1
|
Kursheed F, Naz E, Mateen S, Kulsoom U. CRISPR applications in microbial World: Assessing the opportunities and challenges. Gene 2025; 935:149075. [PMID: 39489225 DOI: 10.1016/j.gene.2024.149075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Genome editing has emerged during the past few decades in the scientific research area to manipulate genetic composition, obtain desired traits, and deal with biological challenges by exploring genetic traits and their sequences at a level of precision. The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) as a genome editing tool has offered a much better understanding of cellular and molecular mechanisms. This technology emerges as one of the most promising candidates for genome editing, offering several advantages over other techniques such as high accuracy and specificity. In the microbial world, CRISPR/Cas technology enables researchers to manipulate the genetic makeup of micro-organisms, allowing them to achieve almost impossible tasks. This technology initially discovered as a bacterial defense mechanism, is now being used for gene cutting and editing to explore more of its dimensions. CRISPR/Cas 9 systems are highly efficient and flexible, leading to its widespread uses in microbial research areas. Although this technology is widely used in the scientific community, many challenges, including off-target activity, low efficiency of Homology Directed Repair (HDR), and ethical considerations, still need to be overcome before it can be widely used. As CRISPR/Cas technology has revolutionized the field of microbiology, this review article aimed to present a comprehensive overview highlighting a brief history, basic mechanisms, and its application in the microbial world along with accessing the opportunities and challenges.
Collapse
Affiliation(s)
- Farhan Kursheed
- Department of Microbiology, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Esha Naz
- Department of Microbiology, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Sana Mateen
- Department of Microbiology, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Ume Kulsoom
- Department of Biotechnology, Faculty of Engineering, Science and Technology (FEST). Research Officer, Office of Research Innovation and Commercialization (ORIC), Hamdard University, Karachi 74600, Pakistan, Pakistan.
| |
Collapse
|
2
|
Cotter CJ, Trinh CT. CRISPR-GRIT: Guide RNAs with Integrated Repair Templates Enable Precise Multiplexed Genome Editing in the Diploid Fungal Pathogen Candida albicans. CRISPR J 2024; 7:385-394. [PMID: 39436817 DOI: 10.1089/crispr.2024.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Candida albicans, an opportunistic fungal pathogen, causes severe infections in immunocompromised individuals. Limited classes and overuse of current antifungals have led to the rapid emergence of antifungal resistance. Thus, there is an urgent need to understand fungal pathogen genetics to develop new antifungal strategies. Genetic manipulation of C. albicans is encumbered by its diploid chromosomes requiring editing both alleles to elucidate gene function. Although the recent development of CRISPR-Cas systems has facilitated genome editing in C. albicans, large-scale and multiplexed functional genomic studies are still hindered by the necessity of cotransforming repair templates for homozygous knockouts. Here, we present CRISPR-GRIT (Guide RNAs with Integrated Repair Templates), a repair template-integrated guide RNA design for expedited gene knockouts and multiplexed gene editing in C. albicans. We envision that this method can be used for high-throughput library screens and identification of synthetic lethal pairs in both C. albicans and other diploid organisms with strong homologous recombination machinery.
Collapse
Affiliation(s)
- Christopher J Cotter
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
3
|
Wang S, Wu X, Qiao Z, He X, Li Y, Zhang T, Liu W, Wang M, Zhou X, Yu Y. Systematic Evaluation and Application of IDR Domain-Mediated Transcriptional Activation of NUP98 in Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:3765-3773. [PMID: 39469753 DOI: 10.1021/acssynbio.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Implementing dynamic control over gene transcription to decouple cell growth is essential for regulating protein expression in microbial cells. However, the availability of efficient regulatory elements in Saccharomyces cerevisiae remains limited. In this study, we present a novel β-estradiol-inducible gene expression system, termed DEN. This system combines a DNA-binding domain with an estradiol-binding domain and an intrinsically disordered region (IDR) from NUP98. Comparative analysis shows that the DEN system outperforms IDRs from other proteins, achieving an approximately 60-fold increase in EGFP expression upon β-estradiol induction. Moreover, our system is tightly controlled; nontoxic gene expression makes it a powerful tool for rapid and precise modulation of target gene expression. This system holds great potential for unlocking new functionalities from existing proteins in future research.
Collapse
Affiliation(s)
- Sheng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xueming Wu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenghao Qiao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xuan He
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yu Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianyu Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiwei Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ming Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiangtian Zhou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yang Yu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
4
|
Ye Z, Xu X, Wu Y, Liu Y, Li J, Du G, Liu L, Lv X. Efficient 7-Dehydrocholesterol Production by Multiple Metabolic Engineering of Diploid Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25186-25196. [PMID: 39480248 DOI: 10.1021/acs.jafc.4c07609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
7-Dehydrocholesterol (7-DHC), a direct precursor of vitamin D3, has attracted increasing attention in microbial fermentation recently. In this study, 7-DHC biosynthesis in diploid Saccharomyces cerevisiae with robust ergosterol production was achieved by heterologous 24-dehydrocholesterol reductase expression, generating 44.1 mg/L 7-DHC, whereas the titer of ergosterol decreased by 40.5%. The ergosterol biosynthetic pathway was completely blocked by knocking out ERG6 and ERG5, affording a 4.2-fold increase in the 7-DHC titer. Subsequently, the facilitation of the mevalonate and the postsqualene pathways accompanied by elimination of transcriptional repressors enhanced 7-DHC synthesis, and the 7-DHC titer reached 738.5 mg/L in a shake flask. Further validation in a 50 L fermenter demonstrated that the 7-DHC titer reached 3.80 g/L within just 24 h, with productivity reaching 158.3 mg/L/h, setting a new benchmark as the highest reported to date. This study paves the way toward a large-scale and cost-effective manufacture of 7-DHC.
Collapse
Affiliation(s)
- Ziqi Ye
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Zheng W, Wang Y, Cui J, Guo G, Li Y, Hou J, Tu Q, Yin Y, Stewart F, Zhang Y, Bian X, Wang X. ReaL-MGE is a tool for enhanced multiplex genome engineering and application to malonyl-CoA anabolism. Nat Commun 2024; 15:9790. [PMID: 39532871 PMCID: PMC11557832 DOI: 10.1038/s41467-024-54191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The complexities encountered in microbial metabolic engineering continue to elude prediction and design. Unravelling these complexities requires strategies that go beyond conventional genetics. Using multiplex mutagenesis with double stranded (ds) DNA, we extend the multiplex repertoire previously pioneered using single strand (ss) oligonucleotides. We present ReaL-MGE (Recombineering and Linear CRISPR/Cas9 assisted Multiplex Genome Engineering). ReaL-MGE enables precise manipulation of numerous large DNA sequences as demonstrated by the simultaneous insertion of multiple kilobase-scale sequences into E. coli, Schlegelella brevitalea and Pseudomonas putida genomes without any off-target errors. ReaL-MGE applications to enhance intracellular malonyl-CoA levels in these three genomes achieved 26-, 20-, and 13.5-fold elevations respectively, thereby promoting target polyketide yields by more than an order of magnitude. In a further round of ReaL-MGE, we adapt S. brevitalea to malonyl-CoA elevation utilizing a restricted carbon source (lignocellulose from straw) to realize production of the anti-cancer secondary metabolite, epothilone from lignocellulose. Multiplex mutagenesis with dsDNA enables the incorporation of lengthy segments that can fully encode additional functions. Additionally, the utilization of PCR to generate the dsDNAs brings flexible design advantages. ReaL-MGE presents strategic options in microbial metabolic engineering.
Collapse
Affiliation(s)
- Wentao Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
- Suzhou Research Institute of Shandong University, Room607, Building B of NUSP, NO.388 Ruoshui Road, SIP, Suzhou, Jiangsu, P. R. China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Guangdong, P. R. China
| | - Yuxuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Jie Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Guangyao Guo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yufeng Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | | | - Francis Stewart
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, Dresden, Germany.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| | - Xiaoying Bian
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| | - Xue Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| |
Collapse
|
6
|
Zhao N, Guo W, Li J, Wang H, Guo X. Rapid and accurate identification of yeast subspecies by MALDI-MS combined with a cell membrane disruption reagent. Food Chem 2024; 457:140102. [PMID: 38905823 DOI: 10.1016/j.foodchem.2024.140102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been widely used for microbial analysis. However, due to the impenetrable shell of fungi the direct identification of fungi remains challenges. Targeting on this problem, the yeast Saccharomyces cerevisiae (S. cerevisiae) was selected as a model fungus, and a new fungal cell membrane disruption reagent C18-G1 was used before MALDI-MS detection. As a result, much more intensive peaks which distributed in wider m/z range of S. cerevisiae have been identified in comparison with the use of traditional fungal pretreatment methods. Furthermore, a differential peak at m/z 4993 between two subspecies of S. cerevisiae has been identified. The corresponding protein with exclusive sequence of the specific peak was obtained based on MS/MS fragments and database searching. In addition, the method was successfully applied for the discrimination of four commercial yeasts.
Collapse
Affiliation(s)
- Nan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wei Guo
- Department of Nuclear Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jiarui Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Chi H, Wen S, Wen T, Er L, Lei R, Dai C, Bian G, Shen K, Liu T. Geranylgeraniol: Bio-based platform for teprenone, menaquinone-4, and α-tocotrienol synthesis. BIORESOURCE TECHNOLOGY 2024; 411:131349. [PMID: 39182791 DOI: 10.1016/j.biortech.2024.131349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
By utilizing the conformational selectivity of biosynthesis and the flexibility of chemical synthesis, researchers have formulated metabolic engineering-based semi-synthetic approaches that initiate with the final product's structure and identify key biosynthesis intermediates. Nonetheless, these tailored semi-synthetic routes focused on end-products, neglecting the possibility of biobased intermediates as a platform for derivatization. To address this challenge, this studyproposed a novel strategy resembling chemosynthesis-style divergent exploration to amplify the significance of biobased intermediates, in the case of geranylgeraniol (GGOH). Using the novel bifunctional terpene synthase PTTC066 and systematic metabolic engineering modifications, the engineered yeast straindemonstrated high GGOH production levels (3.32 g/L, 0.039 g/L/h). This platformenabled the semi-synthesis of various pharmaceuticals, including the anti-ulcer drug teprenone, the osteoporosis treatment drug menaquinone-4, and introduced a novel route for synthesizingα-tocotrienol. This study offers a fresh outlook on semi-synthetic approaches, opening avenues for improvements, substitutions, and innovations in industrial production processes.
Collapse
Affiliation(s)
- Haoming Chi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Shun Wen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Tian Wen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Liying Er
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Ru Lei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Chong Dai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Guangkai Bian
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kun Shen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; Wuhan Hesheng Technology Co., Ltd, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Binan G, Yalun W, Xinyan W, Yongfu Y, Peng Z, Yunhaon C, Xuan Z, Chenguang L, Fengwu B, Ping X, Qiaoning H, Shihui Y. Efficient genome-editing tools to engineer the recalcitrant non-model industrial microorganism Zymomonas mobilis. Trends Biotechnol 2024; 42:1551-1575. [PMID: 39209602 DOI: 10.1016/j.tibtech.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 09/04/2024]
Abstract
Current biotechnology relies on a few well-studied model organisms, such as Escherichia coli and Saccharomyces cerevisiae, for which abundant information and efficient toolkits are available for genetic manipulation, but which lack industrially favorable characteristics. Non-model industrial microorganisms usually do not have effective and/or efficient genome-engineering toolkits, which hampers the development of microbial cell factories to meet the fast-growing bioeconomy. In this study, using the non-model ethanologenic bacterium Zymomonas mobilis as an example, we developed a workflow to mine and temper the elements of restriction-modification (R-M), CRISPR/Cas, toxin-antitoxin (T-A) systems, and native plasmids, which are hidden within industrial microorganisms themselves, as efficient genome-editing toolkits, and established a genome-wide iterative and continuous editing (GW-ICE) system for continuous genome editing with high efficiency. This research not only provides tools and pipelines for engineering the non-model polyploid industrial microorganism Z. mobilis efficiently, but also sets a paradigm to overcome biotechnological limitations in other genetically recalcitrant non-model industrial microorganisms.
Collapse
Affiliation(s)
- Geng Binan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wu Yalun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wu Xinyan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yang Yongfu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Zhou Peng
- Department of Computer Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Chen Yunhaon
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Zhou Xuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Liu Chenguang
- State Key Laboratory of Microbial Metabolism, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bai Fengwu
- State Key Laboratory of Microbial Metabolism, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Ping
- State Key Laboratory of Microbial Metabolism, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - He Qiaoning
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| | - Yang Shihui
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
9
|
Yuan G, Deng S, Czajka JJ, Dai Z, Hofstad BA, Kim J, Pomraning KR. CRISPR-Cas9/Cas12a systems for efficient genome editing and large genomic fragment deletions in Aspergillus niger. Front Bioeng Biotechnol 2024; 12:1452496. [PMID: 39479294 PMCID: PMC11521959 DOI: 10.3389/fbioe.2024.1452496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
CRISPR technology has revolutionized fungal genetic engineering by accelerating the pace and expanding the feasible scope of experiments in this field. Among various CRISPR-Cas systems, Cas9 and Cas12a are widely used in genetic and metabolic engineering. In filamentous fungi, both Cas9 and Cas12a have been utilized as CRISPR nucleases. In this work we first compared efficacies and types of genetic edits for CRISPR-Cas9 and -Cas12a systems at the polyketide synthase (albA) gene locus in Aspergillus niger. By employing a tRNA-based gRNA polycistronic cassette, both Cas9 and Cas12a have demonstrated equally remarkable editing efficacy. Cas12a showed potential superiority over Cas9 protein when one gRNA was used for targeting, achieving an editing efficiency of 86.5% compared to 31.7% for Cas9. Moreover, when employing two gRNAs for targeting, both systems achieved up to 100% editing efficiency for single gene editing. In addition, the CRISPR-Cas9 system has been reported to induce large genomic deletions in various species. However, its use for engineering large chromosomal segments deletions in filamentous fungi still requires optimization. Here, we engineered Cas9 and -Cas12a-induced large genomic fragment deletions by targeting various genomic regions of A. niger ranging from 3.5 kb to 40 kb. Our findings demonstrate that targeted engineering of large chromosomal segments can be achieved, with deletions of up to 69.1% efficiency. Furthermore, by targeting a secondary metabolite gene cluster, we show that fragments over 100 kb can be efficiently and specifically deleted using the CRISPR-Cas9 or -Cas12a system. Overall, in this paper, we present an efficient multi-gRNA genome editing system utilizing Cas9 or Cas12a that enables highly efficient targeted editing of genes and large chromosomal regions in A. niger.
Collapse
Affiliation(s)
- Guoliang Yuan
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Shuang Deng
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Jeffrey J. Czajka
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Ziyu Dai
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Beth A. Hofstad
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Joonhoon Kim
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Kyle R. Pomraning
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| |
Collapse
|
10
|
Chen X, Perry S, Fan Z, Wang B, Loxterkamp E, Wang S, Hu J, Dickman D, Han C. Tissue-specific knockout in the Drosophila neuromuscular system reveals ESCRT's role in formation of synapse-derived extracellular vesicles. PLoS Genet 2024; 20:e1011438. [PMID: 39388480 PMCID: PMC11495600 DOI: 10.1371/journal.pgen.1011438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/22/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Tissue-specific gene knockout by CRISPR/Cas9 is a powerful approach for characterizing gene functions during development. However, this approach has not been successfully applied to most Drosophila tissues, including the Drosophila neuromuscular junction (NMJ). To expand tissue-specific CRISPR to this powerful model system, here we present a CRISPR-mediated tissue-restricted mutagenesis (CRISPR-TRiM) toolkit for knocking out genes in motoneurons, muscles, and glial cells. We validated the efficacy of CRISPR-TRiM by knocking out multiple genes in each tissue, demonstrated its orthogonal use with the Gal4/UAS binary expression system, and showed simultaneous knockout of multiple redundant genes. We used CRISPR-TRiM to discover an essential role for SNARE components in NMJ maintenance. Furthermore, we demonstrate that the canonical ESCRT pathway suppresses NMJ bouton growth by downregulating retrograde Gbb signaling. Lastly, we found that axon termini of motoneurons rely on ESCRT-mediated intra-axonal membrane trafficking to release extracellular vesicles at the NMJ. Thus, we have successfully developed an NMJ CRISPR mutagenesis approach which we used to reveal genes important for NMJ structural plasticity.
Collapse
Affiliation(s)
- Xinchen Chen
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Ziwei Fan
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Elizabeth Loxterkamp
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Shuran Wang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jiayi Hu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Chun Han
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
11
|
Wang W, Wang X, Tan Y, Zhao S, Zhao L, Zhu Z. CRISPR-Cas9 mediated genome editing of Kluyveromyces marxianus for iterative, multiplexed gene disruption and pathway integration. Biotechnol Bioeng 2024; 121:3269-3282. [PMID: 38778433 DOI: 10.1002/bit.28736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Kluyveromyces marxianus, a thermotolerant, fast-growing, Crabtree-negative yeast, is a promising chassis for the manufacture of various bioproducts. Although several genome editing tools are available for this yeast, these tools still require refinement to enable more convenient and efficient genetic modification. In this study, we engineered the K. marxianus NBRC 104275 strain by impairing the nonhomologous end joining and enhancing the homologous recombination machinery, which resulted in improved homology-directed repair effective on homology arms of up to 40 bp in length. Additionally, we simplified the CRISPR-Cas9 editing system by constructing a strain for integrative expression of Cas9 nuclease and plasmids bearing different selection markers for gRNA expression, thereby facilitating iterative genome editing without the need for plasmid curing. We demonstrated that tRNA was more effective than the hammerhead ribozyme for processing gRNA primary transcripts, and readily assembled tRNA-gRNA arrays were used for multiplexed editing of at least four targets. This editing tool was further employed for simultaneous scarless in vivo assembly of a 12-kb cassette from three fragments and marker-free integration for expressing a fusion variant of fatty acid synthase, as well as the integration of genes for starch hydrolysis. Together, the genome editing tool developed in this study makes K. marxianus more amenable to genetic modification and will facilitate more extensive engineering of this nonconventional yeast for chemical production.
Collapse
Affiliation(s)
- Wenliang Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Xinkai Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yadi Tan
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Shuo Zhao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Liqian Zhao
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Zhiwei Zhu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
- Ningbo Institute of Dalian University of Technology, Ningbo, Zhejiang, China
| |
Collapse
|
12
|
Sagawa CHD, Thomson G, Mermaz B, Vernon C, Liu S, Jacob Y, Irish VF. An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus. PLANT METHODS 2024; 20:148. [PMID: 39342225 PMCID: PMC11438372 DOI: 10.1186/s13007-024-01274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
CRISPR/Cas9-mediated gene editing requires high efficiency to be routinely implemented, especially in species which are laborious and slow to transform. This requirement intensifies further when targeting multiple genes simultaneously, which is required for genetic screening or more complex genome engineering. Species in the Citrus genus fall into this category. Here we describe a series of experiments with the collective aim of improving multiplex gene editing in the Carrizo citrange cultivar using tRNA-based sgRNA arrays. We evaluate a range of promoters for their efficacy in such experiments and achieve significant improvements by optimizing the expression of both the Cas9 endonuclease and the sgRNA array. In the case of the former we find the UBQ10 or RPS5a promoters from Arabidopsis driving the zCas9i endonuclease variant useful for achieving high levels of editing. The choice of promoter expressing the sgRNA array also had a large impact on gene editing efficiency across multiple targets. In this respect Pol III promoters perform especially well, but we also demonstrate that the UBQ10 and ES8Z promoters from Arabidopsis are robust alternatives. Ultimately, this study provides a quantitative insight into CRISPR/Cas9 vector design that has practical application in the simultaneous editing of multiple genes in Citrus, and potentially other eudicot plant species.
Collapse
Affiliation(s)
- Cintia H D Sagawa
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Geoffrey Thomson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Benoit Mermaz
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Corina Vernon
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Environmental Sciences Initiative, Advanced Science Research Center, The City University of New York, New York, NY, USA
| | - Siqi Liu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Vivian F Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
13
|
Vercauteren S, Fiesack S, Maroc L, Verstraeten N, Dewachter L, Michiels J, Vonesch SC. The rise and future of CRISPR-based approaches for high-throughput genomics. FEMS Microbiol Rev 2024; 48:fuae020. [PMID: 39085047 PMCID: PMC11409895 DOI: 10.1093/femsre/fuae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) has revolutionized the field of genome editing. To circumvent the permanent modifications made by traditional CRISPR techniques and facilitate the study of both essential and nonessential genes, CRISPR interference (CRISPRi) was developed. This gene-silencing technique employs a deactivated Cas effector protein and a guide RNA to block transcription initiation or elongation. Continuous improvements and a better understanding of the mechanism of CRISPRi have expanded its scope, facilitating genome-wide high-throughput screens to investigate the genetic basis of phenotypes. Additionally, emerging CRISPR-based alternatives have further expanded the possibilities for genetic screening. This review delves into the mechanism of CRISPRi, compares it with other high-throughput gene-perturbation techniques, and highlights its superior capacities for studying complex microbial traits. We also explore the evolution of CRISPRi, emphasizing enhancements that have increased its capabilities, including multiplexing, inducibility, titratability, predictable knockdown efficacy, and adaptability to nonmodel microorganisms. Beyond CRISPRi, we discuss CRISPR activation, RNA-targeting CRISPR systems, and single-nucleotide resolution perturbation techniques for their potential in genome-wide high-throughput screens in microorganisms. Collectively, this review gives a comprehensive overview of the general workflow of a genome-wide CRISPRi screen, with an extensive discussion of strengths and weaknesses, future directions, and potential alternatives.
Collapse
Affiliation(s)
- Silke Vercauteren
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Simon Fiesack
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Laetitia Maroc
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Natalie Verstraeten
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Liselot Dewachter
- de Duve Institute, Université catholique de Louvain, Hippokrateslaan 75, 1200 Brussels, Belgium
| | - Jan Michiels
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Sibylle C Vonesch
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| |
Collapse
|
14
|
Li H, Zhang S, Dong Z, Shan X, Zhou J, Zeng W. De Novo Biosynthesis of Dihydroquercetin in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19436-19446. [PMID: 39180741 DOI: 10.1021/acs.jafc.4c05546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Dihydroquercetin is a vital flavonoid compound with a wide range of physiological activities. However, factors, such as metabolic regulation, limit the heterologous synthesis of dihydroquercetin in microorganisms. In this study, flavanone 3-hydroxylase (F3H) and flavanone 3'-hydroxylase (F3'H) were screened from different plants, and their co-expression in Saccharomyces cerevisiae was optimized. Promoter engineering and redox partner engineering were used to optimize the corresponding expression of genes involved in the dihydroquercetin synthesis pathway. Dihydroquercetin production was further improved through multicopy integration pathway genes and systems metabolic engineering. By increasing NADPH and α-ketoglutarate supply, the catalytic efficiency of F3'H and F3H was improved, thereby effectively increasing dihydroquercetin production (235.1 mg/L). Finally, 873.1 mg/L dihydroquercetin titer was obtained by fed-batch fermentation in a 5-L bioreactor, which is the highest dihydroquercetin production achieved through de novo microbial synthesis. These results established a pivotal groundwork for flavonoids synthesis.
Collapse
Affiliation(s)
- Hongbiao Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuai Zhang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zilong Dong
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaoyu Shan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
15
|
Zhu H, Wang H, Wang L, Zheng Z. CRISPR/Cas9-based genome engineering in the filamentous fungus Rhizopus oryzae and its application to L-lactic acid production. Biotechnol J 2024; 19:e2400309. [PMID: 39295562 DOI: 10.1002/biot.202400309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024]
Abstract
The filamentous fungus Rhizopus oryzae is one of the main industrial strains for the production of a series of important chemicals such as ethanol, lactic acid, and fumaric acid. However, the lack of efficient gene editing tools suitable for R. oryzae makes it difficult to apply technical methods such as metabolic engineering regulation and synthetic biology modification. A CRISPR-Cas9 system suitable for efficient genome editing in R. oryzae was developed. Firstly, four endogenous U6 promoters of R. oryzae were identified and screened with the highest transcriptional activity for application to sgRNA transcription. It was then determined that the U6 promoter mediated CRISPR/Cas9 system has the ability to efficiently edit the genome of R. oryzae through NHEJ and HDR-mediated events. Furthermore, the newly constructed CRISPR-Cas9 dual sgRNAs system can simultaneously disrupt or insert different fragments of the R. oryzae genome. Finally, this CRISPR-Cas9 system was applied to the genome editing of R. oryzae by knocking out pyruvate carboxylase gene (PYC) and pyruvate decarboxylase gene (pdcA) and knocking in phosphofructokinase (pfkB) from Escherichia coli and L-lactate dehydrogenase (L-LDH) from Heyndrickxia coagulans, which resulted in a substantial increase in L-LA production. In summary, this study showed that the CRISPR/Cas9-based genome editing tool is efficient for manipulating genes in R. oryzae.
Collapse
Affiliation(s)
- Haodong Zhu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- Science Island Branch of Graduate, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Han Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
| | - Li Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
| | - Zhiming Zheng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- Science Island Branch of Graduate, University of Science and Technology of China, Hefei, Anhui, P. R. China
| |
Collapse
|
16
|
Hou S, Gao C, Liu J, Chen X, Wei W, Song W, Hu G, Li X, Wu J, Liu L. Med3-mediated NADPH generation to help Saccharomyces cerevisiae tolerate hyperosmotic stress. Appl Environ Microbiol 2024; 90:e0096824. [PMID: 39082808 PMCID: PMC11337799 DOI: 10.1128/aem.00968-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Hyperosmotic stress tolerance is crucial for Saccharomyces cerevisiae in producing value-added products from renewable feedstock. The limited understanding of its tolerance mechanism has impeded the application of these microbial cell factories. Previous studies have shown that Med3 plays a role in hyperosmotic stress in S. cerevisiae. However, the specific function of Med3 in hyperosmotic stress tolerance remains unclear. In this study, we showed that the deletion of the mediator Med3 impairs S. cerevisiae growth under hyperosmotic stress. Phenotypic analyses and yeast two-hybrid assays revealed that Med3 interacts with the transcription factor Stb5 to regulate the expression of the genes gnd1 and ald6, which are involved in NADPH production under hyperosmotic stress conditions. The deletion of med3 resulted in a decrease in intracellular NADPH content, leading to increased oxidative stress and elevated levels of intracellular reactive oxygen species under hyperosmotic stress, thereby impacting bud formation. These findings highlight the significant role of Med3 as a regulator in maintaining NADPH generation and redox homeostasis in S. cerevisiae during hyperosmotic stress.IMPORTANCEHyperosmotic stress tolerance in the host strain is a significant challenge for fermentation performance in industrial production. In this study, we showed that the S. cerevisiae mediator Med3 is essential for yeast growth under hyperosmotic conditions. Med3 interacts with the transcription factor Stb5 to regulate the expression of genes involved in the NADPH-generation system during hyperosmotic stress. Adequate NADPH ensures the timely removal of excess reactive oxygen species and supports bud formation under these conditions. This work highlights the crucial role of Med3 as a regulator in maintaining NADPH generation and redox homeostasis in S. cerevisiae during hyperosmotic stress.
Collapse
Affiliation(s)
- Shuo Hou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Du F, Li Z, Li X, Zhang D, Zhang F, Zhang Z, Xu Y, Tang J, Li Y, Huang X, Gu Y, Sun X, Huang H. Optimizing multicopy chromosomal integration for stable high-performing strains. Nat Chem Biol 2024:10.1038/s41589-024-01650-0. [PMID: 38858530 DOI: 10.1038/s41589-024-01650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
The copy number of genes in chromosomes can be modified by chromosomal integration to construct efficient microbial cell factories but the resulting genetic systems are prone to failure or instability from triggering homologous recombination in repetitive DNA sequences. Finding the optimal copy number of each gene in a pathway is also time and labor intensive. To overcome these challenges, we applied a multiple nonrepetitive coding sequence calculator that generates sets of coding DNA sequence (CDS) variants. A machine learning method was developed to calculate the optimal copy number combination of genes in a pathway. We obtained an engineered Yarrowia lipolytica strain for eicosapentaenoic acid biosynthesis in 6 months, producing the highest titer of 27.5 g l-1 in a 50-liter bioreactor. Moreover, the lycopene production in Escherichia coli was also greatly improved. Importantly, all engineered strains of Y. lipolytica, E. coli and Saccharomyces cerevisiae constructed with nonrepetitive CDSs maintained genetic stability.
Collapse
Affiliation(s)
- Fei Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zijia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Duoduo Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Feng Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zixu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yingshuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jin Tang
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, China
| | - Yongqian Li
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, China
| | - Xingxu Huang
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
18
|
Lim SR, Lee SJ. Multiplex CRISPR-Cas Genome Editing: Next-Generation Microbial Strain Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11871-11884. [PMID: 38744727 PMCID: PMC11141556 DOI: 10.1021/acs.jafc.4c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Genome editing is a crucial technology for obtaining desired phenotypes in a variety of species, ranging from microbes to plants, animals, and humans. With the advent of CRISPR-Cas technology, it has become possible to edit the intended sequence by modifying the target recognition sequence in guide RNA (gRNA). By expressing multiple gRNAs simultaneously, it is possible to edit multiple targets at the same time, allowing for the simultaneous introduction of various functions into the cell. This can significantly reduce the time and cost of obtaining engineered microbial strains for specific traits. In this review, we investigate the resolution of multiplex genome editing and its application in engineering microorganisms, including bacteria and yeast. Furthermore, we examine how recent advancements in artificial intelligence technology could assist in microbial genome editing and engineering. Based on these insights, we present our perspectives on the future evolution and potential impact of multiplex genome editing technologies in the agriculture and food industry.
Collapse
Affiliation(s)
- Se Ra Lim
- Department of Systems Biotechnology
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic
of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic
of Korea
| |
Collapse
|
19
|
Zhang C, Wu J, Sun Q, Ding S, Tao H, He Y, Qiu H, Shu B, Zhu D, Zhu H, Hong K. De novo production of bioactive sesterterpenoid ophiobolins in Saccharomyces cerevisiae cell factories. Microb Cell Fact 2024; 23:129. [PMID: 38711040 DOI: 10.1186/s12934-024-02406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Sesterterpenoids are rare species among the terpenoids family. Ophiobolins are sesterterpenes with a 5-8-5 tricyclic skeleton. The oxidized ophiobolins exhibit significant cytotoxic activity and potential medicinal value. There is an urgent need for large amounts of ophiobolins supplication for drug development. The synthetic biology approach has been successfully employed in lots of terpene compound production and inspired us to develop a cell factory for ophiobolin biosynthesis. RESULTS We developed a systematic metabolic engineering strategy to construct an ophiobolin biosynthesis chassis based on Saccharomyces cerevisiae. The whole-cell biotransformation methods were further combined with metabolic engineering to enhance the expression of key ophiobolin biosynthetic genes and improve the supply of precursors and cofactors. A high yield of 5.1 g/L of ophiobolin F was reached using ethanol and fatty acids as substrates. To accumulate oxidized ophiobolins, we optimized the sources and expression conditions for P450-CPR and alleviated the toxicity of bioactive compounds to cells through PDR engineering. We unexpectedly obtained a novel ophiobolin intermediate with potent cytotoxicity, 5-hydroxy-21-formyl-ophiobolin F, and the known bioactive compound ophiobolin U. Finally, we achieved the ophiobolin U titer of 128.9 mg/L. CONCLUSIONS We established efficient cell factories based on S. cerevisiae, enabling de novo biosynthesis of the ophiobolin skeleton ophiobolin F and oxidized ophiobolins derivatives. This work has filled the gap in the heterologous biosynthesis of sesterterpenoids in S. cerevisiae and provided valuable solutions for new drug development based on sesterterpenoids.
Collapse
Affiliation(s)
- Caizhe Zhang
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Jun Wu
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Qing Sun
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Shuaishuai Ding
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Hua Tao
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Yuhua He
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Hui Qiu
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Bei Shu
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Dongqing Zhu
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Hengcheng Zhu
- Department of Urology, Renmin Hospital of Wuhan University, No. 238 Jie-Fang Avenue, Wuhan, 430060, China
| | - Kui Hong
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
20
|
Sarkar P, Santiago Vazquez J, Zhou M, Levy A, Mou Z, Orbović V. Multiplexed gene editing in citrus by using a multi-intron containing Cas9 gene. Transgenic Res 2024; 33:59-66. [PMID: 38564120 DOI: 10.1007/s11248-024-00380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Several expression systems have been developed in clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) framework allowing for gene editing of disease-associated genes across diverse citrus varieties. In this study, we present a new approach employing a multi-intron containing Cas9 gene plus multiple gRNAs separated with tRNA sequences to target the phytoene desaturase gene in both 'Carrizo' citrange and 'Duncan' grapefruit. Notably, using this unified vector significantly boosted editing efficiency in both citrus varieties, showcasing mutations in all three designated targets. The implementation of this multiplex gene editing system with a multi-intron-containing Cas9 plus a gRNA-tRNA array demonstrates a promising avenue for efficient citrus genome editing, equipping us with potent tools in the ongoing battle against several diseases such as canker and huanglongbing.
Collapse
Affiliation(s)
- Poulami Sarkar
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Jorge Santiago Vazquez
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Mingxi Zhou
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32602, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32611, USA
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
- Department of Cell Sciences and Microbiology, University of Florida, Gainesville, FL, 32611, USA
| | - Zhonglin Mou
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32602, USA
| | - Vladimir Orbović
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
21
|
Walton RT, Qin Y, Blainey PC. CROPseq-multi: a versatile solution for multiplexed perturbation and decoding in pooled CRISPR screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585235. [PMID: 38558968 PMCID: PMC10979941 DOI: 10.1101/2024.03.17.585235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Forward genetic screens seek to dissect complex biological systems by systematically perturbing genetic elements and observing the resulting phenotypes. While standard screening methodologies introduce individual perturbations, multiplexing perturbations improves the performance of single-target screens and enables combinatorial screens for the study of genetic interactions. Current tools for multiplexing perturbations are incompatible with pooled screening methodologies that require mRNA-embedded barcodes, including some microscopy and single cell sequencing approaches. Here, we report the development of CROPseq-multi, a CROPseq1-inspired lentiviral system to multiplex Streptococcus pyogenes (Sp) Cas9-based perturbations with mRNA-embedded barcodes. CROPseq-multi has equivalent per-guide activity to CROPseq and low lentiviral recombination frequencies. CROPseq-multi is compatible with enrichment screening methodologies and optical pooled screens, and is extensible to screens with single-cell sequencing readouts. For optical pooled screens, an optimized and multiplexed in situ detection protocol improves barcode detection efficiency 10-fold, enables detection of recombination events, and increases decoding efficiency 3-fold relative to CROPseq. CROPseq-multi is a widely applicable multiplexing solution for diverse SpCas9-based genetic screening approaches.
Collapse
Affiliation(s)
- Russell T. Walton
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Yue Qin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul C. Blainey
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| |
Collapse
|
22
|
Gao H, Qiu Z, Wang X, Zhang X, Zhang Y, Dai J, Liang Z. Recent advances in genome-scale engineering in Escherichia coli and their applications. ENGINEERING MICROBIOLOGY 2024; 4:100115. [PMID: 39628784 PMCID: PMC11611031 DOI: 10.1016/j.engmic.2023.100115] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 12/06/2024]
Abstract
Owing to the rapid advancement of genome engineering technologies, the scale of genome engineering has expanded dramatically. Genome editing has progressed from one genomic alteration at a time that could only be employed in few species, to the simultaneous generation of multiple modifications across many genomic loci in numerous species. The development and recent advances in multiplex automated genome engineering (MAGE)-associated technologies and clustered regularly interspaced short palindromic repeats and their associated protein (CRISPR-Cas)-based approaches, together with genome-scale synthesis technologies offer unprecedented opportunities for advancing genome-scale engineering in a broader range. These approaches provide new tools to generate strains with desired phenotypes, understand the complexity of biological systems, and directly evolve a genome with novel features. Here, we review the recent major advances in genome-scale engineering tools developed for Escherichia coli, focusing on their applications in identifying essential genes, genome reduction, recoding, and beyond.
Collapse
Affiliation(s)
- Hui Gao
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhichao Qiu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), L’ Hospitalet de Llobregat, Barcelona 08908, Spain
- Faculty of Pharmacy and Food Science, Barcelona University, Barcelona 08028, Spain
| | - Xuan Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiyuan Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yujia Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- College of Life Sciences, Northwest A&F University, Shaanxi 712100, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhuobin Liang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
23
|
Pacesa M, Pelea O, Jinek M. Past, present, and future of CRISPR genome editing technologies. Cell 2024; 187:1076-1100. [PMID: 38428389 DOI: 10.1016/j.cell.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Genome editing has been a transformative force in the life sciences and human medicine, offering unprecedented opportunities to dissect complex biological processes and treat the underlying causes of many genetic diseases. CRISPR-based technologies, with their remarkable efficiency and easy programmability, stand at the forefront of this revolution. In this Review, we discuss the current state of CRISPR gene editing technologies in both research and therapy, highlighting limitations that constrain them and the technological innovations that have been developed in recent years to address them. Additionally, we examine and summarize the current landscape of gene editing applications in the context of human health and therapeutics. Finally, we outline potential future developments that could shape gene editing technologies and their applications in the coming years.
Collapse
Affiliation(s)
- Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Station 19, CH-1015 Lausanne, Switzerland
| | - Oana Pelea
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
24
|
Liang Y, Gao S, Qi X, Valentovich LN, An Y. Progress in Gene Editing and Metabolic Regulation of Saccharomyces cerevisiae with CRISPR/Cas9 Tools. ACS Synth Biol 2024; 13:428-448. [PMID: 38326929 DOI: 10.1021/acssynbio.3c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The CRISPR/Cas9 systems have been developed as tools for genetic engineering and metabolic engineering in various organisms. In this review, various aspects of CRISPR/Cas9 in Saccharomyces cerevisiae, from basic principles to practical applications, have been summarized. First, a comprehensive review has been conducted on the history of CRISPR/Cas9, successful cases of gene disruptions, and efficiencies of multiple DNA fragment insertions. Such advanced systems have accelerated the development of microbial engineering by reducing time and labor, and have enhanced the understanding of molecular genetics. Furthermore, the research progress of the CRISPR/Cas9-based systems in the production of high-value-added chemicals and the improvement of stress tolerance in S. cerevisiae have been summarized, which should have an important reference value for genetic and synthetic biology studies based on S. cerevisiae.
Collapse
Affiliation(s)
- Yaokun Liang
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110065, China
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110065, China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, Guangdong 511370, China
| | - Leonid N Valentovich
- Institute of Microbiology, National Academy of Sciences of Belarus, Minsk 220072, Belarus
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110065, China
| |
Collapse
|
25
|
Long Y, Han X, Meng X, Xu P, Tao F. A robust yeast chassis: comprehensive characterization of a fast-growing Saccharomyces cerevisiae. mBio 2024; 15:e0319623. [PMID: 38214535 PMCID: PMC10865977 DOI: 10.1128/mbio.03196-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024] Open
Abstract
Robust chassis are critical to facilitate advances in synthetic biology. This study describes a comprehensive characterization of a new yeast isolate Saccharomyces cerevisiae XP that grows faster than commonly used research and industrial S. cerevisiae strains. The genomic, transcriptomic, and metabolomic analyses suggest that the fast growth rate is, in part, due to the efficient electron transport chain and key growth factor synthesis. A toolbox for genetic manipulation of the yeast was developed; we used it to construct l-lactic acid producers for high lactate production. The development of genetically malleable yeast strains that grow faster than currently used strains may significantly enhance the uses of S. cerevisiae in biotechnology.IMPORTANCEYeast is known as an outstanding starting strain for constructing microbial cell factories. However, its growth rate restricts its application. A yeast strain XP, which grows fast in high concentrations of sugar and acidic environments, is revealed to demonstrate the potential in industrial applications. A toolbox was also built for its genetic manipulation including gene insertion, deletion, and ploidy transformation. The knowledge of its metabolism, which could guide the designing of genetic experiments, was generated with multi-omics analyses. This novel strain along with its toolbox was then tested by constructing an l-lactic acid efficient producer, which is conducive to the development of degradable plastics. This study highlights the remarkable competence of nonconventional yeast for applications in biotechnology.
Collapse
Affiliation(s)
- Yangdanyu Long
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Han
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuanlin Meng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Zhang J, Li K, Sun Y, Yao C, Liu W, Liu H, Zhong Y. An efficient CRISPR/Cas9 genome editing system based on a multiple sgRNA processing platform in Trichoderma reesei for strain improvement and enzyme production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:22. [PMID: 38342915 PMCID: PMC10859021 DOI: 10.1186/s13068-024-02468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND The CRISPR/Cas9 technology is being employed as a convenient tool for genetic engineering of the industrially important filamentous fungus Trichoderma reesei. However, multiplex gene editing is still constrained by the sgRNA processing capability, hindering strain improvement of T. reesei for the production of lignocellulose-degrading enzymes and recombinant proteins. RESULTS Here, a CRISPR/Cas9 system based on a multiple sgRNA processing platform was established for genome editing in T. reesei. The platform contains the arrayed tRNA-sgRNA architecture directed by a 5S rRNA promoter to generate multiple sgRNAs from a single transcript by the endogenous tRNA processing system. With this system, two sgRNAs targeting cre1 (encoding the carbon catabolite repressor 1) were designed and the precise deletion of cre1 was obtained, demonstrating the efficiency of sgRNAs processing in the tRNA-sgRNA architecture. Moreover, overexpression of xyr1-A824V (encoding a key activator for cellulase/xylanase expression) at the ace1 (encoding a repressor for cellulase/xylanase expression) locus was achieved by designing two sgRNAs targeting ace1 in the system, resulting in the significantly enhanced production of cellulase (up to 1- and 18-fold on the Avicel and glucose, respectively) and xylanase (up to 11- and 41-fold on the Avicel and glucose, respectively). Furthermore, heterologous expression of the glucose oxidase gene from Aspergillus niger ATCC 9029 at the cbh1 locus with the simultaneous deletion of cbh1 and cbh2 (two cellobiohydrolase coding genes) by designing four sgRNAs targeting cbh1 and cbh2 in the system was acquired, and the glucose oxidase produced by T. reesei reached 43.77 U/mL. Besides, it was found the ER-associated protein degradation (ERAD) level was decreased in the glucose oxidase-producing strain, which was likely due to the reduction of secretion pressure by deletion of the major endogenous cellulase-encoding genes. CONCLUSIONS The tRNA-gRNA array-based CRISPR-Cas9 editing system was successfully developed in T. reesei. This system would accelerate engineering of T. reesei for high-level production of enzymes including lignocellulose-degrading enzymes and other recombinant enzymes. Furthermore, it would expand the CRISPR toolbox for fungal genome editing and synthetic biology.
Collapse
Affiliation(s)
- Jiaxin Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Kehang Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Yu Sun
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Cheng Yao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
27
|
Yu L, Marchisio MA. Scaffold RNA engineering in type V CRISPR-Cas systems: a potent way to enhance gene expression in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 2024; 52:1483-1497. [PMID: 38142459 PMCID: PMC10853767 DOI: 10.1093/nar/gkad1216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023] Open
Abstract
New, orthogonal transcription factors in eukaryotic cells have been realized by engineering nuclease-deficient CRISPR-associated proteins and/or their guide RNAs. In this work, we present a new kind of orthogonal transcriptional activators, in Saccharomyces cerevisiae, made by turning type V CRISPR RNA into a scaffold RNA (ScRNA) able to recruit a variable number of VP64 activation domains. The activator arises from the complex between the synthetic ScRNA and DNase-deficient type V Cas proteins: dCas12e and denAsCas12a. The transcription activation achieved via the newly engineered dCas:ScRNA system is up to 4.7-fold higher than that obtained with the direct fusion of VP64 to Cas proteins. The new transcription factors have been proven to be functional in circuits such as Boolean gates, converters, multiplex-gene and metabolic-pathway activation. Our results extend the CRISPR-Cas-based technology with a new effective tool that only demands RNA engineering and improves the current design of transcription factors based on type V Cas proteins.
Collapse
Affiliation(s)
- Lifang Yu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, China
| |
Collapse
|
28
|
Zhou W, Li Y, Liu G, Qin W, Wei D, Wang F, Gao B. CRISPR/Cas9-based toolkit for rapid marker recycling and combinatorial libraries in Komagataella phaffii. Appl Microbiol Biotechnol 2024; 108:197. [PMID: 38324086 PMCID: PMC10850205 DOI: 10.1007/s00253-024-13037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/07/2023] [Accepted: 01/26/2024] [Indexed: 02/08/2024]
Abstract
Komagataella phaffii, a nonconventional yeast, is increasingly attractive to researchers owing to its posttranslational modification ability, strict methanol regulatory mechanism, and lack of Crabtree effect. Although CRISPR-based gene editing systems have been established in K. phaffii, there are still some inadequacies compared to the model organism Saccharomyces cerevisiae. In this study, a redesigned gRNA plasmid carrying red and green fluorescent proteins facilitated plasmid construction and marker recycling, respectively, making marker recycling more convenient and reliable. Subsequently, based on the knockdown of Ku70 and DNA ligase IV, we experimented with integrating multiple DNA fragments at a single locus. A 26.5-kb-long DNA fragment divided into 11 expression cassettes for lycopene synthesis could be successfully integrated into a single locus at one time with a success rate of 57%. A 27-kb-long DNA fragment could also be precisely knocked out with a 50% positive rate in K. phaffii by introducing two DSBs simultaneously. Finally, to explore the feasibility of rapidly balancing the expression intensity of multiple genes in a metabolic pathway, a yeast combinatorial library was successfully constructed in K. phaffii using lycopene as an indicator, and an optimal combination of the metabolic pathway was identified by screening, with a yield titer of up to 182.73 mg/L in shake flask fermentation. KEY POINTS: • Rapid marker recycling based on the visualization of a green fluorescent protein • One-step multifragment integration and large fragment knockout in the genome • A random assembly of multiple DNA elements to create yeast libraries in K. phaffii.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B.311, Shanghai, 200237, China
| | - Yuanyi Li
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B.311, Shanghai, 200237, China
| | - Guosong Liu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B.311, Shanghai, 200237, China
| | - Weichuang Qin
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B.311, Shanghai, 200237, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B.311, Shanghai, 200237, China
| | - Fengqing Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B.311, Shanghai, 200237, China.
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B.311, Shanghai, 200237, China.
| |
Collapse
|
29
|
Zhang Q, Cao H. Expression of chitosanase from Aspergillus fumigatus chitosanase in Saccharomyces cerevisiae by CRISPR-Cas9 tools. BIORESOUR BIOPROCESS 2024; 11:20. [PMID: 38647990 PMCID: PMC10992968 DOI: 10.1186/s40643-023-00718-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/18/2023] [Indexed: 04/25/2024] Open
Abstract
Chitooligosaccharides (COS) find numerous applications due to their exceptional properties. Enzymatic hydrolysis of chitosan by chitosanase is considered an advantageous route for COS production. Heterologous expression of chitosanase holds significant promise, yet studies using commonly employed Escherichia coli and Pichia pastoris strains encounter challenges in subsequent handling and industrial scalability. In this investigation, we opted for using the safe yeast strain Saccharomyces cerevisiae (GRAS), obviating the need for methanol induction, resulting in successful expression. Ultimately, utilizing the GTR-CRISPR editing system, shake flask enzyme activity reached 2 U/ml. The optimal chitosanase activity was achieved at 55℃ and pH 5, with favorable stability between 30 and 50 °C. Following a 2-h catalytic reaction, the product primarily consisted of chitobiose to chitotetraose, predominantly at the chitotriose position, with a slight increase in chitobiose content observed during the later stages of enzymatic hydrolysis. The results affirm the feasibility of heterologous chitosanase expression through Saccharomyces cerevisiae, underscoring its significant industrial potential.
Collapse
Affiliation(s)
- Qingshuai Zhang
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hui Cao
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
30
|
Wu Y, Su C, Liao Z, Zhang G, Jiang Y, Wang Y, Zhang C, Cai D, Qin P, Tan T. Sequential catalytic lignin valorization and bioethanol production: an integrated biorefinery strategy. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:8. [PMID: 38245804 PMCID: PMC10800047 DOI: 10.1186/s13068-024-02459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND The effective valorization of lignin and carbohydrates in lignocellulose matrix under the concept of biorefinery is a primary strategy to produce sustainable chemicals and fuels. Based on the reductive catalytic fractionation (RCF), lignin in lignocelluloses can be depolymerized into viscous oils, while the highly delignified pulps with high polysaccharides retention can be transformed into various chemicals. RESULTS A biorefinery paradigm for sequentially valorization of the main components in poplar sawdust was constructed. In this process, the well-defined low-molecular-weight phenols and bioethanol were co-generated by tandem chemo-catalysis in the RCF stage and bio-catalysis in fermentation stage. In the RCF stage, hydrogen transfer reactions were conducted in one-pot process using Raney Ni as catalyst, while the isopropanol (2-PrOH) in the initial liquor was served as a hydrogen donor and the solvent for lignin dissolution. Results indicated the proportion of the 2-PrOH in the initial liquor of RCF influenced the chemical constitution and yield of the lignin oil, which also affected the characteristics of the pulps and the following bioethanol production. A 67.48 ± 0.44% delignification with 20.65 ± 0.31% of monolignols yield were realized when the 2-PrOH:H2O ratio in initial liquor was 7:3 (6.67 wt% of the catalyst loading, 200 °C for 3 h). The RCF pulp had higher carbohydrates retention (57.96 ± 2.78 wt%), which was converted to 21.61 ± 0.62 g/L of bioethanol with a yield of 0.429 ± 0.010 g/g in fermentation using an engineered S. cerevisiae strain. Based on the mass balance analysis, 104.4 g of ethanol and 206.5 g of lignin oil can be produced from 1000 g of the raw poplar sawdust. CONCLUSIONS The main chemical components in poplar sawdust can be effectively transformed into lignin oil and bioethanol. The attractive results from the biorefinery process exhibit great promise for the production of valuable biofuels and chemicals from abundant lignocellulosic materials.
Collapse
Affiliation(s)
- Yilu Wu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Changsheng Su
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zicheng Liao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Gege Zhang
- School of International Education, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yongjie Jiang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yankun Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Changwei Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Peiyong Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
31
|
Babaei M, Thomsen PT, Pastor MC, Jensen MK, Borodina I. Coupling High-Throughput and Targeted Screening for Identification of Nonobvious Metabolic Engineering Targets. ACS Synth Biol 2024; 13:168-182. [PMID: 38141039 PMCID: PMC10804409 DOI: 10.1021/acssynbio.3c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Identification of metabolic engineering targets is a fundamental challenge in strain development programs. While high-throughput (HTP) genetic engineering methodologies capable of generating vast diversity are being developed at a rapid rate, a majority of industrially interesting molecules cannot be screened at sufficient throughput to leverage these techniques. We propose a workflow that couples HTP screening of common precursors (e.g., amino acids) that can be screened either directly or by artificial biosensors, with low-throughput targeted validation of the molecule of interest to uncover nonintuitive beneficial metabolic engineering targets and combinations hereof. Using this workflow, we identified several nonobvious novel targets for improving p-coumaric acid (p-CA) and l-DOPA production from two large 4k gRNA libraries each deregulating 1000 metabolic genes in the yeast Saccharomyces cerevisiae. We initially screened yeast cells transformed with gRNA library plasmids for individual regulatory targets improving the production of l-tyrosine-derived betaxanthins, identifying 30 targets that increased intracellular betaxanthin content 3.5-5.7 fold. Hereafter, we screened the targets individually in a high-producing p-CA strain, narrowing down the targets to six that increased the secreted titer by up to 15%. To investigate whether any of the six targets could be additively combined to improve p-CA production further, we created a gRNA multiplexing library and subjected it to our proposed coupled workflow. The combination of regulating PYC1 and NTH2 simultaneously resulted in the highest (threefold) improvement of the betaxanthin content, and an additive trend was also observed in the p-CA strain. Lastly, we tested the initial 30 targets in a l-DOPA producing strain, identifying 10 targets that increased the secreted titer by up to 89%, further validating our screening by proxy workflow. This coupled approach is useful for strain development in the absence of direct HTP screening assays for products of interest.
Collapse
Affiliation(s)
- Mahsa Babaei
- Novo Nordisk Foundation
Center
for Biosustainability, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Philip Tinggaard Thomsen
- Novo Nordisk Foundation
Center
for Biosustainability, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marc Cernuda Pastor
- Novo Nordisk Foundation
Center
for Biosustainability, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Michael Krogh Jensen
- Novo Nordisk Foundation
Center
for Biosustainability, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Irina Borodina
- Novo Nordisk Foundation
Center
for Biosustainability, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
32
|
Teng Y, Jiang T, Yan Y. The expanded CRISPR toolbox for constructing microbial cell factories. Trends Biotechnol 2024; 42:104-118. [PMID: 37500408 PMCID: PMC10808275 DOI: 10.1016/j.tibtech.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Microbial cell factories (MCFs) convert low-cost carbon sources into valuable compounds. The CRISPR/Cas9 system has revolutionized MCF construction as a remarkable genome editing tool with unprecedented programmability. Recently, the CRISPR toolbox has been significantly expanded through the exploration of new CRISPR systems, the engineering of Cas effectors, and the incorporation of other effectors, enabling multi-level regulation and gene editing free of double-strand breaks. This expanded CRISPR toolbox powerfully promotes MCF construction by facilitating pathway construction, enzyme engineering, flux redistribution, and metabolic burden control. In this article, we summarize different CRISPR tool designs and their applications in MCF construction for gene editing, transcriptional regulation, and enzyme modulation. Finally, we also discuss future perspectives for the development and application of the CRISPR toolbox.
Collapse
Affiliation(s)
- Yuxi Teng
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
33
|
Ji Q, Zhang K, Cao N, You X, Cao S, Wang M, Guo J, Wang H, Mei K. Highly efficient overexpression and purification of multisubunit tethering complexes in Saccharomyces cerevisiae. Protein Expr Purif 2023; 212:106351. [PMID: 37574178 DOI: 10.1016/j.pep.2023.106351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Vesicle trafficking is a fundamental cellular process that ensures proper material exchange between organelles in eukaryotic cells, and multisubunit tethering complexes (MTCs) are essential in this process. The heterohexameric homotypic fusion and protein sorting (HOPS) complex, which functions in the endolysosomal pathway, is a member of MTCs. Despite its critical role, the complex composition and low-expression level of HOPS have made its expression and purification extremely challenging. In this study, we present a highly efficient strategy for overexpressing and purifying HOPS from Saccharomyces cerevisiae. We achieved HOPS overexpression by integrating a strong promoter TEF1 before each subunit using the gRNA-tRNA array for CRISPR-Cas9 (GTR-CRISPR) system. The HOPS complex was subsequently purified using Staphylococcus aureus protein A (ProtA) affinity purification and size-exclusion chromatography, resulting in high purity and homogeneity. We obtained two-fold more HOPS using this method than that obtained using the commonly used GAL1 promoter-controlled HOPS overexpression. Negative staining electron microscopy analysis confirmed the correct assembly of HOPS. Notably, we also successfully purified two other MTCs, class C core vacuole/endosome tethering (CORVET) and Golgi-associated retrograde protein (GARP) using this approach. Our findings facilitate further in vitro biochemical characterization and functional studies of MTCs and provide a useful guide for the preparation of other heterogenic multisubunit complexes.
Collapse
Affiliation(s)
- Qiushuang Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Ke Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Na Cao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoyu You
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Shuaihua Cao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Mengya Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Jiatian Guo
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Hongwei Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
34
|
Lv X, Li Y, Xiu X, Liao C, Xu Y, Liu Y, Li J, Du G, Liu L. CRISPR genetic toolkits of classical food microorganisms: Current state and future prospects. Biotechnol Adv 2023; 69:108261. [PMID: 37741424 DOI: 10.1016/j.biotechadv.2023.108261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Production of food-related products using microorganisms in an environmentally friendly manner is a crucial solution to global food safety and environmental pollution issues. Traditional microbial modification methods rely on artificial selection or natural mutations, which require time for repeated screening and reproduction, leading to unstable results. Therefore, it is imperative to develop rapid, efficient, and precise microbial modification technologies. This review summarizes recent advances in the construction of gene editing and metabolic regulation toolkits based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas) systems and their applications in reconstructing food microorganism metabolic networks. The development and application of gene editing toolkits from single-site gene editing to multi-site and genome-scale gene editing was also introduced. Moreover, it presented a detailed introduction to CRISPR interference, CRISPR activation, and logic circuit toolkits for metabolic network regulation. Moreover, the current challenges and future prospects for developing CRISPR genetic toolkits were also discussed.
Collapse
Affiliation(s)
- Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xiang Xiu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Chao Liao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yameng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
35
|
Guo X, Geng L, Jiang C, Yao W, Jin J, Liu Z, Mu Y. Multiplexed genome engineering for porcine fetal fibroblasts with gRNA-tRNA arrays based on CRISPR/Cas9. Anim Biotechnol 2023; 34:4703-4712. [PMID: 36946758 DOI: 10.1080/10495398.2023.2187402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Multiplex gene modifications are highly required for various fields of porcine research. In many species, the CRISPR/Cas9 system has been widely applied for genomic editing and provides a potential tool for introducing multiplex genome mutations simultaneously. Here, we present a CRISPR-Cas9 gRNA-tRNA array (GTR-CRISPR) for multiplexed engineering of porcine fetal fibroblasts (PFFs). We successfully produced multiple sgRNAs using only one Pol III promoter by taking advantage of the endogenous tRNA processing mechanism in porcine cells. Using an all-in-one construct carrying GTR and Cas9, we disrupted the IGFBP3, MSTN, MC4R, and SOCS2 genes in multiple codon regions in one PFF cell simultaneously. This technique allows the simultaneous disruption of four genes with 5.5% efficiency. As a result, this approach may effectively target multiple genes at the same time, making it a powerful tool for establishing multiple genes mutant cells in pigs.
Collapse
Affiliation(s)
- Xiaochen Guo
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Lishuang Geng
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Chaoqian Jiang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Wang Yao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Junxue Jin
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
36
|
Fu X, Zuo X, Zhao X, Zhang H, Zhang C, Lu W. Characterization and designing of an SAM riboswitch to establish a high-throughput screening platform for SAM overproduction in Saccharomyces cerevisiae. Biotechnol Bioeng 2023; 120:3622-3637. [PMID: 37691180 DOI: 10.1002/bit.28551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
S-adenosyl- l-methionine (SAM) is a high-value compound widely used in the treatment of various diseases. SAM can be produced through fermentation, but further enhancing the microbial production of SAM requires novel high-throughput screening methods for rapid detection and screening of mutant libraries. In this work, an SAM-OFF riboswitch capable of responding to the SAM concentration was obtained and a high-throughput platform for screening SAM overproducers was established. SAM synthase was engineered by semirational design and directed evolution, which resulted in the SAM2S203F,W164R,T251S,Y285F,S365R mutant with almost twice higher catalytic activity than the parental enzyme. The best mutant was then introduced into Saccharomyces cerevisiae BY4741, and the resulting strain BSM8 produced a sevenfold higher SAM titer in shake-flask fermentation, reaching 1.25 g L-1 . This work provides a reference for designing biosensors to dynamically detect metabolite concentrations for high-throughput screening and the construction of effective microbial cell factories.
Collapse
Affiliation(s)
- Xiaomeng Fu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaoru Zuo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaomeng Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Huizhi Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, China
| |
Collapse
|
37
|
Li Y, Huang C, Liu Y, Zeng J, Yu H, Tong Z, Yuan X, Sui X, Fang D, Xiao B, Zhao S, Yuan C. CRISPR/Cas9-mediated seamless gene replacement in protoplasts expands the resistance spectrum to TMV-U1 strain in regenerated Nicotiana tabacum. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2641-2653. [PMID: 37610064 PMCID: PMC10651143 DOI: 10.1111/pbi.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023]
Abstract
CRISPR/Cas-based genome editing is now extensively used in plant breeding and continues to evolve. Most CRISPR/Cas current applications in plants focus on gene knock-outs; however, there is a pressing need for new methods to achieve more efficient delivery of CRISPR components and gene knock-ins to improve agronomic traits of crop cultivars. We report here a genome editing system that combines the advantages of protoplast technologies with recent CRISPR/Cas advances to achieve seamless large fragment insertions in the model Solanaceae plant Nicotiana tabacum. With this system, two resistance-related regions of the N' gene were replaced with homologous fragments from the N'alata gene to confer TMV-U1 resistance in the T0 generation of GMO-free plants. Our study establishes a reliable genome-editing tool for efficient gene modifications and provides a detailed description of the optimization process to assist other researchers adapt this system for their needs.
Collapse
Affiliation(s)
- Yanli Li
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
- BGI‐ShenzhenShenzhenGuangdongChina
| | - Changjun Huang
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Yong Liu
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Jianmin Zeng
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Haiqin Yu
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Zhijun Tong
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Xinjie Yuan
- Institute of Vegetables and FlowersJiangxi Academy of Agricultural SciencesNanchangChina
| | - Xueyi Sui
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Dunhuang Fang
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Bingguang Xiao
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | | | - Cheng Yuan
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| |
Collapse
|
38
|
Bai W, Huang M, Li C, Li J. The biological principles and advanced applications of DSB repair in CRISPR-mediated yeast genome editing. Synth Syst Biotechnol 2023; 8:584-596. [PMID: 37711546 PMCID: PMC10497738 DOI: 10.1016/j.synbio.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
To improve the performance of yeast cell factories for industrial production, extensive CRISPR-mediated genome editing systems have been applied by artificially creating double-strand breaks (DSBs) to introduce mutations with the assistance of intracellular DSB repair. Diverse strategies of DSB repair are required to meet various demands, including precise editing or random editing with customized gRNAs or a gRNA library. Although most yeasts remodeling techniques have shown rewarding performance in laboratory verification, industrial yeast strain manipulation relies only on very limited strategies. Here, we comprehensively reviewed the molecular mechanisms underlying recent industrial applications to provide new insights into DSB cleavage and repair pathways in both Saccharomyces cerevisiae and other unconventional yeast species. The discussion of DSB repair covers the most frequently used homologous recombination (HR) and nonhomologous end joining (NHEJ) strategies to the less well-studied illegitimate recombination (IR) pathways, such as single-strand annealing (SSA) and microhomology-mediated end joining (MMEJ). Various CRISPR-based genome editing tools and corresponding gene editing efficiencies are described. Finally, we summarize recently developed CRISPR-based strategies that use optimized DSB repair for genome-scale editing, providing a direction for further development of yeast genome editing.
Collapse
Affiliation(s)
- Wenxin Bai
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
- The BIT-QUB International Joint Laboratory in Synthetic Biology, Beijing, 100081, PR China
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, David Keir Building, Queen's University Belfast, Stranmillis Road, Northern Ireland, BT9 5AG, Belfast, United Kingdom
- The BIT-QUB International Joint Laboratory in Synthetic Biology, Beijing, 100081, PR China
| | - Chun Li
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Jun Li
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
- The BIT-QUB International Joint Laboratory in Synthetic Biology, Beijing, 100081, PR China
| |
Collapse
|
39
|
Wei J, Li Y. CRISPR-based gene editing technology and its application in microbial engineering. ENGINEERING MICROBIOLOGY 2023; 3:100101. [PMID: 39628916 PMCID: PMC11610974 DOI: 10.1016/j.engmic.2023.100101] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 12/06/2024]
Abstract
Gene editing technology involves the modification of a specific target gene to obtain a new function or phenotype. Recent advances in clustered regularly interspaced short palindromic repeats (CRISPR)-Cas-mediated technologies have provided an efficient tool for genetic engineering of cells and organisms. Here, we review the three emerging gene editing tools (ZFNs, TALENs, and CRISPR-Cas) and briefly introduce the principle, classification, and mechanisms of the CRISPR-Cas systems. Strategies for gene editing based on endogenous and exogenous CRISPR-Cas systems, as well as the novel base editor (BE), prime editor (PE), and CRISPR-associated transposase (CAST) technologies, are described in detail. In addition, we summarize recent developments in the application of CRISPR-based gene editing tools for industrial microorganism and probiotics modifications. Finally, the potential challenges and future perspectives of CRISPR-based gene editing tools are discussed.
Collapse
Affiliation(s)
- Junwei Wei
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
40
|
Cazier A, Irvin OM, Chávez LS, Dalvi S, Abraham H, Wickramanayake N, Yellayi S, Blazeck J. A Rapid Antibody Enhancement Platform in Saccharomyces cerevisiae Using an Improved, Diversifying CRISPR Base Editor. ACS Synth Biol 2023; 12:3287-3300. [PMID: 37873982 PMCID: PMC10661033 DOI: 10.1021/acssynbio.3c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
The yeast Saccharomyces cerevisiae is commonly used to interrogate and screen protein variants and to perform directed evolution studies to develop proteins with enhanced features. While several techniques have been described that help enable the use of yeast for directed evolution, there remains a need to increase their speed and ease of use. Here we present yDBE, a yeast diversifying base editor that functions in vivo and employs a CRISPR-dCas9-directed cytidine deaminase base editor to diversify DNA in a targeted, rapid, and high-breadth manner. To develop yDBE, we enhanced the mutation rate of an initial base editor by employing improved deaminase variants and characterizing several scaffolded guide constructs. We then demonstrate the ability of the yDBE platform to improve the affinity of a displayed antibody scFv, rapidly generating diversified libraries and isolating improved binders via cell sorting. By performing high-throughput sequencing analysis of the high-activity yDBE, we show that it enables a mutation rate of 2.13 × 10-4 substitutions/bp/generation over a window of 100 bp. As yDBE functions entirely in vivo and can be easily programmed to diversify nearly any such window of DNA, we posit that it can be a powerful tool for facilitating a variety of directed evolution experiments.
Collapse
Affiliation(s)
- Andrew
P. Cazier
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Olivia M. Irvin
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lizmarie S. Chávez
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Saachi Dalvi
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hannah Abraham
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nevinka Wickramanayake
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sreenivas Yellayi
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - John Blazeck
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
41
|
Shaw WM, Khalil AS, Ellis T. A Multiplex MoClo Toolkit for Extensive and Flexible Engineering of Saccharomyces cerevisiae. ACS Synth Biol 2023; 12:3393-3405. [PMID: 37930278 PMCID: PMC10661031 DOI: 10.1021/acssynbio.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023]
Abstract
Synthetic biology toolkits are one of the core foundations on which the field has been built, facilitating and accelerating efforts to reprogram cells and organisms for diverse biotechnological applications. The yeast Saccharomyces cerevisiae, an important model and industrial organism, has benefited from a wide range of toolkits. In particular, the MoClo Yeast Toolkit (YTK) enables the fast and straightforward construction of multigene plasmids from a library of highly characterized parts for programming new cellular behavior in a more predictable manner. While YTK has cultivated a strong parts ecosystem and excels in plasmid construction, it is limited in the extent and flexibility with which it can create new strains of yeast. Here, we describe a new and improved toolkit, the Multiplex Yeast Toolkit (MYT), that extends the capabilities of YTK and addresses strain engineering limitations. MYT provides a set of new integration vectors and selectable markers usable across common laboratory strains, as well as additional assembly cassettes to increase the number of transcriptional units in multigene constructs, CRISPR-Cas9 tools for highly efficient multiplexed vector integration, and three orthogonal and inducible promoter systems for conditional programming of gene expression. With these tools, we provide yeast synthetic biologists with a powerful platform to take their engineering ambitions to exciting new levels.
Collapse
Affiliation(s)
- William M. Shaw
- Biological
Design Center, Boston University, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Imperial
College Centre for Synthetic Biology, Imperial
College London, London SW7 2AZ, U.K.
| | - Ahmad S. Khalil
- Biological
Design Center, Boston University, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| | - Tom Ellis
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Imperial
College Centre for Synthetic Biology, Imperial
College London, London SW7 2AZ, U.K.
| |
Collapse
|
42
|
Ganesan V, Monteiro L, Pedada D, Stohr A, Blenner M. High-Efficiency Multiplexed Cytosine Base Editors for Natural Product Synthesis in Yarrowia lipolytica. ACS Synth Biol 2023; 12:3082-3091. [PMID: 37768786 DOI: 10.1021/acssynbio.3c00435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Yarrowia lipolytica is an industrial host with a high fatty acid flux. Even though CRISPR-based tools have accelerated its metabolic engineering, there remains a need to develop tools for rapid multiplexed strain engineering to accelerate the design-build-test-learn cycle. Base editors have the potential to perform high-efficiency multiplexed gene editing because they do not depend upon double-stranded DNA breaks. Here, we identified that base editors are less toxic than CRISPR-Cas9 for multiplexed gene editing. We increased the editing efficiency by removing the extra nucleotides between tRNA and gRNA and increasing the base editor and gRNA copy number in a Ku70 deficient strain. We achieved five multiplexed gene editing in the ΔKu70 strain at 42% efficiency. Initially, we were unsuccessful at performing multiplexed base editing in NHEJ competent strain; however, we increased the editing efficiency by using a co-selection approach to enrich base editing events. Base editor-mediated canavanine gene (CAN1) knockout provided resistance to the import of canavanine, which enriched the base editing in other unrelated genetic loci. We performed multiplexed editing of up to three genes at 40% efficiency in the Po1f strain through the CAN1 co-selection approach. Finally, we demonstrated the application of multiplexed cytosine base editor for rapid multigene knockout to increase naringenin production by 2-fold from glucose or glycerol as a carbon source.
Collapse
Affiliation(s)
- Vijaydev Ganesan
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Lummy Monteiro
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dheeraj Pedada
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Anthony Stohr
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Mark Blenner
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
43
|
Feng Q, Ning X, Qin L, Li J, Li C. Quantitative and modularized CRISPR/dCas9-dCpf1 dual function system in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2023; 11:1218832. [PMID: 38026848 PMCID: PMC10666755 DOI: 10.3389/fbioe.2023.1218832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Both CRISPR/dCas9 and CRISPR/dCpf1 genome editing systems have shown exciting promises in modulating yeast cell metabolic pathways. However, each system has its deficiencies to overcome. In this study, to achieve a compensatory effect, we successfully constructed a dual functional CRISPR activation/inhibition (CRISPRa/i) system based on Sp-dCas9 and Fn-dCpf1 proteins, along with their corresponding complementary RNAs. Methods: We validated the high orthogonality and precise quantity targeting of selected yeast promoters. Various activating effector proteins (VP64, p65, Rta, and VP64-p65-Rta) and inhibiting effector proteins (KRAB, MeCP2, and KRAB-MeCP2), along with RNA scaffolds of MS2, PP7 and crRNA arrays were implemented in different combinations to investigate quantitative promoter strength. In the CRISPR/dCas9 system, the regulation rate ranged from 81.9% suppression to 627% activation in the mCherry gene reporter system. Studies on crRNA point mutations and crRNA arrays were conducted in the CRISPR/dCpf1 system, with the highest transcriptional inhibitory rate reaching up to 530% higher than the control. Furthermore, the orthogonal CRISPR/dCas9-dCpf1 inhibition system displayed distinct dual functions, simultaneously regulating the mCherry gene by dCas9/gRNA (54.6% efficiency) and eGFP gene by dCpf1/crRNA (62.4% efficiency) without signal crosstalk. Results and discussion: Finally, we established an engineered yeast cell factory for β-carotene production using the CRISPR/dCas9-dCpf1 bifunctional system to achieve targeted modulation of both heterologous and endogenous metabolic pathways in Saccharomyces cerevisiae. The system includes an activation module of CRISPRa/dCas9 corresponding to a gRNA-protein complex library of 136 plasmids, and an inhibition module of CRISPRi/dCpf1 corresponding to a small crRNA array library. Results show that this CRISPR/dCas9-dCpf1 bifunctional orthogonal system is more quantitatively effective and expandable for simultaneous CRISPRa/i network control compared to single-guide edition, demonstrating higher potential of future application in yeast biotechnology.
Collapse
Affiliation(s)
- Qing Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, China
| | - Xiaoyu Ning
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, China
| | - Lei Qin
- Key Lab for Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, China
| | - Jun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Lab for Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, China
| |
Collapse
|
44
|
Xia Y, Li Y, Shen W, Yang H, Chen X. CRISPR-Cas Technology for Bioengineering Conventional and Non-Conventional Yeasts: Progress and New Challenges. Int J Mol Sci 2023; 24:15310. [PMID: 37894990 PMCID: PMC10607330 DOI: 10.3390/ijms242015310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (CRISPR-Cas) system has undergone substantial and transformative progress. Simultaneously, a spectrum of derivative technologies has emerged, spanning both conventional and non-conventional yeast strains. Non-conventional yeasts, distinguished by their robust metabolic pathways, formidable resilience against diverse stressors, and distinctive regulatory mechanisms, have emerged as a highly promising alternative for diverse industrial applications. This comprehensive review serves to encapsulate the prevailing gene editing methodologies and their associated applications within the traditional industrial microorganism, Saccharomyces cerevisiae. Additionally, it delineates the current panorama of non-conventional yeast strains, accentuating their latent potential in the realm of industrial and biotechnological utilization. Within this discourse, we also contemplate the potential value these tools offer alongside the attendant challenges they pose.
Collapse
Affiliation(s)
- Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yujie Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haiquan Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xianzhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
45
|
Chen X, Perry S, Wang B, Wang S, Hu J, Loxterkamp E, Dickman D, Han C. Tissue-specific knockout in Drosophila neuromuscular system reveals ESCRT's role in formation of synapse-derived extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559303. [PMID: 37808853 PMCID: PMC10557614 DOI: 10.1101/2023.09.25.559303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Tissue-specific gene knockout by CRISPR/Cas9 is a powerful approach for characterizing gene functions in animal development. However, this approach has been successfully applied in only a small number of Drosophila tissues. The Drosophila motor nervous system is an excellent model system for studying the biology of neuromuscular junction (NMJ). To expand tissue-specific CRISPR to the Drosophila motor system, here we present a CRISPR-mediated tissue-restricted mutagenesis (CRISPR-TRiM) toolkit for knocking out genes in motoneurons, muscles, and glial cells. We validated the efficacy of this toolkit by knocking out known genes in each tissue, demonstrated its orthogonal use with the Gal4/UAS binary expression system, and showed simultaneous knockout of multiple redundant genes. Using these tools, we discovered an essential role for SNARE pathways in NMJ maintenance. Furthermore, we demonstrate that the canonical ESCRT pathway suppresses NMJ bouton growth by downregulating the retrograde Gbb signaling. Lastly, we found that axon termini of motoneurons rely on ESCRT-mediated intra-axonal membrane trafficking to lease extracellular vesicles at the NMJ.
Collapse
Affiliation(s)
- Xinchen Chen
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Shuran Wang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jiayi Hu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Elizabeth Loxterkamp
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Chun Han
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
46
|
Hong KQ, Fu XM, Lei FF, Chen D, He DP. Selection of Salt-Tolerance and Ester-Producing Mutant Saccharomyces cerevisiae to Improve Flavour Formation of Soy Sauce during Co-Fermentation with Torulopsis globosa. Foods 2023; 12:3449. [PMID: 37761157 PMCID: PMC10529772 DOI: 10.3390/foods12183449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Soy sauce, as a traditional seasoning, is widely favoured by Chinese and other Asian people for its unique colour, smell, and taste. In this study, a salt-tolerance Saccharomyces cerevisiae strain HF-130 was obtained via three rounds of ARTP (Atmospheric and Room Temperature Plasma) mutagenesis and high-salt based screening. The ethanol production of mutant HF-130 was increased by 98.8% in very high gravity fermentation. Furthermore, ATF1 gene was overexpressed in strain HF-130, generating ester-producing strain HF-130-ATF1. The ethyl acetate concentration of strain HF-130-ATF1 was increased by 130% compared to the strain HF-130. Finally, the soy sauce fermentation performance of Torulopsis globosa and HF-130-ATF1 was compared with T. globosa, HF-130, HF-130-ATF1, and Torulopsis and HF-130. Results showed ethyl acetate and isoamyl acetate concentrations in co-fermentation of T. globosa and HF-130-ATF1 were increased by 2.8-fold and 3.3-fold, respectively. In addition, the concentrations of ethyl propionate, ethyl caprylate, phenylethyl acetate, ethyl caprate, isobutyl acetate, isoamyl alcohol, phenylethyl alcohol, and phenylacetaldehyde were also improved. Notably, other three important flavour components, trimethylsilyl decyl ester, 2-methylbutanol, and octanoic acid were also detected in the co-fermentation of T. globosa and HF-130-ATF1, but not detected in the control strain T. globosa. This work is of great significance for improving the traditional soy sauce fermentation mode, and thus improving the flavour formation of soy sauce.
Collapse
Affiliation(s)
- Kun-Qiang Hong
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China
| | - Xiao-Meng Fu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fen-Fen Lei
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China
| | - Dong Chen
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China
| | - Dong-Ping He
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China
| |
Collapse
|
47
|
Abstract
A fundamental challenge of metabolic engineering involves assembling and screening vast combinations of orthologous enzymes across a multistep biochemical pathway. Current pathway assembly workflows involve combining genetic parts ex vivo and assembling one pathway configuration per tube or well. Here, we present CRAPS, Chromosomal-Repair-Assisted Pathway Shuffling, an in vivo pathway engineering technique that enables the self-assembly of one pathway configuration per cell. CRAPS leverages the yeast chromosomal repair pathway and utilizes a pool of inactive, chromosomally integrated orthologous gene variants corresponding to a target multistep pathway. Supplying gRNAs to the CRAPS host activates the expression of one gene variant per pathway step, resulting in a unique pathway configuration in each cell. We deployed CRAPS to build more than 1000 theoretical combinations of a four-step carotenoid biosynthesis network. Sampling the CRAPS pathway space yielded strains with distinct color phenotypes and carotenoid product profiles. We anticipate that CRAPS will expedite strain engineering campaigns by enabling the generation and sampling of vast biochemical spaces.
Collapse
Affiliation(s)
- Christien B Dykstra
- Department of Biology, Concordia University, Montréal, Quebec, Canada H4B 1R6
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Quebec, Canada H4B 1R6
| | - Michael E Pyne
- Department of Biology, Concordia University, Montréal, Quebec, Canada H4B 1R6
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Quebec, Canada H4B 1R6
| | - Vincent J J Martin
- Department of Biology, Concordia University, Montréal, Quebec, Canada H4B 1R6
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Quebec, Canada H4B 1R6
| |
Collapse
|
48
|
Yuzbashev TV, Yuzbasheva EY, Melkina OE, Patel D, Bubnov D, Dietz H, Ledesma-Amaro R. A DNA assembly toolkit to unlock the CRISPR/Cas9 potential for metabolic engineering. Commun Biol 2023; 6:858. [PMID: 37596335 PMCID: PMC10439232 DOI: 10.1038/s42003-023-05202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
CRISPR/Cas9-based technologies are revolutionising the way we engineer microbial cells. One of the key advantages of CRISPR in strain design is that it enables chromosomal integration of marker-free DNA, eliminating laborious and often inefficient marker recovery procedures. Despite the benefits, assembling CRISPR/Cas9 editing systems is still not a straightforward process, which may prevent its use and applications. In this work, we have identified some of the main limitations of current Cas9 toolkits and designed improvements with the goal of making CRISPR technologies easier to access and implement. These include 1) A system to quickly switch between marker-free and marker-based integration constructs using both a Cre-expressing and standard Escherichia coli strains, 2) the ability to redirect multigene integration cassettes into alternative genomic loci via Golden Gate-based exchange of homology arms, 3) a rapid, simple in-vivo method to assembly guide RNA sequences via recombineering between Cas9-helper plasmids and single oligonucleotides. We combine these methodologies with well-established technologies into a comprehensive toolkit for efficient metabolic engineering using CRISPR/Cas9. As a proof of concept, we developed the YaliCraft toolkit for Yarrowia lipolytica, which is composed of a basic set of 147 plasmids and 7 modules with different purposes. We used the toolkit to generate and characterize a library of 137 promoters and to build a de novo strain synthetizing 373.8 mg/L homogentisic acid.
Collapse
Affiliation(s)
- Tigran V Yuzbashev
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
- Plant Sciences and the Bioeconomy, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK.
| | | | - Olga E Melkina
- NRC 'Kurchatov Institute'-GosNIIgenetika, Kurchatov Genomic Centre, 1-st Dorozhny Pr., 1, Moscow, 117545, Russia
| | - Davina Patel
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Dmitrii Bubnov
- NRC 'Kurchatov Institute'-GosNIIgenetika, Kurchatov Genomic Centre, 1-st Dorozhny Pr., 1, Moscow, 117545, Russia
| | - Heiko Dietz
- Kaesler Research Institute, Kaesler Nutrition GmbH, Fischkai 1, 27572, Bremerhaven, Germany
| | | |
Collapse
|
49
|
Zhu X, Fang D, Li D, Zhang J, Jiang H, Guo L, He Q, Zhang T, Macho AP, Wang E, Shen QH, Wang Y, Zhou JM, Ma W, Qiao Y. Phytophthora sojae boosts host trehalose accumulation to acquire carbon and initiate infection. Nat Microbiol 2023; 8:1561-1573. [PMID: 37386076 DOI: 10.1038/s41564-023-01420-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
Successful infection by pathogenic microbes requires effective acquisition of nutrients from their hosts. Root and stem rot caused by Phytophthora sojae is one of the most important diseases of soybean (Glycine max). However, the specific form and regulatory mechanisms of carbon acquired by P. sojae during infection remain unknown. In the present study, we show that P. sojae boosts trehalose biosynthesis in soybean through the virulence activity of an effector PsAvh413. PsAvh413 interacts with soybean trehalose-6-phosphate synthase 6 (GmTPS6) and increases its enzymatic activity to promote trehalose accumulation. P. sojae directly acquires trehalose from the host and exploits it as a carbon source to support primary infection and development in plant tissue. Importantly, GmTPS6 overexpression promoted P. sojae infection, whereas its knockdown inhibited the disease, suggesting that trehalose biosynthesis is a susceptibility factor that can be engineered to manage root and stem rot in soybean.
Collapse
Affiliation(s)
- Xiaoguo Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Di Fang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Die Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jianing Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Haixin Jiang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Liang Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qingyuan He
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Tianyu Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qian-Hua Shen
- Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jian-Min Zhou
- Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
50
|
Stepchenkova EI, Zadorsky SP, Shumega AR, Aksenova AY. Practical Approaches for the Yeast Saccharomyces cerevisiae Genome Modification. Int J Mol Sci 2023; 24:11960. [PMID: 37569333 PMCID: PMC10419131 DOI: 10.3390/ijms241511960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
The yeast S. cerevisiae is a unique genetic object for which a wide range of relatively simple, inexpensive, and non-time-consuming methods have been developed that allow the performing of a wide variety of genome modifications. Among the latter, one can mention point mutations, disruptions and deletions of particular genes and regions of chromosomes, insertion of cassettes for the expression of heterologous genes, targeted chromosomal rearrangements such as translocations and inversions, directed changes in the karyotype (loss or duplication of particular chromosomes, changes in the level of ploidy), mating-type changes, etc. Classical yeast genome manipulations have been advanced with CRISPR/Cas9 technology in recent years that allow for the generation of multiple simultaneous changes in the yeast genome. In this review we discuss practical applications of both the classical yeast genome modification methods as well as CRISPR/Cas9 technology. In addition, we review methods for ploidy changes, including aneuploid generation, methods for mating type switching and directed DSB. Combined with a description of useful selective markers and transformation techniques, this work represents a nearly complete guide to yeast genome modification.
Collapse
Affiliation(s)
- Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.I.S.); (S.P.Z.); (A.R.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Sergey P. Zadorsky
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.I.S.); (S.P.Z.); (A.R.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Andrey R. Shumega
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.I.S.); (S.P.Z.); (A.R.S.)
| | - Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|