1
|
Ni Z, Tan J, Luo Y, Ye S. Dynamic protein hydration water mediates the aggregation kinetics of amyloid β peptides at interfaces. J Colloid Interface Sci 2024; 679:539-546. [PMID: 39467365 DOI: 10.1016/j.jcis.2024.10.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Protein hydration water is essential for protein misfolding and amyloid formation, but how it directs the course of amyloid formation has yet to be elucidated. Here, we experimentally demonstrated that femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) and the femtosecond IR pump-SFG probe technique can serve as powerful tools for addressing this issue. Using amyloid β(1-42) peptide as a model, we determined the transient misfolding intermediates by probing the amide band spectral features and the local hydration water changes by measuring the ultrafast vibrational dynamics of the amide I band. For the first time, we established a correlation between the dynamic change in protein hydration water and aggregation propensity. The aggregation propensity depends on the dynamic change in the hydration water, rather than the static hydration water content of the initial protein state. Water expulsion enhances the aggregation propensity and promotes amyloid formation, while protein hydration attenuates the aggregation propensity and inhibits amyloid formation. The suppression of water expulsion and protein hydration can prevent protein aggregation and stabilize proteins. These findings contribute to a better understanding of the underlying effect of hydration water on amyloid formation and protein structural stability and provide a strategy for maintaining long-term stabilization of biomolecules.
Collapse
Affiliation(s)
- Zijian Ni
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China.
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China.
| |
Collapse
|
2
|
Cecchet F. Light on the interactions between nanoparticles and lipid membranes by interface-sensitive vibrational spectroscopy. Colloids Surf B Biointerfaces 2024; 241:114013. [PMID: 38865867 DOI: 10.1016/j.colsurfb.2024.114013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Nanoparticles are produced in natural phenomena or synthesized artificially for technological applications. Their frequent contact with humans has been judged potentially harmful for health, and numerous studies are ongoing to understand the mechanisms of the toxicity of nanoparticles. At the macroscopic level, the toxicity can be established in vitro or in vivo by measuring the survival of cells. At the sub-microscopic level, scientists want to unveil the molecular mechanisms of the first interactions of nanoparticles with cells via the cell membrane, before the toxicity cascades within the whole cell. Unveiling a molecular understanding of the nanoparticle-membrane interface is a tricky challenge, because of the chemical complexity of this system and its nanosized dimensions buried within bulk macroscopic environments. In this review, we highlight how, in the last 10 years, second-order nonlinear optical (NLO) spectroscopy, and specifically vibrational sum frequency generation (SFG), has provided a new understanding of the structural, physicochemical, and dynamic properties of these biological interfaces, with molecular sensitivity. We will show how the intrinsic interfacial sensitivity of second-order NLO and the chemical information of vibrational SFG spectroscopy have revealed new knowledge of the molecular mechanisms that drive nanoparticles to interact with cell membranes, from both sides, the nanoparticles and the membrane properties.
Collapse
Affiliation(s)
- Francesca Cecchet
- Laboratory of Lasers and Spectroscopies (LLS), Namur Institute of Structured Matter (NISM) and NAmur Institute for Life Sciences (NARILIS), University of Namur (UNamur), Belgium.
| |
Collapse
|
3
|
Zheng X, Pei Q, Tan J, Bai S, Luo Y, Ye S. Local electric field in nanocavities dictates the vibrational relaxation dynamics of interfacial molecules. Chem Sci 2024; 15:11507-11514. [PMID: 39055024 PMCID: PMC11268483 DOI: 10.1039/d4sc02463j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
Plasmonic nanocavities enable the generation of strong light-matter coupling and exhibit great potential in plasmon-mediated chemical reactions (PMCRs). Although an electric field generated by nanocavities (E n) has recently been reported, its effect on the vibrational energy relaxation (VER) of the molecules in the nanocavities has not been explored. In this study, we reveal the impact of an electric field sensed by molecules (para-substituted thiophenol derivatives) in a nanocavity (E f) on VER processes by employing advanced time-resolved femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) supplemented by electrochemical measurements. The magnitude of E n is almost identical (1.0 ± 0.2 V nm-1) beyond the experimental deviation while E f varies from 0.3 V nm-1 to 1.7 V nm-1 depending on the substituent. An exponential correlation between E f and the complete recovery time of the ground vibrational C[double bond, length as m-dash]C state (T 2) of the phenyl ring is observed. Substances with a smaller T 2 are strongly correlated with the reported macroscopic chemical reactivity. This finding may aid in enriching the current understanding of PMCRs and highlights the possibility of regulating vibrational energy flow into desired reaction coordinates by using a local electric field.
Collapse
Affiliation(s)
- Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China Hefei Anhui 230088 China
| | - Shiyu Bai
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Laboratory, University of Science and Technology of China Hefei Anhui 230088 China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Laboratory, University of Science and Technology of China Hefei Anhui 230088 China
| |
Collapse
|
4
|
Sutcliffe E, Cagan DA, Hadt RG. Ultrafast Photophysics of Ni(I)-Bipyridine Halide Complexes: Spanning the Marcus Normal and Inverted Regimes. J Am Chem Soc 2024; 146:15506-15514. [PMID: 38776490 PMCID: PMC11157544 DOI: 10.1021/jacs.4c04091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Owing to their light-harvesting properties, nickel-bipyridine (bpy) complexes have found wide use in metallaphotoredox cross-coupling reactions. Key to these transformations are Ni(I)-bpy halide intermediates that absorb a significant fraction of light at relevant cross-coupling reaction irradiation wavelengths. Herein, we report ultrafast transient absorption (TA) spectroscopy on a library of eight Ni(I)-bpy halide complexes, the first such characterization of any Ni(I) species. The TA data reveal the formation and decay of Ni(I)-to-bpy metal-to-ligand charge transfer (MLCT) excited states (10-30 ps) whose relaxation dynamics are well described by vibronic Marcus theory, spanning the normal and inverted regions as a result of simple changes to the bpy substituents. While these lifetimes are relatively long for MLCT excited states in first-row transition metal complexes, their duration precludes excited-state bimolecular reactivity in photoredox reactions. We also present a one-step method to generate an isolable, solid-state Ni(I)-bpy halide species, which decouples light-initiated reactivity from dark, thermal cycles in catalysis.
Collapse
Affiliation(s)
| | | | - Ryan G. Hadt
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Zheng X, Ni Z, Pei Q, Wang M, Tan J, Bai S, Shi F, Ye S. Probing the Molecular Structure and Dynamics of Membrane-Bound Proteins during Misfolding Processes by Sum-Frequency Generation Vibrational Spectroscopy. Chempluschem 2024; 89:e202300684. [PMID: 38380553 DOI: 10.1002/cplu.202300684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
Protein misfolding and amyloid formation are implicated in the protein dysfunction, but the underlying mechanism remains to be clarified due to the lack of effective tools for detecting the transient intermediates. Sum frequency generation vibrational spectroscopy (SFG-VS) has emerged as a powerful tool for identifying the structure and dynamics of proteins at the interfaces. In this review, we summarize recent SFG-VS studies on the structure and dynamics of membrane-bound proteins during misfolding processes. This paper first introduces the methods for determining the secondary structure of interfacial proteins: combining chiral and achiral spectra of amide A and amide I bands and combining amide I, amide II, and amide III spectral features. To demonstrate the ability of SFG-VS in investigating the interfacial protein misfolding and amyloid formation, studies on the interactions between different peptides/proteins (islet amyloid polypeptide, amyloid β, prion protein, fused in sarcoma protein, hen egg-white lysozyme, fusing fusion peptide, class I hydrophobin SC3 and class II hydrophobin HFBI) and surfaces such as lipid membranes are discussed. These molecular-level studies revealed that SFG-VS can provide a unique understanding of the mechanism of interfacial protein misfolding and amyloid formation in real time, in situ and without any exogenous labeling.
Collapse
Affiliation(s)
- Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Zijian Ni
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Mengmeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Shiyu Bai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Fangwen Shi
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
6
|
Pei Q, Zheng X, Tan J, Luo Y, Ye S. Probing the Local Near-Field Intensity of Plasmonic Nanoparticles in the Mid-infrared Spectral Region. J Phys Chem Lett 2024; 15:5390-5396. [PMID: 38739421 DOI: 10.1021/acs.jpclett.4c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The enhanced local field of gold nanoparticles (AuNPs) in mid-infrared spectral regions is essential for improving the detection sensitivity of vibrational spectroscopy and mediating photochemical reactions. However, it is still challenging to measure its intensity at subnanometer scales. Here, using the NO2 symmetric stretching mode (νNO2) of self-assembled 4-nitrothiophenol (4-NTP) monolayers on AuNPs as a model, we demonstrated that the percentage of excited νNO2 mode, determined by femtosecond time-resolved sum-frequency generation vibrational spectroscopy, allows us to directly detect the local field intensity of the AuNP surface in subnanometer ranges. The local-field intensity is tuned by AuNP diameters. An approximate 17-fold enhancement was observed for the local field on 80 nm AuNPs compared to the Au film. Additionally, the local field can regulate the anharmonicity of the νNO2 mode by synergistic effect with molecular orientation. This work offers a promising approach to probe the local field intensity distribution around plasmonic NP surfaces at subnanometer scales.
Collapse
Affiliation(s)
- Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
7
|
Tan J, Wang M, Ni Z, Pei R, Shi F, Ye S. Intermolecular Protein-Water Coupling Impedes the Coupling Between the Amide A and Amide I Mode in Interfacial Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6587-6594. [PMID: 38486393 DOI: 10.1021/acs.langmuir.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The coupling between different vibrational modes in proteins is essential for chemical dynamics and biological functions and is linked to the propagation of conformational changes and pathways of allosteric communication. However, little is known about the influence of intermolecular protein-H2O coupling on the vibrational coupling between amide A (NH) and amide I (C═O) bands. Here, we investigate the NH/CO coupling strength in various peptides with different secondary structures at the lipid cell membrane/H2O interface using femtosecond time-resolved sum frequency generation vibrational spectroscopy (SFG-VS) in which a femtosecond infrared pump is used to excite the amide A band, and SFG-VS is used to probe transient spectral evolution in the amide A and amide I bands. Our results reveal that the NH/CO coupling strength strongly depends on the bandwidth of the amide I mode and the coupling of proteins with water molecules. A large extent of protein-water coupling significantly reduces the delocalization of the amide I mode along the peptide chain and impedes the NH/CO coupling strength. A large NH/CO coupling strength is found to show a strong correlation with the high energy transfer rate found in the light-harvesting proteins of green sulfur bacteria, which may understand the mechanism of energy transfer through a molecular system and assist in controlling vibrational energy transfer by engineering the molecular structures to achieve high energy transfer efficiency.
Collapse
Affiliation(s)
- Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Mengmeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Zijian Ni
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ruoqi Pei
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Fangwen Shi
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
8
|
Tan J, Wang M, Zhang J, Ye S. Determination of the Thickness of Interfacial Water by Time-Resolved Sum-Frequency Generation Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18573-18580. [PMID: 38051545 DOI: 10.1021/acs.langmuir.3c02906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The physics and chemistry of a charged interface are governed by the structure of the electrical double layer (EDL). Determination of the interfacial water thickness (diw) of the charged interface is crucial to quantitatively describe the EDL structure, but it can be utilized with very scarce experimental methods. Here, we propose and verify that the vibrational relaxation time (T1) of the OH stretching mode at 3200 cm-1, obtained by time-resolved sum frequency generation vibrational spectroscopy with ssp polarizations, provides an effective tool to determine diw. By investigating the T1 values at the SiO2/NaCl solution interface, we established a time-space (T1-diw) relationship. We find that water has a T1 lifetime of ≥0.5 ps for diw ≤ 3 Å, while it displays bulk-like dynamics with T1 ≤ 0.2 ps for diw ≥ 9 Å. T1 decreases as diw increases from ∼3 Å to 9 Å. The hydration water at the DPPG lipid bilayer and LK15β protein interfaces has a thickness of ≥9 Å and shows a bulk-like feature. The time-space relationship will provide a novel tool to pattern the interfacial topography and heterogeneity in Ångstrom-depth resolution by imaging the T1 values.
Collapse
Affiliation(s)
- Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Mengmeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jiahui Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
9
|
Vogwell J, Rego L, Smirnova O, Ayuso D. Ultrafast control over chiral sum-frequency generation. SCIENCE ADVANCES 2023; 9:eadj1429. [PMID: 37595045 PMCID: PMC10438458 DOI: 10.1126/sciadv.adj1429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
We introduce an ultrafast all-optical approach for efficient chiral recognition that relies on the interference between two low-order nonlinear processes that are ubiquitous in nonlinear optics: sum-frequency generation and third-harmonic generation. In contrast to traditional sum-frequency generation, our approach encodes the medium's handedness in the intensity of the emitted harmonic signal, rather than in its phase, and it enables full control over the enantiosensitive response. We show how, by sculpting the sub-optical-cycle oscillations of the driving laser field, we can force one molecular enantiomer to emit bright light while its mirror twin remains dark, thus reaching the ultimate efficiency limit of chiral sensitivity via low-order nonlinear light-matter interactions. Our work paves the way for ultrafast and highly efficient imaging and control of the chiral electronic clouds of chiral molecules using lasers with moderate intensities, in all states of matter: from gases to liquids to solids, with molecular specificity and on ultrafast time scales.
Collapse
Affiliation(s)
- Joshua Vogwell
- Department of Physics, Imperial College London, SW7 2AZ London, UK
| | - Laura Rego
- Department of Physics, Imperial College London, SW7 2AZ London, UK
- Universidad de Salamanca, 37008 Salamanca, Spain
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Olga Smirnova
- Max-Born-Institut, Max-Born-Str. 2A, 12489 Berlin, Germany
- Technische Universität Berlin, 10623 Berlin, Germany
| | - David Ayuso
- Department of Physics, Imperial College London, SW7 2AZ London, UK
- Max-Born-Institut, Max-Born-Str. 2A, 12489 Berlin, Germany
| |
Collapse
|
10
|
Zheng X, Yang N, Hou Y, Cai K. Dissecting amide-I vibrations in histidine dipeptide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122424. [PMID: 36750008 DOI: 10.1016/j.saa.2023.122424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The amide-I vibrational characteristics and conformational preferences of the model compound - histidine dipeptide (Ac-His-NHCH3, HISD) in gas phase and solution have been revealed with the help of ab initio calculations and wavefunction analyses. The Gibbs free energy surfaces (FESs) of solvated HISD were smoothed by solvent effect to exhibit different structural populations concerning various external environments. It was shown that the most stable conformations of HISD in CHCl3 and gas phase are C7eq, while those in DMSO and water are β and PPII, respectively. Compared with ALAD, the number of accessible conformational states on these FESs was predicted to be reduced due to the steric effect of imidazole group. The two amide-I normal modes of HISD were found to have intrinsically secondary structural dependencies, and be sensitive to surrounding environments. The average amide-Ia frequencies of HISD isomers in these environments were predicted to be almost the same as those of ALAD, while the amide-Ib mean frequencies were estimated to be lower than ALAD due to the intramolecular interactions between the imidazole group and amino-terminal amide unit. The good linear correlations between amide-I frequencies and the atomic electrostatic potentials (ESPs) of amide groups were also found to interpret the solvent-induced amide-I frequency shifts of HISD at the electronic structure level. These results allow us to gain a deep understanding of amide-I vibrations of HISD, and would be helpful for the site-specific conformational monitoring and spectral interpretation of solvated polypeptides.
Collapse
Affiliation(s)
- Xuan Zheng
- College of Chemistry, Chemical Engineering and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Nairong Yang
- College of Chemistry, Chemical Engineering and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, PR China
| | - Yanjun Hou
- College of Chemistry, Chemical Engineering and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, PR China
| | - Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, PR China.
| |
Collapse
|
11
|
Zheng RH, Wei WM, Zhang SC. Sum-frequency vibrational spectroscopy of centrosymmetric molecule at interfaces. J Chem Phys 2023; 158:074701. [PMID: 36813719 DOI: 10.1063/5.0139895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The centrosymmetric benzene molecule has zero first-order electric dipole hyperpolarizability, which results in no sum-frequency vibrational spectroscopy (SFVS) signal at interfaces, but it shows very strong SFVS experimentally. We perform a theoretical study on its SFVS, which is in good agreement with the experimental results. Its strong SFVS mainly comes from the interfacial electric quadrupole hyperpolarizability rather than the symmetry-breaking electric dipole, bulk electric quadrupole, and interfacial and bulk magnetic dipole hyperpolarizabilities, which provides a novel and completely unconventional point of view.
Collapse
Affiliation(s)
- Ren-Hui Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, People's Republic of China
| | - Wen-Mei Wei
- Department of Chemistry, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Shuo-Cang Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, People's Republic of China
| |
Collapse
|
12
|
Direct observation of long-range chirality transfer in a self-assembled supramolecular monolayer at interface in situ. Nat Commun 2022; 13:7737. [PMID: 36517528 PMCID: PMC9750980 DOI: 10.1038/s41467-022-35548-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the interest in the origin of life and the need to synthesize new functional materials, the study of the origin of chirality has been given significant attention. The mechanism of chirality transfer at molecular and supramolecular levels remains underexplored. Herein, we study the mechanism of chirality transfer of N, N'-bis (octadecyl)-L-/D-(anthracene-9-carboxamide)-glutamic diamide (L-/D-GAn) supramolecular chiral self-assembled at the air/water interface by chiral sum-frequency generation vibrational spectroscopy (chiral SFG) and molecular dynamics (MD) simulations. We observe long-range chirality transfer in the systems. The chirality of Cα-H is transferred first to amide groups and then transferred to the anthracene unit, through intermolecular hydrogen bonds and π-π stacking to produce an antiparallel β-sheet-like structure, and finally it is transferred to the end of hydrophobic alkyl chains at the interface. These results are relevant for understanding the chirality origin in supramolecular systems and the rational design of supramolecular chiral materials.
Collapse
|
13
|
Hu R, Ding X, Yu P, He X, Watts A, Zhao X, Wang J. Ultrafast Two-Dimensional Infrared Spectroscopy Resolved a Structured Lysine 159 on the Cytoplasmic Surface of the Microbial Photoreceptor Bacteriorhodopsin. J Am Chem Soc 2022; 144:22083-22092. [PMID: 36399663 DOI: 10.1021/jacs.2c09435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacteriorhodopsin (bR) is a light-driven microbial receptor, and lysine 159 (K159) is a charged residue on the cytoplasmic (CP) side of its E-F loop. However, its conformation and function remain unknown due to fast surface dynamics. By utilizing a 13C, 15N-labeled lysine (K) as an isotope probe, we created a network of site-specific amide-I vibrational signatures (backbone carbonyl stretch) to identify the frequency contribution of the labeled residues to the amide-I excitonic band structure. Thus, the red-shifted amide-I frequency in the 13C, 15N-lysine-labeled bR (uK-bR) to the unlabeled bR (WT-bR) could be differentiated and examined by ultrafast two-dimensional vibrational echo infrared (2D IR) spectroscopy. Our results showed that the backbone carbonyl of K159 is located at a high frequency of ca. 1693 cm-1 and has a vibrational excited-state relaxation time shorter than the bulk helical amide-I mode at the same frequency, suggesting that K159 may possess a hydrogen-bonded γ-turn structure with E161, one of the carboxylate residues on the CP surface of bR. The 2D solid-state NMR study of uK-bR also revealed conformational dependent lysine residues, from which K159 was found to involve the turn motif. This γ-turn structure maintained by K159 may help to stabilize the E-F loop and support E161 in attracting protons from the bulk during the late stage of the bR photocycle. The combined spectroscopic approach illustrated in this work may be applied to map residue-specific local structures and dynamics of other receptors and large proteins.
Collapse
Affiliation(s)
- Rong Hu
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaoyan Ding
- Department of Physics, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, P.R. China.,Department of Biochemistry, University of Oxford, South Park Road, Oxford OX1 3QU, U.K
| | - Pengyun Yu
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xuemei He
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Anthony Watts
- Department of Biochemistry, University of Oxford, South Park Road, Oxford OX1 3QU, U.K
| | - Xin Zhao
- Department of Physics, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, P.R. China
| | - Jianping Wang
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
14
|
Liu Z, Shi X, Shu W, Qi S, Wang X, He X. The effect of hydration and dehydration on the conformation, assembling behavior and photoluminescence of PBLG. SOFT MATTER 2022; 18:4396-4401. [PMID: 35635105 DOI: 10.1039/d2sm00344a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydration and dehydration play crucial roles in hydrophobic effects (HEs) and are yet to be understood. Poly(γ-benzyl-L-glutamate) (PBLG) homopolymers in THF/water with various water contents were investigated. We discovered that PBLG was hydrated at low water contents and adopted a helical conformation. The chain became dehydrated with increasing water content, which converted the PBLG100 helix to a PPII-helix. The variation in the conformation resulted in an alteration of the self-assembled morphologies from fibers to particles. For PBLG12 with a shorter chain, the chain underwent an α-to-β transition in the conformation due to dehydration as the water content increased, and correspondingly the morphologies varied from tapes to helical ribbons, and eventually to toroids at a higher water content. We also observed that this α-to-β transition is accompanied by an increase in intensity of the fluorescence, which is attributed to the through-space-conjugation of tightly packed phenyl groups within the β-sheet. The discovered effect of hydration and dehydration on the PBLG chain conformation, self-assembling behavior and optical function is essential for the innovation of polypeptide materials and understanding of water-mediated biological systems.
Collapse
Affiliation(s)
- Zhen Liu
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, shanghai 200241, China.
| | - Xinjie Shi
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, shanghai 200241, China.
| | - Wenchao Shu
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, shanghai 200241, China.
| | - Shuo Qi
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, shanghai 200241, China.
| | - Xiaosong Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N21 3G1, Canada.
| | - Xiaohua He
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, shanghai 200241, China.
| |
Collapse
|
15
|
Perets EA, Olesen KB, Yan ECY. Chiral Sum Frequency Generation Spectroscopy Detects Double-Helix DNA at Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5765-5778. [PMID: 35482888 DOI: 10.1021/acs.langmuir.2c00365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many DNA-based technologies involve the immobilization of DNA and therefore require a fundamental understanding of the DNA structure-function relationship at interfaces. We present three immobilization methods compatible with chiral sum frequency generation (SFG) spectroscopy at interfaces. They are the "anchor" method for covalently attaching DNA on a glass surface, the "island" method for dropcasting DNA on solid substrates, and the "buoy" method using a hydrocarbon moiety for localizing DNA at the air-water interface. Although SFG was previously used to probe DNA, the chiral and achiral SFG responses of single-stranded and double-stranded DNA have not been compared systemically. Using the three immobilization methods, we obtain the achiral and chiral C-H stretching spectra. The results introduce four potential applications of chiral SFG. First, chiral SFG gives null response from single-stranded DNA but prominent signals from double-stranded DNA, providing a simple binary readout for label-free detection of DNA hybridization. Second, with heterodyne detection, chiral SFG gives an opposite-signed spectral response useful for distinguishing native (D-) right-handed double helix from non-native (L-) left-handed double helix. Third, chiral SFG captures the aromatic C-H stretching modes of nucleobases that emerge upon hybridization, revealing the power of chiral SFG to probe highly localized molecular structures within DNA. Finally, chiral SFG is sensitive to macroscopic chirality but not local chiral centers and thus can detect not only canonical antiparallel double helix but also other DNA secondary structures, such as a poly-adenine parallel double helix. Our work benchmarks the SFG responses of DNA immobilized by the three distinct methods, building a basis for new chiral SFG applications to solve fundamental and biotechnological problems.
Collapse
Affiliation(s)
- Ethan A Perets
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kristian B Olesen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Elsa C Y Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
16
|
Zhao R, Shirley JC, Lee E, Grofe A, Li H, Baiz CR, Gao J. Origin of thiocyanate spectral shifts in water and organic solvents. J Chem Phys 2022; 156:104106. [PMID: 35291777 PMCID: PMC8923707 DOI: 10.1063/5.0082969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Vibrational spectroscopy is a useful technique for probing chemical environments. The development of models that can reproduce the spectra of nitriles and azides is valuable because these probes are uniquely suited for investigating complex systems. Empirical vibrational spectroscopic maps are commonly employed to obtain the instantaneous vibrational frequencies during molecular dynamics simulations but often fail to adequately describe the behavior of these probes, especially in its transferability to a diverse range of environments. In this paper, we demonstrate several reasons for the difficulty in constructing a general-purpose vibrational map for methyl thiocyanate (MeSCN), a model for cyanylated biological probes. In particular, we found that electrostatics alone are not a sufficient metric to categorize the environments of different solvents, and the dominant features in intermolecular interactions in the energy landscape vary from solvent to solvent. Consequently, common vibrational mapping schemes do not cover all essential interaction terms adequately, especially in the treatment of van der Waals interactions. Quantum vibrational perturbation (QVP) theory, along with a combined quantum mechanical and molecular mechanical potential for solute-solvent interactions, is an alternative and efficient modeling technique, which is compared in this paper, to yield spectroscopic results in good agreement with experimental FTIR. QVP has been used to analyze the computational data, revealing the shortcomings of the vibrational maps for MeSCN in different solvents. The results indicate that insights from QVP analysis can be used to enhance the transferability of vibrational maps in future studies.
Collapse
Affiliation(s)
- Ruoqi Zhao
- Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province 130023, China
| | - Joseph C Shirley
- Department of Chemistry, University of Texas, Austin, Texas 78712, USA
| | - Euihyun Lee
- Department of Chemistry, University of Texas, Austin, Texas 78712, USA
| | - Adam Grofe
- Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province 130023, China
| | - Hui Li
- Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province 130023, China
| | - Carlos R Baiz
- Department of Chemistry, University of Texas, Austin, Texas 78712, USA
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
17
|
Tan J, Ni Z, Ye S. Protein-Water Coupling Tunes the Anharmonicity of Amide I Modes in the Interfacial Membrane-Bound Proteins. J Chem Phys 2022; 156:105103. [DOI: 10.1063/5.0078632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Junjun Tan
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale, China
| | - Zijian Ni
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale Nanoscience Laboratory, China
| | - Shuji Ye
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale, China
| |
Collapse
|
18
|
Laity PR, Holland C. Seeking Solvation: Exploring the Role of Protein Hydration in Silk Gelation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020551. [PMID: 35056868 PMCID: PMC8781151 DOI: 10.3390/molecules27020551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023]
Abstract
The mechanism by which arthropods (e.g., spiders and many insects) can produce silk fibres from an aqueous protein (fibroin) solution has remained elusive, despite much scientific investigation. In this work, we used several techniques to explore the role of a hydration shell bound to the fibroin in native silk feedstock (NSF) from Bombyx mori silkworms. Small angle X-ray and dynamic light scattering (SAXS and DLS) revealed a coil size (radius of gyration or hydrodynamic radius) around 12 nm, providing considerable scope for hydration. Aggregation in dilute aqueous solution was observed above 65 °C, matching the gelation temperature of more concentrated solutions and suggesting that the strength of interaction with the solvent (i.e., water) was the dominant factor. Infrared (IR) spectroscopy indicated decreasing hydration as the temperature was raised, with similar changes in hydration following gelation by freezing or heating. It was found that the solubility of fibroin in water or aqueous salt solutions could be described well by a relatively simple thermodynamic model for the stability of the protein hydration shell, which suggests that the affected water is enthalpically favoured but entropically penalised, due to its reduced (vibrational or translational) dynamics. Moreover, while the majority of this investigation used fibroin from B. mori, comparisons with published work on silk proteins from other silkworms and spiders, globular proteins and peptide model systems suggest that our findings may be of much wider significance.
Collapse
|
19
|
Zheng RH, Wei WM. Sum-frequency vibrational spectroscopy of methanol at interfaces due to Fermi resonance. Phys Chem Chem Phys 2022; 24:27204-27211. [DOI: 10.1039/d2cp01808j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We present a theoretical method of studying sum-frequency vibrational spectroscopy for the CH3 group of methanol at interfaces due to Fermi resonance, which provides a novel and untraditional point of view with respect to traditional approaches.
Collapse
Affiliation(s)
- Ren-Hui Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing, 100190, P. R. China
| | - Wen-Mei Wei
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| |
Collapse
|
20
|
Konstantinovsky D, Perets EA, Yan ECY, Hammes-Schiffer S. Simulation of the Chiral Sum Frequency Generation Response of Supramolecular Structures Requires Vibrational Couplings. J Phys Chem B 2021; 125:12072-12081. [PMID: 34699209 PMCID: PMC9059521 DOI: 10.1021/acs.jpcb.1c06360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral vibrational sum frequency generation (SFG) spectroscopy probes the structure of the solvation shell around chiral macromolecules. The dominant theoretical framework for understanding the origin of chiral SFG signals is based on the analysis of molecular symmetry, which assumes no interaction between molecules. However, water contains strong intermolecular interactions that significantly affect its properties. Here, the role of intermolecular vibrational coupling in the chiral SFG response of the O-H stretch of water surrounding an antiparallel β-sheet at the vacuum-water interface is investigated. Both intramolecular and intermolecular couplings between O-H groups are required to simulate the full lineshape of the chiral SFG signal. This dependence is also observed for a chiral water dimer, illustrating that this phenomenon is not specific to larger systems. We also find that a dimer of C3v molecules predicted to be chirally SFG-inactive by the symmetry-based theory can generate a chiral SFG signal when intermolecular couplings are considered, suggesting that even highly symmetric solvent molecules may produce chiral SFG signals when interacting with a chiral solute. The consideration of intermolecular couplings extends the prevailing theory of the chiral SFG response to structures larger than individual molecules and provides guidelines for future modeling.
Collapse
Affiliation(s)
- Daniel Konstantinovsky
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ethan A. Perets
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - E. Chui-Ying Yan
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
21
|
Guo W, Lu T, Gandhi Z, Chen Z. Probing Orientations and Conformations of Peptides and Proteins at Buried Interfaces. J Phys Chem Lett 2021; 12:10144-10155. [PMID: 34637311 DOI: 10.1021/acs.jpclett.1c02956] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular structures of peptides/proteins at interfaces determine their interfacial properties, which play important roles in many applications. It is difficult to probe interfacial peptide/protein structures because of the lack of appropriate tools. Sum frequency generation (SFG) vibrational spectroscopy has been developed into a powerful technique to elucidate molecular structures of peptides/proteins at buried solid/liquid and liquid/liquid interfaces. SFG has been successfully applied to study molecular interactions between model cell membranes and antimicrobial peptides/membrane proteins, surface-immobilized peptides/enzymes, and physically adsorbed peptides/proteins on polymers and 2D materials. A variety of other analytical techniques and computational simulations provide supporting information to SFG studies, leading to more complete understanding of structure-function relationships of interfacial peptides/proteins. With the advance of SFG techniques and data analysis methods, along with newly developed supplemental tools and simulation methodology, SFG research on interfacial peptides/proteins will further impact research in fields like chemistry, biology, biophysics, engineering, and beyond.
Collapse
Affiliation(s)
- Wen Guo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tieyi Lu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zahra Gandhi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
22
|
Ishiyama T. Energy relaxation dynamics of hydrogen-bonded OH vibration conjugated with free OH bond at an air/water interface. J Chem Phys 2021; 155:154703. [PMID: 34686042 DOI: 10.1063/5.0069618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vibrational energy relaxation dynamics of the excited hydrogen-bonded (H-bonded) OH conjugated with free OH (OD) at an air/water (for both pure water and isotopically diluted water) interface are elucidated via non-equilibrium ab initio molecular dynamics (NE-AIMD) simulations. The calculated results are compared with those of the excited H-bonded OH in bulk liquid water reported previously. In the case of pure water, the relaxation timescale (vibrational lifetime) of the excited H-bonded OH at the interface is T1 = 0.13 ps, which is slightly larger than that in the bulk (T1 = 0.11 ps). Conversely, in the case of isotopically diluted water, the relaxation timescale of T1 = 0.74 ps in the bulk decreases to T1 = 0.26 ps at the interface, suggesting that the relaxation dynamics of the H-bonded OH are strongly dependent on the surrounding H-bond environments particularly for the isotopically diluted conditions. The relaxation paths and their rates are estimated by introducing certain constraints on the vibrational modes except for the target path in the NE-AIMD simulation to decompose the total energy relaxation rate into contributions to possible relaxation pathways. It is found that the main relaxation pathway in the case of pure water is due to intermolecular OH⋯OH vibrational coupling, which is similar to the relaxation in the bulk. In the case of isotopically diluted water, the main pathway is due to intramolecular stretch and bend couplings, which show more efficient relaxation than in the bulk because of strong H-bonding interactions specific to the air/water interface.
Collapse
Affiliation(s)
- Tatsuya Ishiyama
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
23
|
Relaxation behavior of polymer thin films: Effects of free surface, buried interface, and geometrical confinement. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101431] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Weidner T, Castner DG. Developments and Ongoing Challenges for Analysis of Surface-Bound Proteins. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:389-412. [PMID: 33979545 PMCID: PMC8522203 DOI: 10.1146/annurev-anchem-091520-010206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Proteins at surfaces and interfaces play important roles in the function and performance of materials in applications ranging from diagnostic assays to biomedical devices. To improve the performance of these materials, detailed molecular structure (conformation and orientation) along with the identity and concentrations of the surface-bound proteins on those materials must be determined. This article describes radiolabeling, surface plasmon resonance, quartz crystal microbalance with dissipation, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, sum frequency generation spectroscopy, and computational techniques along with the information each technique provides for characterizing protein films. A multitechnique approach using both experimental and computation methods is required for these investigations. Although it is now possible to gain much insight into the structure of surface-bound proteins, it is still not possible to obtain the same level of structural detail about proteins on surfaces as can be obtained about proteins in crystals and solutions, especially for large, complex proteins. However, recent results have shown it is possible to obtain detailed structural information (e.g., backbone and side chain orientation) about small peptides (5-20 amino sequences) on surfaces. Current studies are extending these investigations to small proteins such as protein G B1 (∼6 kDa). Approaches for furthering the capabilities for characterizing the molecular structure of surface-bound proteins are proposed.
Collapse
Affiliation(s)
- Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark;
| | - David G Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
25
|
Seki T, Yu CC, Chiang KY, Tan J, Sun S, Ye S, Bonn M, Nagata Y. Disentangling Sum-Frequency Generation Spectra of the Water Bending Mode at Charged Aqueous Interfaces. J Phys Chem B 2021; 125:7060-7067. [PMID: 34159786 PMCID: PMC8279539 DOI: 10.1021/acs.jpcb.1c03258] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/05/2021] [Indexed: 12/18/2022]
Abstract
The origin of the sum-frequency generation (SFG) signal of the water bending mode has been controversially debated in the past decade. Unveiling the origin of the signal is essential, because different assignments lead to different views on the molecular structure of interfacial water. Here, we combine collinear heterodyne-detected SFG spectroscopy at the water-charged lipid interfaces with systematic variation of the salt concentration. The results show that the bending mode response is of a dipolar, rather than a quadrupolar, nature and allows us to disentangle the response of water in the Stern and the diffuse layers. While the diffuse layer response is identical for the oppositely charged surfaces, the Stern layer responses reflect interfacial hydrogen bonding. Our findings thus corroborate that the water bending mode signal is a suitable probe for the structure of interfacial water.
Collapse
Affiliation(s)
- Takakazu Seki
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Chun-Chieh Yu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kuo-Yang Chiang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Junjun Tan
- Hefei
National Laboratory for Physical
Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 230026 Hefei, China
| | - Shumei Sun
- Department
of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Shuji Ye
- Hefei
National Laboratory for Physical
Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 230026 Hefei, China
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
26
|
Noriega R. Measuring the Multiscale Dynamics, Structure, and Function of Biomolecules at Interfaces. J Phys Chem B 2021; 125:5667-5675. [PMID: 34042455 DOI: 10.1021/acs.jpcb.1c01546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The individual and collective structure and properties of biomolecules can change dramatically when they are localized at an interface. However, the small spatial extent of interfacial regions poses challenges to the detailed characterization of multiscale processes that dictate the structure and function of large biological units such as peptides, proteins, or nucleic acids. This Perspective surveys a broad set of tools that provide new opportunities to probe complex, dynamic interfaces across the vast range of temporal regimes that connect molecular-scale events to macroscopic observables. An emphasis is placed on the integration over multiple time scales, the use of complementary techniques, and the incorporation of external stimuli to control interfacial properties with spatial, temporal, and chemical specificity.
Collapse
Affiliation(s)
- Rodrigo Noriega
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
27
|
Zhang X, Vázquez SA, Harvey JN. Vibrational Energy Relaxation of Deuterium Fluoride in d-Dichloromethane: Insights from Different Potentials. J Chem Theory Comput 2021; 17:1277-1289. [PMID: 33550803 DOI: 10.1021/acs.jctc.0c01059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vibrationally excited deuterium fluoride (DF) formed by fluorine atom reaction with a solvent was found (Science, 2015, 347, 530) to relax rapidly (less than 10 ps) in acetonitrile-d3 (CD3CN) and dichloromethane-d2 (CD2Cl2). However, insights into how CD2Cl2 facilitates this energy relaxation have so far been lacking, given the weak interaction between DF and a single CD2Cl2. In this work, we report the results of reactive simulations with a two-state reactive empirical valence bond (EVB) potential to study the energy deposited into nascent DF after transition-state passage and of nonequilibrium molecular dynamics simulations using multiple different potential energy functions to model the relaxation dynamics. For these second simulations, we used the standard Merck molecular force field (MMFF) potential, an MMFF-based covalent-ionic empirical valence bond (EVB) potential (EVBCI), a newly developed potential [referred to as MMFF(rDF)] which extends upon the MMFF potential by making the DF/CD2Cl2 interaction depend on the value of the D-F bond stretching coordinate and by taking the anisotropic charge distribution of the solvent molecules into account, the polarizable atomic multipole optimized energetics for biomolecular applications (AMOEBA) potential, and the quantum mechanics/molecular mechanics (QM/MM) potential. The relaxation is revealed to be highly sensitive to the potential used. Neither standard MMFF nor EVBCI reproduces the experimentally observed rapid relaxation dynamics, and they also fail to provide a good description of the interaction potential between DF and CD2Cl2 as calculated using CCSD(T)-F12. This is attributed to the use of a point-charge model for the solute and to failing to model the anisotropic electrostatic properties of CD2Cl2. The MMFF(rDF), AMOEBA, and QM/MM potentials all reproduce the CCSD(T)-F12 two-body DF---CD2Cl2 interaction potential rather well but only with the QM/MM approach is fast vibrational relaxation obtained (lifetimes of ∼288, ∼186, and ∼8 ps, respectively), which we attribute to differences in the solute-solvent local structure. With QM/MM, a unique "many-body" interaction pattern in which DF is in close contact with two solvent Cl atoms and more than three solvent D atoms is found, but this structure is not seen with other potentials. The QM/MM dynamics also display enhanced solute-solvent interactions with vibrationally excited DF that induce a DF band redshift and hence a resonant overlap with solvent C-D modes, which facilitate the intermolecular energy transfer. Our work also suggests that potentials used to model energy relaxation need to capture the fine structure of solute-solvent interactions and not just the two-body part.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- Department of Chemistry and Division of Quantum Chemistry and Physical Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Saulo A Vázquez
- Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Jeremy N Harvey
- Department of Chemistry and Division of Quantum Chemistry and Physical Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| |
Collapse
|
28
|
Guo W, Liu B, He Y, You E, Zhang Y, Huang S, Wang J, Wang Z. Plasmonic Gold Nanohole Arrays for Surface-Enhanced Sum Frequency Generation Detection. NANOMATERIALS 2020; 10:nano10122557. [PMID: 33352752 PMCID: PMC7766786 DOI: 10.3390/nano10122557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 01/06/2023]
Abstract
Nobel metal nanohole arrays have been used extensively in chemical and biological systems because of their fascinating optical properties. Gold nanohole arrays (Au NHAs) were prepared as surface plasmon polariton (SPP) generators for the surface-enhanced sum-frequency generation (SFG) detection of 4-Mercaptobenzonitrile (4-MBN). The angle-resolved reflectance spectra revealed that the Au NHAs have three angle-dependent SPP modes and two non-dispersive localized surface plasmon resonance (LSPR) modes under different structural orientation angles (sample surface orientation). An enhancement factor of ~30 was achieved when the SPP and LSPR modes of the Au NHAs were tuned to match the incident visible (VIS) and output SFG, respectively. This multi-mode matching strategy provided flexible controls and selective spectral windows for surface-enhanced measurements, and was especially useful in nonlinear spectroscopy where more than one light beam was involved. The structural orientation- and power-dependent performance demonstrated the potential of plasmonic NHAs in SFG and other nonlinear sensing applications, and provided a promising surface molecular analysis development platform.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
| | - Bowen Liu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Correspondence: (B.L.); (Z.W.)
| | - Yuhan He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
| | - Enming You
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
| | - Yongyan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
| | - Shengchao Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
| | - Jingjing Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
| | - Zhaohui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
- Correspondence: (B.L.); (Z.W.)
| |
Collapse
|
29
|
Mirror-image antiparallel β-sheets organize water molecules into superstructures of opposite chirality. Proc Natl Acad Sci U S A 2020; 117:32902-32909. [PMID: 33318168 DOI: 10.1073/pnas.2015567117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Biomolecular hydration is fundamental to biological functions. Using phase-resolved chiral sum-frequency generation spectroscopy (SFG), we probe molecular architectures and interactions of water molecules around a self-assembling antiparallel β-sheet protein. We find that the phase of the chiroptical response from the O-H stretching vibrational modes of water flips with the absolute chirality of the (l-) or (d-) antiparallel β-sheet. Therefore, we can conclude that the (d-) antiparallel β-sheet organizes water solvent into a chiral supermolecular structure with opposite handedness relative to that of the (l-) antiparallel β-sheet. We use molecular dynamics to characterize the chiral water superstructure at atomic resolution. The results show that the macroscopic chirality of antiparallel β-sheets breaks the symmetry of assemblies of surrounding water molecules. We also calculate the chiral SFG response of water surrounding (l-) and (d-) LK7β to confirm the presence of chiral water structures. Our results offer a different perspective as well as introduce experimental and computational methodologies for elucidating hydration of biomacromolecules. The findings imply potentially important but largely unexplored roles of water solvent in chiral selectivity of biomolecular interactions and the molecular origins of homochirality in the biological world.
Collapse
|
30
|
Zhang S, Andre JS, Hsu L, Toolis A, Esarey SL, Li B, Chen Z. Nondestructive In Situ Detection of Chemical Reactions at the Buried Interface between Polyurethane and Isocyanate-Based Primer. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01862] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shuqing Zhang
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - John S Andre
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Lorraine Hsu
- Coatings and Innovation Center, PPG, 4325 Rosanna Drive, Allison Park, Pennsylvania 15101, United States
| | - Amy Toolis
- Coatings and Innovation Center, PPG, 4325 Rosanna Drive, Allison Park, Pennsylvania 15101, United States
| | - Samuel L Esarey
- Coatings and Innovation Center, PPG, 4325 Rosanna Drive, Allison Park, Pennsylvania 15101, United States
| | - Bolin Li
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
31
|
Biswas S, Mallik BS. Probing the vibrational dynamics of amide bands of N-methylformamide, N, N-dimethylacetamide, and N-methylacetamide in water. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Destabilisation of the structure of transthyretin is driven by Ca 2. Int J Biol Macromol 2020; 166:409-423. [PMID: 33129902 DOI: 10.1016/j.ijbiomac.2020.10.199] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
Tetrameric transthyretin (TTR) transports thyroid hormones and retinol in plasma and cerebrospinal fluid and performs protective functions under stress conditions. Ageing and mutations result in TTR destabilisation and the formation of the amyloid deposits that dysregulate Ca2+ homeostasis. Our aim was to determine whether Ca2+ affects the structural stability of TTR. We show, using multiple techniques, that Ca2+ does not induce prevalent TTR dissociation and/or oligomerisation. However, in the presence of Ca2+, TTR exhibits altered conformational flexibility and different interactions with the solvent molecules. These structural changes lead to the formation of the sub-populations of non-native TTR conformers and to the destabilisation of the structure of TTR. Moreover, the sub-population of TTR molecules undergoes fragmentation that is augmented by Ca2+. We postulate that Ca2+ constitutes the structural and functional switch between the native and non-native forms of TTR, and therefore tip the balance towards age-dependent pathological calcification.
Collapse
|
33
|
Bolmatov D, Kinnun JJ, Katsaras J, Lavrentovich MO. Phonon-mediated lipid raft formation in biological membranes. Chem Phys Lipids 2020; 232:104979. [PMID: 32980352 DOI: 10.1016/j.chemphyslip.2020.104979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Short-wavelength collective molecular motions, also known as phonons, have recently attracted much interest in revealing dynamic properties of biological membranes through the use of neutron and X-ray scattering, infrared and Raman spectroscopies, and molecular dynamics simulations. Experimentally detecting unique vibrational patterns such as, shear phonon excitations, viscoelastic crossovers, transverse acoustic phonon gaps, and continuous and truncated optical phonon modes in cellular membranes, to name a few, has proven non-trivial. Here, we review recent advances in liquid thermodynamics that have resulted in the development of the phonon theory of liquids. The theory has important predictions regarding the shear vibrational spectra of fluids, namely the emergence of viscoelastic crossovers and transverse acoustic phonon gaps. Furthermore, we show that these vibrational patterns are common in soft (non-crystalline) materials, including, but not limited to liquids, colloids, liquid crystals (mesogens), block copolymers, and biological membranes. The existence of viscoelastic crossovers and acoustic phonon gaps define the self-diffusion properties of cellular membranes and provide a molecular picture of the transient nature of lipid rafts (Bolmatov et al., 2020). Importantly, the timescales (picoseconds) for the formation and dissolution of transient lipid rafts match the lifetime of the formation and breakdown of interfacial water hydrogen bonds. Apart from acoustic propagating phonon modes, biological membranes can also support more energetic non-propagating optical phonon excitations, also known as standing waves or breathing modes. Importantly, optical phonons can be truncated due to the existence of finite size nanodomains made up of strongly correlated lipid-cholesterol molecular pairs. These strongly coupled molecular pairs can serve as nucleation centers for the formation of stable rafts at larger length scales, due to correlations of spontaneous fluctuations (Onsager's regression hypothesis). Finally and importantly, molecular level viscoelastic crossovers, acoustic phonon gaps, and continuous and truncated optical phonon modes may offer insights as to how lipid-lipid and lipid-protein interactions enable biological function.
Collapse
Affiliation(s)
- Dima Bolmatov
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States; Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| | - Maxim O Lavrentovich
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
34
|
He Y, Ren H, You EM, Radjenovic PM, Sun SG, Tian ZQ, Li JF, Wang Z. Polarization- and Wavelength-Dependent Shell-Isolated-Nanoparticle-Enhanced Sum-Frequency Generation with High Sensitivity. PHYSICAL REVIEW LETTERS 2020; 125:047401. [PMID: 32794816 DOI: 10.1103/physrevlett.125.047401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Sum-frequency generation (SFG) spectroscopy is a highly versatile tool for surface analysis. Improving the SFG intensity per molecule is important for observing low concentrations of surface species and intermediates in dynamic systems. Herein, Shell-Isolated-Nanoparticle-Enhanced SFG (SHINE-SFG) was used to probe a model substrate. The model substrate, p-mercaptobenzonitrile adsorbed on a Au film with SHINs deposited on top, provided an enhancement factor of up to 10^{5}. Through wavelength- and polarization-dependent SHINE-SFG spectroscopy, the majority of the signal enhancement was found to come from both plasmon enhanced emission and chemical enhancement mechanisms. A new enhancement regime, i.e., the nonlinear coupling of SHINE-SFG with difference frequency generation, was also identified. This novel mechanism provides insight into the enhancement of nonlinear coherent spectroscopies and a possible strategy for the rational design of enhancing substrates utilizing coupling processes.
Collapse
Affiliation(s)
- Yuhan He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - He Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - En-Ming You
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Petar M Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Zhaohui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| |
Collapse
|
35
|
Wang W, Tan J, Ye S. Unsaturated Lipid Accelerates Formation of Oligomeric β-Sheet Structure of GP41 Fusion Peptide in Model Cell Membrane. J Phys Chem B 2020; 124:5169-5176. [PMID: 32453953 DOI: 10.1021/acs.jpcb.0c02464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membrane fusion of the viral and host cell membranes is the initial step of virus infection and is catalyzed by fusion peptides. Although the β-sheet structure of fusion peptides has been proposed to be the most important fusion-active conformation, it is still very challenging to experimentally identify different types of β-sheet structures at the cell membrane surface in situ and in real time. In this work, we demonstrate that the interface-sensitive amide II spectral signals of protein backbones, generated by the sum frequency generation vibrational spectroscopy, provide a sensitive probe for directly capturing the formation of oligomeric β-sheet structure of fusion peptides. Using human immunodeficiency virus (HIV) glycoprotein GP41 fusing peptide (FP23) as the model, we find that formation speed of oligomeric β-sheet structure depends on lipid unsaturation. The unsaturated lipid such as POPG can accelerate formation of oligomeric β-sheet structure of FP23. The β-sheet structure is more deeply inserted into the hydrophobic region of the POPG bilayer than the α-helical segment. This work will pave the way for future researches on capturing intermediate structures during membrane fusion processes and revealing the fusion mechanism.
Collapse
Affiliation(s)
- Wenting Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
36
|
Monroe J, Barry M, DeStefano A, Aydogan Gokturk P, Jiao S, Robinson-Brown D, Webber T, Crumlin EJ, Han S, Shell MS. Water Structure and Properties at Hydrophilic and Hydrophobic Surfaces. Annu Rev Chem Biomol Eng 2020; 11:523-557. [PMID: 32169001 DOI: 10.1146/annurev-chembioeng-120919-114657] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The properties of water on both molecular and macroscopic surfaces critically influence a wide range of physical behaviors, with applications spanning from membrane science to catalysis to protein engineering. Yet, our current understanding of water interfacing molecular and material surfaces is incomplete, in part because measurement of water structure and molecular-scale properties challenges even the most advanced experimental characterization techniques and computational approaches. This review highlights progress in the ongoing development of tools working to answer fundamental questions on the principles that govern the interactions between water and surfaces. One outstanding and critical question is what universal molecular signatures capture the hydrophobicity of different surfaces in an operationally meaningful way, since traditional macroscopic hydrophobicity measures like contact angles fail to capture even basic properties of molecular or extended surfaces with any heterogeneity at the nanometer length scale. Resolving this grand challenge will require close interactions between state-of-the-art experiments, simulations, and theory, spanning research groups and using agreed-upon model systems, to synthesize an integrated knowledge of solvation water structure, dynamics, and thermodynamics.
Collapse
Affiliation(s)
- Jacob Monroe
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Mikayla Barry
- Department of Materials, University of California, Santa Barbara, California 93106, USA
| | - Audra DeStefano
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Pinar Aydogan Gokturk
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sally Jiao
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Dennis Robinson-Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Thomas Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Ethan J Crumlin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; .,Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| |
Collapse
|
37
|
Soloviov D, Cai YQ, Bolmatov D, Suvorov A, Zhernenkov K, Zav'yalov D, Bosak A, Uchiyama H, Zhernenkov M. Functional lipid pairs as building blocks of phase-separated membranes. Proc Natl Acad Sci U S A 2020; 117:4749-4757. [PMID: 32071249 PMCID: PMC7060688 DOI: 10.1073/pnas.1919264117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Biological membranes exhibit a great deal of compositional and phase heterogeneity due to hundreds of chemically distinct components. As a result, phase separation processes in cell membranes are extremely difficult to study, especially at the molecular level. It is currently believed that the lateral membrane heterogeneity and the formation of domains, or rafts, are driven by lipid-lipid and lipid-protein interactions. Nevertheless, the underlying mechanisms regulating membrane heterogeneity remain poorly understood. In the present work, we combine inelastic X-ray scattering with molecular dynamics simulations to provide direct evidence for the existence of strongly coupled transient lipid pairs. These lipid pairs manifest themselves experimentally through optical vibrational (a.k.a. phononic) modes observed in binary (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]-cholesterol) and ternary (DPPC-1,2-dioleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-glycero-3-phosphocholine [DOPC/POPC]-cholesterol) systems. The existence of a phononic gap in these vibrational modes is a direct result of the finite size of patches formed by these lipid pairs. The observation of lipid pairs provides a spatial (subnanometer) and temporal (subnanosecond) window into the lipid-lipid interactions in complex mixtures of saturated/unsaturated lipids and cholesterol. Our findings represent a step toward understanding the lateral organization and dynamics of membrane domains using a well-validated probe with a high spatial and temporal resolution.
Collapse
Affiliation(s)
- Dmytro Soloviov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Frank Laboratory for Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
- Department of Physics, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
- Nuclear Facility Safety Department, Institute for Safety Problems of Nuclear Power Plants of National Academy of Science of Ukraine, Chornobyl 07270, Ukraine
| | - Yong Q Cai
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973
| | - Dima Bolmatov
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996
| | - Alexey Suvorov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973
| | - Kirill Zhernenkov
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, 85748 Garching, Germany
- Frank Laboratory for Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Dmitry Zav'yalov
- Department of Physics, Volgograd State Technical University, Volgograd 400005, Russia
| | - Alexey Bosak
- Experiments Division, European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Hiroshi Uchiyama
- Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Mikhail Zhernenkov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973;
| |
Collapse
|
38
|
Hosseinpour S, Roeters SJ, Bonn M, Peukert W, Woutersen S, Weidner T. Structure and Dynamics of Interfacial Peptides and Proteins from Vibrational Sum-Frequency Generation Spectroscopy. Chem Rev 2020; 120:3420-3465. [DOI: 10.1021/acs.chemrev.9b00410] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saman Hosseinpour
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | | | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Sander Woutersen
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 EP Amsterdam, The Netherlands
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
39
|
Wei S, Zou X, Tian J, Huang H, Guo W, Chen Z. Control of Protein Conformation and Orientation on Graphene. J Am Chem Soc 2019; 141:20335-20343. [PMID: 31774666 DOI: 10.1021/jacs.9b10705] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Graphene-based biosensors have attracted considerable attention due to their advantages of label-free detection and high sensitivity. Many such biosensors utilize noncovalent van der Waals force to attach proteins onto graphene surface while preserving graphene's high conductivity. Maintaining the protein structure without denaturation/substantial conformational change and controlling proper protein orientation on the graphene surface are critical for biosensing applications of these biosensors fabricated with proteins on graphene. Based on the knowledge we obtained from our previous experimental study and computer modeling of amino acid residual level interactions between graphene and peptides, here we systemically redesigned an important protein for better conformational stability and desirable orientation on graphene. In this paper, immunoglobulin G (IgG) antibody-binding domain of protein G (protein GB1) was studied to demonstrate how we can preserve the protein native structure and control the protein orientation on graphene surface by redesigning protein mutants. Various experimental tools including sum frequency generation vibrational spectroscopy, attenuated total refection-Fourier transform infrared spectroscopy, fluorescence spectroscopy, and circular dichroism spectroscopy were used to study the protein GB1 structure on graphene, supplemented by molecular dynamics simulations. By carefully designing the protein GB1 mutant, we can avoid strong unfavorable interactions between protein and graphene to preserve protein conformation and to enable the protein to adopt a preferred orientation. The methodology developed in this study is general and can be applied to study different proteins on graphene and beyond. With the knowledge obtained from this research, one could apply this method to optimize protein function on surfaces (e.g., to enhance biosensor sensitivity).
Collapse
Affiliation(s)
- Shuai Wei
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Xingquan Zou
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Jiayi Tian
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Hao Huang
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Wen Guo
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Zhan Chen
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
40
|
He Y, Zhang Y, Ren H, Wang J, Guo W, Sun SG, Wang Z. Abnormal spectral bands in broadband sum frequency generation induced by bulk absorption and refraction. OPTICS EXPRESS 2019; 27:28564-28574. [PMID: 31684606 DOI: 10.1364/oe.27.028564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
In this paper, the time-resolved broadband sum frequency generation (BB-SFG) spectra from a bare Au surface with a distorted infrared (introduced with a 10 µm polyethylene film in the IR light path) and principal component generalized projection (PCGP) algorithm were used to investigate the bulk distortion on the measured BB-SFG spectra. Besides the SFG intensity reduction from the bulk absorption, the frequency dependent refraction of the bulk layer led to misleading SFG features at the positive delay times beyond the Au dephasing time. These results suggest that SFG spectroscopy is not entirely 'bulk-free' for the buried interfaces because of the bulk absorption and refraction of the incident pulses.
Collapse
|
41
|
Xiao M, Wei S, Chen J, Tian J, Brooks Iii CL, Marsh ENG, Chen Z. Molecular Mechanisms of Interactions between Monolayered Transition Metal Dichalcogenides and Biological Molecules. J Am Chem Soc 2019; 141:9980-9988. [PMID: 31199639 DOI: 10.1021/jacs.9b03641] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single layered two-dimensional (2D) materials such as transition metal dichalcogenides (TMDs) show great potential in many microelectronic or nanoelectronic applications. For example, because of extremely high sensitivity, TMD-based biosensors have become promising candidates for next-generation label-free detection. However, very few studies have been conducted on understanding the fundamental interactions between TMDs and other molecules including biological molecules, making the rational design of TMD-based sensors (including biosensors) difficult. This study focuses on the investigations of the fundamental interactions between proteins and two widely researched single-layered TMDs, MoS2, and WS2 using a combined study with linear vibrational spectroscopy attenuated total reflectance FTIR and nonlinear vibrational spectroscopy sum frequency generation vibrational spectroscopy, supplemented by molecular dynamics simulations. It was concluded that a large surface hydrophobic region in a relatively flat location on the protein surface is required for the protein to adsorb onto a monolayered MoS2 or WS2 surface with preferred orientation. No disulfide bond formation between cysteine groups on the protein and MoS2 or WS2 was found. The conclusions are general and can be used as guiding principles to engineer proteins to attach to TMDs. The approach adopted here is also applicable to study interactions between other 2D materials and biomolecules.
Collapse
|