1
|
Chen Q, Pang K, Tang Q, Huang J, Dong Q, Liang P. Exploring the charge transfer enhancement mechanism in selective SERS detection with Mo 1-xW xS 2@Ag 2S nanosheets. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125133. [PMID: 39305798 DOI: 10.1016/j.saa.2024.125133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/12/2024] [Accepted: 09/11/2024] [Indexed: 11/10/2024]
Abstract
In order to solve the problem of poor sensitivity and selectivity of conventional SERS substrates, we synthesized Mo1-xWxS2@Ag2S nanosheets in this paper by a two-step hydrothermal method. The structure and morphology of the synthesized Mo1-xWxS2@Ag2S nanosheets were characterized by XRD and SEM,respectively. The results show that the Mo1-xWxS2@Ag2S nanosheet has an irregular layered structure. Further, the SERS properties of Mo1-xWxS2@Ag2S nanosheets were tested by using rhodamine 6G (R6G), crystalline violet (CV), and 4-mercaptobenzoic acid (4-MBA) as probe molecules, respectively. The test results demonstrated that the nanosheets were specific to R6G and CV probe molecules, and the mechanism of selectivity was due to CT enhancement. In addition, Mo1-xWxS2@Ag2S exhibits ultrahigh sensitivity in R6G and CV, with the corresponding detection limit of both reached 10-8 M. And linear fitting of the peak intensities was carried out, with the R2 coefficient of 0.981 and 0.951, respectively. Finally, the relative standard deviations (RSDs) of this Mo1-xWxS2@Ag2S nanosheets was obtained to be 8.56 % by test 1 × 10-4 M R6G at the characteristic peak 613 cm-1, which represents excellent detection repeatability. The Mo1-xWxS2@Ag2S nanosheets are rich in edge-active sites favorable for charge transfer, which can enhance the SERS signals of the target molecules better. Besides, the Raman detection of the surface of Mo1-xWxS2@Ag2S nanosheets using nitrofurantoin (NFT) also reached a detection limit of 10-8 M. Mo1-xWxS2@Ag2S nanosheets substrates can find applications in medicine and provide new strategies for improving the SERS performance.
Collapse
Affiliation(s)
- Qing Chen
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Kun Pang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Modern Science and Technology, China Jiliang University, Hangzhou 310018, China
| | - Qiao Tang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Modern Science and Technology, China Jiliang University, Hangzhou 310018, China
| | - Jie Huang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Qianmin Dong
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
| |
Collapse
|
2
|
Zhu X, Li Y, Tang W, Cui Y, Zhu K, Zeng B, Wang J, Wang X. Wool powder assisted colorimetric sensing yarn with high sensitivity for NH 3 monitoring. Biosens Bioelectron 2025; 267:116833. [PMID: 39383703 DOI: 10.1016/j.bios.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Colorimetric sensors have applications in gas monitoring due to their simple and quick detection through visible color changes. However, it remains challenging to prepare colorimetric sensors with high sensitivity. Herein, this work fabricated a biomass-based colorimetric sensing yarn with high sensitivity using anthocyanins as the colorimetric dye and wool powder as an effective ammonia (NH3) adsorbent. The sensitivity of the prepared yarns was evaluated for detection limit and response time. Surprisingly, the addition of 3% wool powder greatly improved the sensitivity of the prepared yarns, with a reduction of both detection limit and responsive time from 100 ppm to 20 ppm, and 2 min to 20 s, respectively when exposed in 150 ppm NH3. The prepared yarns also showed good selectivity and reusability. An example of the practical use of colorimetric yarns was presented. This work provides a facile strategy for fabricating wearable devices for toxic gas monitoring with visual output.
Collapse
Affiliation(s)
- Xixi Zhu
- Wuhan Textile University, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan, 430200, China; The Hong Kong Polytechnic University, School of Fashion and Textiles, Research Center of Textiles for Future Fashion, 999077, Hong Kong, China
| | - Yuying Li
- Wuhan Textile University, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan, 430200, China
| | - Wenyang Tang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan, 430200, China
| | - Yongming Cui
- Wuhan Textile University, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan, 430200, China
| | - Kunkun Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan, 430200, China
| | - Beini Zeng
- Wuhan Textile University, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan, 430200, China.
| | - Jinfeng Wang
- Wuhan Textile University, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan, 430200, China.
| | - Xungai Wang
- The Hong Kong Polytechnic University, School of Fashion and Textiles, Research Center of Textiles for Future Fashion, 999077, Hong Kong, China
| |
Collapse
|
3
|
Yu X, Tang X, Dong JY, Deng Y, Saito M, Gao Z, Pancorbo PM, Marumi M, Peterson W, Zhang H, Kishimoto N, Alodhayb AN, Dwivedi PK, Ikuhara Y, Kitahama Y, Xiao TH, Goda K. Defect-Engineered Coordination Compound Nanoparticles Based on Prussian Blue Analogues for Surface-Enhanced Raman Spectroscopy. ACS NANO 2024; 18:30987-31001. [PMID: 39480022 DOI: 10.1021/acsnano.4c06972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for label-free chemical analysis. The emergence of nonmetallic materials as SERS substrates, offering chemical signal enhancements, presents an exciting direction for achieving reproducible and biocompatible SERS, a challenge with traditional metallic substrates. Despite the potential, the realm of nonmetallic SERS substrates, particularly nanoparticles, remains largely untapped. Here, we present defect-engineered coordination compounds (DECCs) based on Prussian blue analogues (PBAs) as a class of nonmetallic nanoparticle-based SERS substrates. We demonstrate the utility and flexibility of the DECC template by incorporating various metal (M) elements into PBAs to synthesize nanoparticles that deliver substantial chemical mechanism (CM)-based enhancements to the Raman signal with a ∼ 108-fold increase. The introduction of the M-PBA-based DECC nanoparticles as a class of SERS substrates represents a pioneering stride, enabling the straightforward and systematic exploration of a library of compounds for SERS-based analysis of a wide range of target molecules, especially biomolecules.
Collapse
Affiliation(s)
- Xingxing Yu
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Xuke Tang
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Jun-Yu Dong
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yunjie Deng
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mitsuhiro Saito
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
- JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Zhanglei Gao
- Department of Chemistry, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | | | - Machiko Marumi
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Walker Peterson
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Huanhuan Zhang
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoki Kishimoto
- Department of Chemistry, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Abdullah N Alodhayb
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Prabhat K Dwivedi
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, India
- LucasLand, Tokyo 101-0023, Japan
| | - Yuichi Ikuhara
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
- Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta, Nagoya 456-8587, Japan
| | - Yasutaka Kitahama
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- LucasLand, Tokyo 101-0023, Japan
| | - Ting-Hui Xiao
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba 2638555, Japan
- Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Keisuke Goda
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- LucasLand, Tokyo 101-0023, Japan
- Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba 2638555, Japan
- Institute of Technological Sciences, Wuhan University, Hubei 430072, China
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Tan EX, Zhong QZ, Ting Chen JR, Leong YX, Leon GK, Tran CT, Phang IY, Ling XY. Surface-Enhanced Raman Scattering-Based Multimodal Techniques: Advances and Perspectives. ACS NANO 2024. [PMID: 39530425 DOI: 10.1021/acsnano.4c12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy is a versatile molecular fingerprinting technique with rapid signal readout, high aqueous compatibility, and portability. To translate SERS for real-world applications, it is pertinent to overcome inherent challenges, including high sample variability and heterogeneity, matrix effects, and nonlinear SERS signal responses of different analytes in complex (bio)chemical matrices with numerous interfering species. In this perspective, we highlight emerging SERS-based multimodal techniques to address the key roadblocks to improving the sensitivity, specificity, and reliability of (bio)chemical detection, bioimaging, theragnosis, and theragnostic. SERS-based multimodal techniques can be broadly categorized into two categories: (1) complementary methods or systems that work together to achieve a common goal where each method compensates for the weaknesses of the other to culminate in a single enhanced outcome or (2) orthogonal techniques that are independent and provide separate but corroborating results simultaneously without interfering with each other. These multimodal techniques maximize information gained from a single experiment to achieve enhanced qualitative or quantitative analysis and broaden the range of detectable analytes from small molecules to tissues. Finally, we discuss emerging directions in multimodal platform design, instrument integration, and data analytics that aim to push the analytical limits of holistic detection.
Collapse
Affiliation(s)
- Emily Xi Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Qi-Zhi Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Jaslyn Ru Ting Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Yong Xiang Leong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Guo Kang Leon
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Cam Tu Tran
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921 Singapore
| |
Collapse
|
5
|
Peng S, Yan L, You R, Lu Y, Liu Y, Li L. Cationic cellulose dispersed Ag NCs/C-CNF paper-based SERS substrate with high homogeneity for creatinine and uric acid detection. Int J Biol Macromol 2024; 282:136724. [PMID: 39437960 DOI: 10.1016/j.ijbiomac.2024.136724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
To overcome the problems of easy aggregation, poor reproducibility and homogeneity of metal nanosols, a SERS substrate with good sensitivity, homogeneity and reproducibility was designed and prepared for the detection of disease markers in urine. Silver nanocubes (Ag NCs) were firstly prepared and then dispersed in cationic cellulose (C-CNF) to form a homogeneous gel, which was dropped on a filter paper to develop a substrate with good SERS activity. This substrate combines the superior SERS properties of Ag NCs with the stability of C-CNF and has a minimum detection concentration of 10-9 M for R6G. The homogeneity of this substrate was good and the RSD value was much <20 %. The SERS substrate was employed for the quantification of creatinine and uric acid, with linear ranges were 5 × 10-3-5 × 10-7 M and 10-2-10-6 M. The recoveries of creatinine and uric acid were calculated to be 98.3 % ∼ 103.12 % and 96.72 % ∼ 104.48 %, respectively, in the spike recovery experiments, with the relative standard deviations of <10 %. The experimental results show that the method can provide a scientific and reliable experimental basis for screening, condition monitoring and treatment of kidney and other diseases.
Collapse
Affiliation(s)
- Shirun Peng
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fuzhou, Fujian 350007, China
| | - Linjun Yan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fuzhou, Fujian 350007, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fuzhou, Fujian 350007, China.
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fuzhou, Fujian 350007, China.
| | - Yunzhen Liu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fuzhou, Fujian 350007, China
| | - Lizhi Li
- Department of Pediatric Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China.
| |
Collapse
|
6
|
Chen L, Liu H, Gao J, Wang J, Jin Z, Lv M, Yan S. Development and Biomedical Application of Non-Noble Metal Nanomaterials in SERS. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1654. [PMID: 39452990 PMCID: PMC11510763 DOI: 10.3390/nano14201654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is vital in many fields because of its high sensitivity, fast response, and fingerprint effect. The surface-enhanced Raman mechanisms are generally electromagnetic enhancement (EM), which is mainly based on noble metals (Au, Ag, etc.), and chemical enhancement (CM). With more and more studies on CM mechanism in recent years, non-noble metal nanomaterial SERS substrates gradually became widely researched and applied due to their superior economy, stability, selectivity, and biocompatibility compared to noble metal. In addition, non-noble metal substrates also provide an ideal new platform for SERS technology to probe the mechanism of biomolecules. In this paper, we review the applications of non-noble metal nanomaterials in SERS detection for biomedical engineering in recent years. Firstly, we introduce the development of some more common non-noble metal SERS substrates and discuss their properties and enhancement mechanisms. Subsequently, we focus on the progress of the application of SERS detection of non-noble metal nanomaterials, such as analysis of biomarkers and the detection of some contaminants. Finally, we look forward to the future research process of non-noble metal substrate nanomaterials for biomedicine, which may draw more attention to the biosensor applications of non-noble metal nanomaterial-based SERS substrates.
Collapse
Affiliation(s)
- Liping Chen
- School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Hao Liu
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (Z.J.)
| | - Jiacheng Gao
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Jiaxuan Wang
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Zhihan Jin
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (Z.J.)
| | - Ming Lv
- Department of Medical Engineering, Medical Supplies Center of PLA General Hospital, Beijing 100039, China;
| | - Shancheng Yan
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (Z.J.)
| |
Collapse
|
7
|
Lan L, Ni Z, Zhao C, Gao J, Tang X, Qu Z, Zheng L, Fan X, Qiu T. Photoinduced Charge Transfer Empowers Ta 4C 3 and Nb 4C 3 MXenes with High SERS Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20945-20953. [PMID: 39320080 DOI: 10.1021/acs.langmuir.4c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
This study introduces two-dimensional (2D) Ta4C3 and Nb4C3 MXenes as outstanding materials for surface-enhanced Raman scattering (SERS) sensing, marking a significant departure from traditional noble-metal substrates. These MXenes exhibit exceptional SERS capabilities, achieving enhancement factors around 105 and detection limits as low as 10-7 M for various analytes, including environmental pollutants and drugs. The core of their SERS functionality is attributed to the robust interfacial photoinduced charge-transfer interactions between the MXenes and the adsorbed molecules. This deep insight not only advances our understanding of MXene materials in SERS applications but also opens new avenues for developing highly sensitive and selective SERS sensors. The potential of Ta4C3 and Nb4C3 MXenes to revolutionize SERS technology underscores their importance in environmental monitoring, food safety, and beyond.
Collapse
Affiliation(s)
- Leilei Lan
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
| | - Ziheng Ni
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
| | - Caiye Zhao
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
| | - Juan Gao
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
| | - Xiao Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Zhongwei Qu
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
| | - Lingcheng Zheng
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
- The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan 232001, China
| | - Xingce Fan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Teng Qiu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
8
|
Yang J, Dang T, Ma S, Tang S, Ding Y, Seki M, Tabata H, Matsui H. Plasmon-Free Surface-Enhanced Raman Spectroscopy Using α-Type MoO 3 Semiconductor Nanorods with Strong Light Scattering in the Visible Regime. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39048517 DOI: 10.1021/acsami.4c01435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Recent developments in semiconductor-based surface-enhanced Raman scattering (SERS) have achieved numerous advancements, primarily centered on the chemical mechanism. However, the role of the electromagnetic (electromagnetic mechanism) contribution in advancing semiconductor SERS substrates is still underexplored. In this study, we developed a SERS substrate based on densely aligned α-type MoO3 (α-MoO3) semiconductor nanorods (NRs) with rectangular parallelepiped ribbon shapes with width measuring several hundred nanometers. These structural attributes strongly affect light transport in the visible range by multiple light scattering generated in narrow gaps between NRs, contributing to the improvement of SERS performance. Engineering the nanostructure and chemical composition of NRs realized high SERS sensitivity with an enhancement factor of 2 × 108 and a low detection limit of 5 × 10-9 M for rhodamine 6G (R6G) molecules, which was achieved by the stoichiometric NR sample with strong light scattering. Furthermore, it was observed that the scattering length becomes significantly shorter compared with the excitation wavelength in the visible regime, which indicates that light transport is strongly modified by mesoscopic interference related to Anderson localization. Additionally, high electric fields were found to be localized on the NR surfaces, depending on the excitation wavelength, similar to the SERS response. These optical phenomena indicate that electromagnetic excitation processes play an important role in plasmon-free SERS platforms based on α-MoO3 NRs. We postulate that our study provides important guidance for designing effective EM-based SERS-active semiconductor substrates.
Collapse
Affiliation(s)
- Jiaqi Yang
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tang Dang
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shuting Ma
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Siyi Tang
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yan Ding
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Munetoshi Seki
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hitoshi Tabata
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroaki Matsui
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
9
|
Bi X, Czajkowsky DM, Shao Z, Ye J. Digital colloid-enhanced Raman spectroscopy by single-molecule counting. Nature 2024; 628:771-775. [PMID: 38632399 DOI: 10.1038/s41586-024-07218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/21/2024] [Indexed: 04/19/2024]
Abstract
Quantitative detection of various molecules at very low concentrations in complex mixtures has been the main objective in many fields of science and engineering, from the detection of cancer-causing mutagens and early disease markers to environmental pollutants and bioterror agents1-5. Moreover, technologies that can detect these analytes without external labels or modifications are extremely valuable and often preferred6. In this regard, surface-enhanced Raman spectroscopy can detect molecular species in complex mixtures on the basis only of their intrinsic and unique vibrational signatures7. However, the development of surface-enhanced Raman spectroscopy for this purpose has been challenging so far because of uncontrollable signal heterogeneity and poor reproducibility at low analyte concentrations8. Here, as a proof of concept, we show that, using digital (nano)colloid-enhanced Raman spectroscopy, reproducible quantification of a broad range of target molecules at very low concentrations can be routinely achieved with single-molecule counting, limited only by the Poisson noise of the measurement process. As metallic colloidal nanoparticles that enhance these vibrational signatures, including hydroxylamine-reduced-silver colloids, can be fabricated at large scale under routine conditions, we anticipate that digital (nano)colloid-enhanced Raman spectroscopy will become the technology of choice for the reliable and ultrasensitive detection of various analytes, including those of great importance for human health.
Collapse
Affiliation(s)
- Xinyuan Bi
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Daniel M Czajkowsky
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhifeng Shao
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
10
|
Du B, Liu Y, Tan J, Wang Z, Ji C, Shao M, Zhao X, Yu J, Jiang S, Zhang C, Man B, Li Z. Thermoelectrically Driven Dual-Mechanism Regulation on SERS and Application Potential for Rapid Detection of SARS-CoV-2 Viruses and Microplastics. ACS Sens 2024; 9:502-513. [PMID: 38193423 DOI: 10.1021/acssensors.3c02507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Electric-induced surface-enhanced Raman scattering (E-SERS) has been widely studied for its flexible regulation of SERS after the substrate is prepared. However, the enhancement effect is not sufficiently high in the E-SERS technology reported thus far, and no suitable field of application exists. In this study, a highly sensitive thermoelectrically induced SERS substrate, Ag/graphene/ZnO (AGZ), was fabricated using ZnO nanoarrays (NRs), graphene, and Ag nanoparticles (NPs). Applying a temperature gradient to the ZnO NRs enhanced the SERS signals of the probe molecules by a factor of approximately 20. Theoretical and experimental results showed that the thermoelectric potential enables the simultaneous modulation of the Fermi energy level of graphene and the plasma resonance peak of Ag NPs, resulting in a double enhancement in terms of physical and chemical mechanisms. The AGZ substrate was then combined with a mask to create a wearable thermoelectrically enhanced SERS mask for collecting SARS-CoV-2 viruses and microplastics. Its SERS signal can be enhanced by the temperature gradient created between a body heat source (∼37 °C) and a cold environment. The suitability of this method for virus detection was also examined using a reverse transcription-polymerase chain reaction and SARS-CoV-2 virus antigen detection. This work offers new horizons for research of E-SERS, and its application potential for rapid detection of the SARS-CoV-2 virus and microplastics was also studied.
Collapse
Affiliation(s)
- Baoqiang Du
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Yalin Liu
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Jibing Tan
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Zhanning Wang
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Chang Ji
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Mingrui Shao
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Xiaofei Zhao
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Jing Yu
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Shouzhen Jiang
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Chao Zhang
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Baoyuan Man
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Zhen Li
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
11
|
Zheng X, Ye Z, Akmal Z, He C, Zhang J, Wang L. Recent progress in SERS monitoring of photocatalytic reactions. Chem Soc Rev 2024; 53:656-683. [PMID: 38165865 DOI: 10.1039/d3cs00462g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique renowned for its ultra-high sensitivity. Extensive research in SERS has led to the development of a wide range of SERS substrates, including plasmonic metals, semiconductors, metal organic frameworks, and their assemblies. Some of these materials are also excellent photocatalysts, and by taking advantage of their bifunctional characteristics, the photocatalytic processes that occur on their surface can be monitored in situ via SERS. This provides us with unique opportunities to gain valuable insights into the intricate details of the photocatalytic processes that are challenging to access using other techniques. In this review, we highlight key development in in situ and/or real-time SERS-tracking of photocatalytic reactions. We begin by providing a brief account of recent developments in SERS substrates, followed by discussions on how SERS can be used to elucidate crucial aspects of photocatalytic processes, including: (1) the influence of the surrounding media on charge carrier extraction; (2) the direction of charge carrier transfer; (3) the pathway of photocatalytic activation; and (4) differentiation between the effects of photo-thermal and energetic electrons. Additionally, we discuss the benefits of tip-enhanced Raman spectroscopy (TERS) due to the ability to achieve high-spatial-resolution measurements. Finally, we address major challenges and propose potential directions for the future of SERS monitoring of photocatalytic reactions. By leveraging the capabilities of SERS, we can uncover new insights into photocatalytic processes, paving the way for advancements in sustainable energy and environmental remediation.
Collapse
Affiliation(s)
- Xinlu Zheng
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Ziwei Ye
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Zeeshan Akmal
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Chun He
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Lingzhi Wang
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
12
|
Jang M, Shin J, Kim YH, Jeong TY, Jo S, Kim SJ, Devaraj V, Kang J, Choi EJ, Lee JE, Oh JW. 3D superstructure based metabolite profiling for glaucoma diagnosis. Biosens Bioelectron 2024; 244:115780. [PMID: 37939415 DOI: 10.1016/j.bios.2023.115780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/05/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Metabolome analysis has gained widespread application in disease diagnosis owing to its ability to provide comprehensive information, including disease phenotypes. In this study, we utilized 3D superstructures fabricated through evaporation-induced microprinting to analyze the metabolome for glaucoma diagnosis. 3D superstructures offer the following advantages: high hotspot density per unit volume of the structure extending from two to three dimensions, excellent signal repeatability due to the reproducibility and defect tolerance of 3D printing, and high thermal stability due to the PVP-enclosed capsule form. Leveraging the superior optical properties of the 3D superstructure, we aimed to classify patients with glaucoma. The signal obtained from the 3D superstructure was employed in a Deep Neural Network (DNN) classification model to accurately classify glaucoma patients. The sensitivity and specificity of the model were determined as 92.05% and 93.51%, respectively. Additionally, the fabrication of 3D superstructures can be performed at any stage, significantly reducing measurement time. Furthermore, their thermal stability allows for the analysis of smaller samples. One notable advantage of 3D superstructures is their versatility in accommodating different target materials. Consequently, they can be utilized for a wide range of metabolic analyses and disease diagnoses.
Collapse
Affiliation(s)
- Minsu Jang
- Department of Nano Fusion Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jonghoon Shin
- Department of Ophthalmology, College of Medicine, Pusan National University Yangsan Hospital, Republic of Korea; Department of Ophthalmology, Research Institute for Convergence of Biomedical Science and Technology, Busan, Republic of Korea
| | - You Hwan Kim
- Department of Nano Fusion Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Tae-Young Jeong
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Soojin Jo
- Department of Nano Fusion Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Sung-Jo Kim
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Vasanthan Devaraj
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Joonhee Kang
- Department of Nano Energy Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Eun-Jung Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| | - Ji Eun Lee
- Department of Ophthalmology, College of Medicine, Pusan National University Yangsan Hospital, Republic of Korea; Department of Ophthalmology, Research Institute for Convergence of Biomedical Science and Technology, Busan, Republic of Korea.
| | - Jin-Woo Oh
- Department of Nano Fusion Technology, Pusan National University, Busan, 46241, Republic of Korea; Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea; Department of Nano Energy Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
13
|
Chen J, Song G, Cong S, Zhao Z. Resonant-Cavity-Enhanced Electrochromic Materials and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300179. [PMID: 36929668 DOI: 10.1002/adma.202300179] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
With rapid advances in optoelectronics, electrochromic materials and devices have received tremendous attentions from both industry and academia for their strong potentials in wearable and portable electronics, displays/billboards, adaptive camouflage, tunable optics, and intelligent devices, etc. However, conventional electrochromic materials and devices typically present some serious limitations such as undesirable dull colors, and long switching time, hindering their deeper development. Optical resonators have been proven to be the most powerful platform for providing strong optical confinement and controllable lightmatter interactions. They generate locally enhanced electromagnetic near-fields that can convert small refractive index changes in electrochromic materials into high-contrast color variations, enabling multicolor or even panchromatic tuning of electrochromic materials. Here, resonant-cavity-enhanced electrochromic materials and devices, an advanced and emerging trend in electrochromics, are reviewed. In this review, w e will focus on the progress in multicolor electrochromic materials and devices based on different types of optical resonators and their advanced and emerging applications, including multichromatic displays, adaptive visible camouflage, visualized energy storage, and applications of multispectral tunability. Among these topics, principles of optical resonators, related materials/devices and multicolor electrochromic properties are comprehensively discussed and summarized. Finally, the challenges and prospects for resonant-cavity-enhanced electrochromic materials and devices are presented.
Collapse
Affiliation(s)
- Jian Chen
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ge Song
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Shan Cong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhigang Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
14
|
Rourke-Funderburg AS, Walter AB, Carroll B, Mahadevan-Jansen A, Locke AK. Development of a Low-Cost Paper-Based Platform for Coffee Ring-Assisted SERS. ACS OMEGA 2023; 8:33745-33754. [PMID: 37744797 PMCID: PMC10515595 DOI: 10.1021/acsomega.3c03690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/14/2023] [Indexed: 09/26/2023]
Abstract
The need for highly sensitive, low-cost, and timely diagnostic technologies at the point of care is increasing. Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopic technique that is an advantageous technique to address this need, as it can rapidly detect analytes in small or dilute samples with improved sensitivity compared to conventional Raman spectroscopy. Despite the many advantages of SERS, one drawback of the technique is poor reproducibility due to variable interactions between nanoparticles and target analytes. To overcome this limitation, coupling SERS with the coffee ring effect has been implemented to concentrate and localize analyte-nanoparticle conjugates for improved signal reproducibility. However, current coffee ring platforms require laborious fabrication steps. Herein, we present a low-cost, two-step fabrication process for coffee ring-assisted SERS, utilizing wax-printed nitrocellulose paper. The platform was designed to produce a highly hydrophobic paper substrate that supports the coffee ring effect and tested using gold nanoparticles for SERS sensing. The nanoparticle concentration and solvent were varied to determine the effect of solution composition on ring formation and center clearance. The SERS signal was validated using 4-mercaptobenzoic acid (MBA) and tested with Moraxella catarrhalis bacteria to ensure functionality for chemical and biological applications. The limit of detection using MBA is 41.56 nM, and the biochemical components of the bacterial cell wall were enhanced with low spectral variability. The developed platform is advantageous due to ease of fabrication and use, representing the next step toward implementing low-cost coffee ring-assisted SERS for point-of-care sensing.
Collapse
Affiliation(s)
- Anna S. Rourke-Funderburg
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Vanderbilt
Biophotonics Center, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| | - Alec B. Walter
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Vanderbilt
Biophotonics Center, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| | - Braden Carroll
- Vanderbilt
Biophotonics Center, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| | - Anita Mahadevan-Jansen
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Vanderbilt
Biophotonics Center, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| | - Andrea K. Locke
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Vanderbilt
Biophotonics Center, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| |
Collapse
|
15
|
Tan Y, Qi M, Jiang H, Wang B, Zhang X. Determination of uric acid in serum by SERS system based on V O-MnCo 2O 4/Ag nanozyme. Anal Chim Acta 2023; 1274:341584. [PMID: 37455071 DOI: 10.1016/j.aca.2023.341584] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/07/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The level of uric acid is crucial to human health. Octahedral oxygen vacancy MnCo2O4/Ag (VO-MnCo2O4/Ag) nanozyme was successfully prepared by simple hydrothermal, calcination and self-reduction methods. VO-MnCo2O4/Ag nanozyme is rich in Mn2+/Mn3+ and CO2+/CO3+ redox electron pairs, large specific surface area and oxygen vacancies. VO-MnCo2O4/Ag nanozyme showed high uricase-like activity and peroxidase-like activity. At the same time, the SERS signal of the detected molecule could be significantly enhanced after the catalytic reaction of the VO-MnCo2O4/Ag nanozyme. The Km values of VO-MnCo2O4/Ag nanozyme for H2O2 and TMB were 0.04 mM and 0.027 mM respectively. Based on the uric acid oxidase-like and peroxidase-like activities of VO-MnCo2O4/Ag, we developed a label-free, sensitive, and reliable SERS uric acid detection system. The detection linear range of uric acid is 0.01 μM-1000 μM and the detection of limit is 7.8 × 10-9 M. The results show that the sensing system has good accuracy, sensitivity, selectivity, and stability. It can be applied to the determination of samples under different conditions. This study provides profound insights into the design of enzyme-like activity regulation and SERS properties regulation of nanozymes, provides guidance for the study of reaction kinetics and catalytic mechanism of nanozymes, and has broad application prospects in the field of nanozymes and SERS sensing analysis.
Collapse
Affiliation(s)
- Yaoyu Tan
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Mengyao Qi
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huan Jiang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Baihui Wang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xia Zhang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| |
Collapse
|
16
|
Wang T, Ji B, Cheng Z, Chen L, Luo M, Wei J, Wang Y, Zou L, Liang Y, Zhou B, Li P. Semi-wrapped gold nanoparticles for surface-enhanced Raman scattering detection. Biosens Bioelectron 2023; 228:115191. [PMID: 36924690 DOI: 10.1016/j.bios.2023.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Researchers have struggled to develop highly reliable and sensitive surface-enhanced Raman scattering (SERS) substrates for detecting compounds in complicated systems. In this work, a strategy by constructing Au cores with incompletely wrapped Prussian blue (PB) for highly reliable and sensitive SERS substrate is proposed. The wrapped PB layers can provide the internal standard (IS) to calibrate the SERS signal floatation, whereas the exposed surface of Au cores offers the enhancement effect. The balance between the signal self-calibration and enhancement (hence the trade-off between SERS reliability and sensitivity) is obtained by the approximate semi-wrapping configuration of PB layers on Au cores (i.e., SW-Au@PB). The proposed SW-Au@PB nanoparticles (NPs) exhibit the similar enhancement factor as the pristine Au NPs and contribute to the ultralow RSD (8.55%) of calibrated SERS signals using R6G as probe molecules. The simultaneously realized reliability and sensitivity of SW-Au@PB NPs also enables the detection of hazardous pesticide residues such as paraquat and thiram in herbal plants, with the average detection accuracy up to 92%. Overall, this work mainly provides a controllable synthetic strategy for incompletely wrapped NPs, and most importantly, explores the potential with a proof-of-concept practical application in accurate and sensitive Raman detection of hazardous substances with varying solubility.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Bing Ji
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China; School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Yuefei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yuanzhe Liang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China
| | - Bingpu Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
17
|
Jin J, Guo Z, Fan D, Zhao B. Spotting the driving forces for SERS of two-dimensional nanomaterials. MATERIALS HORIZONS 2023; 10:1087-1104. [PMID: 36629521 DOI: 10.1039/d2mh01241c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, two-dimensional (2D) layered nanomaterials have become promising candidates for surface-enhanced Raman scattering (SERS) substrates due to their unique characteristics of ultrathin layer structure, outstanding optical properties and good biocompatibility, significantly contributing to remarkable SERS sensitivity, stability, and compatibility. Unlike traditional SERS substrates, 2D nanomaterials possess unparalleled layer-dependent, phase transition induced and anisotropic optical properties, which as driving forces significantly promote the SERS performance and development, as well as greatly enrich the SERS substrates and provide versatile resources for SERS research. For a profound understanding of the SERS effect of 2D nanomaterials, a review concentrating on these driving forces for SERS enhancement on 2D nanomaterials is written here for the first time, which strongly emphasizes the importance and influence of these driving forces on the SERS effect of 2D nanomaterials, including their intrinsic physical and chemical properties and external influencing factors. Moreover, the essential mechanisms of these driving forces for the SERS effect are also elaborated systematically. Finally, the challenges and future perspectives of SERS substrates based on 2D nanomaterials are concluded. This review will provide guiding principles and strategies for designing highly sensitive 2D nanomaterial SERS substrates and extending their potential applications based on SERS.
Collapse
Affiliation(s)
- Jing Jin
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Zhinan Guo
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China.
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dianyuan Fan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
18
|
Gao Y, Zhu H, Wang X, Shen R, Zhou X, Zhao X, Li Z, Zhang C, Lei F, Yu J. Promising Mass-Productive 4-Inch Commercial SERS Sensor with Particle in Micro-Nano Porous Ag/Si/Ag Structure Using in Auxiliary Diagnosis of Early Lung Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207324. [PMID: 36932935 DOI: 10.1002/smll.202207324] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The construction of commercial surface enhanced Raman scattering (SERS) sensors suitable for clinical applications is a pending problem, which is heavily limited by the low production of high-performance SERS bases, because they usually require fine or complicated micro/nano structures. To solve this issue, herein, a promising mass-productive 4-inch ultrasensitive SERS substrate available for early lung cancer diagnosis is proposed, which is designed with a special architecture of particle in micro-nano porous structure. Benefitting from the effective cascaded electric field coupling inside the particle-in-cavity structure and efficient Knudsen diffusion of molecules within the nanohole, the substrate exhibits remarkable SERS performance for gaseous malignancy biomarker, with the limit of detection is 0.1 ppb and the average relative standard deviation value at different scales (from cm2 to µm2 ) is ≈16.5%. In practical application, this large-sized sensor can be further divided into small ones (1 × 1 cm2 ), and more than 65 chips will be obtained from just one 4-inch wafer, greatly increasing the output of commercial SERS sensor. Further, a medical breath bag composed of this small chip is designed and studied in detail here, which suggested high-specificity recognition for lung cancer biomarker in mixed mimetic exhalation tests.
Collapse
Affiliation(s)
- Yuanmei Gao
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, P.R. China
| | - Hongyu Zhu
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, P.R. China
| | - Xiaoxiong Wang
- College of Physics, Qingdao University, Qingdao, 266071, P.R. China
| | - Rong Shen
- Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, P.R. China
| | - Xiaoming Zhou
- Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, P.R. China
| | - Xiaofei Zhao
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, P.R. China
| | - Zhen Li
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, P.R. China
| | - Chao Zhang
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, P.R. China
| | - Fengcai Lei
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, P.R. China
| | - Jing Yu
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, P.R. China
| |
Collapse
|
19
|
Li J, Yang T, Lang J, Liu H, Gao M. Functionalized MoS 2: circular economy SERS substrate for label-free detection of bilirubin in clinical diagnosis. Mikrochim Acta 2023; 190:83. [PMID: 36746801 DOI: 10.1007/s00604-023-05668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023]
Abstract
A one-pot hydrothermal synthesis of Fe-doped MoS2 nanoflowers (Fe-MoS2 NFs) has been developed as a surface-enhanced Raman spectroscopy (SERS) substrate. The Fe-MoS2 NFs display high reproducibility, stability, and recyclability, which is beneficial for the development of the sustainable ecological environment. The SERS substrate provides a high enhancement factor of 105, which can be ascribed to the inducing defects by doping Fe that can improve the charge transfer between probe molecules and MoS2. The Fe-MoS2 NFs have been used to detect bilirubin in serum. The Fe-MoS2 NF SERS substrate exhibits a linear detection range from 10-3 to 10-9 M with a low limit of detection (LOD) of 10-8 M. The substrate displays an excellent selectivity to bilirubin in the presence of other potentially interfering molecules (dextrose and phosphate). These results provide a novel concept to synthesize ultra-sensitive SERS substrates and open up a wide range of possibilities for new applications of MoS2 in clinical diagnosis.
Collapse
Affiliation(s)
- Jia Li
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Changchun, 130103, People's Republic of China
| | - Tingru Yang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Changchun, 130103, People's Republic of China.,National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, People's Republic of China.,Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, People's Republic of China
| | - Jihui Lang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Changchun, 130103, People's Republic of China.,National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, People's Republic of China.,Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, People's Republic of China
| | - Huilian Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Changchun, 130103, People's Republic of China. .,National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, People's Republic of China. .,Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, People's Republic of China.
| | - Ming Gao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Changchun, 130103, People's Republic of China. .,National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, People's Republic of China. .,Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, People's Republic of China.
| |
Collapse
|
20
|
Leventi A, Billimoria K, Bartczak D, Laing S, Goenaga-Infante H, Faulds K, Graham D. New Model for Quantifying the Nanoparticle Concentration Using SERS Supported by Multimodal Mass Spectrometry. Anal Chem 2023; 95:2757-2764. [PMID: 36701560 PMCID: PMC9909670 DOI: 10.1021/acs.analchem.2c03779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is widely explored for the elucidation of underlying mechanisms behind biological processes. However, the capability of absolute quantitation of the number of nanoparticles from the SERS response remains a challenge. Here, we show for the first time the development of a new 2D quantitation model to allow calibration of the SERS response against the absolute concentration of SERS nanotags, as characterized by single particle inductively coupled plasma mass spectrometry (spICP-MS). A novel printing approach was adopted to prepare gelatin-based calibration standards containing the SERS nanotags, which consisted of gold nanoparticles and the Raman reporter 1,2-bis(4-pyridyl)ethylene. spICP-MS was used to characterize the Au mass concentration and particle number concentration of the SERS nanotags. Results from laser ablation inductively coupled plasma time-of-flight mass spectrometry imaging at a spatial resolution of 5 μm demonstrated a homogeneous distribution of the nanotags (between-line relative standard deviation < 14%) and a linear response of 197Au with increasing nanotag concentration (R2 = 0.99634) in the printed gelatin standards. The calibration standards were analyzed by SERS mapping, and different data processing approaches were evaluated. The reported calibration model was based on an "active-area" approach, classifying the pixels mapped as "active" or "inactive" and calibrating the SERS response against the total Au concentration and the particle number concentration, as characterized by spICP-MS. This novel calibration model demonstrates the potential for quantitative SERS imaging, with the capability of correlating the nanoparticle concentration to biological responses to further understand the underlying mechanisms of disease models.
Collapse
Affiliation(s)
- Aristea
Anna Leventi
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, GlasgowG1 1RD, U.K.,National
Measurement Laboratory, LGC, Teddington, MiddlesexTW11 0LY, U.K.
| | - Kharmen Billimoria
- National
Measurement Laboratory, LGC, Teddington, MiddlesexTW11 0LY, U.K.
| | - Dorota Bartczak
- National
Measurement Laboratory, LGC, Teddington, MiddlesexTW11 0LY, U.K.
| | - Stacey Laing
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, GlasgowG1 1RD, U.K.
| | | | - Karen Faulds
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, GlasgowG1 1RD, U.K.
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, GlasgowG1 1RD, U.K.,
| |
Collapse
|
21
|
Xie L, Gong K, Liu Y, Zhang L. Strategies and Challenges of Identifying Nanoplastics in Environment by Surface-Enhanced Raman Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:25-43. [PMID: 36576086 DOI: 10.1021/acs.est.2c07416] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanoplastics (<1000 nm) have been evidenced to be universal in a variety of environmental media. They pose a potential cytotoxicity and health risk due to their tiny size, which allows them to easily penetrate biological barriers and enter cells. Here, we briefly review the various prevalent analytical techniques or tools for identifying nanoplastics, and further move to focus on their advantages and disadvantages. Surface-enhanced Raman spectroscopy (SERS) has been implemented for the identification of individual nanoparticles because of its high sensitivity to molecules and ease of rapid characterization. Therefore, we introduce the SERS technique in the following aspects, (1) principles of SERS; (2) strategies and advances in SERS detection of nanoplastics; and (3) applying SERS to real environmental samples. We put our effort into the summarization of efficient SERS substrates that essentially enable the better detection of nanoplastics, and extend to discuss how the reported nanoplastics pretreatment methodologies can bring SERS analysis to practical applications. A further step moving forward is to investigate the problems and challenges of currently applied SERS detection methods and to look at future research needs in nanoplastics detection employing SERS analysis.
Collapse
Affiliation(s)
- Lifang Xie
- Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, Peoples' Republic of China
| | - Kedong Gong
- Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, Peoples' Republic of China
| | - Yangyang Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, Peoples' Republic of China
| | - Liwu Zhang
- Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, Peoples' Republic of China
| |
Collapse
|
22
|
Dai B, Wu C, Xie Y. Retarding the Shuttling Ions in the Electrochromic TiO 2 with Extensive Crystallographic Imperfections. Angew Chem Int Ed Engl 2023; 62:e202213285. [PMID: 36367217 DOI: 10.1002/anie.202213285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 11/13/2022]
Abstract
To understand the role of structure imperfections on the performance of electrochromic transition metal oxide (ETMO) is challenging for the design of efficient smart windows. Herein, we investigate the performance evolution with tunable crystallographic imperfections for rutile TiO2 nanowire film (TNF). Structure imperfections, originating mainly from the copious oxygen deficiency, are apt to cumulatively retard the shuttling ions, resulting in the response rate for raw TNF being less than the half that of TNF annealed at 500 °C. We describe ion accommodation sites as a convolution of normal site and abnormal site, in which the normal site performs reversible coloration but the abnormal site contributes only to charge storage, which gives a rationale for the non-linear coloration and rate capability loss. These findings give a clear picture of the ion shuttling process, which is insightful for enhancing the electrochromic performance via structure reprogramming.
Collapse
Affiliation(s)
- Baohu Dai
- Department of Chemistry, University of Science and Technology of China, No. 96, Jinzhai Rd., Hefei, 230026, China
| | - Changzheng Wu
- Department of Chemistry, University of Science and Technology of China, No. 96, Jinzhai Rd., Hefei, 230026, China
| | - Yi Xie
- Department of Chemistry, University of Science and Technology of China, No. 96, Jinzhai Rd., Hefei, 230026, China
| |
Collapse
|
23
|
Yang Y, Ao S, Wang J, Fu W, Liu X, Wang W. Recognition of dipole-induced electric field in 2D materials for surface-enhanced Raman scattering. Front Chem 2023; 11:1183381. [PMID: 37090249 PMCID: PMC10119391 DOI: 10.3389/fchem.2023.1183381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
The application of two-dimensional (2D) materials, including metallic graphene, semiconducting transition metal dichalcogenides, and insulating hexagonal boron nitride (h-BN) for surface-enhancement Raman spectroscopy has attracted extensive research interest. This article provides a critical overview of the recent developments in surface-enhanced Raman spectroscopy using 2D materials. By re-examining the relationship between the lattice structure and Raman enhancement characteristics, including vibration selectivity and thickness dependence, we highlight the important role of dipoles in the chemical enhancement of 2D materials.
Collapse
Affiliation(s)
- Yuxue Yang
- High-Tech Institute of Xi’an, Xi’an, Shaanxi, China
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Shen Ao
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Jiaqi Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Wangyang Fu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | | | - Weipeng Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
- *Correspondence: Weipeng Wang,
| |
Collapse
|
24
|
Aniline dimers serving as stable and efficient transfer units for intermolecular charge-carrier transmission. iScience 2022; 26:105762. [PMID: 36594033 PMCID: PMC9804111 DOI: 10.1016/j.isci.2022.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Because any perturbation in the number of oxidation sites associated with the polymeric backbone can cause changes in the electrical properties, the stability of electrical properties has strongly prevented the wide adoption of most conducting polymers for commercialization, e.g., polyanilines (PANI). Herein, we showed that aniline dimers (AD) had more stable conductivity during redox due to their determinately separate oxidization or reduction units. Instead of intramolecular charge transfer as PANI, AD could serve as effective transfer units to facilitate intermolecular charge-carrier transmission due to low band-gap formation induced by the J-aggregation of AD, ensuring efficient conductivity. Typically, the electrical properties of AD-derived materials will still be stable after 10,000 redox cycles under a high operating voltage, far surpassing PANI under equivalent conditions. Meanwhile, the AD-derived materials could act as effective conducting and sensing layers with good stability. This approach opened an avenue for improving the stability of conductive polymers.
Collapse
|
25
|
Yu J, Chen C, Zhang Q, Lin J, Yang X, Gu L, Zhang H, Liu Z, Wang Y, Zhang S, Wang X, Guo L. Au Atoms Anchored on Amorphous C3N4 for Single-Site Raman Enhancement. J Am Chem Soc 2022; 144:21908-21915. [DOI: 10.1021/jacs.2c07413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Jian Yu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing100191, China
| | - Chao Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Jie Lin
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing100191, China
| | - Xiuyi Yang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing100191, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Hui Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai201204, China
| | - Shuo Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai201204, China
| | - Xiaotian Wang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing100191, China
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing100191, China
| |
Collapse
|
26
|
Li J, Li R, Xu Y, Xue X, Chen X, Chui HC. The Wavelength-Dependent SERS Template Based on a Nanopillar Array. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7446. [PMID: 36363038 PMCID: PMC9657544 DOI: 10.3390/ma15217446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/02/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) can be regarded as a powerful tool for probing chemical molecules by effectively enhancing Raman signals. However, the enhancement factors depend on the SERS template, the probed molecular structures, and the excitation laser wavelength. Herein, we proposed a simple and easily fabricated nanostructured template for SERS and analyzed the wavelength-dependent factors. Three types of golden nanopillar arrays on silicon wafers were designed and manufactured. The SERS signals of the Rhodamine 6G (R6G) molecules were extracted. Three laser sources, a blue 17 mW 458 nm diode laser, a green 20 mW 532 nm laser, and a red 6 mW 633 nm laser, were employed as the excitation laser sources. The 458 nm laser was located far from the resonate spectrum of R6G. The optical intensity distributions for the different SERS templates excited by three laser beams were also simulated. The enhancement factors (EFs) of R6G on the three nanostructured templates were measured and compared. The photoluminescence spectrum of the nanostructured templates and SERS signals of R6G were also measured. In addition, the experimental results concerned optical simulations. The analysis tool that was used was a convolution profile of multiple Lorentzian line shapes with a Gaussian profile. It is helpful to understand the SERS signals when the excitation laser wavelength is located out of the resonance region of molecules. It can also provide a new design approach to fabricate an SERS Template with a nanopillar array for different excitation wavelengths.
Collapse
Affiliation(s)
- Jiayi Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Rui Li
- College of Physics, Dalian University of Technology, Dalian 116024, China
| | - Ying Xu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Xiaojun Xue
- PipeChina Group, Beijing Pipe Co., Ltd., Beijing 100020, China
| | - Xiaoming Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Hsiang-Chen Chui
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
27
|
Pan N, Shi Z, Wu P, Xi H, Gao Y, You T, Yin P. Surface enhanced Raman scattering of adsorbates on Au-CsPbIBr 2 perovskite-based nanocomposites: charge-transfer and electromagnetic enhancement. NANOSCALE 2022; 14:10469-10476. [PMID: 35822839 DOI: 10.1039/d2nr02108k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, perovskite-based nanocomposites as surface enhanced Raman scattering substrates were designed by physically sputtering Au nanoparticles onto fabricated all-inorganic CsPbIBr2 perovskite films, which provide much stronger SERS signals as compared to normal Au or perovskite substrates. Their synergism enhancement mechanisms and influence factors, including hybrid layer sequence, fabrication parameters and excitation source, are discussed. In addition, the prepared composite substrate exhibits excellent uniformity, reproducibility and time stability. This study promotes an easily prepared perovskite-based substrate for SERS-related applications and develops further understanding of molecule-semiconductor-noble metal nanostructure interfacial interactions.
Collapse
Affiliation(s)
- Niu Pan
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Ziqian Shi
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Pengfei Wu
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Hongyan Xi
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Yukun Gao
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Tingting You
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Penggang Yin
- School of Chemistry, Beihang University, Beijing 100191, China.
| |
Collapse
|
28
|
Fujiwara S, Kawasaki D, Sueyoshi K, Hisamoto H, Endo T. Gold Nanocone Array with Extensive Electromagnetic Fields for Highly Reproducible Surface-Enhanced Raman Scattering Measurements. MICROMACHINES 2022; 13:mi13081182. [PMID: 35893179 PMCID: PMC9332797 DOI: 10.3390/mi13081182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a technique used to distinguish the constitution of disease-related biomarkers in liquid biopsies, such as exosomes and circulating tumor cells, without any recognition elements. Previous studies using metal nanoparticle aggregates and angular nanostructures have achieved the detection of various biomarkers owing to strong hot spots and electromagnetic (EM) fields by localized surface plasmon resonance (LSPR). Although these SERS platforms enable significant enhancement of Raman signals, they still have some problems with the fabrication reproducibility of platforms in obtaining reproducible SERS signals. Therefore, highly reproducible fabrication of SERS platforms is required. Here, we propose the application of a polymer-based gold (Au) nanocone array (Au NCA), which extensively generates an enhanced EM field near the Au NCA surface by LSPR. This approach was experimentally demonstrated using a 785 nm laser, typically used for SERS measurements, and showed excellent substrate-to-substrate reproducibility (relative standard deviation (RSD) < 6%) using an extremely simple fabrication procedure and very low laser energy. These results proved that a Au NCA can be used as a highly reproducible SERS measurement to distinguish the constitution of biomarkers.
Collapse
Affiliation(s)
- Satoko Fujiwara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
| | - Daiki Kawasaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo 102-8666, Japan
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
- Correspondence: ; Tel.: +81-72-254-9284
| |
Collapse
|
29
|
Subasinghe SAAS, Pautler RG, Samee MAH, Yustein JT, Allen MJ. Dual-Mode Tumor Imaging Using Probes That Are Responsive to Hypoxia-Induced Pathological Conditions. BIOSENSORS 2022; 12:478. [PMID: 35884281 PMCID: PMC9313010 DOI: 10.3390/bios12070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 05/02/2023]
Abstract
Hypoxia in solid tumors is associated with poor prognosis, increased aggressiveness, and strong resistance to therapeutics, making accurate monitoring of hypoxia important. Several imaging modalities have been used to study hypoxia, but each modality has inherent limitations. The use of a second modality can compensate for the limitations and validate the results of any single imaging modality. In this review, we describe dual-mode imaging systems for the detection of hypoxia that have been reported since the start of the 21st century. First, we provide a brief overview of the hallmarks of hypoxia used for imaging and the imaging modalities used to detect hypoxia, including optical imaging, ultrasound imaging, photoacoustic imaging, single-photon emission tomography, X-ray computed tomography, positron emission tomography, Cerenkov radiation energy transfer imaging, magnetic resonance imaging, electron paramagnetic resonance imaging, magnetic particle imaging, and surface-enhanced Raman spectroscopy, and mass spectrometric imaging. These overviews are followed by examples of hypoxia-relevant imaging using a mixture of probes for complementary single-mode imaging techniques. Then, we describe dual-mode molecular switches that are responsive in multiple imaging modalities to at least one hypoxia-induced pathological change. Finally, we offer future perspectives toward dual-mode imaging of hypoxia and hypoxia-induced pathophysiological changes in tumor microenvironments.
Collapse
Affiliation(s)
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Md. Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Jason T. Yustein
- Integrative Molecular and Biomedical Sciences and the Department of Pediatrics in the Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA;
| |
Collapse
|
30
|
Arzaee NA, Mohamad Noh MF, Aadenan A, Nawas Mumthas IN, Ab Hamid FF, Kamarudin NN, Mohamed NA, Ibrahim MA, Ismail AF, Mat Teridi MA. Accelerating the controlled synthesis of WO3 photoanode by modifying aerosol-assisted chemical vapour deposition for photoelectrochemical water splitting. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
He Z, Yu L, Wang G, Ye C, Feng X, Zheng L, Yang S, Zhang G, Wei G, Liu Z, Xue Z, Ding G. Investigation of a Highly Sensitive Surface-Enhanced Raman Scattering Substrate Formed by a Three-Dimensional/Two-Dimensional Graphene/Germanium Heterostructure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14764-14773. [PMID: 35306813 DOI: 10.1021/acsami.2c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three-dimensional graphene (3D-graphene) is used in surface-enhanced Raman spectroscopy (SERS) because of its plasmonic nanoresonator structure and good ability to interact with light. However, a thin (3-5 nm) layer of amorphous carbon (AC) inevitably appears as a template layer between the 3D-graphene and object substrate when the 3D-graphene layer is synthesized, weakening the enhancement factor. Herein, two-dimensional graphene (2D-graphene) is employed as a template layer to directly synthesize 3D-graphene on a germanium (Ge) substrate via plasma-assisted chemical vapor deposition, bypassing the formation of an AC layer. The interaction and photoinduced charge transfer ability of the 3D-graphene/Ge heterojunction with incident light are improved. Moreover, the high density of electronic states close to the Fermi level of the heterojunction induces the adsorbed probe molecules to efficiently couple to the 3D-graphene-based SERS substrate. Our experimental results imply that the lowest concentrations of rhodamine 6G and rhodamine B that can be detected on the 3D/2D-graphene/Ge SERS substrate correspond to 10-10 M; for methylene blue, it is 10-8 M. The detection limits of the 3D/2D-graphene/Ge SERS substrate with respect to 3-hydroxytyramine hydrochloride and melamine (in milk) are both less than 1 ppm. This work may provide a viable and convenient alternative method for preparing 3D-graphene SERS substrates. It also constitutes a new approach to developing SERS substrates with remarkable performance levels.
Collapse
Affiliation(s)
- Zhengyi He
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Lingyan Yu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Caichao Ye
- Academy for Advanced Interdisciplinary Studies and Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Xiaoqiang Feng
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Li Zheng
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Siwei Yang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Guanglin Zhang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Genwang Wei
- Academy for Advanced Interdisciplinary Studies and Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Zhiduo Liu
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| | - Zhongying Xue
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Guqiao Ding
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| |
Collapse
|
32
|
He Z, Rong T, Li Y, Ma J, Li Q, Wu F, Wang Y, Wang F. Two-Dimensional TiVC Solid-Solution MXene as Surface-Enhanced Raman Scattering Substrate. ACS NANO 2022; 16:4072-4083. [PMID: 35179019 DOI: 10.1021/acsnano.1c09736] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) MXenes are attractive candidates as surface-enhanced Raman scattering (SERS) substrates because of their metallic conductivity and abundant surface terminations. Herein, we report the facile synthesis of bimetallic solid-solution TiVC (MXene) and its application in SERS. The few-layered MXene nanosheets with high crystallinity were successfully prepared using a one-step chemical etching method without ultrasonic and organic solvent intercalation steps. SERS activity of the as-prepared MXene was investigated by fabricating free-standing TiVC film as the substrate. A SERS enhancement factor of 1012 and femtomolar-level detection limit were confirmed using rhodamine 6G as a model dye with 532 nm excitation. The fluorescent signal of the rhodamine 6G dye was effectively quenched, making the SERS spectrum clearly distinguishable. Furthermore, we demonstrate that the TiVC-analyte system with ultrahigh sensitivity is dominated by the chemical mechanism (CM) based on the experimental and simulation results. The abundant density of states near the Fermi level of the TiVC and the strong interaction between the TiVC and analyte promote the intermolecular charge transfer resonance in the TiVC-analyte complex, resulting in significant Raman enhancement. Additionally, several other probe molecules were used for SERS detection to further verify CM-based selectivity enhancement on the TiVC substrates. This work provides guidance for the facile synthesis of 2D MXene and its application in ultrasensitive SERS detection.
Collapse
Affiliation(s)
- Zhiquan He
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Tengda Rong
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Li
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Junjie Ma
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanshui Li
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Furong Wu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuhang Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengping Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
33
|
Yang GG, Choi HJ, Han KH, Kim JH, Lee CW, Jung EI, Jin HM, Kim SO. Block Copolymer Nanopatterning for Nonsemiconductor Device Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12011-12037. [PMID: 35230079 DOI: 10.1021/acsami.1c22836] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Block copolymer (BCP) nanopatterning has emerged as a versatile nanoscale fabrication tool for semiconductor devices and other applications, because of its ability to organize well-defined, periodic nanostructures with a critical dimension of 5-100 nm. While the most promising application field of BCP nanopatterning has been semiconductor devices, the versatility of BCPs has also led to enormous interest from a broad spectrum of other application areas. In particular, the intrinsically low cost and straightforward processing of BCP nanopatterning have been widely recognized for their large-area parallel formation of dense nanoscale features, which clearly contrasts that of sophisticated processing steps of the typical photolithographic process, including EUV lithography. In this Review, we highlight the recent progress in the field of BCP nanopatterning for various nonsemiconductor applications. Notable examples relying on BCP nanopatterning, including nanocatalysts, sensors, optics, energy devices, membranes, surface modifications and other emerging applications, are summarized. We further discuss the current limitations of BCP nanopatterning and suggest future research directions to open up new potential application fields.
Collapse
Affiliation(s)
- Geon Gug Yang
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hee Jae Choi
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Kyu Hyo Han
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jang Hwan Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Chan Woo Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Edwin Ino Jung
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hyeong Min Jin
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
34
|
Jiang L, Hu Y, Zhang H, Luo X, Yuan R, Yang X. Charge-Transfer Resonance and Surface Defect-Dominated WO 3 Hollow Microspheres as SERS Substrates for the miRNA 155 Assay. Anal Chem 2022; 94:6967-6975. [PMID: 35289177 DOI: 10.1021/acs.analchem.1c05200] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chemical enhancement with charge transfer (CT) between the adsorbed Raman molecule and the semiconductor mainly contributed to semiconductor surface-enhanced Raman scattering (SERS). In this work, a three-dimensional (3D) WO3 hollow microsphere is first developed as a SERS-active substrate. This 3D WO3 has a smaller band gap and rich surface defects compared with flake WO3. Interestingly, these properties in the WO3 hollow microspheres lead to an increase in charge transfer, which causes a strong CT interaction between the substrate-Raman molecule interfaces, resulting in a large SERS enhancement. The 3D WO3 showed an excellent SERS performance with an enhancement factor (EF) of 1.6 × 106. Finally, a SERS biosensor is constructed based on the above-mentioned semiconductor materials, which can be used for the sensitive detection of miRNA 155 with a limit of detection (LOD) of 0.18 fM by employing a catalytic hairpin assembly (CHA) strategy. This work provides important guidance for semiconductor topography design to improve the SERS performance, supplying a new strategy for biomolecular analysis and disease diagnosis.
Collapse
Affiliation(s)
- Lingling Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yali Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Haina Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xiliang Luo
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.,Key Laboratory of Sensor Analysis of Tumor Markers, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266061, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
35
|
Yang L, Feng J, Wang JN, Gao Z, Xu J, Mei Y, Song YY. Engineering large-scaled electrochromic semiconductor films as reproductive SERS substrates for operando investigation at the solid/liquid interfaces. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Song G, Cong S, Zhao Z. Defect engineering in semiconductor-based SERS. Chem Sci 2022; 13:1210-1224. [PMID: 35222907 PMCID: PMC8809400 DOI: 10.1039/d1sc05940h] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Semiconductor-based surface enhanced Raman spectroscopy (SERS) platforms take advantage of the multifaceted tunability of semiconductor materials to realize specialized sensing demands in a wide range of applications. However, until quite recently, semiconductor-based SERS materials have generally exhibited low activity compared to conventional noble metal substrates, with enhancement factors (EF) typically reaching 103, confining the study of semiconductor-based SERS to purely academic settings. In recent years, defect engineering has been proposed to effectively improve the SERS activity of semiconductor materials. Defective semiconductors can now achieve noble-metal-comparable SERS enhancement and exceedingly low, nano-molar detection concentrations towards certain molecules. The reason for such success is that defect engineering effectively harnesses the complex enhancement mechanisms behind the SERS phenomenon by purposefully tailoring many physicochemical parameters of semiconductors. In this perspective, we introduce the main defect engineering approaches used in SERS-activation, and discuss in depth the electromagnetic and chemical enhancement mechanisms (EM and CM, respectively) that are influenced by these defect engineering methods. We also introduce the applications that have been reported for defective semiconductor-based SERS platforms. With this perspective we aim to meet the imperative demand for a summary on the recent developments of SERS material design based on defect engineering of semiconductors, and highlight the attractive research and application prospects for semiconductor-based SERS.
Collapse
Affiliation(s)
- Ge Song
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Shan Cong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Chinese Academy of Sciences (CAS) Suzhou 215123 China
- Gusu Laboratory of Materials Suzhou 215123 China
| | - Zhigang Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Chinese Academy of Sciences (CAS) Suzhou 215123 China
| |
Collapse
|
37
|
Song C, Ye B, Xu J, Chen J, Shi W, Yu C, An C, Zhu J, Zhang W. Large-Area Nanosphere Self-Assembly Monolayers for Periodic Surface Nanostructures with Ultrasensitive and Spatially Uniform SERS Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104202. [PMID: 34877766 DOI: 10.1002/smll.202104202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Colloidal lithography provides a rapid and low-cost approach to construct 2D periodic surface nanostructures. However, an impressive demonstration to prepare large-area colloidal template is still missing. Here, a high-efficient and flexible technique is proposed to fabricate self-assembly monolayers consisting of orderly-packed polystyrene spheres at air/water interface via ultrasonic spray. This "non-contact" technique exhibits great advantages in terms of scalability and adaptability due to its renitent interface dynamic balance. More importantly, this technique is not only competent for self-assembly of single-sized polystyrene spheres, but also for binary polystyrene spheres, completely reversing the current hard situation of preparing large-area self-assembly monolayers. As a representative application, hexagonal-packed silver-coated silicon nanorods array (Si-NRs@Ag) is developed as an ultrasensitive surface-enhanced Raman scattering (SERS) substrate with very low limit-of-detection for selective detection of explosive 2,4,6-trinitrotoluene down to femtomolar (10-14 m) range. The periodicity and orderliness of the array allow hot spots to be designed and constructed in a homogeneous fashion, resulting in an incomparable uniformity and reproducibility of Raman signals. All these excellent properties come from the Si-NRs@Ag substrate based on the ordered structure, open surface, and wide-range electric field, providing a robust, consistent, and tunable platform for molecule trapping and SERS sensing for a wide range of organic molecules.
Collapse
Affiliation(s)
- Changkun Song
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| | - Baoyun Ye
- School of Environment and Safety Engineering, North University of China, Xueyuan road 3, Taiyuan, 030051, P. R. China
| | - Jianyong Xu
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| | - Junhong Chen
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| | - Wei Shi
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| | - Chunpei Yu
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| | - Chongwei An
- School of Environment and Safety Engineering, North University of China, Xueyuan road 3, Taiyuan, 030051, P. R. China
| | - Junwu Zhu
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| | - Wenchao Zhang
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| |
Collapse
|
38
|
Achadu OJ, Nwaji N, Lee D, Lee J, Akinoglu EM, Giersig M, Park EY. 3D hierarchically porous magnetic molybdenum trioxide@gold nanospheres as a nanogap-enhanced Raman scattering biosensor for SARS-CoV-2. NANOSCALE ADVANCES 2022; 4:871-883. [PMID: 36131829 PMCID: PMC9419194 DOI: 10.1039/d1na00746g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/04/2022] [Indexed: 05/03/2023]
Abstract
The global pandemic of COVID-19 is an example of how quickly a disease-causing virus can take root and threaten our civilization. Nowadays, ultrasensitive and rapid detection of contagious pathogens is in high demand. Here, we present a novel hierarchically porous 3-dimensional magnetic molybdenum trioxide-polydopamine-gold functionalized nanosphere (3D mag-MoO3-PDA@Au NS) composed of plasmonic, semiconductor, and magnetic nanoparticles as a multifunctional nanosculptured hybrid. Based on the synthesized 3D mag-MoO3-PDA@Au NS, a universal "plug and play" biosensor for pathogens is proposed. Specifically, a magnetically-induced nanogap-enhanced Raman scattering (MINERS) detection platform was developed using the 3D nanostructure. Through a magnetic actuation process, the MINERS system overcomes Raman signal stability and reproducibility challenges for the ultrasensitive detection of SARS-CoV-2 spike protein over a wide dynamic range up to a detection limit of 10-15 g mL-1. The proposed MINERS platform will facilitate the broader use of Raman spectroscopy as a powerful analytical detection tool in diverse fields.
Collapse
Affiliation(s)
- Ojodomo J Achadu
- Research Institute of Green Science and Technology, Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan +81-54-238-4887 +81-54-238-3306
- International Institute for Nanocomposites Manufacturing, WMG, University of Warwick CV4 7AL Coventry UK
| | - Njemuwa Nwaji
- International Academy of Optoelectronics at Zhaoqing, South China Normal University Liyuan Street 526238 Guangdong China
| | - Dongkyu Lee
- Dept. of Chemistry, College of Natural Science, Chungnam National University 99 Daehak-ro, Yuseong-gu Daejeon 34134 Korea
| | - Jaebeom Lee
- Dept. of Chemistry, College of Natural Science, Chungnam National University 99 Daehak-ro, Yuseong-gu Daejeon 34134 Korea
| | - Eser M Akinoglu
- International Academy of Optoelectronics at Zhaoqing, South China Normal University Liyuan Street 526238 Guangdong China
| | - Michael Giersig
- International Academy of Optoelectronics at Zhaoqing, South China Normal University Liyuan Street 526238 Guangdong China
- Institute of Fundamental Technological Research, Polish Academy of Sciences 02-106 Warsaw Poland
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan +81-54-238-4887 +81-54-238-3306
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| |
Collapse
|
39
|
Zhang M, Yang C, Zhang Z, Tian W, Hui B, Zhang J, Zhang K. Tungsten oxide polymorphs and their multifunctional applications. Adv Colloid Interface Sci 2022; 300:102596. [PMID: 34990910 DOI: 10.1016/j.cis.2021.102596] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/04/2021] [Accepted: 12/25/2021] [Indexed: 12/12/2022]
Abstract
Owing to the natural abundance, easy availability, high stability, non-stoichiometry, and chemical diversity, considerable interest has been devoted to tungsten oxide (WO3-x) nanomaterials, and many advances have been achieved ranging from traditional catalysts and electronics to emerging artificial intelligence. This review focuses on recent progress of WO3-x polymorphs and their multifunctional applications. The structural diversity and crystal phase transitions of WO3-x and recent advances on the general synthesis of various WO3-x nanostructures are first summarized, since the crystal structure and morphology adjustment obviously affect the physiochemical merits of WO3-x materials. Then, their applications and related mechanisms in different fields are demonstrated, such as gas sensing, chromogenic (electro-, photo-, gaso-, and thermochromic), photocatalytic (pollutant degradation and water splitting), and emerging applications (biomedical, antibiotic, and artificial intelligence). With the advances highlighted here and the ongoing research efforts, the continuous breakthrough in functionalized WO3-x nanostructure and their attractive applications is foreseeable in the future.
Collapse
Affiliation(s)
- Mingxin Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Chao Yang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Ziqi Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Weiliang Tian
- Key Laboratory of Chemical Engineering in South Xinjiang, College of Life Science, Tarim University, Alar 843300, PR China
| | - Bin Hui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jianxiao Zhang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Kewei Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
40
|
Park S, Lee J, Khan S, Wahab A, Kim M. Machine Learning-Based Heavy Metal Ion Detection Using Surface-Enhanced Raman Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2022; 22:596. [PMID: 35062556 PMCID: PMC8778908 DOI: 10.3390/s22020596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Surface-Enhanced Raman Spectroscopy (SERS) is often used for heavy metal ion detection. However, large variations in signal strength, spectral profile, and nonlinearity of measurements often cause problems that produce varying results. It raises concerns about the reproducibility of the results. Consequently, the manual classification of the SERS spectrum requires carefully controlled experimentation that further hinders the large-scale adaptation. Recent advances in machine learning offer decent opportunities to address these issues. However, well-documented procedures for model development and evaluation, as well as benchmark datasets, are missing. Towards this end, we provide the SERS spectral benchmark dataset of lead(II) nitride (Pb(NO3)2) for a heavy metal ion detection task and evaluate the classification performance of several machine learning models. We also perform a comparative study to find the best combination between the preprocessing methods and the machine learning models. The proposed model can successfully identify the Pb(NO3)2 molecule from SERS measurements of independent test experiments. In particular, the proposed model shows an 84.6% balanced accuracy for the cross-batch testing task.
Collapse
Affiliation(s)
- Seongyong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (S.P.); (S.K.)
| | - Jaeseok Lee
- Department of Mechanical System Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea;
- Department of Aeronautics, Mechanical and Electronic Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
| | - Shujaat Khan
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (S.P.); (S.K.)
| | - Abdul Wahab
- Department of Mathematics, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Minseok Kim
- Department of Mechanical System Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea;
- Department of Aeronautics, Mechanical and Electronic Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
| |
Collapse
|
41
|
Tailoring Properties of Hafnium Nitride Thin Film via Reactive Gas-Timing RF Magnetron Sputtering for Surface Enhanced-Raman Scattering Substrates. CRYSTALS 2022. [DOI: 10.3390/cryst12010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study successfully demonstrated the tailoring properties of hafnium nitride (HfN) thin films via reactive gas-timing (RGT) RF magnetron sputtering for surface-enhanced Raman spectroscopy (SERS) substrate applications. The optimal RGT sputtering condition was investigated by varying the duration time of the argon and nitrogen gas sequence. The RGT technique formed thin films with a grain size of approximately 15 nm. Additionally, the atomic ratios of nitrogen and hafnium can be controlled between 0.24 and 0.28, which is greater than the conventional technique, resulting in a high absorbance in the long wavelength region. Moreover, the HfN thin film exhibited a high Raman signal intensity with an EF of 8.5 × 104 to methylene blue molecules and was capable of being reused five times. A superior performance of HfN as a SERS substrate can be attributed to its tailored grain size and chemical composition, which results in an increase in the hot spot effect. These results demonstrate that the RGT technique is a viable method for fabricating HfN thin films with controlled properties at room temperature, which makes them an attractive material for SERS and other plasmonic applications.
Collapse
|
42
|
Yang X, Zhang Z, Su M, Song Y. Research Progress on Nano Photonics Technology-based SARS-CoV-2 Detection※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Park S, Lee J, Khan S, Wahab A, Kim M. SERSNet: Surface-Enhanced Raman Spectroscopy Based Biomolecule Detection Using Deep Neural Network. BIOSENSORS 2021; 11:bios11120490. [PMID: 34940246 PMCID: PMC8699110 DOI: 10.3390/bios11120490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Surface-Enhanced Raman Spectroscopy (SERS)-based biomolecule detection has been a challenge due to large variations in signal intensity, spectral profile, and nonlinearity. Recent advances in machine learning offer great opportunities to address these issues. However, well-documented procedures for model development and evaluation, as well as benchmark datasets, are lacking. Towards this end, we provide the SERS spectral benchmark dataset of Rhodamine 6G (R6G) for a molecule detection task and evaluate the classification performance of several machine learning models. We also perform a comparative study to find the best combination between the preprocessing methods and the machine learning models. Our best model, coined as the SERSNet, robustly identifies R6G molecule with excellent independent test performance. In particular, SERSNet shows 95.9% balanced accuracy for the cross-batch testing task.
Collapse
Affiliation(s)
- Seongyong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (S.P.); (S.K.)
| | - Jaeseok Lee
- Department of Mechanical System Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea;
- Department of Aeronautics, Mechanical and Electronic Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
| | - Shujaat Khan
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (S.P.); (S.K.)
| | - Abdul Wahab
- Department of Mathematics, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Minseok Kim
- Department of Mechanical System Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea;
- Department of Aeronautics, Mechanical and Electronic Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
- Correspondence:
| |
Collapse
|
44
|
Guo J, Xu Y, Fu C, Guo L. Facial Fabrication of Large-Scale SERS-Active Substrate Based on Self-Assembled Monolayer of Silver Nanoparticles on CTAB-Modified Silicon for Analytical Applications. NANOMATERIALS 2021; 11:nano11123250. [PMID: 34947599 PMCID: PMC8708957 DOI: 10.3390/nano11123250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been proven to be a promising analytical technique with sensitivity at the single-molecule level. However, one of the key problems preventing its real-world application lies in the great challenges that are encountered in the preparation of large-scale, reproducible, and highly sensitive SERS-active substrates. In this work, a new strategy is developed to fabricate an Ag collide SERS substrate by using cetyltrimethylammonium bromide (CTAB) as a connection agent. The developed SERS substrate can be developed on a large scale and is highly efficient, and it has high-density “hot spots” that enhance the yield enormously. We employed 4-methylbenzenethiol(4-MBT) as the SERS probe due to the strong Ag–S linkage. The SERS enhancement factor (EF) was calculated to be ~2.6 × 106. The efficacy of the proposed substrate is demonstrated for the detection of malachite green (MG) as an example. The limit of detection (LOD) for the MG assay is brought down to 1.0 × 10−11 M, and the relative standard deviation (RSD) for the intensity of the main Raman vibration modes (1620, 1038 cm−1) is less than 20%.
Collapse
Affiliation(s)
- Juanjuan Guo
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou 362000, China;
| | - Yang Xu
- College of Physics & Information Engineering, Quanzhou Normal University, Quanzhou 362000, China;
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou 215128, China;
| | - Longhua Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
- Correspondence:
| |
Collapse
|
45
|
Wang W, Mao Z, Ren Y, Meng F, Shi X, Zhao B. Operando Raman spectroscopic evidence of electron-phonon interactions in NiO/TiO 2 pn junction photodetectors. Chem Commun (Camb) 2021; 57:12333-12336. [PMID: 34747431 DOI: 10.1039/d1cc05303e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pn junctions significantly affect the responsivity of photodetectors (PDs). However, the enhancement mechanism of the pn junction is still unclear. Herein, operando Raman spectroscopy was employed to study PDs with NiO/TiO2 pn junctions composed of p-NiO nanoparticles (NPs) and n-TiO2 nanotube arrays (TNAs). The results suggest that the built-in potential field of the NiO/TiO2 interface decreases the charge transfer resistance and changes the vibrational frequency of the phonon modes of TiO2, which is attributed to the electron-phonon coupling effect. Operando Raman spectroscopy is proved to be a powerful tool for manufacturing highly responsive PDs.
Collapse
Affiliation(s)
- Wenjun Wang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Zhu Mao
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Yanyu Ren
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Fanxu Meng
- Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Xiumin Shi
- College of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China.
| |
Collapse
|
46
|
Fan X, Wei P, Li G, Li M, Lan L, Hao Q, Qiu T. Manipulating Hot-Electron Injection in Metal Oxide Heterojunction Array for Ultrasensitive Surface-Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51618-51627. [PMID: 34674528 DOI: 10.1021/acsami.1c11977] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Efficient photoinduced charge transfer (PICT) resonance is crucial to the surface-enhanced Raman scattering (SERS) performance of metal oxide substrates. Herein, we venture into the hot-electron injection strategy to achieve unprecedented enhanced PICT efficiency between substrates and molecules. A heterojunction array composed of plasmonic MoO2 and semiconducting WO3-x is designed to prove the concept. The plasmonic MoO2 generates intense localized surface plasmon resonance under illumination, which can generate near-field Raman enhancement as well as accompanied plasmon-induced hot-electrons. The hot-electron injection in direct interfacial charge transfer and plasmon-induced charge transfer process can effectively promote the PICT efficiency between substrates and molecules, achieving a record Raman enhancement factor among metal oxide substrates (2.12 × 108) and the ultrasensitive detection of target molecule down to 10-11 M. This work demonstrates the possibility of hot-electron manipulation to realize unprecedented Raman enhancement in metal oxides, offering a cutting-edge strategy to design high-performance SERS substrates.
Collapse
Affiliation(s)
- Xingce Fan
- School of Physics, Southeast University, Nanjing 211189, China
| | - Penghua Wei
- School of Physics, Southeast University, Nanjing 211189, China
| | - Guoqun Li
- School of Physics, Southeast University, Nanjing 211189, China
| | - Mingze Li
- School of Physics, Southeast University, Nanjing 211189, China
| | - Leilei Lan
- School of Physics, Southeast University, Nanjing 211189, China
| | - Qi Hao
- School of Physics, Southeast University, Nanjing 211189, China
| | - Teng Qiu
- School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
47
|
Bilgin B, Yanik C, Torun H, Onbasli MC. Genetic Algorithm-Driven Surface-Enhanced Raman Spectroscopy Substrate Optimization. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2905. [PMID: 34835670 PMCID: PMC8618775 DOI: 10.3390/nano11112905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and molecule-specific detection technique that uses surface plasmon resonances to enhance Raman scattering from analytes. In SERS system design, the substrates must have minimal or no background at the incident laser wavelength and large Raman signal enhancement via plasmonic confinement and grating modes over large areas (i.e., squared millimeters). These requirements impose many competing design constraints that make exhaustive parametric computational optimization of SERS substrates prohibitively time consuming. Here, we demonstrate a genetic-algorithm (GA)-based optimization method for SERS substrates to achieve strong electric field localization over wide areas for reconfigurable and programmable photonic SERS sensors. We analyzed the GA parameters and tuned them for SERS substrate optimization in detail. We experimentally validated the model results by fabricating the predicted nanostructures using electron beam lithography. The experimental Raman spectrum signal enhancements of the optimized SERS substrates validated the model predictions and enabled the generation of a detailed Raman profile of methylene blue fluorescence dye. The GA and its optimization shown here could pave the way for photonic chips and components with arbitrary design constraints, wavelength bands, and performance targets.
Collapse
Affiliation(s)
- Buse Bilgin
- Electrical and Electrical Engineering, Graduate School of Sciences and Engineering, Koç University, Sarıyer, Istanbul 34450, Turkey;
- Koç University Research Center for Translational Medicine, Koç University, Sarıyer, Istanbul 34450, Turkey;
| | - Cenk Yanik
- Sabanci University Nanotechnology Research and Application Center, SUNUM, Tuzla, Istanbul 34956, Turkey;
| | - Hulya Torun
- Koç University Research Center for Translational Medicine, Koç University, Sarıyer, Istanbul 34450, Turkey;
- Bio-Medical Sciences and Engineering, Graduate School of Sciences and Engineering, Koç University, Sarıyer, Istanbul 34450, Turkey
| | - Mehmet Cengiz Onbasli
- Electrical and Electrical Engineering, Graduate School of Sciences and Engineering, Koç University, Sarıyer, Istanbul 34450, Turkey;
- Koç University Research Center for Translational Medicine, Koç University, Sarıyer, Istanbul 34450, Turkey;
| |
Collapse
|
48
|
Tegegne WA, Su WN, Beyene AB, Huang WH, Tsai MC, Hwang BJ. Flexible hydrophobic filter paper-based SERS substrate using silver nanocubes for sensitive and rapid detection of adenine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106349] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Yang YX, Chu JP. Cost-effective large-area Ag nanotube arrays for SERS detections: effects of nanotube geometry. NANOTECHNOLOGY 2021; 32:475504. [PMID: 34284366 DOI: 10.1088/1361-6528/ac1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
This study demonstrated highly-ordered metallic nanotube arrays (MeNTAs) with a precisely controlled geometric shape to promote surface-enhanced Raman scattering (SERS). Using both simulation and experimental methods, we designed and fabricated MeNTAs with nanotube geometries that possess a large surface area to absorb probe molecules as well as geometric features capable of inducing hot spots for SERS enhancement. The proposed top-down wafer-scale lithographic and sputter-deposition process is a simple and cost-effective approach to the fabrication of 1 mm × 1 mm MeNTA at room temperature. Simulation results of nanotubes with various materials (Au, Ag, and Cu), diameters (100-1500 nm), geometric shapes (circle, equilateral triangle and square) and triangle corner curvatures (ranging from 0 to 300 nm) identified Ag triangles with sharp tips as the geometry best suited to SERS enhancement. The SERS spectra of crystal violet molecules generated from the Ag MeNTAs verified the patterns observed in computational simulations, wherein the effects of MeNTA on SERS decreased with an increase in the size of the nanotubes. Enhancement factor of 1.06 × 109was obtained from our triangular Ag MeNTA, confirming its efficacy as an ultrahigh sensitivity SERS-active substrate.
Collapse
Affiliation(s)
- Yi-Xiang Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jinn P Chu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Applied Research Center for Thin-Film Metallic Glass, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
50
|
Fakharuddin A, Li H, Di Giacomo F, Zhang T, Gasparini N, Elezzabi AY, Mohanty A, Ramadoss A, Ling J, Soultati A, Tountas M, Schmidt‐Mende L, Argitis P, Jose R, Nazeeruddin MK, Mohd Yusoff ARB, Vasilopoulou M. Fiber‐Shaped Electronic Devices. ADVANCED ENERGY MATERIALS 2021; 11. [DOI: 10.1002/aenm.202101443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 09/02/2023]
Abstract
AbstractTextile electronics embedded in clothing represent an exciting new frontier for modern healthcare and communication systems. Fundamental to the development of these textile electronics is the development of the fibers forming the cloths into electronic devices. An electronic fiber must undergo diverse scrutiny for its selection for a multifunctional textile, viz., from the material selection to the device architecture, from the wearability to mechanical stresses, and from the environmental compatibility to the end‐use management. Herein, the performance requirements of fiber‐shaped electronics are reviewed considering the characteristics of single electronic fibers and their assemblies in smart clothing. Broadly, this article includes i) processing strategies of electronic fibers with required properties from precursor to material, ii) the state‐of‐art of current fiber‐shaped electronics emphasizing light‐emitting devices, solar cells, sensors, nanogenerators, supercapacitors storage, and chromatic devices, iii) mechanisms involved in the operation of the above devices, iv) limitations of the current materials and device manufacturing techniques to achieve the target performance, and v) the knowledge gap that must be minimized prior to their deployment. Lessons learned from this review with regard to the challenges and prospects for developing fiber‐shaped electronic components are presented as directions for future research on wearable electronics.
Collapse
Affiliation(s)
| | - Haizeng Li
- Institute of Frontier and Interdisciplinarity Science Shandong University Qingdao 266237 China
| | - Francesco Di Giacomo
- Centre for Hybrid and Organic Solar Energy (CHOSE) Department of Electronic Engineering University of Rome Tor Vergata Rome 00133 Italy
| | - Tianyi Zhang
- Department of Chemistry and Centre for Processable Electronics Imperial College London London W120BZ UK
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics Imperial College London London W120BZ UK
| | - Abdulhakem Y. Elezzabi
- Ultrafast Optics and Nanophotonics Laboratory Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta T6G 2V4 Canada
| | - Ankita Mohanty
- School for Advanced Research in Petrochemicals Laboratory for Advanced Research in Polymeric Materials Central Institute of Petrochemicals Engineering and Technology Bhubaneswar Odisha 751024 India
| | - Ananthakumar Ramadoss
- School for Advanced Research in Petrochemicals Laboratory for Advanced Research in Polymeric Materials Central Institute of Petrochemicals Engineering and Technology Bhubaneswar Odisha 751024 India
| | - JinKiong Ling
- Nanostructured Renewable Energy Material Laboratory Faculty of Industrial Sciences and Technology Universiti Malaysia Pahang Pahang Darul Makmur Kuantan 26300 Malaysia
| | - Anastasia Soultati
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research Demokritos Agia Paraskevi Attica 15341 Greece
| | - Marinos Tountas
- Department of Electrical and Computer Engineering Hellenic Mediterranean University Estavromenos Heraklion Crete GR‐71410 Greece
| | | | - Panagiotis Argitis
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research Demokritos Agia Paraskevi Attica 15341 Greece
| | - Rajan Jose
- Nanostructured Renewable Energy Material Laboratory Faculty of Industrial Sciences and Technology Universiti Malaysia Pahang Pahang Darul Makmur Kuantan 26300 Malaysia
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 Sion CH‐1951 Switzerland
| | - Abd Rashid Bin Mohd Yusoff
- Department of Chemical Engineering Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 37673 Republic of Korea
| | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research Demokritos Agia Paraskevi Attica 15341 Greece
| |
Collapse
|