1
|
Yan K, Zhang H, Qu C, Sun Y, Sun X, Xu Z. EVL is not essential for cuticular plate and stereocilia development in mouse auditory hair cells. FEBS Lett 2024. [PMID: 39300480 DOI: 10.1002/1873-3468.15021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
In inner ear hair cells, the stereocilia are inserted into a dense F-actin-enriched meshwork named the cuticular plate, which provides support to the stereocilia. Enah/Vasp-like (EVL) was shown to localize at the cuticular plate, and evl knockdown leads to disrupted cuticular plate and disorganized stereocilia in Xenopus hair cells. In the present work, we show that Evl transcripts are specifically expressed in mouse hair cells, and EVL is localized to the cuticular plate. However, the cuticular plate and stereocilia are unaffected by Evl knockout, and auditory function is largely normal in Evl knockout mice. In conclusion, our present data suggest that EVL is not essential for cuticular plate and stereocilia development in mouse auditory hair cells.
Collapse
Affiliation(s)
- Keji Yan
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Haoqing Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Chengli Qu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yixiao Sun
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiaoyang Sun
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
2
|
Rouaud F, Maupérin M, Mutero-Maeda A, Citi S. Cingulin-nonmuscle myosin interaction plays a role in epithelial morphogenesis and cingulin nanoscale organization. J Cell Sci 2024; 137:jcs262353. [PMID: 39319625 PMCID: PMC11449440 DOI: 10.1242/jcs.262353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Cingulin (CGN) tethers nonmuscle myosin 2B (NM2B; heavy chain encoded by MYH10) to tight junctions (TJs) to modulate junctional and apical cortex mechanics. Here, we studied the role of the CGN-nonmuscle myosin 2 (NM2) interaction in epithelial morphogenesis and nanoscale organization of CGN by expressing wild-type and mutant CGN constructs in CGN-knockout Madin-Darby canine kidney (MDCK) epithelial cells. We show that the NM2-binding region of CGN is required to promote normal cyst morphogenesis of MDCK cells grown in three dimensions and to maintain the C-terminus of CGN in a distal position with respect to the ZO-2 (or TJP2)-containing TJ submembrane region, whereas the N-terminus of CGN is localized more proximal to the TJ membrane. We also show that the CGN mutant protein that causes deafness in human and mouse models is localized at TJs but does not bind to NM2B, resulting in decreased TJ membrane tortuosity. These results indicate that the interaction between CGN and NM2B regulates epithelial tissue morphogenesis and nanoscale organization of CGN and suggest that CGN regulates the auditory function of hair cells by organizing the actomyosin cytoskeleton to modulate the mechanics of the apical and junctional cortex.
Collapse
Affiliation(s)
- Florian Rouaud
- Department of Molecular and Cellular Biology, University of Geneva, 30, Quai E. Ansermet, 1205 Geneva, Switzerland
| | - Marine Maupérin
- Department of Molecular and Cellular Biology, University of Geneva, 30, Quai E. Ansermet, 1205 Geneva, Switzerland
| | - Annick Mutero-Maeda
- Department of Molecular and Cellular Biology, University of Geneva, 30, Quai E. Ansermet, 1205 Geneva, Switzerland
| | - Sandra Citi
- Department of Molecular and Cellular Biology, University of Geneva, 30, Quai E. Ansermet, 1205 Geneva, Switzerland
| |
Collapse
|
3
|
Zeng Q, Jiang T, Wang J. Role of LMO7 in cancer (Review). Oncol Rep 2024; 52:117. [PMID: 38994754 PMCID: PMC11267500 DOI: 10.3892/or.2024.8776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer constitutes a multifaceted ailment characterized by the dysregulation of numerous genes and pathways. Among these, LIM domain only 7 (LMO7) has emerged as a significant player in various cancer types, garnering substantial attention for its involvement in tumorigenesis and cancer progression. This review endeavors to furnish a comprehensive discourse on the functional intricacies and mechanisms of LMO7 in cancer, with a particular emphasis on its potential as both a therapeutic target and prognostic indicator. It delves into the molecular attributes of LMO7, its implications in cancer etiology and the underlying mechanisms propelling its oncogenic properties. Furthermore, it underscores the extant challenges and forthcoming prospects in targeting LMO7 for combating cancer.
Collapse
Affiliation(s)
- Qun Zeng
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, Hunan 410000, P.R. China
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Tingting Jiang
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, Hunan 410000, P.R. China
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Jing Wang
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
4
|
Dai S, Peng Y, Wang G, Chen C, Chen Q, Yin L, Yan H, Zhang K, Tu M, Lu Z, Wei J, Li Q, Wu J, Jiang K, Zhu Y, Miao Y. LIM domain only 7: a novel driver of immune evasion through regulatory T cell differentiation and chemotaxis in pancreatic ductal adenocarcinoma. Cell Death Differ 2024:10.1038/s41418-024-01358-7. [PMID: 39143228 DOI: 10.1038/s41418-024-01358-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
With advancements in genomics and immunology, immunotherapy has emerged as a revolutionary strategy for tumor treatment. However, pancreatic ductal adenocarcinoma (PDAC), an immunologically "cold" tumor, exhibits limited responsiveness to immunotherapy. This study aimed to address the urgent need to uncover PDAC's immune microenvironment heterogeneity and identify the molecular mechanisms driving immune evasion. Using single-cell RNA sequencing datasets and spatial proteomics, we discovered LIM domain only 7 (LMO7) in PDAC cells as a previously unrecognized driver of immune evasion through Treg cell enrichment. LMO7 was positively correlated with infiltrating regulatory T cells (Tregs) and dysfunctional CD8+ T cells. A series of in vitro and in vivo experiments demonstrated LMO7's significant role in promoting Treg cell differentiation and chemotaxis while inhibiting CD8+ T cells and natural killer cell cytotoxicity. Mechanistically, LMO7, through its LIM domain, directly bound and promoted the ubiquitination and degradation of Foxp1. Foxp1 negatively regulated transforming growth factor-beta (TGF-β) and C-C motif chemokine ligand 5 (CCL5) expression by binding to sites 2 and I/III, respectively. Elevated TGF-β and CCL5 levels contribute to Treg cell enrichment, inducing immune evasion in PDAC. Combined treatment with TGF-β/CCL5 antibodies, along with LMO7 inhibition, effectively reversed immune evasion in PDAC, activated the immune response, and prolonged mouse survival. Therefore, this study identified LMO7 as a novel facilitator in driving immune evasion by promoting Treg cell enrichment and inhibiting cytotoxic effector functions. Targeting the LMO7-Foxp1-TGF-β/CCL5 axis holds promise as a therapeutic strategy for PDAC. Graphical abstract revealing LMO7 as a novel facilitator in driving immune evasion by promoting Tregs differentiation and chemotaxis, inducing CD8+ T/natural killer cells inhibition.
Collapse
Affiliation(s)
- Shangnan Dai
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Yunpeng Peng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Guangfu Wang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Chongfa Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Qiuyang Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Lingdi Yin
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Han Yan
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Kai Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Min Tu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Jishu Wei
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Qiang Li
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Junli Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Yi Zhu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China.
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China.
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China.
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China.
- Pancreas Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Duan S, Lou X, Chen S, Jiang H, Chen D, Yin R, Li M, Gou Y, Zhao W, Sun L, Qian F. Macrophage LMO7 deficiency facilitates inflammatory injury via metabolic-epigenetic reprogramming. Acta Pharm Sin B 2023; 13:4785-4800. [PMID: 38045056 PMCID: PMC10692378 DOI: 10.1016/j.apsb.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 12/05/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a formidable disease due to its complex pathogenesis. Macrophages, as a major immune cell population in IBD, are crucial for gut homeostasis. However, it is still unveiled how macrophages modulate IBD. Here, we found that LIM domain only 7 (LMO7) was downregulated in pro-inflammatory macrophages, and that LMO7 directly degraded 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) through K48-mediated ubiquitination in macrophages. As an enzyme that regulates glycolysis, PFKFB3 degradation led to the glycolytic process inhibition in macrophages, which in turn inhibited macrophage activation and ultimately attenuated murine colitis. Moreover, we demonstrated that PFKFB3 was required for histone demethylase Jumonji domain-containing protein 3 (JMJD3) expression, thereby inhibiting the protein level of trimethylation of histone H3 on lysine 27 (H3K27me3). Overall, our results indicated the LMO7/PFKFB3/JMJD3 axis is essential for modulating macrophage function and IBD pathogenesis. Targeting LMO7 or macrophage metabolism could potentially be an effective strategy for treating inflammatory diseases.
Collapse
Affiliation(s)
- Shixin Duan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Lou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiyi Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongchao Jiang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongxin Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Yin
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengkai Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuseng Gou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjuan Zhao
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Sun
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Qian
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Zhou LY, Jin CX, Wang WX, Song L, Shin JB, Du TT, Wu H. Differential regulation of hair cell actin cytoskeleton mediated by SRF and MRTFB. eLife 2023; 12:e90155. [PMID: 37982489 PMCID: PMC10703445 DOI: 10.7554/elife.90155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/17/2023] [Indexed: 11/21/2023] Open
Abstract
The MRTF-SRF pathway has been extensively studied for its crucial role in driving the expression of a large number of genes involved in actin cytoskeleton of various cell types. However, the specific contribution of MRTF-SRF in hair cells remains unknown. In this study, we showed that hair cell-specific deletion of Srf or Mrtfb, but not Mrtfa, leads to similar defects in the development of stereocilia dimensions and the maintenance of cuticular plate integrity. We used fluorescence-activated cell sorting-based hair cell RNA-Seq analysis to investigate the mechanistic underpinnings of the changes observed in Srf and Mrtfb mutants, respectively. Interestingly, the transcriptome analysis revealed distinct profiles of genes regulated by Srf and Mrtfb, suggesting different transcriptional regulation mechanisms of actin cytoskeleton activities mediated by Srf and Mrtfb. Exogenous delivery of calponin 2 using Adeno-associated virus transduction in Srf mutants partially rescued the impairments of stereocilia dimensions and the F-actin intensity of cuticular plate, suggesting the involvement of Cnn2, as an Srf downstream target, in regulating the hair bundle morphology and cuticular plate actin cytoskeleton organization. Our study uncovers, for the first time, the unexpected differential transcriptional regulation of actin cytoskeleton mediated by Srf and Mrtfb in hair cells, and also demonstrates the critical role of SRF-CNN2 in modulating actin dynamics of the stereocilia and cuticular plate, providing new insights into the molecular mechanism underlying hair cell development and maintenance.
Collapse
Affiliation(s)
- Ling-Yun Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Chen-Xi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Wen-Xiao Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Jung-Bum Shin
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Ting-Ting Du
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| |
Collapse
|
7
|
Zhu G, Huang Y, Zhang L, Yan K, Qiu C, He Y, Liu Q, Zhu C, Morín M, Moreno‐Pelayo MÁ, Zhu M, Cao X, Zhou H, Qian X, Xu Z, Chen J, Gao X, Wan G. Cingulin regulates hair cell cuticular plate morphology and is required for hearing in human and mouse. EMBO Mol Med 2023; 15:e17611. [PMID: 37691516 PMCID: PMC10630877 DOI: 10.15252/emmm.202317611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
Cingulin (CGN) is a cytoskeleton-associated protein localized at the apical junctions of epithelial cells. CGN interacts with major cytoskeletal filaments and regulates RhoA activity. However, physiological roles of CGN in development and human diseases are currently unknown. Here, we report a multi-generation family presenting with autosomal dominant non-syndromic hearing loss (ADNSHL) that co-segregates with a CGN heterozygous truncating variant, c.3330delG (p.Leu1110Leufs*17). CGN is normally expressed at the apical cell junctions of the organ of Corti, with enriched localization at hair cell cuticular plates and circumferential belts. In mice, the putative disease-causing mutation results in reduced expression and abnormal subcellular localization of the CGN protein, abolishes its actin polymerization activity, and impairs the normal morphology of hair cell cuticular plates and hair bundles. Hair cell-specific Cgn knockout leads to high-frequency hearing loss. Importantly, Cgn mutation knockin mice display noise-sensitive, progressive hearing loss and outer hair cell degeneration. In summary, we identify CGN c.3330delG as a pathogenic variant for ADNSHL and reveal essential roles of CGN in the maintenance of cochlear hair cell structures and auditory function.
Collapse
Affiliation(s)
- Guang‐Jie Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Yuhang Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Linqing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Keji Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Cui Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Yihan He
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Qing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Chengwen Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Matías Morín
- Servicio de GenéticaHospital Universitario Ramón y Cajal, IRYCISMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos III (CB06/07/0048; CIBERER‐ISCIII)MadridSpain
| | - Miguel Ángel Moreno‐Pelayo
- Servicio de GenéticaHospital Universitario Ramón y Cajal, IRYCISMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos III (CB06/07/0048; CIBERER‐ISCIII)MadridSpain
| | - Min‐Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical ScienceNanjing Medical UniversityNanjingChina
| | - Han Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Xiaoyun Qian
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Jie Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Xia Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Guoqiang Wan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| |
Collapse
|
8
|
Lewis MA, Schulte J, Matthews L, Vaden KI, Steves CJ, Williams FMK, Schulte BA, Dubno JR, Steel KP. Accurate phenotypic classification and exome sequencing allow identification of novel genes and variants associated with adult-onset hearing loss. PLoS Genet 2023; 19:e1011058. [PMID: 38011198 PMCID: PMC10718637 DOI: 10.1371/journal.pgen.1011058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/13/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
Adult-onset progressive hearing loss is a common, complex disease with a strong genetic component. Although to date over 150 genes have been identified as contributing to human hearing loss, many more remain to be discovered, as does most of the underlying genetic diversity. Many different variants have been found to underlie adult-onset hearing loss, but they tend to be rare variants with a high impact upon the gene product. It is likely that combinations of more common, lower impact variants also play a role in the prevalence of the disease. Here we present our exome study of hearing loss in a cohort of 532 older adult volunteers with extensive phenotypic data, including 99 older adults with normal hearing, an important control set. Firstly, we carried out an outlier analysis to identify genes with a high variant load in older adults with hearing loss compared to those with normal hearing. Secondly, we used audiometric threshold data to identify individual variants which appear to contribute to different threshold values. We followed up these analyses in a second cohort. Using these approaches, we identified genes and variants linked to better hearing as well as those linked to worse hearing. These analyses identified some known deafness genes, demonstrating proof of principle of our approach. However, most of the candidate genes are novel associations with hearing loss. While the results support the suggestion that genes responsible for severe deafness may also be involved in milder hearing loss, they also suggest that there are many more genes involved in hearing which remain to be identified. Our candidate gene lists may provide useful starting points for improved diagnosis and drug development.
Collapse
Affiliation(s)
- Morag A. Lewis
- Wolfson Centre for Age-Related Diseases, King’s College London, United Kingdom
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jennifer Schulte
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Lois Matthews
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kenneth I. Vaden
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Claire J. Steves
- Department of Twin Research and Genetic Epidemiology, King’s College London, School of Life Course and Population Sciences, London, United Kingdom
| | - Frances M. K. Williams
- Department of Twin Research and Genetic Epidemiology, King’s College London, School of Life Course and Population Sciences, London, United Kingdom
| | - Bradley A. Schulte
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Judy R. Dubno
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Karen P. Steel
- Wolfson Centre for Age-Related Diseases, King’s College London, United Kingdom
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
9
|
Park J, Bird JE. The actin cytoskeleton in hair bundle development and hearing loss. Hear Res 2023; 436:108817. [PMID: 37300948 PMCID: PMC10408727 DOI: 10.1016/j.heares.2023.108817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Inner ear hair cells assemble mechanosensitive hair bundles on their apical surface that transduce sounds and accelerations. Each hair bundle is comprised of ∼ 100 individual stereocilia that are arranged into rows of increasing height and width; their specific and precise architecture being necessary for mechanoelectrical transduction (MET). The actin cytoskeleton is fundamental to establishing this architecture, not only by forming the structural scaffold shaping each stereocilium, but also by composing rootlets and the cuticular plate that together provide a stable foundation supporting each stereocilium. In concert with the actin cytoskeleton, a large assortment of actin-binding proteins (ABPs) function to cross-link actin filaments into specific topologies, as well as control actin filament growth, severing, and capping. These processes are individually critical for sensory transduction and are all disrupted in hereditary forms of human hearing loss. In this review, we provide an overview of actin-based structures in the hair bundle and the molecules contributing to their assembly and functional properties. We also highlight recent advances in mechanisms driving stereocilia elongation and how these processes are tuned by MET.
Collapse
Affiliation(s)
- Jinho Park
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
10
|
Oghalai JS. Linear mixed-effect modeling of organ of Corti vibratory tuning curves. Hear Res 2023; 435:108820. [PMID: 37276685 PMCID: PMC10330841 DOI: 10.1016/j.heares.2023.108820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Optical coherence tomography has become the most popular approach to experimental measures of sound-induced vibrations within the mammalian cochlea. Because it is relatively easy to use and works in the unopened cochlea, the measurement of vibratory tuning curves has become highly reliable, and averaging data from multiple animals in different experimental cohorts is now possible. Here I tested a modern statistical approach to compare cohorts for differences in the magnitude and phase of vibration. A linear mixed-effect approach with first, second, third, and fourth-order models to fit the data was tested. The third-order model best fit both the magnitude and phase data without having terms that did not contribute substantively to improving the R2 or the p-value for the independent variables. It identified a difference between cohorts of mice that were different and no difference between cohorts that should not be different. Thus, this approach provides a way to simply compare a full set of tuning curves between cohorts. While further analyses by the investigator will always be needed to study specific details related to the study hypothesis, this statistical technique provides a simple way for the cochlear physiologist to perform an initial assessment of whether the cohorts are same or different.
Collapse
Affiliation(s)
- John S Oghalai
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California.
| |
Collapse
|
11
|
Lewis MA, Schulte J, Matthews L, Vaden KI, Steves CJ, Williams FMK, Schulte BA, Dubno JR, Steel KP. Accurate phenotypic classification and exome sequencing allow identification of novel genes and variants associated with adult-onset hearing loss. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.27.23289040. [PMID: 37163093 PMCID: PMC10168485 DOI: 10.1101/2023.04.27.23289040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Adult-onset progressive hearing loss is a common, complex disease with a strong genetic component. Although to date over 150 genes have been identified as contributing to human hearing loss, many more remain to be discovered, as does most of the underlying genetic diversity. Many different variants have been found to underlie adult-onset hearing loss, but they tend to be rare variants with a high impact upon the gene product. It is likely that combinations of more common, lower impact variants also play a role in the prevalence of the disease. Here we present our exome study of hearing loss in a cohort of 532 older adult volunteers with extensive phenotypic data, including 99 older adults with normal hearing, an important control set. Firstly, we carried out an outlier analysis to identify genes with a high variant load in older adults with hearing loss compared to those with normal hearing. Secondly, we used audiometric threshold data to identify individual variants which appear to contribute to different threshold values. We followed up these analyses in a second cohort. Using these approaches, we identified genes and variants linked to better hearing as well as those linked to worse hearing. These analyses identified some known deafness genes, demonstrating proof of principle of our approach. However, most of the candidate genes are novel associations with hearing loss. While the results support the suggestion that genes responsible for severe deafness may also be involved in milder hearing loss, they also suggest that there are many more genes involved in hearing which remain to be identified. Our candidate gene lists may provide useful starting points for improved diagnosis and drug development.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Centre for Age-Related Diseases, King's College London, SE1 1UL, UK
- The Medical University of South Carolina, SC, USA
| | | | | | | | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, School of Life Course and Population Sciences, London, UK
| | - Frances M K Williams
- Department of Twin Research and Genetic Epidemiology, King's College London, School of Life Course and Population Sciences, London, UK
| | | | - Judy R Dubno
- The Medical University of South Carolina, SC, USA
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, SE1 1UL, UK
- The Medical University of South Carolina, SC, USA
| |
Collapse
|
12
|
Chatterjee P, Morgan CP, Krey JF, Benson C, Goldsmith J, Bateschell M, Ricci AJ, Barr-Gillespie PG. GIPC3 couples to MYO6 and PDZ domain proteins and shapes the hair cell apical region. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530466. [PMID: 36909580 PMCID: PMC10002731 DOI: 10.1101/2023.02.28.530466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
GIPC3 has been implicated in auditory function. Initially localized to the cytoplasm of inner and outer hair cells of the cochlea, GIPC3 increasingly concentrated in cuticular plates and at cell junctions during postnatal development. Early postnatal Gipc3 KO/KO mice had mostly normal mechanotransduction currents, but had no auditory brainstem response at one month of age. Cuticular plates of Gipc3 KO/KO hair cells did not flatten during development as did those of controls; moreover, hair bundles were squeezed along the cochlear axis in mutant hair cells. Junctions between inner hair cells and adjacent inner phalangeal cells were also severely disrupted in Gipc3 KO/KO cochleas. GIPC3 bound directly to MYO6, and the loss of MYO6 led to altered distribution of GIPC3. Immunoaffinity purification of GIPC3 from chicken inner ear extracts identified co-precipitating proteins associated with adherens junctions, intermediate filament networks, and the cuticular plate. Several of immunoprecipitated proteins contained GIPC-family consensus PDZ binding motifs (PBMs), including MYO18A, which binds directly to the PDZ domain of GIPC3. We propose that GIPC3 and MYO6 couple to PBMs of cytoskeletal and cell-junction proteins to shape the cuticular plate. Summary statement The PDZ-domain protein GIPC3 couples the molecular motors MYO6 and MYO18A to actin cytoskeleton structures in hair cells. GIPC3 is necessary for shaping the hair cell’s cuticular plate and hence the arrangement of the stereocilia in the hair bundle.
Collapse
Affiliation(s)
- Paroma Chatterjee
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Clive P. Morgan
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Jocelyn F. Krey
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Connor Benson
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Jennifer Goldsmith
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael Bateschell
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Anthony J. Ricci
- Department of Otolaryngology—Head & Neck Surgery, Stanford University, Stanford, California 94305, USA ss
| | - Peter G. Barr-Gillespie
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
- Manuscript correspondence at
| |
Collapse
|
13
|
Zhen YY, Wu CH, Chen HC, Chang EE, Lee JJ, Chen WY, Chang JM, Tseng PY, Wang YF, Hung CC. Coordination of LMO7 with FAK Signaling Sustains Epithelial Integrity in Renal Epithelia Exposed to Osmotic Pressure. Cells 2022; 11:cells11233805. [PMID: 36497072 PMCID: PMC9741450 DOI: 10.3390/cells11233805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The kidney epithelial barrier has multifaceted functions in body fluids, electrolyte homeostasis, and urine production. The renal epithelial barrier (REB) frequently faces and challenges osmotic dynamics, which gives rise to osmotic pressure (a physical force). Osmotic pressure overloading can crack epithelial integrity and damage the REB. The endurance of REB to osmotic pressure forces remains obscure. LMO7 (LIM domain only 7) is a protein associated with the cell-cell junctional complex and cortical F-actin. Its upregulation was observed in cells cultured under hypertonic conditions. LMO7 is predominantly distributed in renal tubule epithelial cells. Hypertonic stimulation leads to LMO7 and F-actin assembly in the cortical stress fibers of renal epithelial cells. Hypertonic-isotonic alternation, as a pressure force pushing the plasma membrane inward/outward, was set as osmotic disturbance and was applied to test FAK signaling and LMO7 functioning in maintaining junctional integrity. LMO7 depletion in cells resulted in junctional integrity loss in the epithelial sheet-cultured hypertonic medium or hypertonic-isotonic alternation. Conversely, FAK inhibition by PF-573228 led to failure in robust cortical F-actin assembly and LMO7 association with cortical F-actin in epithelial cells responding to hypertonic stress. Epithelial integrity against osmotic stress and LMO7 and FAK signaling are involved in assembling robust cortical F-actin and maintaining junctional integrity. LMO7 elaborately manages FAK activation in renal epithelial cells, which was demonstrated excessive FAK activation present in LMO7 depleted NRK-52E cells and epithelial integrity loss when cells with LMO7 depletion were exposed to a hypertonic environment. Our data suggests that LMO7 regulates FAK activation and is responsible for maintaining REB under osmotic disturbance.
Collapse
Affiliation(s)
- Yen-Yi Zhen
- Division of Nephrology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Hsing Wu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan 33303, Taiwan
| | - Hung-Chun Chen
- Division of Nephrology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Eddy Essen Chang
- Division of Nephrology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jia-Jung Lee
- Division of Nephrology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wei-Yu Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 83701, Taiwan
| | - Jer-Ming Chang
- Division of Nephrology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Pei-Yun Tseng
- Division of Nephrology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yue-Fang Wang
- Division of Nephrology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chi-Chih Hung
- Division of Nephrology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence:
| |
Collapse
|
14
|
Quiñones PM, Meenderink SWF, Applegate BE, Oghalai JS. Unloading outer hair cell bundles in vivo does not yield evidence of spontaneous oscillations in the mouse cochlea. Hear Res 2022; 423:108473. [PMID: 35287989 PMCID: PMC9339463 DOI: 10.1016/j.heares.2022.108473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022]
Abstract
Along with outer hair cell (OHC) somatic electromotility as the actuator of cochlear amplification, active hair bundle motility may be a complementary mechanism in the mammalian auditory system. Here, we searched the mouse cochlea for the presence of spontaneous bundle oscillations that have been observed in non-mammalian ears. In those systems, removal of the overlying membrane is necessary for spontaneous bundle oscillations to manifest. Thus, we used a genetic mouse model with a C1509G (cysteine-to-glycine) point mutation in the Tecta gene where the tectorial (TM) is lifted away from the OHC bundles, allowing us to explore whether unloaded bundles spontaneously oscillate. We used VOCTV in vivo to detect OHC length changes due to electromotility as a proxy for the spontaneous opening and closing of the mechanoelectrical transduction (MET) channels associated with bundle oscillation. In wild type mice with the TM attached to OHC bundles, we did find peaks in vibratory magnitude spectra. Such peaks were not observed in the mutants where the TM is detached from the OHC bundles. Statistical analysis of the time signals indicates that these peaks do not signify active oscillations. Rather, they are filtered responses of the sensitive wild type cochlea to weak background noise. We therefore conclude that, to the limits of our system (∼30 pm), there is no spontaneous mechanical activity that manifests as oscillations in OHC electromotility within the mouse cochlea, arguing that unloaded OHC bundles do not oscillate in vivo. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
Affiliation(s)
- Patricia M Quiñones
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| | | | - Brian E Applegate
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - John S Oghalai
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Population-scale analysis of common and rare genetic variation associated with hearing loss in adults. Commun Biol 2022; 5:540. [PMID: 35661827 PMCID: PMC9166757 DOI: 10.1038/s42003-022-03408-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/23/2022] [Indexed: 12/29/2022] Open
Abstract
To better understand the genetics of hearing loss, we performed a genome-wide association meta-analysis with 125,749 cases and 469,497 controls across five cohorts. We identified 53/c loci affecting hearing loss risk, including common coding variants in COL9A3 and TMPRSS3. Through exome sequencing of 108,415 cases and 329,581 controls, we observed rare coding associations with 11 Mendelian hearing loss genes, including additive effects in known hearing loss genes GJB2 (Gly12fs; odds ratio [OR] = 1.21, P = 4.2 × 10-11) and SLC26A5 (gene burden; OR = 1.96, P = 2.8 × 10-17). We also identified hearing loss associations with rare coding variants in FSCN2 (OR = 1.14, P = 1.9 × 10-15) and KLHDC7B (OR = 2.14, P = 5.2 × 10-30). Our results suggest a shared etiology between Mendelian and common hearing loss in adults. This work illustrates the potential of large-scale exome sequencing to elucidate the genetic architecture of common disorders where both common and rare variation contribute to risk.
Collapse
|
16
|
Matsuda M, Chu CW, Sokol SY. Lmo7 recruits myosin II heavy chain to regulate actomyosin contractility and apical domain size in Xenopus ectoderm. Development 2022; 149:275389. [PMID: 35451459 PMCID: PMC9188752 DOI: 10.1242/dev.200236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/30/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Apical constriction, or a reduction in size of the apical domain, underlies many morphogenetic events during development. Actomyosin complexes play an essential role in apical constriction; however, the detailed analysis of molecular mechanisms is still pending. Here, we show that Lim domain only protein 7 (Lmo7), a multidomain adaptor at apical junctions, promotes apical constriction in the Xenopus superficial ectoderm, whereas apical domain size increases in Lmo7-depleted cells. Lmo7 is primarily localized at apical junctions and promotes the formation of the dense circumferential actomyosin belt. Strikingly, Lmo7 binds non-muscle myosin II (NMII) and recruits it to apical junctions and the apical cortex. This NMII recruitment is essential for Lmo7-mediated apical constriction. Lmo7 knockdown decreases NMIIA localization at apical junctions and delays neural tube closure in Xenopus embryos. Our findings suggest that Lmo7 serves as a scaffold that regulates actomyosin contractility and apical domain size.
Collapse
Affiliation(s)
- Miho Matsuda
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chih-Wen Chu
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
17
|
Liu W, Johansson Å, Rask-Andersen H, Rask-Andersen M. A combined genome-wide association and molecular study of age-related hearing loss in H. sapiens. BMC Med 2021; 19:302. [PMID: 34847940 PMCID: PMC8638543 DOI: 10.1186/s12916-021-02169-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Sensorineural hearing loss is one of the most common sensory deficiencies. However, the molecular contribution to age-related hearing loss is not fully elucidated. METHODS We performed genome-wide association studies (GWAS) for hearing loss-related traits in the UK Biobank (N = 362,396) and selected a high confidence set of ten hearing-associated gene products for staining in human cochlear samples: EYA4, LMX1A, PTK2/FAK, UBE3B, MMP2, SYNJ2, GRM5, TRIOBP, LMO-7, and NOX4. RESULTS All proteins were found to be expressed in human cochlear structures. Our findings illustrate cochlear structures that mediate mechano-electric transduction of auditory stimuli, neuronal conductance, and neuronal plasticity to be involved in age-related hearing loss. CONCLUSIONS Our results suggest common genetic variation to influence structural resilience to damage as well as cochlear recovery after trauma, which protect against accumulated damage to cochlear structures and the development of hearing loss over time.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Section of Otorhinolaryngology and Head & Neck Surgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Section of Otorhinolaryngology and Head & Neck Surgery, Uppsala University, SE-751 85, Uppsala, Sweden.
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
18
|
Guérin A, Roy NH, Kugler EM, Berry L, Burkhardt JK, Shin JB, Striepen B. Cryptosporidium rhoptry effector protein ROP1 injected during invasion targets the host cytoskeletal modulator LMO7. Cell Host Microbe 2021; 29:1407-1420.e5. [PMID: 34348092 PMCID: PMC8475647 DOI: 10.1016/j.chom.2021.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/19/2021] [Accepted: 07/02/2021] [Indexed: 12/30/2022]
Abstract
The parasite Cryptosporidium invades and replicates in intestinal epithelial cells and is a leading cause of diarrheal disease and early childhood mortality. The molecular mechanisms that underlie infection and pathogenesis are largely unknown. Here, we delineate the events of host cell invasion and uncover a mechanism unique to Cryptosporidium. We developed a screen to identify parasite effectors, finding the injection of multiple parasite proteins into the host from the rhoptry organelle. These factors are targeted to diverse locations within the host cell and its interface with the parasite. One identified effector, rhoptry protein 1 (ROP1), accumulates in the terminal web of enterocytes through direct interaction with the host protein LIM domain only 7 (LMO7) an organizer of epithelial cell polarity and cell-cell adhesion. Genetic ablation of LMO7 or ROP1 in mice or parasites, respectively, impacts parasite burden in vivo in opposite ways. Taken together, these data provide molecular insight into how Cryptosporidium manipulates its intestinal host niche.
Collapse
Affiliation(s)
- Amandine Guérin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathan H Roy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily M Kugler
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurence Berry
- LPHI, CNRS, Université de Montpellier, Montpellier 34095, France
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jung-Bum Shin
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Koo H, Hwang JY, Jung S, Park H, Bok J, Park JW. Position Specific Alternative Splicing and Gene Expression Profiles Along the Tonotopic Axis of Chick Cochlea. Front Mol Biosci 2021; 8:726976. [PMID: 34568429 PMCID: PMC8456117 DOI: 10.3389/fmolb.2021.726976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Alternative splicing (AS) refers to the production of multiple mRNA isoforms from a single gene due to alternative selection of exons or splice sites during pre-mRNA splicing. It is a primary mechanism of gene regulation in higher eukaryotes and significantly expands the functional complexity of eukaryotic organisms, contributing to animal development and disease. Recent studies have shown that AS also influences functional diversity by affecting the transcriptomic and proteomic profiles in a position-dependent manner in a single organ. The peripheral hearing organ, the cochlea, is organized to detect sounds at different frequencies depending on its location along the longitudinal axis. This unique functional configuration, the tonotopy, is known to be facilitated by differential gene expression along the cochlear duct. We profiled transcriptome-wide gene expression and AS changes that occur within the different positions of chick cochlea. These analyses revealed distinct gene expression profiles and AS, including a splicing program that is unique to tonotopy. Changes in the expression of splicing factors PTBP3, ESRP1, and ESRP2 were demonstrated to contribute to position-specific AS. RNA-binding motif enrichment analysis near alternatively spliced exons provided further insight into the combinatorial regulation of AS at different positions by different RNA-binding proteins. These data, along with gene ontology (GO) analysis, represent a comprehensive analysis of the dynamic regulation of AS at different positions in chick cochlea.
Collapse
Affiliation(s)
- Heiyeun Koo
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Yeon Hwang
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, United States
| | - Sungbo Jung
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, United States
| | - Hyeyoung Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Juw Won Park
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, United States
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, United States
| |
Collapse
|
20
|
Sun S, Li S, Luo Z, Ren M, He S, Wang G, Liu Z. Dual expression of Atoh1 and Ikzf2 promotes transformation of adult cochlear supporting cells into outer hair cells. eLife 2021; 10:66547. [PMID: 34477109 PMCID: PMC8439656 DOI: 10.7554/elife.66547] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022] Open
Abstract
Mammalian cochlear outer hair cells (OHCs) are essential for hearing. Severe hearing impairment follows OHC degeneration. Previous attempts at regenerating new OHCs from cochlear supporting cells (SCs) have been unsuccessful, notably lacking expression of the key OHC motor protein, Prestin. Thus, regeneration of Prestin+ OHCs represents a barrier to restore auditory function in vivo. Here, we reported the successful in vivo conversion of adult mouse cochlear SCs into Prestin+ OHC-like cells through the concurrent induction of two key transcriptional factors known to be necessary for OHC development: Atoh1 and Ikzf2. Single-cell RNA sequencing revealed the upregulation of 729 OHC genes and downregulation of 331 SC genes in OHC-like cells. The resulting differentiation status of these OHC-like cells was much more advanced than previously achieved. This study thus established an efficient approach to induce the regeneration of Prestin+ OHCs, paving the way for in vivo cochlear repair via SC transdifferentiation.
Collapse
Affiliation(s)
- Suhong Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhengnan Luo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Minhui Ren
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shunji He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
21
|
Moreira A, Croze M, Delehelle F, Cussat-Blanc S, Luga H, Mollereau C, Balaresque P. Hearing Sensitivity of Primates: Recurrent and Episodic Positive Selection in Hair Cells and Stereocilia Protein-Coding Genes. Genome Biol Evol 2021; 13:6302699. [PMID: 34137817 PMCID: PMC8358225 DOI: 10.1093/gbe/evab133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2021] [Indexed: 12/29/2022] Open
Abstract
The large spectrum of hearing sensitivity observed in primates results from the impact of environmental and behavioral pressures to optimize sound perception and localization. Although evidence of positive selection in auditory genes has been detected in mammals including in Hominoids, selection has never been investigated in other primates. We analyzed 123 genes highly expressed in the inner ear of 27 primate species and tested to what extent positive selection may have shaped these genes in the order Primates tree. We combined both site and branch-site tests to obtain a comprehensive picture of the positively selected genes (PSGs) involved in hearing sensitivity, and drew a detailed description of the most affected branches in the tree. We chose a conservative approach, and thus focused on confounding factors potentially affecting PSG signals (alignment, GC-biased gene conversion, duplications, heterogeneous sequencing qualities). Using site tests, we showed that around 12% of these genes are PSGs, an α selection value consistent with average human genome estimates (10-15%). Using branch-site tests, we showed that the primate tree is heterogeneously affected by positive selection, with the black snub-nosed monkey, the bushbaby, and the orangutan, being the most impacted branches. A large proportion of these genes is inclined to shape hair cells and stereocilia, which are involved in the mechanotransduction process, known to influence frequency perception. Adaptive selection, and more specifically recurrent adaptive evolution, could have acted in parallel on a set of genes (ADGRV1, USH2A, PCDH15, PTPRQ, and ATP8A2) involved in stereocilia growth and the whole complex of bundle links connecting them, in species across different habitats, including high altitude and nocturnal environments.
Collapse
Affiliation(s)
- Andreia Moreira
- Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Faculté de Médecine Purpan, CNRS UMR5288, Université de Toulouse, Université Toulouse III Paul Sabatier, France.,Institut de Recherche en Informatique de Toulouse (IRIT), CNRS UMR5505, Université Toulouse III Paul Sabatier, France
| | - Myriam Croze
- Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Faculté de Médecine Purpan, CNRS UMR5288, Université de Toulouse, Université Toulouse III Paul Sabatier, France
| | - Franklin Delehelle
- Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Faculté de Médecine Purpan, CNRS UMR5288, Université de Toulouse, Université Toulouse III Paul Sabatier, France.,Institut de Recherche en Informatique de Toulouse (IRIT), CNRS UMR5505, Université Toulouse III Paul Sabatier, France
| | - Sylvain Cussat-Blanc
- Institut de Recherche en Informatique de Toulouse (IRIT), CNRS UMR5505, Université Toulouse III Paul Sabatier, France
| | - Hervé Luga
- Institut de Recherche en Informatique de Toulouse (IRIT), CNRS UMR5505, Université Toulouse III Paul Sabatier, France
| | - Catherine Mollereau
- Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Faculté de Médecine Purpan, CNRS UMR5288, Université de Toulouse, Université Toulouse III Paul Sabatier, France
| | - Patricia Balaresque
- Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Faculté de Médecine Purpan, CNRS UMR5288, Université de Toulouse, Université Toulouse III Paul Sabatier, France
| |
Collapse
|
22
|
Ghilardi A, Diana A, Bacchetta R, Santo N, Ascagni M, Prosperi L, Del Giacco L. Inner Ear and Muscle Developmental Defects in Smpx-Deficient Zebrafish Embryos. Int J Mol Sci 2021; 22:ijms22126497. [PMID: 34204426 PMCID: PMC8235540 DOI: 10.3390/ijms22126497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 12/20/2022] Open
Abstract
The last decade has witnessed the identification of several families affected by hereditary non-syndromic hearing loss (NSHL) caused by mutations in the SMPX gene and the loss of function has been suggested as the underlying mechanism. In the attempt to confirm this hypothesis we generated an Smpx-deficient zebrafish model, pointing out its crucial role in proper inner ear development. Indeed, a marked decrease in the number of kinocilia together with structural alterations of the stereocilia and the kinocilium itself in the hair cells of the inner ear were observed. We also report the impairment of the mechanotransduction by the hair cells, making SMPX a potential key player in the construction of the machinery necessary for sound detection. This wealth of evidence provides the first possible explanation for hearing loss in SMPX-mutated patients. Additionally, we observed a clear muscular phenotype consisting of the defective organization and functioning of muscle fibers, strongly suggesting a potential role for the protein in the development of muscle fibers. This piece of evidence highlights the need for more in-depth analyses in search for possible correlations between SMPX mutations and muscular disorders in humans, thus potentially turning this non-syndromic hearing loss-associated gene into the genetic cause of dysfunctions characterized by more than one symptom, making SMPX a novel syndromic gene.
Collapse
Affiliation(s)
- Anna Ghilardi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (A.G.); (A.D.); (L.P.)
| | - Alberto Diana
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (A.G.); (A.D.); (L.P.)
| | - Renato Bacchetta
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Nadia Santo
- Unitech NOLIMITS, Università degli Studi di Milano, 20133 Milan, Italy; (N.S.); (M.A.)
| | - Miriam Ascagni
- Unitech NOLIMITS, Università degli Studi di Milano, 20133 Milan, Italy; (N.S.); (M.A.)
| | - Laura Prosperi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (A.G.); (A.D.); (L.P.)
| | - Luca Del Giacco
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (A.G.); (A.D.); (L.P.)
- Correspondence:
| |
Collapse
|
23
|
Liu X, Yuan H, Zhou J, Wang Q, Qi X, Bernal C, Avella D, Kaifi JT, Kimchi ET, Timothy P, Cheng K, Miao Y, Jiang K, Li G. LMO7 as an Unrecognized Factor Promoting Pancreatic Cancer Progression and Metastasis. Front Cell Dev Biol 2021; 9:647387. [PMID: 33763427 PMCID: PMC7982467 DOI: 10.3389/fcell.2021.647387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal human malignancies without effective treatment. In an effort to discover key genes and molecular pathways underlying PC growth, we have identified LIM domain only 7 (LMO7) as an under-investigated molecule, which highly expresses in primary and metastatic human and mouse PC with the potential of impacting PC tumorigenesis and metastasis. Using genetic methods with siRNA, shRNA, and CRISPR-Cas9, we have successfully generated stable mouse PC cells with LMO7 knockdown or knockout. Using these cells with loss of LMO7 function, we have demonstrated that intrinsic LMO7 defect significantly suppresses PC cell proliferation, anchorage-free colony formation, and mobility in vitro and slows orthotopic PC tumor growth and metastasis in vivo. Mechanistic studies demonstrated that loss of LMO7 function causes PC cell-cycle arrest and apoptosis. These data indicate that LMO7 functions as an independent and unrecognized druggable factor significantly impacting PC growth and metastasis, which could be harnessed for developing a new targeted therapy for PC.
Collapse
Affiliation(s)
- Xinjian Liu
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States.,Department of Pathogen Biology, Key Laboratory of Antibody Technique of National Health Commission of China, Nanjing Medical University, Nanjing, China
| | - Hao Yuan
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States.,Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Zhou
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States
| | - Qiongling Wang
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States
| | - Xiaoqiang Qi
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States
| | - Catharine Bernal
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States
| | - Diego Avella
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States.,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, United States
| | - Jussuf T Kaifi
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States.,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, United States
| | - Eric T Kimchi
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States.,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, United States
| | - Parrett Timothy
- Department of Pathology and Anatomical Sciences, University of Missouri-Columbia, Columbia, MO, United States
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kuirong Jiang
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States.,Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
24
|
Zhang Y, Wang Y, Yao X, Wang C, Chen F, Liu D, Shao M, Xu Z. Rbm24a Is Necessary for Hair Cell Development Through Regulating mRNA Stability in Zebrafish. Front Cell Dev Biol 2020; 8:604026. [PMID: 33392193 PMCID: PMC7773828 DOI: 10.3389/fcell.2020.604026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022] Open
Abstract
Hair cells in the inner ear and lateral lines are mechanosensitive receptor cells whose development and function are tightly regulated. Several transcription factors as well as splicing factors have been identified to play important roles in hair cell development, whereas the role of RNA stability in this process is poorly understood. In the present work, we report that RNA-binding motif protein 24a (Rbm24a) is indispensable for hair cell development in zebrafish. Rbm24a expression is detected in the inner ear as well as lateral line neuromasts. Albeit rbm24a deficient zebrafish do not survive beyond 9 days post fertilization (dpf) due to effects outside of the inner ear, rbm24a deficiency does not affect the early development of inner ear except for delayed otolith formation and semicircular canal fusion. However, hair cell development is severely affected and hair bundle is disorganized in rbm24a mutants. As a result, the auditory and vestibular function of rbm24a mutants are compromised. RNAseq analyses identified several Rbm24a-target mRNAs that are directly bound by Rbm24a and are dysregulated in rbm24a mutants. Among the identified Rbm24a-target genes, lrrc23, dfna5b, and smpx are particularly interesting as their dysregulation might contribute to the inner ear phenotypes in rbm24a mutants. In conclusion, our data suggest that Rbm24a affects hair cell development in zebrafish through regulating mRNA stability.
Collapse
Affiliation(s)
- Yan Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xuebo Yao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Changquan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dong Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, School of Life Sciences, Nantong University, Nantong, China
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|
25
|
Cui L, Zheng J, Zhao Q, Chen JR, Liu H, Peng G, Wu Y, Chen C, He Q, Shi H, Yin S, Friedman RA, Chen Y, Guan MX. Mutations of MAP1B encoding a microtubule-associated phosphoprotein cause sensorineural hearing loss. JCI Insight 2020; 5:136046. [PMID: 33268592 PMCID: PMC7714412 DOI: 10.1172/jci.insight.136046] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
The pathophysiology underlying spiral ganglion cell defect–induced deafness remains elusive. Using the whole exome sequencing approach, in combination with functional assays and a mouse disease model, we identified the potentially novel deafness-causative MAP1B gene encoding a highly conserved microtubule-associated protein. Three novel heterozygous MAP1B mutations (c.4198A>G, p.1400S>G; c.2768T>C, p.923I>T; c.5512T>C, p.1838F>L) were cosegregated with autosomal dominant inheritance of nonsyndromic sensorineural hearing loss in 3 unrelated Chinese families. Here, we show that MAP1B is highly expressed in the spiral ganglion neurons in the mouse cochlea. Using otic sensory neuron–like cells, generated by pluripotent stem cells from patients carrying the MAP1B mutation and control subject, we demonstrated that the p.1400S>G mutation caused the reduced levels and deficient phosphorylation of MAP1B, which are involved in the microtubule stability and dynamics. Strikingly, otic sensory neuron–like cells exhibited disturbed dynamics of microtubules, axonal elongation, and defects in electrophysiological properties. Dysfunctions of these derived otic sensory neuron–like cells were rescued by genetically correcting MAP1B mutation using CRISPR/Cas9 technology. Involvement of MAP1B in hearing was confirmed by audiometric evaluation of Map1b heterozygous KO mice. These mutant mice displayed late-onset progressive sensorineural hearing loss that was more pronounced in the high frequencies. The spiral ganglion neurons isolated from Map1b mutant mice exhibited the deficient phosphorylation and disturbed dynamics of microtubules. Map1b deficiency yielded defects in the morphology and electrophysiology of spiral ganglion neurons, but it did not affect the morphologies of cochlea in mice. Therefore, our data demonstrate that dysfunctions of spiral ganglion neurons induced by MAP1B deficiency caused hearing loss. Dysfunctions of spiral ganglion neurons caused by Map1b deficiency leads to sensorineural hearing loss.
Collapse
Affiliation(s)
- Limei Cui
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Zheng
- Division of Medical Genetics and Genomics, The Children's Hospital
| | - Qiong Zhao
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jia-Rong Chen
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and
| | | | - Guanghua Peng
- Deaprtment of Otorhinolaryngology, the Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yue Wu
- Division of Medical Genetics and Genomics, The Children's Hospital
| | - Chao Chen
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and
| | | | - Haosong Shi
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shankai Yin
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rick A Friedman
- Division of Otolaryngology, University of California at San Diego School of Medicine, La Jolla California, USA
| | - Ye Chen
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Otolaryngology, University of California at San Diego School of Medicine, La Jolla California, USA.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China.,Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Olson ES, Strimbu CE. Cochlear mechanics: new insights from vibrometry and Optical Coherence Tomography. CURRENT OPINION IN PHYSIOLOGY 2020; 18:56-62. [PMID: 33103018 DOI: 10.1016/j.cophys.2020.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The cochlea is a complex biological machine that transduces sound-induced mechanical vibrations to neural signals. Hair cells within the sensory tissue of the cochlea transduce vibrations into electrical signals, and exert electromechanical feedback that enhances the passive frequency separation provided by the cochlea's traveling wave mechanics; this enhancement is termed cochlear amplification. The vibration of the sensory tissue has been studied with many techniques, and the current state of the art is optical coherence tomography (OCT). The OCT technique allows for motion of intra-organ structures to be measured in vivo at many layers within the sensory tissue, at several angles and in previously under-explored species. OCT-based observations are already impacting our understanding of hair cell excitation and cochlear amplification.
Collapse
Affiliation(s)
- Elizabeth S Olson
- Department of Otolaryngolgy Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, 630 W 168th St, New York, NY 10032.,Department Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue,New York, NY 10027
| | - C Elliott Strimbu
- Department of Otolaryngolgy Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, 630 W 168th St, New York, NY 10032
| |
Collapse
|
27
|
Tan L, Hu Y, Li Y, Yang L, Cai X, Liu W, He J, Wu Y, Liu T, Wang N, Yang Y, Adelstein RS, Wang A. Investigation of the molecular biology underlying the pronounced high gene targeting frequency at the Myh9 gene locus in mouse embryonic stem cells. PLoS One 2020; 15:e0230126. [PMID: 32226034 PMCID: PMC7105122 DOI: 10.1371/journal.pone.0230126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/23/2020] [Indexed: 11/21/2022] Open
Abstract
The generation of genetically modified mouse models derived from gene targeting (GT) in mouse embryonic stem (ES) cells (mESCs) has greatly advanced both basic and clinical research. Our previous finding that gene targeting at the Myh9 exon2 site in mESCs has a pronounced high homologous recombination (HR) efficiency (>90%) has facilitated the generation of a series of nonmuscle myosin II (NM II) related mouse models. Furthermore, the Myh9 gene locus has been well demonstrated to be a new safe harbor for site-specific insertion of other exogenous genes. In the current study, we intend to investigate the molecular biology underlying for this high HR efficiency from other aspects. Our results confirmed some previously characterized properties and revealed some unreported observations: 1) The comparison and analysis of the targeting events occurring at the Myh9 and several widely used loci for targeting transgenesis, including ColA1, HPRT, ROSA26, and the sequences utilized for generating these targeting constructs, indicated that a total length about 6 kb with approximate 50% GC-content of the 5’ and 3’ homologous arms, may facilitate a better performance in terms of GT efficiency. 2) Despite increasing the length of the homologous arms, shifting the targeting site from the Myh9 exon2, to intron2, or exon3 led to a gradually reduced GT frequency (91.7, 71.8 and 50.0%, respectively). This finding provides the first evidence that the HR frequency may also be associated with the targeting site even in the same locus. Meanwhile, the decreased trend of the GT efficiency at these targeting sites was consistent with the reduced percentage of simple sequence repeat (SSR) and short interspersed nuclear elements (SINEs) in the sequences for generating the targeting constructs, suggesting the potential effects of these DNA elements on GT efficiency; 3) Our series of targeting experiments and analyses with truncated 5’ and 3’ arms at the Myh9 exon2 site demonstrated that GT efficiency positively correlates with the total length of the homologous arms (R = 0.7256, p<0.01), confirmed that a 2:1 ratio of the length, a 50% GC-content and the higher amount of SINEs for the 5’ and 3’ arms may benefit for appreciable GT frequency. Though more investigations are required, the Myh9 gene locus appears to be an ideal location for identifying HR-related cis and trans factors, which in turn provide mechanistic insights and also facilitate the practical application of gene editing.
Collapse
Affiliation(s)
- Lei Tan
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yi Hu
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yalan Li
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Lingchen Yang
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wei Liu
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Jiayi He
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yingxin Wu
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Tanbin Liu
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Naidong Wang
- Laboratory of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Yi Yang
- Laboratory of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Robert S. Adelstein
- Laboratory of Molecular Cardiology (LMC), NHLBI/NIH, Bethesda, MD, United States of America
| | - Aibing Wang
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
- Laboratory of Molecular Cardiology (LMC), NHLBI/NIH, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
28
|
Expression pattern of the small muscle protein, X-linked (smpx) gene during zebrafish embryonic and larval developmental stages. Gene Expr Patterns 2020; 36:119110. [PMID: 32197943 DOI: 10.1016/j.gep.2020.119110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 11/22/2022]
Abstract
The small muscle protein, X-linked (SMPX) gene encodes a cytoskeleton-associated protein, highly expressed in both cardiac and skeletal muscles, as well as in fetal inner ears, with suggested roles as mechanotransductor. Recently, several mutations in the SMPX gene have been associated with X-chromosomal progressive deafness in human. However, very little information is known concerning the roles of SMPX, and no in-vivo models are currently available. Therefore, we characterized the zebrafish ortholog of SMPX to pave the way towards the establishment of a biotool for future functional studies. Despite the genome duplication occurred in the ancestry of teleosts, zebrafish retain only one copy of smpx which shares a high degree of similarity with the mammalian counterpart in terms of genomic organization, syntenic map, and encoded protein. RT-PCR, as well as whole-mount in-situ hybridization and immunofluorescence analyses, revealed that smpx is expressed in several embryonic areas starting from the 4-somite stage. Specifically, smpx mRNA marked the Kupffer's vesicle (KV), the somites, the myocardium, the hair cells of the anterior and the posterior macula of the inner ear, the pronephric ducts, and the muscles of the branchial arches, eyes and pectoral fins. According to our data, zebrafish smpx expression pattern closely resembles that observed in mouse and human, supporting the notion that zebrafish might represent a suitable in-vivo model to disclose the cellular and molecular mechanisms underlying the involvement of SMPX in development and disease.
Collapse
|
29
|
Stereocilia Rootlets: Actin-Based Structures That Are Essential for Structural Stability of the Hair Bundle. Int J Mol Sci 2020; 21:ijms21010324. [PMID: 31947734 PMCID: PMC6981779 DOI: 10.3390/ijms21010324] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 12/04/2022] Open
Abstract
Sensory hair cells of the inner ear rely on the hair bundle, a cluster of actin-filled stereocilia, to transduce auditory and vestibular stimuli into electrical impulses. Because they are long and thin projections, stereocilia are most prone to damage at the point where they insert into the hair cell’s soma. Moreover, this is the site of stereocilia pivoting, the mechanical movement that induces transduction, which additionally weakens this area mechanically. To bolster this fragile area, hair cells construct a dense core called the rootlet at the base of each stereocilium, which extends down into the actin meshwork of the cuticular plate and firmly anchors the stereocilium. Rootlets are constructed with tightly packed actin filaments that extend from stereocilia actin filaments which are wrapped with TRIOBP; in addition, many other proteins contribute to the rootlet and its associated structures. Rootlets allow stereocilia to sustain innumerable deflections over their lifetimes and exemplify the unique manner in which sensory hair cells exploit actin and its associated proteins to carry out the function of mechanotransduction.
Collapse
|