1
|
Ravan A, Procopio S, Chemla YR, Gruebele M. Temperature-jump microscopy and interaction of Hsp70 heat shock protein with a client protein in vivo. Methods 2024; 231:154-164. [PMID: 39362572 DOI: 10.1016/j.ymeth.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
Biomolecular processes such as protein-protein interactions can depend strongly on cell type and even vary within a single cell type. Here we develop a microscope with a Peltier-controlled temperature stage, a laser temperature jump to induce heat stress, and an autofocusing feature to mitigate temperature drift during experiments, to study a protein-protein interaction in a selected cell type within a live organism, the zebrafish larva. As an application of the instrument, we show that there is considerable cell-to-cell variation of the heat shock protein Hsp70 binding to one of its clients, phosphoglycerate kinase in vivo. We adapt a key feature from our previous folding study, rare transformation of cells within the larva, so that individual cells can be imaged and differentiated for cell-to-cell response. Our approach can be extended to other organisms and cell types than the ones demonstrated in this work.
Collapse
Affiliation(s)
- Aniket Ravan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana Champaign, Urbana 61801, USA
| | - Samuel Procopio
- Department of Physics, University of Illinois Urbana Champaign, Urbana 61801, USA
| | - Yann R Chemla
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana Champaign, Urbana 61801, USA; Department of Physics, University of Illinois Urbana Champaign, Urbana 61801, USA
| | - Martin Gruebele
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana Champaign, Urbana 61801, USA; Department of Physics, University of Illinois Urbana Champaign, Urbana 61801, USA; Department of Chemistry and Carle-Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana 61801, USA.
| |
Collapse
|
2
|
Son A, Kim W, Park J, Lee W, Lee Y, Choi S, Kim H. Utilizing Molecular Dynamics Simulations, Machine Learning, Cryo-EM, and NMR Spectroscopy to Predict and Validate Protein Dynamics. Int J Mol Sci 2024; 25:9725. [PMID: 39273672 PMCID: PMC11395565 DOI: 10.3390/ijms25179725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
Protein dynamics play a crucial role in biological function, encompassing motions ranging from atomic vibrations to large-scale conformational changes. Recent advancements in experimental techniques, computational methods, and artificial intelligence have revolutionized our understanding of protein dynamics. Nuclear magnetic resonance spectroscopy provides atomic-resolution insights, while molecular dynamics simulations offer detailed trajectories of protein motions. Computational methods applied to X-ray crystallography and cryo-electron microscopy (cryo-EM) have enabled the exploration of protein dynamics, capturing conformational ensembles that were previously unattainable. The integration of machine learning, exemplified by AlphaFold2, has accelerated structure prediction and dynamics analysis. These approaches have revealed the importance of protein dynamics in allosteric regulation, enzyme catalysis, and intrinsically disordered proteins. The shift towards ensemble representations of protein structures and the application of single-molecule techniques have further enhanced our ability to capture the dynamic nature of proteins. Understanding protein dynamics is essential for elucidating biological mechanisms, designing drugs, and developing novel biocatalysts, marking a significant paradigm shift in structural biology and drug discovery.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, San Diego, CA 92037, USA
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Wonseok Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Yerim Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Seongyun Choi
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
3
|
Liu Z, Grigas AT, Sumner J, Knab E, Davis CM, O'Hern CS. Identifying the minimal sets of distance restraints for FRET-assisted protein structural modeling. ARXIV 2024:arXiv:2405.07983v2. [PMID: 38800659 PMCID: PMC11118665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proteins naturally occur in crowded cellular environments and interact with other proteins, nucleic acids, and organelles. Since most previous experimental protein structure determination techniques require that proteins occur in idealized, non-physiological environments, the effects of realistic cellular environments on protein structure are largely unexplored. Recently, Förster resonance energy transfer (FRET) has been shown to be an effective experimental method for investigating protein structure in vivo. Inter-residue distances measured in vivo can be incorporated as restraints in molecular dynamics (MD) simulations to model protein structural dynamics in vivo. Since most FRET studies only obtain inter-residue separations for a small number of amino acid pairs, it is important to determine the minimum number of restraints in the MD simulations that are required to achieve a given root-mean-square deviation (RMSD) from the experimental structural ensemble. Further, what is the optimal method for selecting these inter-residue restraints? Here, we implement several methods for selecting the most important FRET pairs and determine the number of pairsN r that are needed to induce conformational changes in proteins between two experimentally determined structures. We find that enforcing only a small fraction of restraints,N r / N ≲ 0.08 , where N is the number of amino acids, can induce the conformational changes. These results establish the efficacy of FRET-assisted MD simulations for atomic scale structural modeling of proteins in vivo.
Collapse
Affiliation(s)
- Zhuoyi Liu
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, 06520, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, 06520, USA
| | - Alex T Grigas
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, 06520, USA
- Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, 06520, USA
| | - Jacob Sumner
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, 06520, USA
- Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, 06520, USA
| | - Edward Knab
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA
| | - Caitlin M Davis
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, 06520, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, 06520, USA
- Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut, 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
4
|
Chakraborty J, Mahali K, Henaish AMA, Ahmed J, Alshehri SM, Roy S. Probing pharmaceutically important amino acids L-isoleucine and L-tyrosine Solubilities: Unraveling the solvation thermodynamics in diverse mixed solvent systems. Biophys Chem 2024; 309:107229. [PMID: 38555653 DOI: 10.1016/j.bpc.2024.107229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
The study specifically investigates the solubilities of L-isoleucine and L-tyrosine in water-mixed solvent systems (DMF, DMSO, and ACN), exploring the behaviour of amino acids in complex environments. The experimental methods prioritize meticulous solvent purification to ensure reliable results. The work explores solubility data, uncovering temperature-dependent trends and intricate interactions influencing solubility in the chosen mixed solvent systems. The study emphasizes the impact of thermodynamic properties, solvent-solvent interactions, and amino acid structure on solubility patterns. The broader implications highlight the relevance of understanding amino acid behaviour in diverse solvent environments, offering potential applications in cosmetics and pharmaceutical industries. The distinct solubility patterns contribute valuable insights, enhancing on the understanding of the solution stability and interactions of L-isoleucine and L-tyrosine in different solvent systems. In conclusion, work suggests the enhanced utilization of L-isoleucine and L-tyrosine in various industries, driven by a profound understanding of their solubility in mixed solvent systems. The research expands our knowledge of amino acid behaviour, paving the way for advancements in industries relying on protein-based products and technologies.
Collapse
Affiliation(s)
- Jit Chakraborty
- Department of Chemistry, University of Kalyani, Kalyani 741235, Nadia, India; Department of Chemistry, JIS College of Engineering, Kalyani 741235, Nadia, India
| | - Kalachand Mahali
- Department of Chemistry, University of Kalyani, Kalyani 741235, Nadia, India.
| | - A M A Henaish
- Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; NANOTECH Center, Ural Federal University, Ekaterinburg 620002, Russia
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sanjay Roy
- Department of Chemistry, School of Sciences, Netaji Subhas Open University, Kolkata, West Bengal, India.
| |
Collapse
|
5
|
Chen X, Zhang X, Qin M, Chen J, Wang M, Liu Z, An L, Song X, Yao L. Protein Allostery Study in Cells Using NMR Spectroscopy. Anal Chem 2024; 96:7065-7072. [PMID: 38652079 DOI: 10.1021/acs.analchem.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Protein allostery is commonly observed in vitro. But how protein allostery behaves in cells is unknown. In this work, a protein monomer-dimer equilibrium system was built with the allosteric effect on the binding characterized using NMR spectroscopy through mutations away from the dimer interface. A chemical shift linear fitting method was developed that enabled us to accurately determine the dissociation constant. A total of 28 allosteric mutations were prepared and grouped to negative allosteric, nonallosteric, and positive allosteric modulators. ∼ 50% of mutations displayed the allosteric-state changes when moving from a buffered solution into cells. For example, there were no positive allosteric modulators in the buffered solution but eight in cells. The change in protein allostery is correlated with the interactions between the protein and the cellular environment. These interactions presumably drive the surrounding macromolecules in cells to transiently bind to the monomer and dimer mutational sites and change the free energies of the two species differently which generate new allosteric effects. These surrounding macromolecules create a new protein allostery pathway that is only present in cells.
Collapse
Affiliation(s)
- Xiaoxu Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xueying Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Qin
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Jingfei Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Mengting Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Zhijun Liu
- National Facility for Protein Science, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Liaoyuan An
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiangfei Song
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Lishan Yao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
6
|
Alfano C, Fichou Y, Huber K, Weiss M, Spruijt E, Ebbinghaus S, De Luca G, Morando MA, Vetri V, Temussi PA, Pastore A. Molecular Crowding: The History and Development of a Scientific Paradigm. Chem Rev 2024; 124:3186-3219. [PMID: 38466779 PMCID: PMC10979406 DOI: 10.1021/acs.chemrev.3c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
It is now generally accepted that macromolecules do not act in isolation but "live" in a crowded environment, that is, an environment populated by numerous different molecules. The field of molecular crowding has its origins in the far 80s but became accepted only by the end of the 90s. In the present issue, we discuss various aspects that are influenced by crowding and need to consider its effects. This Review is meant as an introduction to the theme and an analysis of the evolution of the crowding concept through time from colloidal and polymer physics to a more biological perspective. We introduce themes that will be more thoroughly treated in other Reviews of the present issue. In our intentions, each Review may stand by itself, but the complete collection has the aspiration to provide different but complementary perspectives to propose a more holistic view of molecular crowding.
Collapse
Affiliation(s)
- Caterina Alfano
- Structural
Biology and Biophysics Unit, Fondazione
Ri.MED, 90100 Palermo, Italy
| | - Yann Fichou
- CNRS,
Bordeaux INP, CBMN UMR 5248, IECB, University
of Bordeaux, F-33600 Pessac, France
| | - Klaus Huber
- Department
of Chemistry, University of Paderborn, 33098 Paderborn, Germany
| | - Matthias Weiss
- Experimental
Physics I, Physics of Living Matter, University
of Bayreuth, 95440 Bayreuth, Germany
| | - Evan Spruijt
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Simon Ebbinghaus
- Lehrstuhl
für Biophysikalische Chemie and Research Center Chemical Sciences
and Sustainability, Research Alliance Ruhr, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Giuseppe De Luca
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Valeria Vetri
- Dipartimento
di Fisica e Chimica − Emilio Segrè, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Annalisa Pastore
- King’s
College London, Denmark
Hill Campus, SE5 9RT London, United Kingdom
| |
Collapse
|
7
|
Russell PPS, Maytin AK, Rickard MM, Russell MC, Pogorelov TV, Gruebele M. Metastable States in the Hinge-Bending Landscape of an Enzyme in an Atomistic Cytoplasm Simulation. J Phys Chem Lett 2024; 15:940-946. [PMID: 38252018 PMCID: PMC11180962 DOI: 10.1021/acs.jpclett.3c03134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Many enzymes undergo major conformational changes to function in cells, particularly when they bind to more than one substrate. We quantify the large-amplitude hinge-bending landscape of human phosphoglycerate kinase (PGK) in a human cytoplasm. Approximately 70 μs of all-atom simulations, upon coarse graining, reveal three metastable states of PGK with different hinge angle distributions and additional substates. The "open" state was more populated than the "semi-open" or "closed" states. In addition to free energies and barriers within the landscape, we characterized the average transition state passage time of ≈0.3 μs and reversible substrate and product binding. Human PGK in a dilute solution simulation shows a transition directly from the open to closed states, in agreement with previous SAXS experiments, suggesting that the cell-like model environment promotes stability of the human PGK semi-open state. Yeast PGK also sampled three metastable states within the cytoplasm model, with the closed state favored in our simulation.
Collapse
Affiliation(s)
| | - Andrew K. Maytin
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Meredith M. Rickard
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Matthew C. Russell
- Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Taras V. Pogorelov
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
8
|
Chang R, Gruebele M, Leckband DE. Protein Folding Stability and Kinetics in Alginate Hydrogels. Biomacromolecules 2023; 24:5245-5254. [PMID: 37906737 DOI: 10.1021/acs.biomac.3c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Proteins are commonly encapsulated in alginate gels for drug delivery and tissue-engineering applications. However, there is limited knowledge of how encapsulation impacts intrinsic protein properties such as folding stability or unfolding kinetics. Here, we use fast relaxation imaging (FReI) to image protein unfolding in situ in alginate hydrogels after applying a temperature jump. Based on changes in the Förster resonance energy transfer (FRET) response of FRET-labeled phosphoglycerate kinase (PGK), we report the quantitative impact of multiple alginate hydrogel concentrations on protein stability and folding dynamics. The gels stabilize PGK by increasing its melting temperature up to 18.4 °C, and the stabilization follows a nonmonotonic dependence on the alginate density. In situ kinetic measurements also reveal that PGK deviates more from two-state folding behavior in denser gels and that the gel decreases the unfolding rate and accelerates the folding rate of PGK, compared to buffer. Phi-value analysis suggests that the folding transition state of an encapsulated protein is structurally similar to that of folded protein. This work reveals both beneficial and negative impacts of gel encapsulation on protein folding, as well as potential mechanisms contributing to altered stability.
Collapse
|
9
|
Porter LL. Fluid protein fold space and its implications. Bioessays 2023; 45:e2300057. [PMID: 37431685 PMCID: PMC10529699 DOI: 10.1002/bies.202300057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Fold-switching proteins, which remodel their secondary and tertiary structures in response to cellular stimuli, suggest a new view of protein fold space. For decades, experimental evidence has indicated that protein fold space is discrete: dissimilar folds are encoded by dissimilar amino acid sequences. Challenging this assumption, fold-switching proteins interconnect discrete groups of dissimilar protein folds, making protein fold space fluid. Three recent observations support the concept of fluid fold space: (1) some amino acid sequences interconvert between folds with distinct secondary structures, (2) some naturally occurring sequences have switched folds by stepwise mutation, and (3) fold switching is evolutionarily selected and likely confers advantage. These observations indicate that minor amino acid sequence modifications can transform protein structure and function. Consequently, proteomic structural and functional diversity may be expanded by alternative splicing, small nucleotide polymorphisms, post-translational modifications, and modified translation rates.
Collapse
Affiliation(s)
- Lauren L. Porter
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
10
|
Chen X, Kaiser CM. AP profiling resolves co-translational folding pathway and chaperone interactions in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555749. [PMID: 37693575 PMCID: PMC10491307 DOI: 10.1101/2023.09.01.555749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Natural proteins have evolved to fold robustly along specific pathways. Folding begins during synthesis, guided by interactions of the nascent protein with the ribosome and molecular chaperones. However, the timing and progression of co-translational folding remain largely elusive, in part because the process is difficult to measure in the natural environment of the cytosol. We developed a high-throughput method to quantify co-translational folding in live cells that we term Arrest Peptide profiling (AP profiling). We employed AP profiling to delineate co-translational folding for a set of GTPase domains with very similar structures, defining how topology shapes folding pathways. Genetic ablation of major nascent chain-binding chaperones resulted in localized folding changes that suggest how functional redundancies among chaperones are achieved by distinct interactions with the nascent protein. Collectively, our studies provide a window into cellular folding pathways of complex proteins and pave the way for systematic studies on nascent protein folding at unprecedented resolution and throughput.
Collapse
Affiliation(s)
- Xiuqi Chen
- CMDB Graduate Program, Johns Hopkins University, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Present address: Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Christian M. Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
11
|
Vallina Estrada E, Zhang N, Wennerström H, Danielsson J, Oliveberg M. Diffusive intracellular interactions: On the role of protein net charge and functional adaptation. Curr Opin Struct Biol 2023; 81:102625. [PMID: 37331204 DOI: 10.1016/j.sbi.2023.102625] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
A striking feature of nucleic acids and lipid membranes is that they all carry net negative charge and so is true for the majority of intracellular proteins. It is suggested that the role of this negative charge is to assure a basal intermolecular repulsion that keeps the cytosolic content suitably 'fluid' for function. We focus in this review on the experimental, theoretical and genetic findings which serve to underpin this idea and the new questions they raise. Unlike the situation in test tubes, any functional protein-protein interaction in the cytosol is subject to competition from the densely crowded background, i.e. surrounding stickiness. At the nonspecific limit of this stickiness is the 'random' protein-protein association, maintaining profuse populations of transient and constantly interconverting complexes at physiological protein concentrations. The phenomenon is readily quantified in studies of the protein rotational diffusion, showing that the more net negatively charged a protein is the less it is retarded by clustering. It is further evident that this dynamic protein-protein interplay is under evolutionary control and finely tuned across organisms to maintain optimal physicochemical conditions for the cellular processes. The emerging picture is then that specific cellular function relies on close competition between numerous weak and strong interactions, and where all parts of the protein surfaces are involved. The outstanding challenge is now to decipher the very basics of this many-body system: how the detailed patterns of charged, polar and hydrophobic side chains not only control protein-protein interactions at close- and long-range but also the collective properties of the cellular interior as a whole.
Collapse
Affiliation(s)
- Eloy Vallina Estrada
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Nannan Zhang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Håkan Wennerström
- Division of Physical Chemistry, Department of Chemistry, Lund University, Box 124, 22100 Lund, Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
12
|
Wang M, Song X, Chen J, Chen X, Zhang X, Yang Y, Liu Z, Yao L. Intracellular environment can change protein conformational dynamics in cells through weak interactions. SCIENCE ADVANCES 2023; 9:eadg9141. [PMID: 37478178 PMCID: PMC10361600 DOI: 10.1126/sciadv.adg9141] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Conformational dynamics is important for protein functions, many of which are performed in cells. How the intracellular environment may affect protein conformational dynamics is largely unknown. Here, loop conformational dynamics is studied for a model protein in Escherichia coli cells by using nuclear magnetic resonance (NMR) spectroscopy. The weak interactions between the protein and surrounding macromolecules in cells hinder the protein rotational diffusion, which extends the dynamic detection timescale up to microseconds by the NMR spin relaxation method. The loop picosecond to microsecond dynamics is confirmed by nanoparticle-assisted spin relaxation and residual dipolar coupling methods. The loop interactions with the intracellular environment are perturbed through point mutation of the loop sequence. For the sequence of the protein that interacts stronger with surrounding macromolecules, the loop becomes more rigid in cells. In contrast, the mutational effect on the loop dynamics in vitro is small. This study provides direct evidence that the intracellular environment can modify protein loop conformational dynamics through weak interactions.
Collapse
Affiliation(s)
- Mengting Wang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangfei Song
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Jingfei Chen
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Xiaoxu Chen
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Zhang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Zhijun Liu
- National Facility for Protein Science, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lishan Yao
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| |
Collapse
|
13
|
Chakravarty D, Schafer JW, Porter LL. Distinguishing features of fold-switching proteins. Protein Sci 2023; 32:e4596. [PMID: 36782353 PMCID: PMC9951197 DOI: 10.1002/pro.4596] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Though many folded proteins assume one stable structure that performs one function, a small-but-increasing number remodel their secondary and tertiary structures and change their functions in response to cellular stimuli. These fold-switching proteins regulate biological processes and are associated with autoimmune dysfunction, severe acute respiratory syndrome coronavirus-2 infection, and more. Despite their biological importance, it is difficult to computationally predict fold switching. With the aim of advancing computational prediction and experimental characterization of fold switchers, this review discusses several features that distinguish fold-switching proteins from their single-fold and intrinsically disordered counterparts. First, the isolated structures of fold switchers are less stable and more heterogeneous than single folders but more stable and less heterogeneous than intrinsically disordered proteins (IDPs). Second, the sequences of single fold, fold switching, and intrinsically disordered proteins can evolve at distinct rates. Third, proteins from these three classes are best predicted using different computational techniques. Finally, late-breaking results suggest that single folders, fold switchers, and IDPs have distinct patterns of residue-residue coevolution. The review closes by discussing high-throughput and medium-throughput experimental approaches that might be used to identify new fold-switching proteins.
Collapse
Affiliation(s)
- Devlina Chakravarty
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaMarylandUSA
| | - Joseph W. Schafer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaMarylandUSA
| | - Lauren L. Porter
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaMarylandUSA
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
14
|
Rickard MM, Luo H, De Lio A, Gruebele M, Pogorelov TV. Impact of the Cellular Environment on Adenosine Triphosphate Conformations. J Phys Chem Lett 2022; 13:9809-9814. [PMID: 36228115 PMCID: PMC10077521 DOI: 10.1021/acs.jpclett.2c02375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The cytoplasm is an environment crowded by macromolecules and filled with metabolites and ions. Recent experimental and computational studies have addressed how this environment affects protein stability, folding kinetics, and protein-protein and protein-nucleic acid interactions, though its impact on metabolites remains largely unknown. Here we show how a simulated cytoplasm affects the conformation of adenosine triphosphate (ATP), a key energy source and regulatory metabolite present at high concentrations in cells. Analysis of our all-atom model of a small volume of the Escherichia coli cytoplasm when contrasted with ATP modeled in vitro or resolved with protein structures deposited in the Protein Data Bank reveals that ATP molecules bound to proteins in cell form specific pitched conformations that are not observed at significant concentrations in the other environments. We hypothesize that these interactions evolved to fulfill functional roles when ATP interacts with protein surfaces.
Collapse
Affiliation(s)
- Meredith M. Rickard
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Haolin Luo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Ashley De Lio
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- National Center for Supercomputing Applications, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Taras V. Pogorelov
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- National Center for Supercomputing Applications, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
15
|
Loss of stability and unfolding cooperativity in hPGK1 upon gradual structural perturbation of its N-terminal domain hydrophobic core. Sci Rep 2022; 12:17200. [PMID: 36229482 PMCID: PMC9561527 DOI: 10.1038/s41598-022-22088-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/10/2022] [Indexed: 01/06/2023] Open
Abstract
Phosphoglycerate kinase has been a model for the stability, folding cooperativity and catalysis of a two-domain protein. The human isoform 1 (hPGK1) is associated with cancer development and rare genetic diseases that affect several of its features. To investigate how mutations affect hPGK1 folding landscape and interaction networks, we have introduced mutations at a buried site in the N-terminal domain (F25 mutants) that either created cavities (F25L, F25V, F25A), enhanced conformational entropy (F25G) or introduced structural strain (F25W) and evaluated their effects using biophysical experimental and theoretical methods. All F25 mutants folded well, but showed reduced unfolding cooperativity, kinetic stability and altered activation energetics according to the results from thermal and chemical denaturation analyses. These alterations correlated well with the structural perturbation caused by mutations in the N-terminal domain and the destabilization caused in the interdomain interface as revealed by H/D exchange under native conditions. Importantly, experimental and theoretical analyses showed that these effects are significant even when the perturbation is mild and local. Our approach will be useful to establish the molecular basis of hPGK1 genotype-phenotype correlations due to phosphorylation events and single amino acid substitutions associated with disease.
Collapse
|
16
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
17
|
Yoo H, Davis CM. An in vitro cytomimetic of in-cell RNA folding. Chembiochem 2022; 23:e202200406. [PMID: 35999178 DOI: 10.1002/cbic.202200406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Indexed: 11/07/2022]
Abstract
To discover the cytomimetic that accounts for cytoplasmic crowding and sticking on RNA stability, we conducted a two-dimensional scan of mixtures of artificial crowding and sticking agents, PEG10k and M-PERTM. As our model RNA, we investigate the fourU RNA thermometer motif of Salmonella, a hairpin-structured RNA that regulates translation by unfolding and exposing its RBS in response to temperature perturbations. We found that the addition of artificial crowding and sticking agents leads to a stabilization and destabilization of RNA folding, respectively, through the excluded volume effect and surface interactions. FRET-labels were added to the fourU RNA and Fast Relaxation Imaging (FReI), fluorescence microscopy coupled to temperature-jump spectroscopy, probed differences between folding stability of RNA inside single living cells and in vitro. Our results suggest that the cytoplasmic environment affecting RNA folding is comparable to a combination of 20% v/v M-PERTM and 150 g/L PEG10k.
Collapse
Affiliation(s)
- Hyejin Yoo
- Yale University, Chemistry, 225 Prospect St, 06511, New Haven, UNITED STATES
| | - Caitlin M Davis
- Yale University, Chemistry, 225 Prospect St., 06511, New Haven, UNITED STATES
| |
Collapse
|
18
|
Gorensek-Benitez AH, Kirk B, Myers JK. Protein Fibrillation under Crowded Conditions. Biomolecules 2022; 12:biom12070950. [PMID: 35883507 PMCID: PMC9312947 DOI: 10.3390/biom12070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 12/04/2022] Open
Abstract
Protein amyloid fibrils have widespread implications for human health. Over the last twenty years, fibrillation has been studied using a variety of crowding agents to mimic the packed interior of cells or to probe the mechanisms and pathways of the process. We tabulate and review these results by considering three classes of crowding agent: synthetic polymers, osmolytes and other small molecules, and globular proteins. While some patterns are observable for certain crowding agents, the results are highly variable and often depend on the specific pairing of crowder and fibrillating protein.
Collapse
Affiliation(s)
- Annelise H. Gorensek-Benitez
- Department of Chemistry and Biochemistry, Colorado College, Colorado Springs, CO 80903, USA
- Correspondence: (A.H.G.-B.); (J.K.M.)
| | - Bryan Kirk
- Department of Biology, Davidson College, Davidson, NC 28035, USA;
| | - Jeffrey K. Myers
- Department of Chemistry, Davidson College, Davidson, NC 28035, USA
- Correspondence: (A.H.G.-B.); (J.K.M.)
| |
Collapse
|
19
|
Patra M. Effect of spin-orbit interaction on circular current: pure spin current phenomena within a ring conductor. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:325301. [PMID: 35609618 DOI: 10.1088/1361-648x/ac7309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
A net circulating current may appear within a quantum ring under finite bias. We study the characteristic features of the circular current in the presence of Rashba spin-orbit interaction (RSOI). Both charge and spin currents appear within the ring. Whereas when the ring is symmetrically connected to the external leads, we can get a pure spin current at non-zero Fermi-energy. On the other hand, for asymmetric ring-to-leads configuration, at zero Fermi-energy, the spin current vanishes but a pure charge current flows within the ring. Tuning RSOI, we demonstrate a way to control the pure spin current externally. This new perspective of the generation of the pure spin circular current can open a new basis for the highly efficient, low energy cost spintronic devices.
Collapse
Affiliation(s)
- Moumita Patra
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
20
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
21
|
Speer SL, Stewart CJ, Sapir L, Harries D, Pielak GJ. Macromolecular Crowding Is More than Hard-Core Repulsions. Annu Rev Biophys 2022; 51:267-300. [PMID: 35239418 DOI: 10.1146/annurev-biophys-091321-071829] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells are crowded, but proteins are almost always studied in dilute aqueous buffer. We review the experimental evidence that crowding affects the equilibrium thermodynamics of protein stability and protein association and discuss the theories employed to explain these observations. In doing so, we highlight differences between synthetic polymers and biologically relevant crowders. Theories based on hard-core interactions predict only crowding-induced entropic stabilization. However, experiment-based efforts conducted under physiologically relevant conditions show that crowding can destabilize proteins and their complexes. Furthermore, quantification of the temperature dependence of crowding effects produced by both large and small cosolutes, including osmolytes, sugars, synthetic polymers, and proteins, reveals enthalpic effects that stabilize or destabilize proteins. Crowding-induced destabilization and the enthalpic component point to the role of chemical interactions between and among the macromolecules, cosolutes, and water. We conclude with suggestions for future studies. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shannon L Speer
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Claire J Stewart
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Liel Sapir
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Daniel Harries
- Institute of Chemistry and The Fritz Haber Research Center, The Hebrew University, Jerusalem, Israel
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA; .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina, USA.,Lineberger Cancer Research Center, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
22
|
Brylski O, Shrestha P, Gnutt P, Gnutt D, Mueller JW, Ebbinghaus S. Cellular ATP Levels Determine the Stability of a Nucleotide Kinase. Front Mol Biosci 2021; 8:790304. [PMID: 34966785 PMCID: PMC8710738 DOI: 10.3389/fmolb.2021.790304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
The energy currency of the cell ATP, is used by kinases to drive key cellular processes. However, the connection of cellular ATP abundance and protein stability is still under investigation. Using Fast Relaxation Imaging paired with alanine scanning and ATP depletion experiments, we study the nucleotide kinase (APSK) domain of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) synthase, a marginally stable protein. Here, we show that the in-cell stability of the APSK is determined by ligand binding and directly connected to cellular ATP levels. The observed protein stability change for different ligand-bound states or under ATP-depleted conditions ranges from ΔGf 0 = -10.7 to +13.8 kJ/mol, which is remarkable since it exceeds changes measured previously, for example upon osmotic pressure, cellular stress or differentiation. The results have implications for protein stability during the catalytic cycle of APS kinase and suggest that the cellular ATP level functions as a global regulator of kinase activity.
Collapse
Affiliation(s)
- Oliver Brylski
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Institute of Physical Chemistry II, Ruhr University, Bochum, Germany
| | - Puja Shrestha
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Patricia Gnutt
- Institute of Physical Chemistry II, Ruhr University, Bochum, Germany
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Institute of Physical Chemistry II, Ruhr University, Bochum, Germany
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, United Kingdom
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Institute of Physical Chemistry II, Ruhr University, Bochum, Germany
| |
Collapse
|
23
|
Mora-Sierra Z, Gopan G, Chang R, Leckband DE, Gruebele M. Stabilization and Kinetics of an Adsorbed Protein Depends on the Poly( N-isopropylacrylamide) Grafting Density. Biomacromolecules 2021; 22:4470-4478. [PMID: 34606244 DOI: 10.1021/acs.biomac.1c00417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solubility transition at the lower critical solution temperature (LCST, 32 °C) of poly(N-isopropylacrylamide) (PNIPAM) is widely used as a thermal switch to rapidly and reversibly capture and release proteins and cells. It is generally assumed that proteins adsorbed to PNIPAM above the LCST are unaffected by polymer interactions. Here we show that the folding stability of the enzyme phosphoglycerate kinase (PGK) is increased by interactions with end-grafted PNIPAM films above the LCST. We systematically compare two protein mutants with different stabilities. The stabilization mirrors the degree of protein adsorption under grafting conditions studied previously. Maximum stabilization occurs when proteins adsorb to low density, collapsed polymer "mushrooms". In the denser polymer "brush" regime, protein stabilization decreases back to a value indistinguishable from the bulk solution, consistent with low protein adsorption on dense, collapsed brushes. The temperature-dependent kinetics measured by Fast Relaxation Imaging reveals that PNIPAM does not affect the overall folding/unfolding mechanism. Based on the different stabilizations of two mutants and the relaxation kinetics, we hypothesize that the polymer acts mainly by increasing the conformational entropy of the folded protein by interacting with the protein surface and less by crowding the unfolded state of PGK.
Collapse
|
24
|
Yoshida S, Kisley L. Super-resolution fluorescence imaging of extracellular environments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119767. [PMID: 33862370 DOI: 10.1016/j.saa.2021.119767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The extracellular matrix (ECM) is an important biophysical environment that plays a role in a number of physiological processes. The ECM is highly dynamic, with changes occurring as local, nanoscale, physicochemical variations in physical confinement and chemistry from the perspective of biological molecules. The length and time scale of ECM dynamics are challenging to measure with current spectroscopic techniques. Super-resolution fluorescence microscopy has the potential to probe local, nanoscale, physicochemical variations in the ECM. Here, we review super-resolution imaging and analysis methods and their application to study model nanoparticles and biomolecules within synthetic ECM hydrogels and the brain extracellular space (ECS). We provide a perspective of future directions for the field that can move super-resolution imaging of the ECM towards more biomedically-relevant samples. Overall, super-resolution imaging is a powerful tool that can increase our understanding of extracellular environments at new spatiotemporal scales to reveal ECM processes at the molecular-level.
Collapse
Affiliation(s)
- Shawn Yoshida
- Department of Physics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
25
|
Abstract
The thermal motion of charged proteins causes randomly fluctuating electric fields inside cells. According to the fluctuation-dissipation theorem, there is an additional friction force associated with such fluctuations. However, the impact of these fluctuations on the diffusion and dynamics of proteins in the cytoplasm is unclear. Here, we provide an order-of-magnitude estimate of this effect by treating electric field fluctuations within a generalized Langevin equation model with a time-dependent friction memory kernel. We find that electric friction is generally negligible compared to solvent friction. However, a significant slowdown of protein diffusion and dynamics is expected for biomolecules with high net charges such as intrinsically disordered proteins and RNA. The results show that direct contacts between biomolecules in a cell are not necessarily required to alter their dynamics.
Collapse
Affiliation(s)
- Dmitrii E Makarov
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hagen Hofmann
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
26
|
High-speed compressed-sensing fluorescence lifetime imaging microscopy of live cells. Proc Natl Acad Sci U S A 2021; 118:2004176118. [PMID: 33431663 DOI: 10.1073/pnas.2004176118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We present high-resolution, high-speed fluorescence lifetime imaging microscopy (FLIM) of live cells based on a compressed sensing scheme. By leveraging the compressibility of biological scenes in a specific domain, we simultaneously record the time-lapse fluorescence decay upon pulsed laser excitation within a large field of view. The resultant system, referred to as compressed FLIM, can acquire a widefield fluorescence lifetime image within a single camera exposure, eliminating the motion artifact and minimizing the photobleaching and phototoxicity. The imaging speed, limited only by the readout speed of the camera, is up to 100 Hz. We demonstrated the utility of compressed FLIM in imaging various transient dynamics at the microscopic scale.
Collapse
|
27
|
Hasanbasri Z, Singewald K, Gluth TD, Driesschaert B, Saxena S. Cleavage-Resistant Protein Labeling With Hydrophilic Trityl Enables Distance Measurements In-Cell. J Phys Chem B 2021; 125:5265-5274. [PMID: 33983738 DOI: 10.1021/acs.jpcb.1c02371] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sensitive in-cell distance measurements in proteins using pulsed-electron spin resonance (ESR) require reduction-resistant and cleavage-resistant spin labels. Among the reduction-resistant moieties, the hydrophilic trityl core known as OX063 is promising due to its long phase-memory relaxation time (Tm). This property leads to a sufficiently intense ESR signal for reliable distance measurements. Furthermore, the Tm of OX063 remains sufficiently long at higher temperatures, opening the possibility for measurements at temperatures above 50 K. In this work, we synthesized deuterated OX063 with a maleimide linker (mOX063-d24). We show that the combination of the hydrophilicity of the label and the maleimide linker enables high protein labeling that is cleavage-resistant in-cells. Distance measurements performed at 150 K using this label are more sensitive than the measurements at 80 K. The sensitivity gain is due to the significantly short longitudinal relaxation time (T1) at higher temperatures, which enables more data collection per unit of time. In addition to in vitro experiments, we perform distance measurements in Xenopus laevis oocytes. Interestingly, the Tm of mOX063-d24 is sufficiently long even in the crowded environment of the cell, leading to signals of appreciable intensity. Overall, mOX063-d24 provides highly sensitive distance measurements both in vitro and in-cells.
Collapse
Affiliation(s)
- Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kevin Singewald
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Teresa D Gluth
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
28
|
Fernández A. Artificial Intelligence Set to Reverse Engineer Drug Targeting in the Cell. ACS Pharmacol Transl Sci 2021; 4:1256-1259. [PMID: 34151218 DOI: 10.1021/acsptsci.1c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 11/28/2022]
Abstract
Therapeutic drugs are required to target proteins in the cell, not in vitro. Yet, drug-induced protein folding in vivo is off limits to computational modeling efforts. This situation may change as artificial intelligence empowers molecular dynamics and enables the deconstruction of in vivo cooperativity for structural adaptation.
Collapse
Affiliation(s)
- Ariel Fernández
- Daruma Institute for AI in Pharmaceutical Research, AF Innovation Pharma Consultancy, GmbH, 4000 Pemberton Court, Winston-Salem, North Carolina 27106, United States.,CONICET, Argentine National Research Council, Buenos Aires 1033, Argentina
| |
Collapse
|
29
|
Gruebele M. Protein folding and surface interaction phase diagrams in vitro and in cells. FEBS Lett 2021; 595:1267-1274. [PMID: 33576021 DOI: 10.1002/1873-3468.14058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/11/2022]
Abstract
Protein stability is subject to environmental perturbations such as pressure and crowding, as well as sticking to other macromolecules and quinary structure. Thus, the environment inside and outside the cell plays a key role in how proteins fold, interact, and function on the scale from a few molecules to macroscopic ensembles. This review discusses three aspects of protein phase diagrams: first, the relevance of phase diagrams to protein folding and function in vitro and in cells; next, how the evolution of protein surfaces impacts on interaction phase diagrams; and finally, how phase separation plays a role on much larger length-scales than individual proteins or oligomers, when liquid phase-separated regions form to assist protein function and cell homeostasis.
Collapse
Affiliation(s)
- Martin Gruebele
- Department of Chemistry and Physics, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
30
|
Sukhavasi SB, Sukhavasi SB, Elleithy K, Abuzneid S, Elleithy A. Human Body-Related Disease Diagnosis Systems Using CMOS Image Sensors: A Systematic Review. SENSORS 2021; 21:s21062098. [PMID: 33802718 PMCID: PMC8002412 DOI: 10.3390/s21062098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022]
Abstract
According to the Center for Disease Control and Prevention (CDC), the average human life expectancy is 78.8 years. Specifically, 3.2 million deaths are reported yearly due to heart disease, cancer, Alzheimer’s disease, diabetes, and COVID-19. Diagnosing the disease is mandatory in the current way of living to avoid unfortunate deaths and maintain average life expectancy. CMOS image sensor (CIS) became a prominent technology in assisting the monitoring and clinical diagnosis devices to treat diseases in the medical domain. To address the significance of CMOS image ‘sensors’ usage in disease diagnosis systems, this paper focuses on the CIS incorporated disease diagnosis systems related to vital organs of the human body like the heart, lungs, brain, eyes, intestines, bones, skin, blood, and bacteria cells causing diseases. This literature survey’s main objective is to evaluate the ‘systems’ capabilities and highlight the most potent ones with advantages, disadvantages, and accuracy, that are used in disease diagnosis. This systematic review used PRISMA workflow for study selection methodology, and the parameter-based evaluation is performed on disease diagnosis systems related to the human body’s organs. The corresponding CIS models used in systems are mapped organ-wise, and the data collected over the last decade are tabulated.
Collapse
Affiliation(s)
- Suparshya Babu Sukhavasi
- Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA; (S.B.S.); (S.B.S.); (S.A.)
| | - Susrutha Babu Sukhavasi
- Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA; (S.B.S.); (S.B.S.); (S.A.)
| | - Khaled Elleithy
- Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA; (S.B.S.); (S.B.S.); (S.A.)
- Correspondence: ; Tel.: +1-203-576-4703
| | - Shakour Abuzneid
- Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA; (S.B.S.); (S.B.S.); (S.A.)
| | - Abdelrahman Elleithy
- Department of Computer Science, William Paterson University, Wayne, NJ 07470, USA;
| |
Collapse
|
31
|
Gruebele M, Pielak GJ. Dynamical spectroscopy and microscopy of proteins in cells. Curr Opin Struct Biol 2021; 70:1-7. [PMID: 33662744 DOI: 10.1016/j.sbi.2021.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022]
Abstract
With a strong understanding of how proteins fold in hand, it is now possible to ask how in-cell environments modulate their folding, binding and function. Studies accessing fast (ns to s) in-cell dynamics have accelerated over the past few years through a combination of in-cell NMR spectroscopy and time-resolved fluorescence microscopies. Here, we discuss this recent work and the emerging picture of protein surfaces as not just hydrophilic coats interfacing the solvent to the protein's core and functional regions, but as critical components in cells controlling protein mobility, function and communication with post-translational modifications.
Collapse
Affiliation(s)
- Martin Gruebele
- Department of Chemistry, Department of Physics, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Gary J Pielak
- Departments of Chemistry, Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
32
|
Thole JF, Fadero TC, Bonin JP, Stadmiller SS, Giudice JA, Pielak GJ. Danio rerio Oocytes for Eukaryotic In-Cell NMR. Biochemistry 2021; 60:451-459. [PMID: 33534998 DOI: 10.1021/acs.biochem.0c00922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Understanding how the crowded and complex cellular milieu affects protein stability and dynamics has only recently become possible by using techniques such as in-cell nuclear magnetic resonance. However, the combination of stabilizing and destabilizing interactions makes simple predictions difficult. Here we show the potential of Danio rerio oocytes as an in-cell nuclear magnetic resonance model that can be widely used to measure protein stability and dynamics. We demonstrate that in eukaryotic oocytes, which are 3-6-fold less crowded than other cell types, attractive chemical interactions still dominate effects on protein stability and slow tumbling times, compared to the effects of dilute buffer.
Collapse
Affiliation(s)
- Joseph F Thole
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tanner C Fadero
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffrey P Bonin
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha S Stadmiller
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jonathan A Giudice
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gary J Pielak
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
33
|
Zhang S, Greening DW, Hong Y. Recent advances in bioanalytical methods to measure proteome stability in cells. Analyst 2021; 146:2097-2109. [DOI: 10.1039/d0an01547d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review summarizes recent bioanalytical methods for measuring and profiling protein stability in cells on a proteome-wide scale, which can provide insights for proteostasis and associated diseases.
Collapse
Affiliation(s)
- Shouxiang Zhang
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - David W. Greening
- Molecular Proteomics
- Baker Heart and Diabetes Institute
- Melbourne
- Australia
- Department of Biochemistry and Genetics
| | - Yuning Hong
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| |
Collapse
|
34
|
Stadmiller SS, Pielak GJ. Protein-complex stability in cells and in vitro under crowded conditions. Curr Opin Struct Biol 2020; 66:183-192. [PMID: 33285342 DOI: 10.1016/j.sbi.2020.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 11/29/2022]
Abstract
Biology is beginning to appreciate the effects of the crowded and complex intracellular environment on the equilibrium thermodynamics and kinetics of protein folding. The next logical step involves the interactions between proteins. We review quantitative, wet-experiment based efforts aimed at understanding how and why high concentrations of small molecules, synthetic polymers, biologically relevant cosolutes and the interior of living cells affect the energetics of protein-protein interactions. We then address popular theories used to explain the effects and suggest expeditious paths for a more methodical integration of experiment and simulation.
Collapse
Affiliation(s)
- Samantha S Stadmiller
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-3290, USA; Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
35
|
Gopan G, Gruebele M, Rickard M. In-cell protein landscapes: making the match between theory, simulation and experiment. Curr Opin Struct Biol 2020; 66:163-169. [PMID: 33254078 DOI: 10.1016/j.sbi.2020.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/10/2020] [Indexed: 11/26/2022]
Abstract
Theory, computation and experiment have matched up for the folding of small proteins in vitro, a difficult feat because folding energy landscapes are fairly smooth and free energy differences between states are small. Smoothness means that protein structure and folding are susceptible to the local environment inside living cells. Theory, computation and experiment are now exploring cellular modulation of energy landscapes. Interesting concepts have emerged, such as co-evolution of protein surfaces with their cellular environment to reduce detrimental interactions. Here we look at very recent work beginning to bring together theory, simulations and experiments in the area of protein landscape modulation, to see what problems might be solved in the near future by combining these approaches.
Collapse
Affiliation(s)
- Gopika Gopan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Meredith Rickard
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
36
|
Puglisi R, Brylski O, Alfano C, Martin SR, Pastore A, Temussi PA. Quantifying the thermodynamics of protein unfolding using 2D NMR spectroscopy. Commun Chem 2020; 3:100. [PMID: 33718626 PMCID: PMC7116895 DOI: 10.1038/s42004-020-00358-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/17/2020] [Indexed: 01/13/2023] Open
Abstract
A topic that has attracted considerable interest in recent years is the possibility to perform thermodynamic studies of proteins directly in-cell or in complex environments which mimic the cellular interior. Nuclear magnetic resonance (NMR) could be an attractive technique for these studies but its applicability has so far been limited by technical issues. Here, we demonstrate that 2D NMR methods can be successfully applied to measure thermodynamic parameters provided that a suitable choice of the residues used for the calculation is made. We propose a new parameter, named RAD, which reflects the level of protection of a specific amide proton in the protein core and can guide through the selection of the resonances. We also suggest a way to calibrate the volumes to become independent of technical limitations. The methodology we propose leads to stability curves comparable to that calculated from CD data and provides a new tool for thermodynamic measurements in complex environments.
Collapse
Affiliation(s)
- Rita Puglisi
- UK-DRI at the Wohl Institute of King’s College London, 5 Cutcombe Road, SE59RT London, UK
| | - Oliver Brylski
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | - Annalisa Pastore
- UK-DRI at the Wohl Institute of King’s College London, 5 Cutcombe Road, SE59RT London, UK
| | - Piero A. Temussi
- UK-DRI at the Wohl Institute of King’s College London, 5 Cutcombe Road, SE59RT London, UK
- Dipartimento di Scienze Chimiche, Universita’ di Napoli Federico II, Napoli, Italy
| |
Collapse
|
37
|
Davis CM, Gruebele M. Cytoskeletal Drugs Modulate Off-Target Protein Folding Landscapes Inside Cells. Biochemistry 2020; 59:2650-2659. [PMID: 32567840 DOI: 10.1021/acs.biochem.0c00299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The dynamic cytoskeletal network of microtubules and actin filaments can be disassembled by drugs. Cytoskeletal drugs work by perturbing the monomer-polymer equilibrium, thus changing the size and number of macromolecular crowders inside cells. Changes in both crowding and nonspecific surface interactions ("sticking") following cytoskeleton disassembly can affect the protein stability, structure, and function directly or indirectly by changing the fluidity of the cytoplasm and altering the crowding and sticking of other macromolecules in the cytoplasm. The effect of cytoskeleton disassembly on protein energy landscapes inside cells has yet to be observed. Here we have measured the effect of several cytoskeletal drugs on the folding energy landscape of two FRET-labeled proteins with different in vitro sensitivities to macromolecular crowding. Phosphoglycerate kinase (PGK) was previously shown to be more sensitive to crowding, whereas variable major protein-like sequence expressed (VlsE) was previously shown to be more sensitive to sticking. The in-cell effects of drugs that depolymerize either actin filaments (cytochalasin D and latrunculin B) or microtubules (nocodazole and vinblastine) were compared. The crowding sensor protein CrH2-FRET verified that cytoskeletal drugs decrease the extent of crowding inside cells despite also reducing the overall cell volume. The decreased compactness and folding stability of PGK could be explained by the decreased extent of crowding induced by these drugs. VlsE's opposite response to the drugs shows that depolymerization of the cytoskeleton also changes sticking in the cellular milieu. Our results demonstrate that perturbation of the monomer-polymer cytoskeletal equilibrium, for example, during natural cell migration or stresses from drug treatment, has off-target effects on the energy landscapes of proteins in the cell.
Collapse
|
38
|
Rickard MM, Zhang Y, Pogorelov TV, Gruebele M. Crowding, Sticking, and Partial Folding of GTT WW Domain in a Small Cytoplasm Model. J Phys Chem B 2020; 124:4732-4740. [PMID: 32463238 DOI: 10.1021/acs.jpcb.0c02536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent experimental data has shown that protein folding in the cytoplasm can differ from in vitro folding with respect to speed, stability, and residual structure. Here we investigate the all-atom molecular dynamics (MD) simulations of 9 copies of the model protein GTT WW domain in a small bacterial cytoplasm model using three force fields. GTT has been well-studied by MD in aqueous solution for comparison. We find that folded copies remain folded for up 25 μs, whereas unfolded copies do not fold for up to 190 μs. Unfolded GTT in our cytoplasm model does populate partly folded intermediates with one of the two hairpins formed. Relative to aqueous solution, GTT gets stuck in metastable states with a small RMSD and radius of gyration and extensive burial of surface area against other macromolecules. In particular, GTT is even able to form transient intermolecular β-sheets with other proteins, resulting in a "chimeric structure" that could be a precursor to oligomeric β-aggregates. We conclude that sticking, enhanced by the non-native mutations of GTT, is largely responsible, and we propose, on the basis of our result as well as recent experiments, that coevolution of protein surfaces with their solvation environment (including chaperones) is important for folding and diffusion of proteins in the cytoplasm.
Collapse
Affiliation(s)
- M M Rickard
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Y Zhang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - T V Pogorelov
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - M Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
39
|
Abstract
Cells of the vast majority of organisms are subject to temperature, pressure, pH, ionic strength, and other stresses. We discuss these effects in the light of protein folding and protein interactions in vitro, in complex environments, in cells, and in vivo. Protein phase diagrams provide a way of organizing different structural ensembles that occur under stress and how one can move among ensembles. Experiments that perturb biomolecules in vitro or in cells by stressing them have revealed much about the underlying forces that are competing to control protein stability, folding, and function. Two phenomena that emerge and serve to broadly classify effects of the cellular environment are crowding (mainly due to repulsive forces) and sticking (mainly due to attractive forces). The interior of cells is closely balanced between these emergent effects, and stress can tip the balance one way or the other. The free energy scale involved is small but significant on the scale of the "on/off switches" that control signaling in cells or of protein-protein association with a favorable function such as increased enzyme processivity. Quantitative tools from biophysical chemistry will play an important role in elucidating the world of crowding and sticking under stress.
Collapse
Affiliation(s)
- Mayank Boob
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
| | - Yuhan Wang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
| | - Martin Gruebele
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
- Department of Chemistry, Department of Physics, Center for the Physics of Living Cells, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
| |
Collapse
|
40
|
Rickard MM, Zhang Y, Gruebele M, Pogorelov TV. In-Cell Protein-Protein Contacts: Transient Interactions in the Crowd. J Phys Chem Lett 2019; 10:5667-5673. [PMID: 31483661 DOI: 10.1021/acs.jpclett.9b01556] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proteins in vivo are immersed in a crowded environment of water, ions, metabolites, and macromolecules. In-cell experiments highlight how transient weak protein-protein interactions promote (via functional "quinary structure") or hinder (via competitive binding or "sticking") complex formation. Computational models of the cytoplasm are expensive. We tackle this challenge with an all-atom model of a small volume of the E. coli cytoplasm to simulate protein-protein contacts up to the 5 μs time scale on the special-purpose supercomputer Anton 2. We use three CHARMM-derived force fields: C22*, C36m, and C36mCU (with CUFIX corrections). We find that both C36m and C36mCU form smaller contact surfaces than C22*. Although CUFIX was developed to reduce protein-protein sticking, larger contacts are observed with C36mCU than C36m. We show that the lifespan Δt of protein-protein contacts obeys a power law distribution between 0.03 and 3 μs, with ∼90% of all contacts lasting <1 μs (similar to the time scale for downhill folding).
Collapse
Affiliation(s)
- Meredith M Rickard
- Department of Chemistry , University of Illinois, Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Yi Zhang
- Center for Biophysics and Computational Biology , University of Illinois, Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Martin Gruebele
- Department of Chemistry , University of Illinois, Urbana-Champaign , Urbana , Illinois 61801 , United States
- Center for Biophysics and Computational Biology , University of Illinois, Urbana-Champaign , Urbana , Illinois 61801 , United States
- Department of Physics , University of Illinois, Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Taras V Pogorelov
- Department of Chemistry , University of Illinois, Urbana-Champaign , Urbana , Illinois 61801 , United States
- Center for Biophysics and Computational Biology , University of Illinois, Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
41
|
Brylski O, Ebbinghaus S, Mueller JW. Melting Down Protein Stability: PAPS Synthase 2 in Patients and in a Cellular Environment. Front Mol Biosci 2019; 6:31. [PMID: 31131283 PMCID: PMC6509946 DOI: 10.3389/fmolb.2019.00031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
Within the crowded and complex environment of the cell, a protein experiences stabilizing excluded-volume effects and destabilizing quinary interactions with other proteins. Which of these prevail, needs to be determined on a case-by-case basis. PAPS synthases are dimeric and bifunctional enzymes, providing activated sulfate in the form of 3′-phosphoadenosine-5′-phosphosulfate (PAPS) for sulfation reactions. The human PAPS synthases PAPSS1 and PAPSS2 differ significantly in their protein stability as PAPSS2 is a naturally fragile protein. PAPS synthases bind a series of nucleotide ligands and some of them markedly stabilize these proteins. PAPS synthases are of biomedical relevance as destabilizing point mutations give rise to several pathologies. Genetic defects in PAPSS2 have been linked to bone and cartilage malformations as well as a steroid sulfation defect. All this makes PAPS synthases ideal to study protein unfolding, ligand binding, and the stabilizing and destabilizing factors in their cellular environment. This review provides an overview on current concepts of protein folding and stability and links this with our current understanding of the different disease mechanisms of PAPSS2-related pathologies with perspectives for future research and application.
Collapse
Affiliation(s)
- Oliver Brylski
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jonathan W Mueller
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| |
Collapse
|