchange between CAFs and cancer cells. As a hallmark of cancer, metabolic reprogramming of CAFs is defined as reverse Warburg effect (RWE), characterized by increased lactate, glutamine, and pyruvate, etc. derived from aerobic glycolysis. Given that the TGF-β signal cascade plays a critical role in RWE mainly through metabolic reprogramming related proteins including pyruvate kinase muscle isozyme 2 (PKM2), however, the role of nuclear PKM2 in modifying glycolysis remains largely unknown. In this study, using a series of in vitro and in vivo experiments, we provide evidence that TGF-βRII overexpression suppresses glucose metabolism in CAFs by attenuating PKM2 nuclear translocation, thereby inhibiting oral cancer tumor growth. This study highlights a novel pathway that explains the role of TGF-βRII in CAFs glucose metabolism and suggests that targeting TGF-βRII in CAFs might represent a therapeutic approach for oral cancer.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China
| | - Shimeng Wang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China
| | - Qingxiang Zeng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China
| | - Hongdang Xu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China
| | - Lanyan Wu
- Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China
| | - Qinghong Gao
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China
| | - Xin He
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China. .,College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People's Republic of China.
| | - Ying Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China. .,Department of Stomatology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
28
|
SMAD4 Feedback Activates the Canonical TGF-β Family Signaling Pathways. Int J Mol Sci 2021; 22:ijms221810024. [PMID: 34576190 PMCID: PMC8471547 DOI: 10.3390/ijms221810024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
TGF-β family signaling pathways, including TGF-β and BMP pathways, are widely involved in the regulation of health and diseases through downstream SMADs, which are also regulated by multiple validated mechanisms, such as genetic regulation, epigenetic regulation, and feedback regulation. However, it is still unclear whether R-SMADs or Co-SMAD can feedback regulate the TGF-β family signaling pathways in granulosa cells (GCs). In this study, we report a novel mechanism underlying the feedback regulation of TGF-β family signaling pathways, i.e., SMAD4, the only Co-SMAD, positive feedback activates the TGF-β family signaling pathways in GCs with a basal level of TGF-β ligands by interacting with the core promoters of its upstream receptors. Mechanistically, SMAD4 acts as a transcription factor, and feedback activates the transcription of its upstream receptors, including ACVR1B, BMPR2, and TGFBR2, of the canonical TGF-β signaling pathways by interacting with three coactivators (c-JUN, CREB1, and SP1), respectively. Notably, three different interaction modes between SMAD4 and coactivators were identified in SMAD4-mediated feedback regulation of upstream receptors through reciprocal ChIP assays. Our findings in the present study indicate for the first time that SMAD4 feedback activates the canonical TGF-β family signaling pathways in GCs, which improves and expands the regulatory mechanism, especially the feedback regulation modes of TGF-β family signaling pathways in ovarian GCs.
Collapse
|
29
|
Pees B, Johnke J, Möhl M, Hamerich IK, Leippe M, Petersen C. Microbes to-go: slugs as source for Caenorhabditis elegans microbiota acquisition. Environ Microbiol 2021; 23:6721-6733. [PMID: 34414649 DOI: 10.1111/1462-2920.15730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
Research on the Caenorhabditis elegans microbiota only recently started, with little known about how C. elegans acquires its microbiota. Slugs live in the same habitat as C. elegans and are known vectors for the worm. Hence, we wondered how the passage through a slug affects the C. elegans gut microbiota and whether worms can acquire bacteria from the slug. Using fluorescently labelled microbiota and 16S rRNA gene amplicon sequencing, we evaluated microbiota persistence and acquisition in C. elegans after slug passage. We compared C. elegans gut microbiomes isolated from wild-caught slugs to the microbiomes of worms after experimental slug passage to compare similarities and differences in microbiome composition. We found that microbiota persists in C. elegans while passing the slug gut and that worms simultaneously acquire additional bacteria species from the slug. Although the amplicon sequencing variant (ASV) richness of worms from the experiment did not exceed the richness of worms that naturally occur in slugs, we found a high number of shared ASVs indicating the importance of commonly associated microbiota. We demonstrate that C. elegans can take advantage of its passage through the slug by acquiring new potential microbiota without losing its native microbiota.
Collapse
Affiliation(s)
- Barbara Pees
- Department of Comparative Immunobiology, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Julia Johnke
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Michelle Möhl
- Department of Comparative Immunobiology, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Inga K Hamerich
- Department of Comparative Immunobiology, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Matthias Leippe
- Department of Comparative Immunobiology, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Carola Petersen
- Department of Comparative Immunobiology, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| |
Collapse
|
30
|
Han R, Wang Y, Deng Y, Zhang Y, Zhang L, Niu Q. Stenotrophomonas strain CPCC 101271, an intestinal lifespan-prolonging bacterium for Caenorhabditis elegans that assists in host resistance to "Bacillus nematocida" colonization. Arch Microbiol 2021; 203:4951-4960. [PMID: 34258643 PMCID: PMC8502144 DOI: 10.1007/s00203-021-02467-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/25/2022]
Abstract
The soil-dwelling, opportunistic pathogenic bacterium "Bacillus nematocida" B16 exhibits strong killing activities against a variety of pathogenic nematodes via a “Trojan horse” mechanism that can kill worm species like Caenorhabditis elegans. The bacterial strain CPCC 101271 was previously isolated from the intestines of C. elegans that were recovered from natural habitats and can serve as a probiotic for C. elegans, while also assisting in resistance to infection by the pathogenic strain B16. In this study, the lifespan of C. elegans fed with strain CPCC 101271 cells was extended by approximately 40% compared with that of worms fed with Escherichia coli OP50 cells. In addition, the colonization of C. elegans by the pathogenic bacterium "B. nematocida" B16 was inhibited when pre-fed with strain CPCC 101271. Metagenomic sequence analysis of intestinal microbiota of C. elegans fed with strain CPCC 101271 and infected with B16 revealed that pre-feeding worms with CPCC 101271 improved the diversity of the intestinal bacteria. Moreover, community structure significantly varied in coordination with Stenotrophomonas spp. and Bacillus spp. abundances when competition between strains CPCC 101271 and B16 was evaluated. In conclusion, the nematode microbiota strain CPCC 101271 assisted in its host resistance to colonization by the pathogen "Bacillus nematocida" and can also promote life span-prolongation in C. elegans. These results underscore that understanding the interactions between C. elegans microbiota and pathogens can provide new insights into achieving effective biological control of agricultural pests.
Collapse
Affiliation(s)
- Rui Han
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Yu Wang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Yang Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuqin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lin Zhang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China.
| | - Qiuhong Niu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China.
| |
Collapse
|
31
|
Ortiz A, Vega NM, Ratzke C, Gore J. Interspecies bacterial competition regulates community assembly in the C. elegans intestine. THE ISME JOURNAL 2021; 15:2131-2145. [PMID: 33589765 PMCID: PMC8245486 DOI: 10.1038/s41396-021-00910-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
From insects to mammals, a large variety of animals hold in their intestines complex bacterial communities that play an important role in health and disease. To further our understanding of how intestinal bacterial communities assemble and function, we study the C. elegans microbiota with a bottom-up approach by feeding this nematode with bacterial monocultures as well as mixtures of two to eight bacterial species. We find that bacteria colonizing well in monoculture do not always do well in co-cultures due to interspecies bacterial interactions. Moreover, as community diversity increases, the ability to colonize the worm gut in monoculture becomes less important than interspecies interactions for determining community assembly. To explore the role of host-microbe adaptation, we compare bacteria isolated from C. elegans intestines and non-native isolates, and we find that the success of colonization is determined more by a species' taxonomy than by the isolation source. Lastly, by comparing the assembled microbiotas in two C. elegans mutants, we find that innate immunity via the p38 MAPK pathway decreases bacterial abundances yet has little influence on microbiota composition. These results highlight that bacterial interspecies interactions, more so than host-microbe adaptation or gut environmental filtering, play a dominant role in the assembly of the C. elegans microbiota.
Collapse
Affiliation(s)
- Anthony Ortiz
- grid.116068.80000 0001 2341 2786Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Nicole M. Vega
- grid.116068.80000 0001 2341 2786Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.189967.80000 0001 0941 6502Present Address: Department of Biology, Emory University, Atlanta, GA USA
| | - Christoph Ratzke
- grid.116068.80000 0001 2341 2786Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.10392.390000 0001 2190 1447Present Address: Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence ‘CMFI’, University of Tübingen, Tübingen, Germany
| | - Jeff Gore
- grid.116068.80000 0001 2341 2786Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
32
|
Zhong X, Zhang F, Yin X, Cao H, Wang X, Liu D, Chen J, Chen X. Bone Homeostasis and Gut Microbial-Dependent Signaling Pathways. J Microbiol Biotechnol 2021; 31:765-774. [PMID: 34176870 PMCID: PMC9705830 DOI: 10.4014/jmb.2104.04016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
Although research on the osteal signaling pathway has progressed, understanding of gut microbial-dependent signaling pathways for metabolic and immune bone homeostasis remains elusive. In recent years, the study of gut microbiota has shed light on our understanding of bone homeostasis. Here, we review microbiota-mediated gut-bone crosstalk via bone morphogenetic protein/SMADs, Wnt and OPG/receptor activator of nuclear factor-kappa B ligand signaling pathways in direct (translocation) and indirect (metabolite) manners. The mechanisms underlying gut microbiota involvement in these signaling pathways are relevant in immune responses, secretion of hormones, fate of osteoblasts and osteoclasts and absorption of calcium. Collectively, we propose a signaling network for maintaining a dynamic homeostasis between the skeletal system and the gut ecosystem. Additionally, the role of gut microbial improvement by dietary intervention in osteal signaling pathways has also been elucidated. This review provides unique resources from the gut microbial perspective for the discovery of new strategies for further improving treatment of bone diseases by increasing the abundance of targeted gut microbiota.
Collapse
Affiliation(s)
- Xiaohui Zhong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China
| | - Feng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China,Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China,Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China
| | - Xinyao Yin
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China
| | - Hong Cao
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China,Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China,Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China
| | - Xuesong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China,Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R.China
| | - Dongsong Liu
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R.China
| | - Jing Chen
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R.China
| | - Xue Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China,Corresponding author Phone: +86-15861589177 E-mail:
| |
Collapse
|
33
|
Zhang F, Weckhorst JL, Assié A, Hosea C, Ayoub CA, Khodakova AS, Cabrera ML, Vidal Vilchis D, Félix MA, Samuel BS. Natural genetic variation drives microbiome selection in the Caenorhabditis elegans gut. Curr Biol 2021; 31:2603-2618.e9. [PMID: 34048707 PMCID: PMC8222194 DOI: 10.1016/j.cub.2021.04.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Host genetic landscapes can shape microbiome assembly in the animal gut by contributing to the establishment of distinct physiological environments. However, the genetic determinants contributing to the stability and variation of these microbiome types remain largely undefined. Here, we use the free-living nematode Caenorhabditis elegans to identify natural genetic variation among wild strains of C. elegans that drives assembly of distinct microbiomes. To achieve this, we first established a diverse model microbiome that represents the strain-level phylogenetic diversity naturally encountered by C. elegans in the wild. Using this community, we show that C. elegans utilizes immune, xenobiotic, and metabolic signaling pathways to favor the assembly of different microbiome types. Variations in these pathways were associated with enrichment for specific commensals, including the Alphaproteobacteria Ochrobactrum. Using RNAi and mutant strains, we showed that host selection for Ochrobactrum is mediated specifically by host insulin signaling pathways. Ochrobactrum recruitment is blunted in the absence of DAF-2/IGFR and modulated by the competitive action of insulin signaling transcription factors DAF-16/FOXO and PQM-1/SALL2. Further, the ability of C. elegans to enrich for Ochrobactrum as adults is correlated with faster animal growth rates and larger body size at the end of development. These results highlight a new role for the highly conserved insulin signaling pathways in the regulation of gut microbiome composition in C. elegans.
Collapse
Affiliation(s)
- Fan Zhang
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Jessica L Weckhorst
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Quantitative and Computational Biosciences, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Adrien Assié
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Ciara Hosea
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Christopher A Ayoub
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Anastasia S Khodakova
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Mario Loeza Cabrera
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Daniela Vidal Vilchis
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Marie-Anne Félix
- Ecole Normale Supérieure, IBENS, CNRS UMR8197, INSERM U1024, Paris, France
| | - Buck S Samuel
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Quantitative and Computational Biosciences, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Zhang X, Wen K, Ding D, Liu J, Lei Z, Chen X, Ye G, Zhang J, Shen H, Yan C, Dong S, Huang Q, Lin Y. Size-dependent adverse effects of microplastics on intestinal microbiota and metabolic homeostasis in the marine medaka (Oryzias melastigma). ENVIRONMENT INTERNATIONAL 2021; 151:106452. [PMID: 33639345 DOI: 10.1016/j.envint.2021.106452] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 05/26/2023]
Abstract
Microplastic (MP) is an emerging environmental pollutant and exposure to MPs has been associated with numerous adverse health outcomes in both wild and laboratory animals. The toxicity of MPs depends on concentration, exposure time, chemical composition and size distribution, but the impacts of particle size remain inconclusive yet. In this study, adult marine medaka (Oryzias melastigma) were exposed to different size of polystyrene MPs (PS-MPs) with concentration of 10 mg/L for 60 days and the growth performance, lipid metabolism, immune parameters and gut microbiome were determined. Results indicated that particle size is a dominant factor causing lipid metabolism disorders and hepatic toxicity in PS-MPs-exposed fish. The bodyweight, adipocyte size and hepatic lipid contents were significantly increased in 200 μm PS-MPs-exposed fish, while 2 and 10 μm PS-MPs-exposed fish exhibited liver injury principally manifested asthepresence oflittlefibrosis and inflammation. Given that larger particles could not enter the circulatory system, the impacts of PS-MPs on intestinal microbial biota homeostasis were further investigated. The results not only showed the characterization of gut microbial communities in Oryzias melastigma, but also indicated that microbial diversity and composition were altered in gut of fish exposed to PS-MPs, in particular 200 μm PS-MPs. The differentially abundant bacterial taxa in PS-MPs-exposed fish mainly belonged to the phylum Verrucomicrobia, Firmicutes and Fusobacteria. And furthermore, increased abundance of Verrucomicrobia and Firmicutes/Bacteroidetes ratio and decreased Fusobacteria were correlated with the increased bodyweight. Intestinal microbiome should play a critical role in regulating host lipid metabolism in fish exposed to lager size of PS-MPs.
Collapse
Affiliation(s)
- Xu Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dongxiao Ding
- College of Resources and Environment, Anqing Normal University, Anhui 246011, China
| | - Jintao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoxuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Guozhu Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Changzhou Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Sijun Dong
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China.
| | - Qiansheng Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Yi Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
35
|
Liu C, Chen S, Wang S, Zhao X, Li K, Chen S, Qu GZ. A genome wide transcriptional study of Populus alba x P. tremula var. glandulosa in response to nitrogen deficiency stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1277-1293. [PMID: 34220043 PMCID: PMC8212198 DOI: 10.1007/s12298-021-01012-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Poplar 84 K (Populus alba x P. tremula var. glandulosa) is a good resource for genetic engineering due to its rapid growth and wide adaptability, and it is also an excellent ornamental tree species. In this study, we used 84 K plantlets grown in the nitrogen-limited medium as experimental materials to explore the molecular mechanism in 84 K leaves under nitrogen deficiency. A total of 5,868 differentially expressed genes (DEGs) were identified using the transcriptional information from RNA-seq data. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment results revealed that the DEGs were mainly involved in energy metabolism and anthocyanin biosynthesis. We then identified differentially expressed transcription factors (TFs) and constructed TF centered gene co-expression networks for chlorophyll and anthocyanin biosynthesis pathway genes. Twenty potential regulators were finally identified. We speculated the transcription factors that control the pigmentation in leaves with the MYB-bHLH-WD40 (MBW) pigment regulatory model. Such identification will clarify the genetic basis of the secondary metabolism in 84 K, and being a source of candidate genes for future plant genetic engineering. Our work broadens the researchers' understanding of the regulation of anthocyanin synthesis in trees and provides new perspectives for ornamental 84 K poplar breeding. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01012-3.
Collapse
Affiliation(s)
- Caixia Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Sui Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Kailong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guan-zheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
36
|
Mørch MGM, Møller KV, Hesselager MO, Harders RH, Kidmose CL, Buhl T, Fuursted K, Bendixen E, Shen C, Christensen LG, Poulsen CH, Olsen A. The TGF-β ligand DBL-1 is a key player in a multifaceted probiotic protection against MRSA in C. elegans. Sci Rep 2021; 11:10717. [PMID: 34021197 PMCID: PMC8139972 DOI: 10.1038/s41598-021-89831-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Worldwide the increase in multi-resistant bacteria due to misuse of traditional antibiotics is a growing threat for our health. Finding alternatives to traditional antibiotics is thus timely. Probiotic bacteria have numerous beneficial effects and could offer safer alternatives to traditional antibiotics. Here, we use the nematode Caenorhabditis elegans (C. elegans) to screen a library of different lactobacilli to identify potential probiotic bacteria and characterize their mechanisms of action. We show that pretreatment with the Lactobacillus spp. Lb21 increases lifespan of C. elegans and results in resistance towards pathogenic methicillin-resistant Staphylococcus aureus (MRSA). Using genetic analysis, we find that Lb21-mediated MRSA resistance is dependent on the DBL-1 ligand of the TGF-β signaling pathway in C. elegans. This response is evolutionarily conserved as we find that Lb21 also induces the TGF-β pathway in porcine epithelial cells. We further characterize the host responses in an unbiased proteome analysis and identify 474 proteins regulated in worms fed Lb21 compared to control food. These include fatty acid CoA synthetase ACS-22, aspartic protease ASP-6 and vitellogenin VIT-2 which are important for Lb21-mediated MRSA resistance. Thus, Lb21 exerts its probiotic effect on C. elegans in a multifactorial manner. In summary, our study establishes a mechanistic basis for the antimicrobial potential of lactobacilli.
Collapse
Affiliation(s)
- Maria G M Mørch
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Katrine V Møller
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Rikke H Harders
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Caroline L Kidmose
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Therese Buhl
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Emøke Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Chong Shen
- Gut Immunology Lab, Health & Biosciences , IFF , Brabrand , Denmark
| | | | | | - Anders Olsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
37
|
Radeke LJ, Herman MA. Take a Walk to the Wild Side of Caenorhabditis elegans-Pathogen Interactions. Microbiol Mol Biol Rev 2021; 85:e00146-20. [PMID: 33731489 PMCID: PMC8139523 DOI: 10.1128/mmbr.00146-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Microbiomes form intimate functional associations with their hosts. Much has been learned from correlating changes in microbiome composition to host organismal functions. However, in-depth functional studies require the manipulation of microbiome composition coupled with the precise interrogation of organismal physiology-features available in few host study systems. Caenorhabditis elegans has proven to be an excellent genetic model organism to study innate immunity and, more recently, microbiome interactions. The study of C. elegans-pathogen interactions has provided in depth understanding of innate immune pathways, many of which are conserved in other animals. However, many bacteria were chosen for these studies because of their convenience in the lab setting or their implication in human health rather than their native interactions with C. elegans In their natural environment, C. elegans feed on a variety of bacteria found in rotting organic matter, such as rotting fruits, flowers, and stems. Recent work has begun to characterize the native microbiome and has identified a common set of bacteria found in the microbiome of C. elegans While some of these bacteria are beneficial to C. elegans health, others are detrimental, leading to a complex, multifaceted understanding of bacterium-nematode interactions. Current research on nematode-bacterium interactions is focused on these native microbiome components, both their interactions with each other and with C. elegans We will summarize our knowledge of bacterial pathogen-host interactions in C. elegans, as well as recent work on the native microbiome, and explore the incorporation of these bacterium-nematode interactions into studies of innate immunity and pathogenesis.
Collapse
Affiliation(s)
- Leah J Radeke
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Michael A Herman
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
38
|
Host Immunity Alters Community Ecology and Stability of the Microbiome in a Caenorhabditis elegans Model. mSystems 2021; 6:6/2/e00608-20. [PMID: 33879498 PMCID: PMC8561663 DOI: 10.1128/msystems.00608-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A growing body of data suggests that the microbiome of a species can vary considerably from individual to individual, but the reasons for this variation—and the consequences for the ecology of these communities—remain only partially explained. In mammals, the emerging picture is that the metabolic state and immune system status of the host affect the composition of the microbiome, but quantitative ecological microbiome studies are challenging to perform in higher organisms. Here, we show that these phenomena can be quantitatively analyzed in the tractable nematode host Caenorhabditis elegans. Mutants in innate immunity, in particular the DAF-2/insulin growth factor (IGF) pathway, are shown to contain a microbiome that differs from that of wild-type nematodes. We analyzed the underlying basis of these differences from the perspective of community ecology by comparing experimental observations to the predictions of a neutral sampling model and concluded that fundamental differences in microbiome ecology underlie the observed differences in microbiome composition. We tested this hypothesis by introducing a minor perturbation into the colonization conditions, allowing us to assess stability of communities in different host strains. Our results show that altering host immunity changes the importance of interspecies interactions within the microbiome, resulting in differences in community composition and stability that emerge from these differences in host-microbe ecology. IMPORTANCE Here, we used a Caenorhabditis elegans microbiome model to demonstrate how genetic differences in innate immunity alter microbiome composition, diversity, and stability by changing the ecological processes that shape these communities. These results provide insight into the role of host genetics in controlling the ecology of the host-associated microbiota, resulting in differences in community composition, successional trajectories, and response to perturbation.
Collapse
|
39
|
George AK, Behera J, Homme RP, Tyagi N, Tyagi SC, Singh M. Rebuilding Microbiome for Mitigating Traumatic Brain Injury: Importance of Restructuring the Gut-Microbiome-Brain Axis. Mol Neurobiol 2021; 58:3614-3627. [PMID: 33774742 PMCID: PMC8003896 DOI: 10.1007/s12035-021-02357-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is a damage to the brain from an external force that results in temporary or permanent impairment in brain functions. Unfortunately, not many treatment options are available to TBI patients. Therefore, knowledge of the complex interplay between gut microbiome (GM) and brain health may shed novel insights as it is a rapidly expanding field of research around the world. Recent studies show that GM plays important roles in shaping neurogenerative processes such as blood-brain-barrier (BBB), myelination, neurogenesis, and microglial maturation. In addition, GM is also known to modulate many aspects of neurological behavior and cognition; however, not much is known about the role of GM in brain injuries. Since GM has been shown to improve cellular and molecular functions via mitigating TBI-induced pathologies such as BBB permeability, neuroinflammation, astroglia activation, and mitochondrial dysfunction, herein we discuss how a dysbiotic gut environment, which in fact, contributes to central nervous system (CNS) disorders during brain injury and how to potentially ward off these harmful effects. We further opine that a better understanding of GM-brain (GMB) axis could help assist in designing better treatment and management strategies in future for the patients who are faced with limited options.
Collapse
Affiliation(s)
- Akash K George
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Jyotirmaya Behera
- Bone Biology Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Rubens P Homme
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA. .,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA.
| |
Collapse
|
40
|
Abstract
In its natural habitat, C. elegans encounters a wide variety of microbes, including food, commensals and pathogens. To be able to survive long enough to reproduce, C. elegans has developed a complex array of responses to pathogens. These activities are coordinated on scales that range from individual organelles to the entire organism. Often, the response is triggered within cells, by detection of infection-induced damage, mainly in the intestine or epidermis. C. elegans has, however, a capacity for cell non-autonomous regulation of these responses. This frequently involves the nervous system, integrating pathogen recognition, altering host biology and governing avoidance behavior. Although there are significant differences with the immune system of mammals, some mechanisms used to limit pathogenesis show remarkable phylogenetic conservation. The past 20 years have witnessed an explosion of host-pathogen interaction studies using C. elegans as a model. This review will discuss the broad themes that have emerged and highlight areas that remain to be fully explored.
Collapse
Affiliation(s)
- Céline N Martineau
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | | | - Nathalie Pujol
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
41
|
Obeng N, Bansept F, Sieber M, Traulsen A, Schulenburg H. Evolution of Microbiota-Host Associations: The Microbe's Perspective. Trends Microbiol 2021; 29:779-787. [PMID: 33674142 DOI: 10.1016/j.tim.2021.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Microbiota-host associations are ubiquitous in nature. They are often studied using a host-centered view, while microbes are assumed to have coevolved with hosts or colonize hosts as nonadapted entities. Both assumptions are often incorrect. Instead, many host-associated microbes are adapted to a biphasic life cycle in which they alternate between noncoadapted hosts and a free-living phase. Full appreciation of microbiota-host symbiosis thus needs to consider how microbes optimize fitness across this life cycle. Here, we evaluate the key stages of the biphasic life cycle and propose a new conceptual framework for microbiota-host interactions which includes an integrative measure of microbial fitness, related to the parasite fitness parameter R0, and which will help in-depth assessment of the evolution of these widespread associations.
Collapse
Affiliation(s)
- Nancy Obeng
- Department of Evolutionary Ecology and Genetics, University of Kiel, Am Botanischen Garten 1- 9, 24118 Kiel, Germany
| | - Florence Bansept
- Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Str. 2, Ploen, Germany
| | - Michael Sieber
- Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Str. 2, Ploen, Germany
| | - Arne Traulsen
- Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Str. 2, Ploen, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, University of Kiel, Am Botanischen Garten 1- 9, 24118 Kiel, Germany; Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Str. 2, Ploen, Germany.
| |
Collapse
|
42
|
Zheng F, Zhu D, Chen QL, Bi QF, Yang XR, O'Connor P, Zhu YG. The driving factors of nematode gut microbiota under long-term fertilization. FEMS Microbiol Ecol 2020; 96:5804725. [PMID: 32166316 DOI: 10.1093/femsec/fiaa037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 03/11/2020] [Indexed: 12/19/2022] Open
Abstract
Animal bodies are colonized by many microorganisms which can provide indispensable services to their hosts. Although nematode gut microbiota has been extensively studied in recent years, the driving factors of gut microbiome of soil nematodes from a long-term fertilization field are unclear. Here, using 16S rRNA gene amplicon sequencing, we explored the nematode gut microbiota under different fertilization patterns (control, inorganic fertilizers and mixed fertilizers) and fertilization durations (5 y, 8 y and 10 y). Our results revealed that nematode gut microbiota was dominated by core bacterial taxa AF502208 (anaerobic bacteria), Enterobacter (plant litter decomposition) and Ancylobacter (organic matter decomposition and nitrogen cycling), significantly distinct from soil microbiome, and the assembly of that was a non-random process, which suggested host conditions contributed to maintaining the gut microbiota. Moreover, fertilization pattern had a greater influence on nematode gut microbiome than fertilization duration. Inorganic fertilization (5.19) significantly reduced the diversity of the nematode gut microbiota (6.68) shown by Shannon index (P < 0.05). Canonical correspondence analysis demonstrates that soil properties such as pH, organic matter, total phosphorus, available phosphorus, ammonium nitrogen, moisture content, nitrate nitrogen and total nitrogen have significant effects on the nematode microbiome. Structured equation models further revealed that fertilization could obviously affect the nematode gut microbiota, and the effects were maintained even when accounting simultaneously for the drivers of soil bacteria and soil properties. This study provides a solid evidence that the shifting of nematode gut microbiota under long-term fertilization was resulted from environmental factors and host conditions, and advance the insights into host-microbiome in the agricultural ecosystems.
Collapse
Affiliation(s)
- Fei Zheng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.,University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.,University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Qing-Fang Bi
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.,Collage of Environment & Resource Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Patrick O'Connor
- Centre for Global Food and Resources, University of Adelaide, Adelaide, 5005, Australia
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.,University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.,State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
43
|
Slowinski S, Ramirez I, Narayan V, Somayaji M, Para M, Pi S, Jadeja N, Karimzadegan S, Pees B, Shapira M. Interactions with a Complex Microbiota Mediate a Trade-Off between the Host Development Rate and Heat Stress Resistance. Microorganisms 2020; 8:microorganisms8111781. [PMID: 33202910 PMCID: PMC7697855 DOI: 10.3390/microorganisms8111781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022] Open
Abstract
Animals and plants host diverse communities of microorganisms, and these microbiotas have been shown to influence host life history traits. Much has been said about the benefits that host-associated microbiotas bestow on the host. However, life history traits often demonstrate tradeoffs among one another. Raising Caenorhabditis elegans nematodes in compost microcosms emulating their natural environment, we examined how complex microbiotas affect host life history traits. We show that soil microbes usually increase the host development rate but decrease host resistance to heat stress, suggesting that interactions with complex microbiotas may mediate a tradeoff between host development and stress resistance. What element in these interactions is responsible for these effects is yet unknown, but experiments with live versus dead bacteria suggest that such effects may depend on bacterially provided signals.
Collapse
Affiliation(s)
- Samuel Slowinski
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
- Department of Biology, 4223 Biology-Psychology Bldg., University of Maryland, College Park, MD 20742, USA
- Correspondence: (S.S.); (M.S.)
| | - Isabella Ramirez
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Vivek Narayan
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Medha Somayaji
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Maya Para
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Sarah Pi
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Niharika Jadeja
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Siavash Karimzadegan
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Barbara Pees
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Michael Shapira
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
- Correspondence: (S.S.); (M.S.)
| |
Collapse
|
44
|
Dirksen P, Assié A, Zimmermann J, Zhang F, Tietje AM, Marsh SA, Félix MA, Shapira M, Kaleta C, Schulenburg H, Samuel BS. CeMbio - The Caenorhabditis elegans Microbiome Resource. G3 (BETHESDA, MD.) 2020; 10:3025-3039. [PMID: 32669368 PMCID: PMC7466993 DOI: 10.1534/g3.120.401309] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/07/2020] [Indexed: 12/23/2022]
Abstract
The study of microbiomes by sequencing has revealed a plethora of correlations between microbial community composition and various life-history characteristics of the corresponding host species. However, inferring causation from correlation is often hampered by the sheer compositional complexity of microbiomes, even in simple organisms. Synthetic communities offer an effective approach to infer cause-effect relationships in host-microbiome systems. Yet the available communities suffer from several drawbacks, such as artificial (thus non-natural) choice of microbes, microbe-host mismatch (e.g., human microbes in gnotobiotic mice), or hosts lacking genetic tractability. Here we introduce CeMbio, a simplified natural Caenorhabditis elegans microbiota derived from our previous meta-analysis of the natural microbiome of this nematode. The CeMbio resource is amenable to all strengths of the C. elegans model system, strains included are readily culturable, they all colonize the worm gut individually, and comprise a robust community that distinctly affects nematode life-history. Several tools have additionally been developed for the CeMbio strains, including diagnostic PCR primers, completely sequenced genomes, and metabolic network models. With CeMbio, we provide a versatile resource and toolbox for the in-depth dissection of naturally relevant host-microbiome interactions in C. elegans.
Collapse
Affiliation(s)
- Philipp Dirksen
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University, Kiel, Germany
| | - Adrien Assié
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston TX
| | - Johannes Zimmermann
- Medical Systems Biology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Fan Zhang
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston TX
| | - Adina-Malin Tietje
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University, Kiel, Germany
| | | | - Marie-Anne Félix
- Institute of Biology of the Ecole Normale Supérieure, Paris, France
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley CA
| | - Christoph Kaleta
- Medical Systems Biology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University, Kiel, Germany
| | - Buck S Samuel
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston TX
| |
Collapse
|
45
|
Caenorhabditis elegans saposin-like spp-9 is involved in specific innate immune responses. Genes Immun 2020; 21:301-310. [PMID: 32770079 DOI: 10.1038/s41435-020-0108-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 11/08/2022]
Abstract
Animals counter specific environmental challenges with a combination of broad and tailored host responses. One protein family enlisted in the innate immune response includes the saposin-like antimicrobial proteins. We investigated the expression of a Caenorhabditis elegans saposin-like gene, spp-9, in response to different stresses. spp-9 expression was detected in the intestine and six amphid neurons, including AWB and AWC. spp-9 expression is increased in response to starvation stress. In addition, we discovered pathogen-specific regulation of spp-9 that was not clearly demarcated by Gram nature of the bacterial challenge. Multiple molecular innate immune response pathways, including DBL-1/TGF-β-like, insulin-like, and p38/MAPK, regulate expression of spp-9. Our results suggest spp-9 is involved in targeted responses to a variety of abiotic and bacterial challenges that are coordinated by multiple signaling pathways.
Collapse
|
46
|
Dierking K, Pita L. Receptors Mediating Host-Microbiota Communication in the Metaorganism: The Invertebrate Perspective. Front Immunol 2020; 11:1251. [PMID: 32612612 PMCID: PMC7308585 DOI: 10.3389/fimmu.2020.01251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 11/23/2022] Open
Abstract
Multicellular organisms live in close association with a plethora of microorganism, which have a profound effect on multiple host functions. As such, the microbiota and its host form an intimate functional entity, termed the metaorganism or holobiont. But how does the metaorganism communicate? Which receptors recognize microbial signals, mediate the effect of the microbiota on host physiology or regulate microbiota composition and homeostasis? In this review we provide an overview on the function of different receptor classes in animal host-microbiota communication. We put a special focus on invertebrate hosts, including both traditional invertebrate models such as Drosophila melanogaster and Caenorhabditis elegans and “non-model” invertebrates in microbiota research. Finally, we highlight the potential of invertebrate systems in studying mechanism of host-microbiota interactions.
Collapse
Affiliation(s)
- Katja Dierking
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Lucía Pita
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| |
Collapse
|
47
|
Zimmermann J, Obeng N, Yang W, Pees B, Petersen C, Waschina S, Kissoyan KA, Aidley J, Hoeppner MP, Bunk B, Spröer C, Leippe M, Dierking K, Kaleta C, Schulenburg H. The functional repertoire contained within the native microbiota of the model nematode Caenorhabditis elegans. THE ISME JOURNAL 2020; 14:26-38. [PMID: 31484996 PMCID: PMC6908608 DOI: 10.1038/s41396-019-0504-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/11/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
The microbiota is generally assumed to have a substantial influence on the biology of multicellular organisms. The exact functional contributions of the microbes are often unclear and cannot be inferred easily from 16S rRNA genotyping, which is commonly used for taxonomic characterization of bacterial associates. In order to bridge this knowledge gap, we here analyzed the metabolic competences of the native microbiota of the model nematode Caenorhabditis elegans. We integrated whole-genome sequences of 77 bacterial microbiota members with metabolic modeling and experimental characterization of bacterial physiology. We found that, as a community, the microbiota can synthesize all essential nutrients for C. elegans. Both metabolic models and experimental analyses revealed that nutrient context can influence how bacteria interact within the microbiota. We identified key bacterial traits that are likely to influence the microbe's ability to colonize C. elegans (i.e., the ability of bacteria for pyruvate fermentation to acetoin) and affect nematode fitness (i.e., bacterial competence for hydroxyproline degradation). Considering that the microbiota is usually neglected in C. elegans research, the resource presented here will help our understanding of this nematode's biology in a more natural context. Our integrative approach moreover provides a novel, general framework to characterize microbiota-mediated functions.
Collapse
Affiliation(s)
- Johannes Zimmermann
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts University, Kiel, Germany
| | - Nancy Obeng
- Research Group of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Wentao Yang
- Research Group of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Barbara Pees
- Research Group of Comparative Immunobiology, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Carola Petersen
- Research Group of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany
- Research Group of Comparative Immunobiology, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Silvio Waschina
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts University, Kiel, Germany
| | - Kohar A Kissoyan
- Research Group of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Jack Aidley
- Research Group of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Matthias Leippe
- Research Group of Comparative Immunobiology, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Katja Dierking
- Research Group of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts University, Kiel, Germany.
| | - Hinrich Schulenburg
- Research Group of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany.
- Max-Planck Institute for Evolutionary Biology, Ploen, Germany.
| |
Collapse
|
48
|
Singh J, Aballay A. Neural control of behavioral and molecular defenses in C. elegans. Curr Opin Neurobiol 2019; 62:34-40. [PMID: 31812835 DOI: 10.1016/j.conb.2019.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/14/2019] [Indexed: 01/22/2023]
Abstract
The nervous and immune systems use bi-directional communication to control host responses against microbial pathogens. Recent studies at the interface of the two systems have highlighted important roles of the nervous system in the regulation of both microbicidal pathways and pathogen avoidance behaviors. Studies on the neural circuits in the simple model host Caenorhabditis elegans have significantly improved our understanding of the roles of conserved neural mechanisms in controlling innate immunity. Moreover, behavioral studies have advanced our understanding of how the nervous system may sense potential pathogens and consequently elicit pathogen avoidance, reducing the risk of infection. In this review, we discuss the neural circuits that regulate both behavioral immunity and molecular immunity in C. elegans.
Collapse
Affiliation(s)
- Jogender Singh
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
49
|
Abstract
Aging is a natural process of organismal decay that underpins the development of myriad diseases and disorders. Extensive efforts have been made to understand the biology of aging and its regulation, but most studies focus solely on the host organism. Considering the pivotal role of the microbiota in host health and metabolism, we propose viewing the host and its microbiota as a single biological entity whose aging phenotype is influenced by the complex interplay between host and bacterial genetics. In this review we present how the microbiota changes as the host ages, but also how the intricate relationship between host and indigenous bacteria impacts organismal aging and life span. In addition, we highlight other microbiota-dependent mechanisms that potentially regulate aging, and present experimental animal models for addressing these questions. Importantly, we propose microbiome dysbiosis as an additional hallmark and biomarker of aging.
Collapse
Affiliation(s)
- Bianca Bana
- Institute of Structural and Molecular Biology, University College London and Birkbeck, University of London, London WC1E 6BT, United Kingdom
| | - Filipe Cabreiro
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom; .,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| |
Collapse
|
50
|
|