1
|
Khazaei H, Carlson-Nilsson U, Schulman AH. The Jan Sjödin faba bean mutant collection: morphological and molecular characterization. Hereditas 2024; 161:37. [PMID: 39375815 PMCID: PMC11457391 DOI: 10.1186/s41065-024-00339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Plant mutagenesis creates novel alleles, thereby increasing genetic and phenotypic diversity. The availability of the faba bean (Vicia faba L.) reference genome and a growing set of additional genomic resources has increased the scientific and practical value of mutant collections. We aimed to genotype and morphologically phenotype a historical faba bean mutant collection developed and characterized by Jan Sjödin (1934-2023) over half a century ago in order to increase its value to researchers. The collection was genotyped using high-throughput single-primer enrichment technology (SPET) assays. RESULTS We used 11,073 informative single nucleotide polymorphism (SNP) markers spanning the faba bean genome to genotype 52 mutant lines along with the background line, cv. Primus. A range of flower, seed, leaf, and stipule mutations were observed. The analysis of population structure revealed a shallow structure with no major subpopulations. Principal component and cluster analyses revealed, to a minor extent, that the mutants clustered by their phenotype. CONCLUSIONS The mutants' phenotypic variation and shallow structure indicate that the Sjödin faba bean collection has the potential to play a significant role in faba bean breeding and in genetic and functional studies.
Collapse
Affiliation(s)
- Hamid Khazaei
- Production systems, Natural Resources Institute Finland, Helsinki, Finland.
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland.
| | | | - Alan H Schulman
- Production systems, Natural Resources Institute Finland, Helsinki, Finland
- Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Wu T, Bafort Q, Mortier F, Almeida-Silva F, Natran A, de Peer YV. The immediate metabolomic effects of whole-genome duplication in the greater duckweed, Spirodela polyrhiza. AMERICAN JOURNAL OF BOTANY 2024; 111:e16383. [PMID: 39087852 PMCID: PMC7616399 DOI: 10.1002/ajb2.16383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 08/02/2024]
Abstract
PREMISE In plants, whole-genome duplication (WGD) is a common mutation with profound evolutionary potential. Given the costs associated with a superfluous genome copy, polyploid establishment is enigmatic. However, in the right environment, immediate phenotypic changes following WGD can facilitate establishment. Metabolite abundances are the direct output of the cell's regulatory network and determine much of the impact of environmental and genetic change on the phenotype. While it is well known that an increase in the bulk amount of genetic material can increase cell size, the impact of gene dosage multiplication on the metabolome remains largely unknown. METHODS We used untargeted metabolomics on four genetically distinct diploid-neoautotetraploid pairs of the greater duckweed, Spirodela polyrhiza, to investigate how WGD affects metabolite abundances per cell and per biomass. RESULTS Autopolyploidy increased metabolite levels per cell, but the response of individual metabolites varied considerably. However, the impact on metabolite level per biomass was restricted because the increased cell size reduced the metabolite concentration per cell. Nevertheless, we detected both quantitative and qualitative effects of WGD on the metabolome. Many effects were strain-specific, but some were shared by all four strains. CONCLUSIONS The nature and impact of metabolic changes after WGD depended strongly on the genotype. Dosage effects have the potential to alter the plant metabolome qualitatively and quantitatively, but were largely balanced out by the reduction in metabolite concentration due to an increase in cell size in this species.
Collapse
Affiliation(s)
- Tian Wu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9000, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Quinten Bafort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9000, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, 9000Ghent, Belgium
| | - Frederik Mortier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9000, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, 9000Ghent, Belgium
| | - Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9000, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Annelore Natran
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9000, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University Biochemistry, Nanjing210095, China
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria0028, South Africa
| |
Collapse
|
3
|
Wang Y, Duchen P, Chávez A, Sree KS, Appenroth KJ, Zhao H, Höfer M, Huber M, Xu S. Population genomics and epigenomics of Spirodela polyrhiza provide insights into the evolution of facultative asexuality. Commun Biol 2024; 7:581. [PMID: 38755313 PMCID: PMC11099151 DOI: 10.1038/s42003-024-06266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Many plants are facultatively asexual, balancing short-term benefits with long-term costs of asexuality. During range expansion, natural selection likely influences the genetic controls of asexuality in these organisms. However, evidence of natural selection driving asexuality is limited, and the evolutionary consequences of asexuality on the genomic and epigenomic diversity remain controversial. We analyzed population genomes and epigenomes of Spirodela polyrhiza, (L.) Schleid., a facultatively asexual plant that flowers rarely, revealing remarkably low genomic diversity and DNA methylation levels. Within species, demographic history and the frequency of asexual reproduction jointly determined intra-specific variations of genomic diversity and DNA methylation levels. Genome-wide scans revealed that genes associated with stress adaptations, flowering and embryogenesis were under positive selection. These data are consistent with the hypothesize that natural selection can shape the evolution of asexuality during habitat expansions, which alters genomic and epigenomic diversity levels.
Collapse
Affiliation(s)
- Yangzi Wang
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Pablo Duchen
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Alexandra Chávez
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, 48161, Münster, Germany
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periya, 671320, India
| | - Klaus J Appenroth
- Matthias Schleiden Institute - Plant Physiology, Friedrich Schiller University of Jena, 07743, Jena, Germany
| | - Hai Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, 6100641, Chengdu, China
| | - Martin Höfer
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Meret Huber
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, 48161, Münster, Germany
| | - Shuqing Xu
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany.
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany.
- Institute for Quantitative and Computational Biosciences, University of Mainz, 55218, Mainz, Germany.
| |
Collapse
|
4
|
Smith KE, Zhou M, Flis P, Jones DH, Bishopp A, Yant L. The evolution of the duckweed ionome mirrors losses in structural complexity. ANNALS OF BOTANY 2024; 133:997-1006. [PMID: 38307008 PMCID: PMC11089258 DOI: 10.1093/aob/mcae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/03/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND AND AIMS The duckweeds (Lemnaceae) consist of 36 species exhibiting impressive phenotypic variation, including the progressive evolutionary loss of a fundamental plant organ, the root. Loss of roots and reduction of vascular tissues in recently derived taxa occur in concert with genome expansions of ≤14-fold. Given the paired loss of roots and reduction in structural complexity in derived taxa, we focus on the evolution of the ionome (whole-plant elemental contents) in the context of these fundamental changes in body plan. We expect that progressive vestigiality and eventual loss of roots might have both adaptive and maladaptive consequences that are hitherto unknown. METHODS We quantified the ionomes of 34 accessions in 21 species across all duckweed genera, spanning 70 Myr in this rapidly cycling plant (doubling times are as rapid as ~24 h). We related both micro- and macroevolutionary ionome contrasts to body plan remodelling and showed nimble microevolutionary shifts in elemental accumulation and exclusion in novel accessions. KEY RESULTS We observed a robust directional trend in calcium and magnesium levels, decreasing from the ancestral representative Spirodela genus towards the derived rootless Wolffia, with the latter also accumulating cadmium. We also identified abundant within-species variation and hyperaccumulators of specific elements, with this extensive variation at the fine (as opposed to broad) scale. CONCLUSIONS These data underscore the impact of root loss and reveal the very fine scale of microevolutionary variation in hyperaccumulation and exclusion of a wide range of elements. Broadly, they might point to trade-offs not well recognized in ionomes.
Collapse
Affiliation(s)
- Kellie E Smith
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Min Zhou
- School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Paulina Flis
- School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Dylan H Jones
- School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Anthony Bishopp
- School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Levi Yant
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Chen G, Stepanenko A, Borisjuk N. Contrasting patterns of 5S rDNA repeats in European and Asian ecotypes of greater duckweed, Spirodela polyrhiza (Lemnaceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1378683. [PMID: 38711607 PMCID: PMC11070557 DOI: 10.3389/fpls.2024.1378683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Ribosomal DNA (rDNA) contains highly conserved, specifically organized sequences encoding ribosomal RNAs (rRNAs) separated by variable non-transcribed intergenic spacers (NTSs) and is abundant in eukaryotic genomes. These characteristics make the rDNA an informative molecular target to study genome organization, molecular evolution, and phylogenetics. In this study, we characterized the 5S rDNA repeats in the greater duckweed Spiroldela polyrhiza, a species known for its small size, rapid growth, highly conserved genome organization, and low mutation rate. Sequence analysis of at least 12 individually cloned PCR fragments containing the 5S rDNA units for each of six ecotypes that originated from Europe (Ukraine) and Asia (China) revealed two distinct types of 5S rDNA repeats containing NTSs of different lengths and nucleotide compositions. The shorter 5S rDNA repeat units had a highly homogeneous 400-bp NTS, with few ecotype- or region-specific single-nucleotide polymorphisms (SNPs). The longer 5S rDNA units had NTSs of 1056-1084 bp with characteristic intra- and inter-genomic variants due to specific SNPs and insertions/deletions of 4-15-bp DNA elements. We also detected significant variability in the ratio of short/long 5S rDNA variants between ecotypes of S. polyrhiza. The contrasting dynamics of the two types of 5S rDNA units, combined with the unusually low repeat copy number (for plants) in S. polyrhiza (46-220 copies per genome), shows that this species could serve as an excellent model for examining the mechanisms of concerted evolution and functional significance of rDNA variability.
Collapse
Affiliation(s)
- Guimin Chen
- School of Life Sciences, Huaiyin Normal University, Huai’an, China
| | - Anton Stepanenko
- School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Department of Molecular Genetics, Institute of Cell Biology and Genetic Engineering, Kyiv, Ukraine
| | - Nikolai Borisjuk
- School of Life Sciences, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
6
|
Harkess A, Bewick AJ, Lu Z, Fourounjian P, Michael TP, Schmitz RJ, Meyers BC. The unusual predominance of maintenance DNA methylation in Spirodela polyrhiza. G3 (BETHESDA, MD.) 2024; 14:jkae004. [PMID: 38190722 PMCID: PMC10989885 DOI: 10.1093/g3journal/jkae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024]
Abstract
Duckweeds are among the fastest reproducing plants, able to clonally divide at exponential rates. However, the genetic and epigenetic impact of clonality on plant genomes is poorly understood. 5-methylcytosine (5mC) is a modified base often described as necessary for the proper regulation of certain genes and transposons and for the maintenance of genome integrity in plants. However, the extent of this dogma is limited by the current phylogenetic sampling of land plant species diversity. Here we analyzed DNA methylomes, small RNAs, mRNA-seq, and H3K9me2 histone modification for Spirodela polyrhiza. S. polyrhiza has lost highly conserved genes involved in de novo methylation of DNA at sites often associated with repetitive DNA, and within genes, however, symmetrical DNA methylation and heterochromatin are maintained during cell division at certain transposons and repeats. Consequently, small RNAs that normally guide methylation to silence repetitive DNA like retrotransposons are diminished. Despite the loss of a highly conserved methylation pathway, and the reduction of small RNAs that normally target repetitive DNA, transposons have not proliferated in the genome, perhaps due in part to the rapid, clonal growth lifestyle of duckweeds.
Collapse
Affiliation(s)
- Alex Harkess
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Adam J Bewick
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Paul Fourounjian
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Todd P Michael
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- Division of Plant Sciences, University of Missouri—Columbia, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Höfer M, Schäfer M, Wang Y, Wink S, Xu S. Genetic Mechanism of Non-Targeted-Site Resistance to Diquat in Spirodela polyrhiza. PLANTS (BASEL, SWITZERLAND) 2024; 13:845. [PMID: 38592881 PMCID: PMC10975167 DOI: 10.3390/plants13060845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Understanding non-target-site resistance (NTSR) to herbicides represents a pressing challenge as NTSR is widespread in many weeds. Using giant duckweed (Spirodela polyrhiza) as a model, we systematically investigated genetic and molecular mechanisms of diquat resistance, which can only be achieved via NTSR. Quantifying the diquat resistance of 138 genotypes, we revealed an 8.5-fold difference in resistance levels between the most resistant and most susceptible genotypes. Further experiments suggested that diquat uptake and antioxidant-related processes jointly contributed to diquat resistance in S. polyrhiza. Using a genome-wide association approach, we identified several candidate genes, including a homolog of dienelactone hydrolase, that are associated with diquat resistance in S. polyrhiza. Together, these results provide new insights into the mechanisms and evolution of NTSR in plants.
Collapse
Affiliation(s)
- Martin Höfer
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| | - Martin Schäfer
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| | - Yangzi Wang
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| | - Samuel Wink
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Shuqing Xu
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| |
Collapse
|
8
|
Smith KC, Blanchong JA. Detection of lymphoproliferative disease virus in Iowa Wild Turkeys (Meleagris gallopavo): Comparison of two sections of the proviral genome. PLoS One 2024; 19:e0296856. [PMID: 38346036 PMCID: PMC10861079 DOI: 10.1371/journal.pone.0296856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/20/2023] [Indexed: 02/15/2024] Open
Abstract
An accurate diagnostic test is an essential aspect of successfully monitoring and managing wildlife diseases. Lymphoproliferative Disease Virus (LPDV) is an avian retrovirus that was first identified in domestic turkeys in Europe and was first reported in a Wild Turkey (Meleagris gallopavo) in the United States in 2009. It has since been found to be widely distributed throughout North America. The majority of studies have utilized bone marrow and PCR primers targeting a 413-nucleotide sequence of the gag gene of the provirus to detect infection. While prior studies have evaluated the viability of other tissues for LPDV detection (whole blood, spleen, liver, cloacal swabs) none to date have studied differences in detection rates when utilizing different genomic regions of the provirus. This study examined the effectiveness of another section of the provirus, a 335-nucleotide sequence starting in the U3 region of the LTR (Long Terminal Repeat) and extending into the Matrix of the gag region (henceforth LTR), for detecting LPDV. Bone marrow samples from hunter-harvested Wild Turkeys (n = 925) were tested for LPDV with the gag gene and a subset (n = 417) including both those testing positive and those where LPDV was not detected was re-tested with LTR. The positive percent agreement (PPA) was 97.1% (68 of 70 gag positive samples tested positive with LTR) while the negative percent agreement (NPA) was only 68.0% (236 of 347 gag negative samples tested negative with LTR). Cohen's Kappa (κ = 0.402, Z = 10.26, p<0.0001) and the McNemar test (OR = 55.5, p<0.0001) indicated weak agreement between the two gene regions. We found that in Iowa Wild Turkeys use of the LTR region identified LPDV in many samples in which we failed to detect LPDV using the gag region and that LTR may be more appropriate for LPDV surveillance and monitoring. However, neither region of the provirus resulted in perfect detection and additional work is necessary to determine if LTR is more reliable in other geographic regions where LPDV occurs.
Collapse
Affiliation(s)
- Kelsey C. Smith
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, Iowa, United States of Ameria
| | - Julie A. Blanchong
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, Iowa, United States of Ameria
| |
Collapse
|
9
|
Malacrinò A, Böttner L, Nouere S, Huber M, Schäfer M, Xu S. Induced responses contribute to rapid adaptation of Spirodela polyrhiza to herbivory by Lymnaea stagnalis. Commun Biol 2024; 7:81. [PMID: 38200287 PMCID: PMC10781955 DOI: 10.1038/s42003-023-05706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Herbivory-induced responses in plants are typical examples of phenotypic plasticity, and their evolution is thought to be driven by herbivory. However, direct evidence of the role of induced responses in plant adaptive evolution to herbivores is scarce. Here, we experimentally evolve populations of an aquatic plant (Spirodela polyrhiza, giant duckweed) and its native herbivore (Lymnaea stagnalis, freshwater snail), testing whether herbivory drives rapid adaptive evolution in plant populations using a combination of bioassays, pool-sequencing, metabolite analyses, and amplicon metagenomics. We show that snail herbivory drove rapid phenotypic changes, increased herbivory resistance, and altered genotype frequencies in the plant populations. Additional bioassays suggest that evolutionary changes of induced responses contributed to the rapid increase of plant resistance to herbivory. This study provides direct evidence that herbivory-induced responses in plants can be subjected to selection and have an adaptive role by increasing resistance to herbivores.
Collapse
Affiliation(s)
- Antonino Malacrinò
- Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy.
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| | - Laura Böttner
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Institute for Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Sara Nouere
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Meret Huber
- Institute for Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Martin Schäfer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
10
|
Oláh V, Appenroth KJ, Sree KS. Duckweed: Research Meets Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:3307. [PMID: 37765471 PMCID: PMC10535908 DOI: 10.3390/plants12183307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
The Special Issue "Duckweed: Research Meets Applications" of the journal Plants (ISSN 2223-7747) presents a comprehensive update of the current progress in the field [...].
Collapse
Affiliation(s)
- Viktor Oláh
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Klaus-Juergen Appenroth
- Matthias Schleiden Institute–Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - K. Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| |
Collapse
|
11
|
Pasricha Sarin L, Sree KS, Bóka K, Keresztes Á, Fuchs J, Tyagi AK, Khurana JP, Appenroth KJ. Characterisation of a Spontaneous Mutant of Lemna gibba G3 (Lemnaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:2525. [PMID: 37447086 DOI: 10.3390/plants12132525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
A spontaneous mutant of the duckweed Lemna gibba clone no. 7796 (known as strain G3, WT) was discovered. In this mutant clone, L. gibba clone no. 9602 (mt), the morphological parameters (frond length, frond width, root length, root diameter) indicated an enlarged size. A change in the frond shape was indicated by the decreased frond length/width ratio, which could have taxonomic consequences. Several different cell types in both the frond and the root were also enlarged. Flow cytometric measurements disclosed the genome size of the WT as 557 Mbp/1C and that of the mt strain as 1153 Mbp/1C. This represents the results of polyploidisation of a diploid clone to a tetraploid one. The mutant clone flowered under the influence of long day-treatment in half-strength Hutner's medium in striking contrast to the diploid WT. Low concentration of salicylic acid (<1 µM) induced flowering in the tetraploid mutant but not in the diploid plants. The transcript levels of nuclear-encoded genes of the photosynthetic apparatus (CAB, RBCS) showed higher abundance in light and less dramatic decline in darkness in the mt than in WT, while this was not the case with plastid-encoded genes (RBCL, PSAA, PSBA, PSBC).
Collapse
Affiliation(s)
- Lakshmi Pasricha Sarin
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| | - Károly Bóka
- Department of Plant Anatomy, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Áron Keresztes
- Department of Plant Anatomy, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Jörg Fuchs
- The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Akhilesh K Tyagi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Jitendra Paul Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | | |
Collapse
|
12
|
Krasovec M, Hoshino M, Zheng M, Lipinska AP, Coelho SM. Low Spontaneous Mutation Rate in Complex Multicellular Eukaryotes with a Haploid-Diploid Life Cycle. Mol Biol Evol 2023; 40:msad105. [PMID: 37140022 PMCID: PMC10254074 DOI: 10.1093/molbev/msad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/22/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023] Open
Abstract
The spontaneous mutation rate µ is a crucial parameter to understand evolution and biodiversity. Mutation rates are highly variable across species, suggesting that µ is susceptible to selection and drift and that species life cycle and life history may impact its evolution. In particular, asexual reproduction and haploid selection are expected to affect the mutation rate, but very little empirical data are available to test this expectation. Here, we sequence 30 genomes of a parent-offspring pedigree in the model brown alga Ectocarpus sp.7, and 137 genomes of an interspecific cross of the closely related brown alga Scytosiphon to have access to the spontaneous mutation rate of representative organisms of a complex multicellular eukaryotic lineage outside animals and plants, and to evaluate the potential impact of life cycle on the mutation rate. Brown algae alternate between a haploid and a diploid stage, both multicellular and free living, and utilize both sexual and asexual reproduction. They are, therefore, excellent models to empirically test expectations of the effect of asexual reproduction and haploid selection on mutation rate evolution. We estimate that Ectocarpus has a base substitution rate of µbs = 4.07 × 10-10 per site per generation, whereas the Scytosiphon interspecific cross had µbs = 1.22 × 10-9. Overall, our estimations suggest that these brown algae, despite being multicellular complex eukaryotes, have unusually low mutation rates. In Ectocarpus, effective population size (Ne) could not entirely explain the low µbs. We propose that the haploid-diploid life cycle, combined with extensive asexual reproduction, may be additional key drivers of the mutation rate in these organisms.
Collapse
Affiliation(s)
- Marc Krasovec
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Masakazu Hoshino
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Min Zheng
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Agnieszka P Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Honma H, Takahashi N, Arisue N, Sugishita T. Analysis of genome instability and implications for the consequent phenotype in Plasmodium falciparum containing mutated MSH2-1 (P513T). Microb Genom 2023; 9. [PMID: 37083479 DOI: 10.1099/mgen.0.001003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Malarial parasites exhibit extensive genomic plasticity, which induces the antigen diversification and the development of antimalarial drug resistance. Only a few studies have examined the genome maintenance mechanisms of parasites. The study aimed at elucidating the impact of a mutation in a DNA mismatch repair gene on genome stability by maintaining the mutant and wild-type parasites through serial in vitro cultures for approximately 400 days and analysing the subsequent spontaneous mutations. A P513T mutant of the DNA mismatch repair protein PfMSH2-1 from Plasmodium falciparum 3D7 was created. The mutation did not influence the base substitution rate but significantly increased the insertion/deletion (indel) mutation rate in short tandem repeats (STRs) and minisatellite loci. STR mutability was affected by allele size, genomic category and certain repeat motifs. In the mutants, significant telomere healing and homologous recombination at chromosomal ends caused extensive gene loss and generation of chimeric genes, resulting in large-scale chromosomal alteration. Additionally, the mutant showed increased tolerance to N-methyl-N'-nitro-N-nitrosoguanidine, suggesting that PfMSH2-1 was involved in recognizing DNA methylation damage. This work provides valuable insights into the role of PfMSH2-1 in genome stability and demonstrates that the genomic destabilization caused by its dysfunction may lead to antigen diversification.
Collapse
Affiliation(s)
- Hajime Honma
- Section of Global Health, Division of Public Health, Department of Hygiene and Public Health, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Nobuyuki Takahashi
- Section of Global Health, Division of Public Health, Department of Hygiene and Public Health, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Nobuko Arisue
- Section of Global Health, Division of Public Health, Department of Hygiene and Public Health, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Tomohiko Sugishita
- Section of Global Health, Division of Public Health, Department of Hygiene and Public Health, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| |
Collapse
|
14
|
Shao C, Sun S, Liu K, Wang J, Li S, Liu Q, Deagle BE, Seim I, Biscontin A, Wang Q, Liu X, Kawaguchi S, Liu Y, Jarman S, Wang Y, Wang HY, Huang G, Hu J, Feng B, De Pittà C, Liu S, Wang R, Ma K, Ying Y, Sales G, Sun T, Wang X, Zhang Y, Zhao Y, Pan S, Hao X, Wang Y, Xu J, Yue B, Sun Y, Zhang H, Xu M, Liu Y, Jia X, Zhu J, Liu S, Ruan J, Zhang G, Yang H, Xu X, Wang J, Zhao X, Meyer B, Fan G. The enormous repetitive Antarctic krill genome reveals environmental adaptations and population insights. Cell 2023; 186:1279-1294.e19. [PMID: 36868220 DOI: 10.1016/j.cell.2023.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 12/11/2022] [Accepted: 02/02/2023] [Indexed: 03/05/2023]
Abstract
Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.
Collapse
Affiliation(s)
- Changwei Shao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.
| | - Shuai Sun
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiqiang Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Jiahao Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Shuo Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Qun Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China; Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Bruce E Deagle
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian National Fish Collection, National Research Collections Australia, Hobart, TAS 7000, Australia; Australian Antarctic Division, Channel Highway, Kingston, TAS 7050, Australia
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | | | - Qian Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; BGI-Beijing, Beijing 102601, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA 6150, Australia
| | - So Kawaguchi
- Australian Antarctic Division, Channel Highway, Kingston, TAS 7050, Australia
| | - Yalin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Simon Jarman
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6009, Australia
| | - Yue Wang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Hong-Yan Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | | | - Jiang Hu
- Nextomics Biosciences Institute, Wuhan, Hubei 430073, China
| | - Bo Feng
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | | | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Rui Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Kailong Ma
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yiping Ying
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Gabrielle Sales
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Tao Sun
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Xinliang Wang
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Yunxia Zhao
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Shanshan Pan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Xiancai Hao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Yang Wang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Jiakun Xu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Bowen Yue
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Yanxu Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - He Zhang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Mengyang Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Yuyan Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Jiancheng Zhu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Shufang Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Jue Ruan
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; James D. Watson Institute of Genome Science, Hangzhou 310058, China
| | - Xun Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Jun Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Xianyong Zhao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Bettina Meyer
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, Carlvon Ossietzky University of Oldenburg, 26111 Oldenburg, Germany; Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, 26129 Oldenburg, Germany.
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China; Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen 518120, China.
| |
Collapse
|
15
|
Bafort Q, Wu T, Natran A, De Clerck O, Van de Peer Y. The immediate effects of polyploidization of Spirodela polyrhiza change in a strain-specific way along environmental gradients. Evol Lett 2023; 7:37-47. [PMID: 37065435 PMCID: PMC10091501 DOI: 10.1093/evlett/qrac003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 02/04/2023] Open
Abstract
Abstract
The immediate effects of plant polyploidization are well characterized and it is generally accepted that these morphological, physiological, developmental, and phenological changes contribute to polyploid establishment. Studies on the environmental dependence of the immediate effects of whole-genome duplication (WGD) are, however, scarce but suggest that these immediate effects are altered by stressful conditions. As polyploid establishment seems to be associated with environmental disturbance, the relationship between ploidy-induced phenotypical changes and environmental conditions is highly relevant. Here, we use a common garden experiment on the greater duckweed Spirodela polyrhiza to test whether the immediate effects of WGD can facilitate the establishment of tetraploid duckweed along gradients of two environmental stressors. Because successful polyploid establishment often depends on recurrent polyploidization events, we include four genetically diverse strains and assess whether these immediate effects are strain-specific. We find evidence that WGD can indeed confer a fitness advantage under stressful conditions and that the environment affects ploidy-induced changes in fitness and trait reaction norms in a strain-specific way.
Collapse
Affiliation(s)
- Quinten Bafort
- Department of Biology, Ghent University , Ghent , Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB-UGent Center for Plant Systems Biology , Ghent , Belgium
| | - Tian Wu
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB-UGent Center for Plant Systems Biology , Ghent , Belgium
| | - Annelore Natran
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB-UGent Center for Plant Systems Biology , Ghent , Belgium
| | | | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB-UGent Center for Plant Systems Biology , Ghent , Belgium
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University , Nanjing , China
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria , Pretoria , South Africa
| |
Collapse
|
16
|
Kishchenko O, Stepanenko A, Straub T, Zhou Y, Neuhäuser B, Borisjuk N. Ammonium Uptake, Mediated by Ammonium Transporters, Mitigates Manganese Toxicity in Duckweed, Spirodela polyrhiza. PLANTS (BASEL, SWITZERLAND) 2023; 12:208. [PMID: 36616338 PMCID: PMC9824425 DOI: 10.3390/plants12010208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 06/12/2023]
Abstract
Nitrogen is an essential nutrient that affects all aspects of the growth, development and metabolic responses of plants. Here we investigated the influence of the two major sources of inorganic nitrogen, nitrate and ammonium, on the toxicity caused by excess of Mn in great duckweed, Spirodela polyrhiza. The revealed alleviating effect of ammonium on Mn-mediated toxicity, was complemented by detailed molecular, biochemical and evolutionary characterization of the species ammonium transporters (AMTs). Four genes encoding AMTs in S. polyrhiza, were classified as SpAMT1;1, SpAMT1;2, SpAMT1;3 and SpAMT2. Functional testing of the expressed proteins in yeast and Xenopus oocytes clearly demonstrated activity of SpAMT1;1 and SpAMT1;3 in transporting ammonium. Transcripts of all SpAMT genes were detected in duckweed fronds grown in cultivation medium, containing a physiological or 50-fold elevated concentration of Mn at the background of nitrogen or a mixture of nitrate and ammonium. Each gene demonstrated an individual expression pattern, revealed by RT-qPCR. Revealing the mitigating effect of ammonium uptake on manganese toxicity in aquatic duckweed S. polyrhiza, the study presents a comprehensive analysis of the transporters involved in the uptake of ammonium, shedding a new light on the interactions between the mechanisms of heavy metal toxicity and the regulation of the plant nitrogen metabolism.
Collapse
Affiliation(s)
- Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Acad. Zabolotnogo Str. 148, 03143 Kyiv, Ukraine
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Acad. Zabolotnogo Str. 148, 03143 Kyiv, Ukraine
| | - Tatsiana Straub
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
| |
Collapse
|
17
|
Baggs EL, Tiersma MB, Abramson BW, Michael TP, Krasileva KV. Characterization of defense responses against bacterial pathogens in duckweeds lacking EDS1. THE NEW PHYTOLOGIST 2022; 236:1838-1855. [PMID: 36052715 PMCID: PMC9828482 DOI: 10.1111/nph.18453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/19/2022] [Indexed: 05/19/2023]
Abstract
ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) mediates the induction of defense responses against pathogens in most angiosperms. However, it has recently been shown that a few species have lost EDS1. It is unknown how defense against disease unfolds and evolves in the absence of EDS1. We utilize duckweeds; a collection of aquatic species that lack EDS1, to investigate this question. We established duckweed-Pseudomonas pathosystems and used growth curves and microscopy to characterize pathogen-induced responses. Through comparative genomics and transcriptomics, we show that the copy number of infection-associated genes and the infection-induced transcriptional responses of duckweeds differ from other model species. Pathogen defense in duckweeds has evolved along different trajectories than in other plants, including genomic and transcriptional reprogramming. Specifically, the miAMP1 domain-containing proteins, which are absent in Arabidopsis, showed pathogen responsive upregulation in duckweeds. Despite such divergence between Arabidopsis and duckweed species, we found conservation of upregulation of certain genes and the role of hormones in response to disease. Our work highlights the importance of expanding the pool of model species to study defense responses that have evolved in the plant kingdom independent of EDS1.
Collapse
Affiliation(s)
- Erin L. Baggs
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCA94720USA
| | - Meije B. Tiersma
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCA94720USA
| | - Brad W. Abramson
- Plant Molecular and Cellular Biology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Todd P. Michael
- Plant Molecular and Cellular Biology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Ksenia V. Krasileva
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCA94720USA
| |
Collapse
|
18
|
Taghipour E, Bog M, Frootan F, Shojaei S, Rad N, Arezoumandi M, Jafari M, Salmanian AH. DNA barcoding and biomass accumulation rates of native Iranian duckweed species for biotechnological applications. FRONTIERS IN PLANT SCIENCE 2022; 13:1034238. [PMID: 36523621 PMCID: PMC9744944 DOI: 10.3389/fpls.2022.1034238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
The Lemnaceae family (duckweed) consists of at least three recognized genera with six reported species in Iran that are distributed in wetlands. Duckweeds are the simplest and smallest flowering aquatic monocots with free-floating fronds that can reproduce asexually every 2-3 days. Duckweed could be a major source of balanced amino acids and high protein content, which is increasingly promising for biotechnological applications. For molecular classification and species identification of the collected samples, DNA barcoding was performed using two standard chloroplast markers, the spacer region between the ATP synthase subunits F and H (atpF-atpH) and the intron region of the ribosomal protein S16 (rps16). The results confirm the presence of four species belonging to the two genera Lemna and Spirodela. In addition, L. turionifera was detected for the first time in Iran. Due to the high growth rates of duckweed, measurement of biomass accumulation and doubling time are important factors in determining growth potential, especially for native species. The relative growth rates (RGR), doubling times (DT), biomass accumulation, and relative weekly yields (RY) of 40 distinct duckweed clones were determined under standard cultivation conditions. The dry weight-based RGR ranged from 0.149 to more than 0.600 per day, DT from 1.12 to 9 days, and RY from 7 to 108.9 per week. All values are comparable with previous studies. RGR and RY of selected clones are higher than the growth potential for a wide range of wild plants and common crops. These data support that native duckweed has high productivity value and should be further investigated as a potentially rich protein source for alternative human food, livestock feed, and recombinant protein production.
Collapse
Affiliation(s)
- Elham Taghipour
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| | - Manuela Bog
- University of Greifswald, Institute of Botany and Landscape Ecology, Greifswald, Germany
| | - Fateme Frootan
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| | - Sadegh Shojaei
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| | - Nima Rad
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| | - Mahdi Arezoumandi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| | - Mahyat Jafari
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| | - Ali Hatef Salmanian
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| |
Collapse
|
19
|
Bog M, Braglia L, Morello L, Noboa Melo KI, Schubert I, Shchepin ON, Sree KS, Xu S, Lam E, Appenroth KJ. Strategies for Intraspecific Genotyping of Duckweed: Comparison of Five Orthogonal Methods Applied to the Giant Duckweed Spirodela polyrhiza. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223033. [PMID: 36432762 PMCID: PMC9696241 DOI: 10.3390/plants11223033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/12/2023]
Abstract
The predominantly vegetative propagating duckweeds are of growing commercial interest. Since clonal accessions within a respective species can vary considerably with respect to their physiological as well as biochemical traits, it is critical to be able to track the clones of species of interest after their characterization. Here, we compared the efficacy of five different genotyping methods for Spirodela polyrhiza, a species with very low intraspecific sequence variations, including polymorphic NB-ARC-related loci, tubulin-gene-based polymorphism (TBP), simple sequence repeat variations (SSR), multiplexed ISSR genotyping by sequencing (MIG-seq), and low-coverage, reduced-representation genome sequencing (GBS). Four of the five approaches could distinguish 20 to 22 genotypes out of the 23 investigated clones, while TBP resolved just seven genotypes. The choice for a particular method for intraspecific genotyping can depend on the research question and the project budget, while the combination of orthogonal methods may increase the confidence and resolution for the results obtained.
Collapse
Affiliation(s)
- Manuela Bog
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - Luca Braglia
- Istituto Biologia e Biotecnologia Agraria, Via Bassini 15, 20131 Milano, Italy
| | - Laura Morello
- Istituto Biologia e Biotecnologia Agraria, Via Bassini 15, 20131 Milano, Italy
| | - Karen I. Noboa Melo
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466 Stadt Seeland, Germany
| | - Oleg N. Shchepin
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - K. Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| | - Shuqing Xu
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Klaus J. Appenroth
- Matthias Schleiden Institute—Plant Physiology, University of Jena, 07743 Jena, Germany
| |
Collapse
|
20
|
Alamil M, Thébaud G, Berthier K, Soubeyrand S. Characterizing viral within-host diversity in fast and non-equilibrium demo-genetic dynamics. Front Microbiol 2022; 13:983938. [PMID: 36274731 PMCID: PMC9581327 DOI: 10.3389/fmicb.2022.983938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
High-throughput sequencing has opened the route for a deep assessment of within-host genetic diversity that can be used, e.g., to characterize microbial communities and to infer transmission links in infectious disease outbreaks. The performance of such characterizations and inferences cannot be analytically assessed in general and are often grounded on computer-intensive evaluations. Then, being able to simulate within-host genetic diversity across time under various demo-genetic assumptions is paramount to assess the performance of the approaches of interest. In this context, we built an original model that can be simulated to investigate the temporal evolution of genotypes and their frequencies under various demo-genetic assumptions. The model describes the growth and the mutation of genotypes at the nucleotide resolution conditional on an overall within-host viral kinetics, and can be tuned to generate fast non-equilibrium demo-genetic dynamics. We ran simulations of this model and computed classic diversity indices to characterize the temporal variation of within-host genetic diversity (from high-throughput amplicon sequences) of virus populations under three demographic kinetic models of viral infection. Our results highlight how demographic (viral load) and genetic (mutation, selection, or drift) factors drive variations in within-host diversity during the course of an infection. In particular, we observed a non-monotonic relationship between pathogen population size and genetic diversity, and a reduction of the impact of mutation on diversity when a non-specific host immune response is activated. The large variation in the diversity patterns generated in our simulations suggests that the underlying model provides a flexible basis to produce very diverse demo-genetic scenarios and test, for instance, methods for the inference of transmission links during outbreaks.
Collapse
Affiliation(s)
- Maryam Alamil
- INRAE, BioSP, Avignon, France
- Department of Mathematics and Computer Science, Alfaisal University, Riyadh, Saudi Arabia
- *Correspondence: Maryam Alamil ;
| | - Gaël Thébaud
- PHIM Plant Health Institute, INRAE, Univ Montpellier, CIRAD, Institut Agro, IRD, Montpellier, France
| | | | | |
Collapse
|
21
|
Zhao X, Yang J, Li X, Li G, Sun Z, Chen Y, Chen Y, Xia M, Li Y, Yao L, Hou H. Identification and expression analysis of GARP superfamily genes in response to nitrogen and phosphorus stress in Spirodela polyrhiza. BMC PLANT BIOLOGY 2022; 22:308. [PMID: 35751022 PMCID: PMC9233324 DOI: 10.1186/s12870-022-03696-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/13/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND GARP transcription factors perform critical roles in plant development and response to environmental stimulus, especially in the phosphorus (P) and nitrogen (N) sensing and uptake. Spirodela polyrhiza (giant duckweed) is widely used for phytoremediation and biomass production due to its rapid growth and efficient N and P removal capacities. However, there has not yet been a comprehensive analysis of the GRAP gene family in S. polyrhiza. RESULTS We conducted a comprehensive study of GRAP superfamily genes in S. polyrhiza. First, we investigated 35 SpGARP genes which have been classified into three groups based on their gene structures, conserved motifs, and phylogenetic relationship. Then, we identified the duplication events, performed the synteny analysis, and calculated the Ka/Ks ratio in these SpGARP genes. The regulatory and co-expression networks of SpGARPs were further constructed using cis-acting element analysis and weighted correlation network analysis (WGCNA). Finally, the expression pattern of SpGARP genes were analyzed using RNA-seq data and qRT-PCR, and several NIGT1 transcription factors were found to be involved in both N and P starvation responses. CONCLUSIONS The study provides insight into the evolution and function of GARP superfamily in S. polyrhiza, and lays the foundation for the further functional verification of SpGARP genes.
Collapse
Affiliation(s)
- Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaozhe Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoliang Sun
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yimeng Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manli Xia
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixian Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lunguang Yao
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North Diversion Project of Henan Province, Collaborative Innovation Center of Water Security for Water Source Region of Mid-Line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang, 473061, China
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
22
|
Tao W, Bian J, Tang M, Zeng Y, Luo R, Ke Q, Li T, Li Y, Cui L. Genomic insights into positive selection during barley domestication. BMC PLANT BIOLOGY 2022; 22:267. [PMID: 35641942 PMCID: PMC9158214 DOI: 10.1186/s12870-022-03655-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cultivated barley (Hordeum vulgare) is widely used in animal feed, beverages, and foods and has become a model crop for molecular evolutionary studies. Few studies have examined the evolutionary fates of different types of genes in barley during the domestication process. RESULTS The rates of nonsynonymous substitution (Ka) to synonymous substitution (Ks) were calculated by comparing orthologous genes in different barley groups (wild vs. landrace and landrace vs. improved cultivar). The rates of evolution, properties, expression patterns, and diversity of positively selected genes (PSGs) and negatively selected genes (NSGs) were compared. PSGs evolved more rapidly, possessed fewer exons, and had lower GC content than NSGs; they were also shorter and had shorter intron, exon, and first exon lengths. Expression levels were lower, the tissue specificity of expression was higher, and codon usage bias was weaker for PSGs than for NSGs. Nucleotide diversity analysis revealed that PSGs have undergone a more severe genetic bottleneck than NSGs. Several candidate PSGs were involved in plant growth and development, which might make them as excellent targets for the molecular breeding of barley. CONCLUSIONS Our comprehensive analysis of the evolutionary, structural, and functional divergence between PSGs and NSGs in barley provides new insight into the evolutionary trajectory of barley during domestication. Our findings also aid future functional studies of PSGs in barley.
Collapse
Affiliation(s)
- Wenjing Tao
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, 261325 China
| | - Minqiang Tang
- College of Forestry, Hainan University, Haikou, Hainan, 570228 China
| | - Yan Zeng
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China
| | - Ruihan Luo
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China
| | - Qinglin Ke
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China
| | - Tingting Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China
| |
Collapse
|
23
|
Biodiversity of Duckweed (Lemnaceae) in Water Reservoirs of Ukraine and China Assessed by Chloroplast DNA Barcoding. PLANTS 2022; 11:plants11111468. [PMID: 35684242 PMCID: PMC9182681 DOI: 10.3390/plants11111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022]
Abstract
Monitoring and characterizing species biodiversity is essential for germplasm preservation, academic studies, and various practical applications. Duckweeds represent a group of tiny aquatic plants that include 36 species divided into 5 genera within the Lemnaceae family. They are an important part of aquatic ecosystems worldwide, often covering large portions of the water reservoirs they inhabit, and have many potential applications, including in bioremediation, biofuels, and biomanufacturing. Here, we evaluated the biodiversity of duckweeds in Ukraine and Eastern China by characterizing specimens using the two-barcode protocol with the chloroplast atpH–atpF and psbK–psbI spacer sequences. In total, 69 Chinese and Ukrainian duckweed specimens were sequenced. The sequences were compared against sequences in the NCBI database using BLAST. We identified six species from China (Spirodela polyrhiza, Landoltia punctata, Lemna aequinoctialis, Lemna minor, Lemna turionifera, and Wolffia globosa) and six from Ukraine (S. polyrhiza, Lemna gibba, Lemna minor, Lemna trisulca, Lemna turionifera, and Wolffia arrhiza). The most common duckweed species in the samples from Ukraine were Le. minor and S. polyrhiza, accounting for 17 and 15 out of 40 specimens, respectively. The most common duckweed species in the samples from China was S. polyrhiza, accounting for 15 out of 29 specimens. La. punctata and Le. aequinoctialis were also common in China, accounting for five and four specimens, respectively. According to both atpH–atpF and psbK–psbI barcode analyses, the species identified as Le. aequinoctialis does not form a uniform taxon similar to other duckweed species, and therefore the phylogenetic status of this species requires further clarification. By monitoring duckweeds using chloroplast DNA sequencing, we not only precisely identified local species and ecotypes, but also provided background for further exploration of native varieties with diverse genetic backgrounds. These data could be useful for future conservation, breeding, and biotechnological applications.
Collapse
|
24
|
Critical Evaluation of Specific Efficacy of Preparations Produced According to European Pharmacopeia Monograph 2371. Biomedicines 2022; 10:biomedicines10030552. [PMID: 35327354 PMCID: PMC8944999 DOI: 10.3390/biomedicines10030552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
European Pharmacopoeia monograph 2371 describes the production of homeopathic preparations. A specific efficacy of these preparations in high dilution levels is questionable in view of basic scientific principles. There is empirical evidence for such effects, for example in a Lemna-intoxication bioassay published 2010. To test the replicability and robustness of this bioassay, we conducted two experimental series (five independent blinded and randomised experiments each). The specimen of Lemna gibba L., clone-number 9352, were stressed in arsenic solution for 48 h (158 mg/L AsNa2HO4 (250 mg/L in series 2)), then grew in either As2O3 preparations produced according to Eu. Pharm. Monogr. 2371 or control solution. Comparing the area-related relative growth rate of day 3−9 (rgr 3−9) between treatment and control groups for each series showed differences that were not significant in series 1 (p = 0.10), significant in series 2 (p = 0.04) and significant in the pooled data of both series (p < 0.01). The effect direction (rgr 3−9 increase) was comparable to experiments of 2010, but the effect size was smaller, likely due to a changed light cycle. These results are not compatible with the hypothesis that the application of European Pharmacopoeia monograph 2371 results in pharmaceutical preparations without specific effects. Further studies are needed to investigate a potential mode of action explaining these effects.
Collapse
|
25
|
Zheng X, Wang T, Cheng T, Zhao L, Zheng X, Zhu F, Dong C, Xu J, Xie K, Hu Z, Yang L, Diao Y. Genomic variation reveals demographic history and biological adaptation of the ancient relictual, lotus (Nelumbo Adans). HORTICULTURE RESEARCH 2022; 9:uhac029. [PMID: 35184169 PMCID: PMC9039500 DOI: 10.1093/hr/uhac029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/04/2022] [Indexed: 05/25/2023]
Abstract
Lotus (Nelumbo Adans.), a relict plant, is the testimony of long-term sustained ecological success, but the underlying genetic changes related to its survival strategy remains unclear. Here, we assembled the high-quality lotus genome, investigated genome variation of lotus mutation accumulation (MA) lines and reconstructed the demographic history of wild Asian lotus, respectively. We identified and validated 43 base substitutions fixed in MA lines, implying a spontaneous mutation rate of 1.4 × 10-9 base/generation in lotus shoot stem cells. The past history of lotus revealed that the ancestors of lotus in eastern and southern Asia could be traced back ~20 million years ago (Mya) and experienced twice significant bottlenecks and population splits. We further identified the selected genes among three lotus groups in different habitats, suggesting that 453 genes between tropical and temperate group and 410 genes between two subgroups from Northeastern China and the Yangtze River - Yellow River Basin might play important roles in natural selection in lotus's adaptation and resilience. Our findings not only improve an understanding of the lotus evolutionary history and the genetic basis of its survival advantages, but also provide valuable data for addressing various questions in evolution and protection for the relict plants.
Collapse
Affiliation(s)
- Xingwen Zheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Guangchang White Lotus Research Institute, Guangchang 344900, China
| | - Tao Wang
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Teng Cheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lingling Zhao
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xingfei Zheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fenglin Zhu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chen Dong
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jinxing Xu
- Guangchang White Lotus Research Institute, Guangchang 344900, China
| | - Keqiang Xie
- Guangchang White Lotus Research Institute, Guangchang 344900, China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liangbo Yang
- Guangchang White Lotus Research Institute, Guangchang 344900, China
| | - Ying Diao
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
26
|
Neale DB, Zimin AV, Zaman S, Scott AD, Shrestha B, Workman RE, Puiu D, Allen BJ, Moore ZJ, Sekhwal MK, De La Torre AR, McGuire PE, Burns E, Timp W, Wegrzyn JL, Salzberg SL. Assembled and annotated 26.5 Gbp coast redwood genome: a resource for estimating evolutionary adaptive potential and investigating hexaploid origin. G3 (BETHESDA, MD.) 2022; 12:6460957. [PMID: 35100403 PMCID: PMC8728005 DOI: 10.1093/g3journal/jkab380] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Sequencing, assembly, and annotation of the 26.5 Gbp hexaploid genome of coast redwood (Sequoia sempervirens) was completed leading toward discovery of genes related to climate adaptation and investigation of the origin of the hexaploid genome. Deep-coverage short-read Illumina sequencing data from haploid tissue from a single seed were combined with long-read Oxford Nanopore Technologies sequencing data from diploid needle tissue to create an initial assembly, which was then scaffolded using proximity ligation data to produce a highly contiguous final assembly, SESE 2.1, with a scaffold N50 size of 44.9 Mbp. The assembly included several scaffolds that span entire chromosome arms, confirmed by the presence of telomere and centromere sequences on the ends of the scaffolds. The structural annotation produced 118,906 genes with 113 containing introns that exceed 500 Kbp in length and one reaching 2 Mb. Nearly 19 Gbp of the genome represented repetitive content with the vast majority characterized as long terminal repeats, with a 2.9:1 ratio of Copia to Gypsy elements that may aid in gene expression control. Comparison of coast redwood to other conifers revealed species-specific expansions for a plethora of abiotic and biotic stress response genes, including those involved in fungal disease resistance, detoxification, and physical injury/structural remodeling and others supporting flavonoid biosynthesis. Analysis of multiple genes that exist in triplicate in coast redwood but only once in its diploid relative, giant sequoia, supports a previous hypothesis that the hexaploidy is the result of autopolyploidy rather than any hybridizations with separate but closely related conifer species.
Collapse
Affiliation(s)
- David B Neale
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Sumaira Zaman
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.,Department of Computer Science & Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Alison D Scott
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Bikash Shrestha
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Rachael E Workman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Puiu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Brian J Allen
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Zane J Moore
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Manoj K Sekhwal
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | | | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Emily Burns
- Save the Redwoods League, San Francisco, CA 94104, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA.,Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA.,Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
27
|
Zhou Y, Kishchenko O, Stepanenko A, Chen G, Wang W, Zhou J, Pan C, Borisjuk N. The Dynamics of NO3- and NH4+ Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes. PLANTS (BASEL, SWITZERLAND) 2021; 11:11. [PMID: 35009015 PMCID: PMC8747334 DOI: 10.3390/plants11010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 02/05/2023]
Abstract
Duckweed plants play important roles in aquatic ecosystems worldwide. They rapidly accumulate biomass and have potential uses in bioremediation of water polluted by fertilizer runoff or other chemicals. Here we studied the assimilation of two major sources of inorganic nitrogen, nitrate (NO3- ) and ammonium (NH4+), in six duckweed species: Spirodela polyrhiza, Landoltia punctata, Lemna aequinoctialis, Lemna turionifera, Lemna minor, and Wolffia globosa. All six duckweed species preferred NH4+ over NO3- and started using NO3- only when NH4+ was depleted. Using the available genome sequence, we analyzed the molecular structure and expression of eight key nitrogen assimilation genes in S. polyrhiza. The expression of genes encoding nitrate reductase and nitrite reductase increased about 10-fold when NO3- was supplied and decreased when NH4+ was supplied. NO3- and NH4+ induced the glutamine synthetase (GS) genes GS1;2 and the GS2 by 2- to 5-fold, respectively, but repressed GS1;1 and GS1;3. NH4+ and NO3- upregulated the genes encoding ferredoxin- and NADH-dependent glutamate synthases (Fd-GOGAT and NADH-GOGAT). A survey of nitrogen assimilation gene promoters suggested complex regulation, with major roles for NRE-like and GAATC/GATTC cis-elements, TATA-based enhancers, GA/CTn repeats, and G-quadruplex structures. These results will inform efforts to improve bioremediation and nitrogen use efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China; (Y.Z.); (O.K.); (A.S.); (G.C.); (W.W.); (J.Z.); (C.P.)
| |
Collapse
|
28
|
Braglia L, Breviario D, Gianì S, Gavazzi F, De Gregori J, Morello L. New Insights into Interspecific Hybridization in Lemna L. Sect. Lemna (Lemnaceae Martinov). PLANTS 2021; 10:plants10122767. [PMID: 34961238 PMCID: PMC8703825 DOI: 10.3390/plants10122767] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Duckweeds have been increasingly studied in recent years, both as model plants and in view of their potential applications as a new crop in a circular bioeconomy perspective. In order to select species and clones with the desired attributes, the correct identification of the species is fundamental. Molecular methods have recently provided a more solid base for taxonomy and yielded a consensus phylogenetic tree, although some points remain to be elucidated. The duckweed genus Lemna L. comprises twelve species, grouped in four sections, which include very similar sister species. The least taxonomically resolved is sect. Lemna, presenting difficulties in species delimitation using morphological and even barcoding molecular markers. Ambiguous species boundaries between Lemna minor L. and Lemna japonica Landolt have been clarified by Tubulin Based Polymorphism (TBP), with the discovery of interspecific hybrids. In the present work, we extended TBP profiling to a larger number of clones in sect. Lemna, previously classified using only morphological features, in order to test that classification, and to investigate the possible existence of other hybrids in this section. The analysis revealed several misidentifications of clones, in particular among the species L. minor, L. japonica and Lemna gibba L., and identified six putative ‘L. gibba’ clones as interspecific hybrids between L. minor and L. gibba.
Collapse
|
29
|
Acosta K, Appenroth KJ, Borisjuk L, Edelman M, Heinig U, Jansen MAK, Oyama T, Pasaribu B, Schubert I, Sorrels S, Sree KS, Xu S, Michael TP, Lam E. Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era. THE PLANT CELL 2021; 33:3207-3234. [PMID: 34273173 PMCID: PMC8505876 DOI: 10.1093/plcell/koab189] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/18/2021] [Indexed: 05/05/2023]
Abstract
The aquatic Lemnaceae family, commonly called duckweed, comprises some of the smallest and fastest growing angiosperms known on Earth. Their tiny size, rapid growth by clonal propagation, and facile uptake of labeled compounds from the media were attractive features that made them a well-known model for plant biology from 1950 to 1990. Interest in duckweed has steadily regained momentum over the past decade, driven in part by the growing need to identify alternative plants from traditional agricultural crops that can help tackle urgent societal challenges, such as climate change and rapid population expansion. Propelled by rapid advances in genomic technologies, recent studies with duckweed again highlight the potential of these small plants to enable discoveries in diverse fields from ecology to chronobiology. Building on established community resources, duckweed is reemerging as a platform to study plant processes at the systems level and to translate knowledge gained for field deployment to address some of society's pressing needs. This review details the anatomy, development, physiology, and molecular characteristics of the Lemnaceae to introduce them to the broader plant research community. We highlight recent research enabled by Lemnaceae to demonstrate how these plants can be used for quantitative studies of complex processes and for revealing potentially novel strategies in plant defense and genome maintenance.
Collapse
Affiliation(s)
- Kenneth Acosta
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Klaus J Appenroth
- Plant Physiology, Matthias Schleiden Institute, University of Jena, Jena 07737, Germany
| | - Ljudmilla Borisjuk
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben D-06466, Germany
| | - Marvin Edelman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uwe Heinig
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork T23 TK30, Ireland
| | - Tokitaka Oyama
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Buntora Pasaribu
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ingo Schubert
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben D-06466, Germany
| | - Shawn Sorrels
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute of Biological Studies, La Jolla, California 92037, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
30
|
Yoshida A, Taoka KI, Hosaka A, Tanaka K, Kobayashi H, Muranaka T, Toyooka K, Oyama T, Tsuji H. Characterization of Frond and Flower Development and Identification of FT and FD Genes From Duckweed Lemna aequinoctialis Nd. FRONTIERS IN PLANT SCIENCE 2021; 12:697206. [PMID: 34707626 PMCID: PMC8542802 DOI: 10.3389/fpls.2021.697206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/31/2021] [Indexed: 06/12/2023]
Abstract
Duckweeds (Araceae: Lemnoideae) are aquatic monocotyledonous plants that are characterized by their small size, rapid growth, and wide distribution. Developmental processes regulating the formation of their small leaf-like structures, called fronds, and tiny flowers are not well characterized. In many plant species, flowering is promoted by the florigen activation complex, whose major components are florigen FLOWERING LOCUS T (FT) protein and transcription factor FD protein. How this complex is regulated at the molecular level during duckweed flowering is also not well understood. In this study, we characterized the course of developmental changes during frond development and flower formation in Lemna aequinoctialis Nd, a short-day plant. Detailed observations of frond and flower development revealed that cell proliferation in the early stages of frond development is active as can be seen in the separate regions corresponding to two budding pouches in the proximal region of the mother frond. L. aequinoctialis produces two stamens of different lengths with the longer stamen growing more rapidly. Using high-throughput RNA sequencing (RNA-seq) and de novo assembly of transcripts from plants induced to flower, we identified the L. aequinoctialis FT and FD genes, whose products in other angiosperms form a transcriptional complex to promote flowering. We characterized the protein-protein interaction of duckweed FT and FD in yeast and examined the functions of the two gene products by overexpression in Arabidopsis. We found that L. aequinoctialis FTL1 promotes flowering, whereas FTL2 suppresses flowering.
Collapse
Affiliation(s)
- Akiko Yoshida
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Ken-ichiro Taoka
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Aoi Hosaka
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
- Department of Embryology, Nara Medical University, Nara, Japan
| | | | - Kiminori Toyooka
- Technology Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Tokitaka Oyama
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
31
|
Huber M, Gablenz S, Höfer M. Transgenerational non-genetic inheritance has fitness costs and benefits under recurring stress in the clonal duckweed Spirodela polyrhiza. Proc Biol Sci 2021; 288:20211269. [PMID: 34284629 PMCID: PMC8292752 DOI: 10.1098/rspb.2021.1269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Although non-genetic inheritance is thought to play an important role in plant ecology and evolution, evidence for adaptive transgenerational plasticity is scarce. Here, we investigated the consequences of copper excess on offspring defences and fitness under recurring stress in the duckweed Spirodela polyrhiza across multiple asexual generations. Growing large monoclonal populations (greater than 10 000 individuals) for 30 generations under copper excess had negative fitness effects after short and no fitness effect after prolonged growth under recurring stress. These time-dependent growth rates were likely influenced by environment-induced transgenerational responses, as propagating plants as single descendants for 2 to 10 generations under copper excess had positive, negative or neutral effects on offspring fitness depending on the interval between initial and recurring stress (5 to 15 generations). Fitness benefits under recurring stress were independent of flavonoid accumulations, which in turn were associated with altered plant copper concentrations. Copper excess modified offspring fitness under recurring stress in a genotype-specific manner, and increasing the interval between initial and recurring stress reversed these genotype-specific fitness effects. Taken together, these data demonstrate time- and genotype-dependent adaptive and non-adaptive transgenerational responses under recurring stress, which suggests that non-genetic inheritance alters the evolutionary trajectory of clonal plant lineages in fluctuating environments.
Collapse
Affiliation(s)
- Meret Huber
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Saskia Gablenz
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Martin Höfer
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
32
|
Krasovec M, Rickaby REM, Filatov DA. Evolution of Mutation Rate in Astronomically Large Phytoplankton Populations. Genome Biol Evol 2021; 12:1051-1059. [PMID: 32645145 PMCID: PMC7486954 DOI: 10.1093/gbe/evaa131] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic diversity is expected to be proportional to population size, yet, there is a well-known, but unexplained lack of genetic diversity in large populations-the "Lewontin's paradox." Larger populations are expected to evolve lower mutation rates, which may help to explain this paradox. Here, we test this conjecture by measuring the spontaneous mutation rate in a ubiquitous unicellular marine phytoplankton species Emiliania huxleyi (Haptophyta) that has modest genetic diversity despite an astronomically large population size. Genome sequencing of E. huxleyi mutation accumulation lines revealed 455 mutations, with an unusual GC-biased mutation spectrum. This yielded an estimate of the per site mutation rate µ = 5.55×10-10 (CI 95%: 5.05×10-10 - 6.09×10-10), which corresponds to an effective population size Ne ∼ 2.7×106. Such a modest Ne is surprising for a ubiquitous and abundant species that accounts for up to 10% of global primary productivity in the oceans. Our results indicate that even exceptionally large populations do not evolve mutation rates lower than ∼10-10 per nucleotide per cell division. Consequently, the extreme disparity between modest genetic diversity and astronomically large population size in the plankton species cannot be explained by an unusually low mutation rate.
Collapse
Affiliation(s)
- Marc Krasovec
- Department of Plant Sciences, University of Oxford, United Kingdom
| | | | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, United Kingdom
| |
Collapse
|
33
|
Stability across the Whole Nuclear Genome in the Presence and Absence of DNA Mismatch Repair. Cells 2021; 10:cells10051224. [PMID: 34067668 PMCID: PMC8156620 DOI: 10.3390/cells10051224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/06/2023] Open
Abstract
We describe the contribution of DNA mismatch repair (MMR) to the stability of the eukaryotic nuclear genome as determined by whole-genome sequencing. To date, wild-type nuclear genome mutation rates are known for over 40 eukaryotic species, while measurements in mismatch repair-defective organisms are fewer in number and are concentrated on Saccharomyces cerevisiae and human tumors. Well-studied organisms include Drosophila melanogaster and Mus musculus, while less genetically tractable species include great apes and long-lived trees. A variety of techniques have been developed to gather mutation rates, either per generation or per cell division. Generational rates are described through whole-organism mutation accumulation experiments and through offspring–parent sequencing, or they have been identified by descent. Rates per somatic cell division have been estimated from cell line mutation accumulation experiments, from systemic variant allele frequencies, and from widely spaced samples with known cell divisions per unit of tissue growth. The latter methods are also used to estimate generational mutation rates for large organisms that lack dedicated germlines, such as trees and hyphal fungi. Mechanistic studies involving genetic manipulation of MMR genes prior to mutation rate determination are thus far confined to yeast, Arabidopsis thaliana, Caenorhabditis elegans, and one chicken cell line. A great deal of work in wild-type organisms has begun to establish a sound baseline, but far more work is needed to uncover the variety of MMR across eukaryotes. Nonetheless, the few MMR studies reported to date indicate that MMR contributes 100-fold or more to genome stability, and they have uncovered insights that would have been impossible to obtain using reporter gene assays.
Collapse
|
34
|
Bezmenova AV, Zvyagina EA, Fedotova AV, Kasianov AS, Neretina TV, Penin AA, Bazykin GA, Kondrashov AS. Rapid Accumulation of Mutations in Growing Mycelia of a Hypervariable Fungus Schizophyllum commune. Mol Biol Evol 2021; 37:2279-2286. [PMID: 32243532 PMCID: PMC7403608 DOI: 10.1093/molbev/msaa083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The basidiomycete Schizophyllum commune has the highest level of genetic polymorphism known among living organisms. In a previous study, it was also found to have a moderately high per-generation mutation rate of 2×10−8, likely contributing to its high polymorphism. However, this rate has been measured only in an experiment on Petri dishes, and it is unclear how it translates to natural populations. Here, we used an experimental design that measures the rate of accumulation of de novo mutations in a linearly growing mycelium. We show that S. commune accumulates mutations at a rate of 1.24×10−7 substitutions per nucleotide per meter of growth, or ∼2.04×10−11 per nucleotide per cell division. In contrast to what has been observed in a number of species with extensive vegetative growth, this rate does not decline in the course of propagation of a mycelium. As a result, even a moderate per-cell-division mutation rate in S. commune can translate into a very high per-generation mutation rate when the number of cell divisions between consecutive meiosis is large.
Collapse
Affiliation(s)
| | | | - Anna V Fedotova
- Center of Life Sciences, Skoltech, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Artem S Kasianov
- Kharkevich Institute for Information Transmission Problems, Moscow, Russia.,Vavilov Institute of General Genetics, Moscow, Russia
| | - Tatiana V Neretina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Kharkevich Institute for Information Transmission Problems, Moscow, Russia.,N. A. Pertsov White Sea Biological Station, Lomonosov Moscow State University, Primorskiy, Russia
| | - Aleksey A Penin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Kharkevich Institute for Information Transmission Problems, Moscow, Russia
| | - Georgii A Bazykin
- Center of Life Sciences, Skoltech, Moscow, Russia.,Kharkevich Institute for Information Transmission Problems, Moscow, Russia
| | - Alexey S Kondrashov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
35
|
Harkess A, McLoughlin F, Bilkey N, Elliott K, Emenecker R, Mattoon E, Miller K, Czymmek K, Vierstra RD, Meyers BC, Michael TP. Improved Spirodela polyrhiza genome and proteomic analyses reveal a conserved chromosomal structure with high abundance of chloroplastic proteins favoring energy production. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2491-2500. [PMID: 33454741 DOI: 10.1093/jxb/erab006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/13/2021] [Indexed: 05/11/2023]
Abstract
Duckweeds are a monophyletic group of rapidly reproducing aquatic monocots in the Lemnaceae family. Given their clonal, exponentially fast reproduction, a key question is whether genome structure is conserved across the species in the absence of meiotic recombination. Here, we studied the genome and proteome of Spirodela polyrhiza, or greater duckweed, which has the largest body plan yet the smallest genome size in the family (1C=150 Mb). Using Oxford Nanopore sequencing combined with Hi-C scaffolding, we generated a highly contiguous, chromosome-scale assembly of S. polyrhiza line Sp7498 (Sp7498_HiC). Both the Sp7498_HiC and Sp9509 genome assemblies reveal large chromosomal misorientations relative to a recent PacBio assembly of Sp7498, highlighting the need for orthogonal long-range scaffolding techniques such as Hi-C and BioNano optical mapping. Shotgun proteomics of Sp7498 verified the expression of ~2250 proteins and revealed a high abundance of proteins involved in photosynthesis and carbohydrate metabolism among other functions. In addition, a strong increase in chloroplast proteins was observed that correlated to chloroplast density. This Sp7498_HiC genome was generated cheaply and quickly with a single Oxford Nanopore MinION flow cell and one Hi-C library in a classroom setting. Combining these data with a mass spectrometry-generated proteome illustrates the utility of duckweed as a model for genomics- and proteomics-based education.
Collapse
Affiliation(s)
- Alex Harkess
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | | | - Natasha Bilkey
- Department of Biology, Washington University, St Louis, MO, USA
| | - Kiona Elliott
- Department of Biology, Washington University, St Louis, MO, USA
| | - Ryan Emenecker
- Department of Biology, Washington University, St Louis, MO, USA
| | - Erin Mattoon
- Department of Biology, Washington University, St Louis, MO, USA
| | - Kari Miller
- Department of Biology, Washington University, St Louis, MO, USA
| | - Kirk Czymmek
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | | | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Todd P Michael
- Department of Informatics, J. Craig Venter Institute (JCVI), San Diego, CA, USA
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
36
|
Wang X, Bernhardsson C, Ingvarsson PK. Demography and Natural Selection Have Shaped Genetic Variation in the Widely Distributed Conifer Norway Spruce (Picea abies). Genome Biol Evol 2020; 12:3803-3817. [PMID: 31958121 PMCID: PMC7046165 DOI: 10.1093/gbe/evaa005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Under the neutral theory, species with larger effective population size are expected to harbor higher genetic diversity. However, across a wide variety of organisms, the range of genetic diversity is orders of magnitude more narrow than the range of effective population size. This observation has become known as Lewontin’s paradox and although aspects of this phenomenon have been extensively studied, the underlying causes for the paradox remain unclear. Norway spruce (Picea abies) is a widely distributed conifer species across the northern hemisphere, and it consequently plays a major role in European forestry. Here, we use whole-genome resequencing data from 35 individuals to perform population genomic analyses in P. abies in an effort to understand what drives genome-wide patterns of variation in this species. Despite having a very wide geographic distribution and an corresponding enormous current population size, our analyses find that genetic diversity of P. abies is low across a number of populations (π = 0.0049 in Central-Europe, π = 0.0063 in Sweden-Norway, π = 0.0063 in Finland). To assess the reasons for the low levels of genetic diversity, we infer the demographic history of the species and find that it is characterized by several reoccurring bottlenecks with concomitant decreases in effective population size can, at least partly, provide an explanation for low polymorphism we observe in P. abies. Further analyses suggest that recurrent natural selection, both purifying and positive selection, can also contribute to the loss of genetic diversity in Norway spruce by reducing genetic diversity at linked sites. Finally, the overall low mutation rates seen in conifers can also help explain the low genetic diversity maintained in Norway spruce.
Collapse
Affiliation(s)
- Xi Wang
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Sweden.,Linnean Centre for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Carolina Bernhardsson
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Sweden.,Linnean Centre for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
37
|
Yang L, Chen Y, Shi L, Yu J, Yao J, Sun J, Zhao L, Sun J. Enhanced Cd accumulation by Graphene oxide (GO) under Cd stress in duckweed. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105579. [PMID: 33075615 DOI: 10.1016/j.aquatox.2020.105579] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Effective phytoremediation by aquatic plant such as duckweed could be applied to solve Cd pollution. In the present study, the impact of Graphene oxide (GO) on the accumulation of Cd in duckweed has been studied. The response of duckweed was also investigated, concluding growth, Cd2+ flux, and gene expression response. Results showed that GO promoted the accumulation of Cd in duckweed. After 6 h of Cd enrichment in duckweed, Cd content was about 1.4 times that of the control group at fronds and 1.25 times that of the control group at roots, meanwhile, Cd content in the water system was 0.67 times that of the control group. The Cd2+ influx increased significantly. 4471 genes were up-regulated and 3230 genes were down-regulated significantly as duckweed treated with GO under Cd treatment. Moreover, phagosome pathway was downregulated, some key proteins: Stx7, Rab7 and Tubastatin B (TUBB) were significantly downregulated with GO addition under Cd stress. Scanning electron microscope (SEM) observation showed that GO and Cd were attached on the cell surface of duckweed as white crystal. GO could be applied in phytoremediation by duckweed of Cd in aquatic system.
Collapse
Affiliation(s)
- Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China.
| | - Yikai Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Leqian Shi
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jie Yu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jie Yao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jinge Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Ling Zhao
- College of Life Sciences, Department of Plant Biology and Ecology, Nankai University, 300071, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China.
| |
Collapse
|
38
|
Hoang PTN, Fiebig A, Novák P, Macas J, Cao HX, Stepanenko A, Chen G, Borisjuk N, Scholz U, Schubert I. Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries. Sci Rep 2020; 10:19230. [PMID: 33154426 PMCID: PMC7645714 DOI: 10.1038/s41598-020-75728-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Duckweeds are small, free-floating, morphologically highly reduced organisms belonging to the monocot order Alismatales. They display the most rapid growth among flowering plants, vary ~ 14-fold in genome size and comprise five genera. Spirodela is the phylogenetically oldest genus with only two mainly asexually propagating species: S. polyrhiza (2n = 40; 160 Mbp/1C) and S. intermedia (2n = 36; 160 Mbp/1C). This study combined comparative cytogenetics and de novo genome assembly based on PacBio, Illumina and Oxford Nanopore (ON) reads to obtain the first genome reference for S. intermedia and to compare its genomic features with those of the sister species S. polyrhiza. Both species' genomes revealed little more than 20,000 putative protein-coding genes, very low rDNA copy numbers and a low amount of repetitive sequences, mainly Ty3/gypsy retroelements. The detection of a few new small chromosome rearrangements between both Spirodela species refined the karyotype and the chromosomal sequence assignment for S. intermedia.
Collapse
Affiliation(s)
- Phuong T N Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
- Biology Faculty, Dalat University, District 8, Dalat City, Lamdong Province, Vietnam
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Hieu X Cao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, 06120, Halle, Germany
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany.
| |
Collapse
|
39
|
Estimation of the SNP Mutation Rate in Two Vegetatively Propagating Species of Duckweed. G3-GENES GENOMES GENETICS 2020; 10:4191-4200. [PMID: 32973000 PMCID: PMC7642947 DOI: 10.1534/g3.120.401704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutation rate estimates for vegetatively reproducing organisms are rare, despite their frequent occurrence across the tree of life. Here we report mutation rate estimates in two vegetatively reproducing duckweed species, Lemna minor and Spirodela polyrhiza We use a modified approach to estimating mutation rates by taking into account the reduction in mutation detection power that occurs when new individuals are produced from multiple cell lineages. We estimate an extremely low per generation mutation rate in both species of duckweed and note that allelic coverage at de novo mutation sites is very skewed. We also find no substantial difference in mutation rate between mutation accumulation lines propagated under benign conditions and those grown under salt stress. Finally, we discuss the implications of interpreting mutation rate estimates in vegetatively propagating organisms.
Collapse
|
40
|
Singchat W, Ahmad SF, Laopichienpong N, Suntronpong A, Panthum T, Griffin DK, Srikulnath K. Snake W Sex Chromosome: The Shadow of Ancestral Amniote Super-Sex Chromosome. Cells 2020; 9:cells9112386. [PMID: 33142713 PMCID: PMC7692289 DOI: 10.3390/cells9112386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
: Heteromorphic sex chromosomes, particularly the ZZ/ZW sex chromosome system of birds and some reptiles, undergo evolutionary dynamics distinct from those of autosomes. The W sex chromosome is a unique karyological member of this heteromorphic pair, which has been extensively studied in snakes to explore the origin, evolution, and genetic diversity of amniote sex chromosomes. The snake W sex chromosome offers a fascinating model system to elucidate ancestral trajectories that have resulted in genetic divergence of amniote sex chromosomes. Although the principal mechanism driving evolution of the amniote sex chromosome remains obscure, an emerging hypothesis, supported by studies of W sex chromosomes of squamate reptiles and snakes, suggests that sex chromosomes share varied genomic blocks across several amniote lineages. This implies the possible split of an ancestral super-sex chromosome via chromosomal rearrangements. We review the major findings pertaining to sex chromosomal profiles in amniotes and discuss the evolution of an ancestral super-sex chromosome by collating recent evidence sourced mainly from the snake W sex chromosome analysis. We highlight the role of repeat-mediated sex chromosome conformation and present a genomic landscape of snake Z and W chromosomes, which reveals the relative abundance of major repeats, and identifies the expansion of certain transposable elements. The latest revolution in chromosomics, i.e., complete telomere-to-telomere assembly, offers mechanistic insights into the evolutionary origin of sex chromosomes.
Collapse
Affiliation(s)
- Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Nararat Laopichienpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Aorarat Suntronpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | | | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, (CASTNAR, NRU-KU, Thailand), Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
- Correspondence: ; Tel.: +66-2562-5644
| |
Collapse
|
41
|
Laopichienpong N, Kraichak E, Singchat W, Sillapaprayoon S, Muangmai N, Suntrarachun S, Baicharoen S, Peyachoknagul S, Chanhome L, Ezaz T, Srikulnath K. Genome-wide SNP analysis of Siamese cobra (Naja kaouthia) reveals the molecular basis of transitions between Z and W sex chromosomes and supports the presence of an ancestral super-sex chromosome in amniotes. Genomics 2020; 113:624-636. [PMID: 33002626 DOI: 10.1016/j.ygeno.2020.09.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
Elucidation of the process of sex chromosome differentiation is necessary to understand the dynamics of evolutionary mechanisms in organisms. The W sex chromosome of the Siamese cobra (Naja kaouthia) contains a large number of repeats and shares amniote sex chromosomal linkages. Diversity Arrays Technology provides an effective approach to identify sex-specific loci that are epoch-making, to understand the dynamics of molecular transitions between the Z and W sex chromosomes in a snake lineage. From a total of 543 sex-specific loci, 90 showed partial homology with sex chromosomes of several amniotes and 89 loci were homologous to transposable elements. Two loci were confirmed as W-specific nucleotides after PCR amplification. These loci might result from a sex chromosome differentiation process and involve putative sex-determination regions in the Siamese cobra. Sex-specific loci shared linkage homologies among amniote sex chromosomes, supporting an ancestral super-sex chromosome.
Collapse
Affiliation(s)
- Nararat Laopichienpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand.
| | - Ekaphan Kraichak
- Department of Botany, Kasetsart University, Bangkok 10900, Thailand.
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand.
| | - Siwapech Sillapaprayoon
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand.
| | - Narongrit Muangmai
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Sunutcha Suntrarachun
- Snake Farm, Queen Saovabha Memorial Institute, the Thai Red Cross Society, Bangkok 10330, Thailand
| | - Sudarath Baicharoen
- Bureau of Conservation and Research, Zoological Park Organization under the Royal Patronage of His Majesty the King, Bangkok 10300, Thailand
| | - Surin Peyachoknagul
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand.
| | - Lawan Chanhome
- Snake Farm, Queen Saovabha Memorial Institute, the Thai Red Cross Society, Bangkok 10330, Thailand
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, 2617, Australia.
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok 10900, Thailand, (CASTNAR, NRU-KU, Thailand); Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand; Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan.
| |
Collapse
|
42
|
Chen D, Zhang H, Wang Q, Shao M, Li X, Chen D, Zeng R, Song Y. Intraspecific variations in cadmium tolerance and phytoaccumulation in giant duckweed (Spirodela polyrhiza). JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122672. [PMID: 32305716 DOI: 10.1016/j.jhazmat.2020.122672] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 05/25/2023]
Abstract
Duckweeds are widely recognized for the heavy metal phytoremediation. However, the intraspecific variations in biological responses of duckweeds to heavy metal remain largely unknown. Here, the toxicity and phytoaccumulation of cadmium (Cd) were synchronously evaluated in 30 accessions of giant duckweed (Spirodela polyrhiza) collected from different provenances in Southern China. Exposure to 1 μM Cd decreased relative growth rates of dry weight, fronds number and fronds area, as well as photosynthetic pigment contents, while it increased H2O2 accumulation, lipid peroxidation and activities of anti-oxidant enzymes in the majority of accessions. Cd treatment led to remarkable Cd accumulation but little changes in the starch content in giant duckweed. The biological responses to Cd varied among the accessions. Further correlation analysis indicated that growth traits and Cd concentration were positively correlated with Cd accumulation, while the contents of chlorophyll, H2O2 and MDA were negatively associated with Cd accumulation. Our results proved the great intraspecific variation in Cd tolerance of giant duckweed, suggesting a valuable natural resource for Cd phytoremediation. Moreover, different mechanisms may be exploited by S. polyrhiza for phytoaccumulation, but growth maintenance, Cd uptake and antioxidative enzyme-independent ROS-scavenging under Cd exposure are the common mechanisms contributing to Cd accumulation ability.
Collapse
Affiliation(s)
- Daoqian Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Hao Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Qiongli Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Min Shao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Xinyu Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Dongmei Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
| |
Collapse
|
43
|
Fazalova V, Nevado B. Low Spontaneous Mutation Rate and Pleistocene Radiation of Pea Aphids. Mol Biol Evol 2020; 37:2045-2051. [DOI: 10.1093/molbev/msaa066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Accurate estimates of divergence times are essential to understand the evolutionary history of species. It allows linking evolutionary histories of the diverging lineages with past geological, climatic, and other changes in environment and shed light on the processes involved in speciation. The pea aphid radiation includes multiple host races adapted to different legume host plants. It is thought that diversification in this system occurred very recently, over the past 8,000–16,000 years. This young age estimate was used to link diversification in pea aphids to the onset of human agriculture, and led to the establishment of the pea aphid radiation as a model system in the study of speciation with gene flow. Here, we re-examine the age of the pea aphid radiation, by combining a mutation accumulation experiment with a genome-wide estimate of divergence between distantly related pea aphid host races. We estimate the spontaneous mutation rate for pea aphids as 2.7×10-10 per haploid genome per parthenogenic generation. Using this estimate of mutation rate and the genome-wide genetic differentiation observed between pea aphid host races, we show that the pea aphid radiation is much more ancient than assumed previously, predating Neolithic agriculture by several hundreds of thousands of years. Our results rule out human agriculture as the driver of diversification of the pea aphid radiation, and call for re-assessment of the role of allopatric isolation during Pleistocene climatic oscillations in divergence of the pea aphid complex.
Collapse
Affiliation(s)
- Varvara Fazalova
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Bruno Nevado
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Bog M, Appenroth KJ, Sree KS. Duckweed (Lemnaceae): Its Molecular Taxonomy. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Liu Y, Wang Y, Xu S, Tang X, Zhao J, Yu C, He G, Xu H, Wang S, Tang Y, Fu C, Ma Y, Zhou G. Efficient genetic transformation and CRISPR/Cas9-mediated genome editing in Lemna aequinoctialis. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2143-2152. [PMID: 30972865 PMCID: PMC6790374 DOI: 10.1111/pbi.13128] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 05/13/2023]
Abstract
The fast growth, ease of metabolic labelling and potential for feedstock and biofuels production make duckweeds not only an attractive model system for understanding plant biology, but also a potential future crop. However, current duckweed research is constrained by the lack of efficient genetic manipulation tools. Here, we report a case study on genome editing in a duckweed species, Lemna aequinoctialis, using a fast and efficient transformation and CRISPR/Cas9 tool. By optimizing currently available transformation protocols, we reduced the duration time of Agrobacterium-mediated transformation to 5-6 weeks with a success rate of over 94%. Based on the optimized transformation protocol, we generated 15 (14.3% success rate) biallelic LaPDS mutants that showed albino phenotype using a CRISPR/Cas9 system. Investigations on CRISPR/Cas9-mediated mutation spectrum among mutated L. aequinoctialis showed that most of mutations were short insertions and deletions. This study presents the first example of CRISPR/Cas9-mediated genome editing in duckweeds, which will open new research avenues in using duckweeds for both basic and applied research.
Collapse
Affiliation(s)
- Yu Liu
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Yu Wang
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Shuqing Xu
- Institute for Evolution and BiodiversityUniversity of MünsterMünsterGermany
| | - Xianfeng Tang
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Jinshan Zhao
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
| | - Changjiang Yu
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Guo He
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Hua Xu
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Shumin Wang
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Yali Tang
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Chunxiang Fu
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Yubin Ma
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Gongke Zhou
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| |
Collapse
|
46
|
Maréchal E. Marine and Freshwater Plants: Challenges and Expectations. FRONTIERS IN PLANT SCIENCE 2019; 10:1545. [PMID: 31824548 PMCID: PMC6883403 DOI: 10.3389/fpls.2019.01545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/05/2019] [Indexed: 05/05/2023]
Abstract
The past decades have seen an increasing interest on the biology of photosynthetic species living in aquatic environments, including diverse organisms collectively called "algae." If we consider the relative size of scientific communities, marine and freshwater plants have been overall less studied than terrestrial ones. The efforts put on land plants were motivated by agriculture and forestry, applications for human industry, easy access to terrestrial ecosystems, and convenient cultivation methods in fields or growth chambers. By contrast, the fragmentary knowledge on the biology of algae, the hope to find in this biodiversity inspiration for biotechnologies, and the emergency created by the environmental crisis affecting oceans, lakes, rivers, or melting glaciers, have stressed the importance to make up for lost time. Needed efforts embrace a broad spectrum of disciplines, from environmental and evolutionary sciences, to molecular and cell biology. In this multiscale view, functional genomics and ecophysiology occupy a pivotal position linking molecular and cellular analyses and ecosystem-level studies. Without pretending to be exhaustive and with few selected references, six grand challenges, requiring multidisciplinary approaches, are introduced below.
Collapse
|