1
|
Toyoda M, Fukuda T, Fujimoto R, Kawakami K, Hayashi C, Nakao Y, Watanabe Y, Aoki T, Shida M, Sanui T, Taguchi M, Yamamichi K, Okabe A, Okada T, Oka K, Nakayama K, Nishimura F, Kajioka S. Scaffold-free bone-like 3D structure established through osteogenic differentiation from human gingiva-derived stem cells. Biochem Biophys Rep 2024; 38:101656. [PMID: 38379857 PMCID: PMC10878834 DOI: 10.1016/j.bbrep.2024.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/02/2024] [Accepted: 01/27/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction & objectives Stem cell therapy for regenerative medicine has been sincerely investigated, but not still popular although some clinical trials show hopeful results. This therapy is suggested to be a representative candidate such as bone defect due to the accident, iatrogenic resection oncological tumor, congenital disease, and severe periodontitis in oral region. Recently, the Bio-3D printer "Regenova®" has been introduced as an innovative three-dimensional culture system, equipped scaffold-free bio-assembling techniques without any biomaterials. Therefore, we expected a mount of bone defect could be repaired by the structure established from this Bio-3D printer using osteogenic potential stem cells. Material & methods The gingival tissue (1x1 mm) was removed from the distal part of the lower wisdom tooth of the patients who agreed our study. Human Gingival Mesenchymal Stem Cells (hGMSCs) were isolated from this tissue and cultured, since we confirmed the characteristics such as facile isolation and accelerated proliferation, further, strong potential of osteogenic-differentiation. Spheroids were formed using hGMSC in 96-well plates designed for low cell adhesion. The size of the spheroids was measured, and fluorescent immunostaining was employed to verify the expression of stem cell and apoptosis marker, and extracellular matrix. Following four weeks of bone differentiation, μCT imaging was performed. Calcification was confirmed by alizarin red and von Kossa staining. Fluorescent immunostaining was utilized to assess the expression of markers indicative of advanced bone differentiation. Results We have established and confirmed the spheroids (∼600 μm in diameter) constructed from human GMSCs (hGMSCs) still maintain stem cell potentials and osteogenic differentiation abilities from the results that CD73 and not CD34 were expressed as stem cell positive and negative marker, respectively. These spheroids were pilled up like cylindal shape to the "Kenzan" platform of Bio-3D printer and cultured for 7days. The cylindal structure originated from compound spheroids were tried to differentiate into bone four weeks with osteogenic induction medium. The calcification of bio-3D printed bone-like structures was confirmed by alizarin red and Von Kossa staining. In addition, μCT analysis revealed that the HU (Hounsfield Unit) of the calcified structures was almost identical to that of trabecular bone. Immunofluorescent staining detected osteocalcin expression, a late-stage bone differentiation marker. Conclusion For the first time, we have achieved the construction of a scaffold-free, bone-like luminal structure through the assembly of spheroids comprised of this hGMSCs. This success is sure to be close to the induction of clinical application against regenerative medicine especially for bone defect disease.
Collapse
Affiliation(s)
- Masaaki Toyoda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takao Fukuda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ryota Fujimoto
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan
| | - Kentaro Kawakami
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Chikako Hayashi
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuki Nakao
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yukari Watanabe
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tsukasa Aoki
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Miyu Shida
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Terukazu Sanui
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masahide Taguchi
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Kensuke Yamamichi
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ayami Okabe
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsunori Okada
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoko Oka
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan
| | - Fusanori Nishimura
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shunichi Kajioka
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
2
|
Mori K, Umeno T, Kawashima T, Wada T, Genda T, Arakura M, Oda Y, Mizoguchi T, Iwai R, Tajikawa T, Nakayama Y, Miyamoto S. Breaking the Limit of Cardiovascular Regenerative Medicine: Successful 6-Month Goat Implant in World's First Ascending Aortic Replacement Using Biotube Blood Vessels. Bioengineering (Basel) 2024; 11:405. [PMID: 38671826 PMCID: PMC11048657 DOI: 10.3390/bioengineering11040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This study investigated six-month outcomes of first models of ascending aortic replacement. The molds used to produce the Biotube were implanted subcutaneously in goats. After 2-3 months, the molds were explanted to obtain the Biotubes (inner diameter, 12 mm; wall thickness, 1.5 mm). Next, we performed ascending aortic replacement using the Biotube in five allogenic goats. At 6 months, the animals underwent computed tomography (CT) and histologic evaluation. As a comparison, we performed similar surgeries using glutaraldehyde-fixed autologous pericardial rolls or pig-derived heterogenous Biotubes. At 6 months, CT revealed no aneurysmalization of the Biotube or pseudoaneurysm formation. The histologic evaluation showed development of endothelial cells, smooth muscle cells, and elastic fibers along the Biotube. In the autologous pericardium group, there was no evidence of new cell development, but there was calcification. The histologic changes observed in the heterologous Biotube group were similar to those in the allogenic Biotube group. However, there was inflammatory cell infiltration in some heterologous Biotubes. Based on the above, we could successfully create the world's first Biotube-based ascending aortic replacement models. The present results indicate that the Biotube may serve as a scaffold for aortic tissue regeneration.
Collapse
Affiliation(s)
- Kazuki Mori
- Department of Cardiovascular Surgery, Oita University, Oita 879-5593, Japan; (T.U.); (T.K.); (T.W.); (S.M.)
| | - Tadashi Umeno
- Department of Cardiovascular Surgery, Oita University, Oita 879-5593, Japan; (T.U.); (T.K.); (T.W.); (S.M.)
| | - Takayuki Kawashima
- Department of Cardiovascular Surgery, Oita University, Oita 879-5593, Japan; (T.U.); (T.K.); (T.W.); (S.M.)
| | - Tomoyuki Wada
- Department of Cardiovascular Surgery, Oita University, Oita 879-5593, Japan; (T.U.); (T.K.); (T.W.); (S.M.)
| | - Takuro Genda
- Department of Clinical Engineering, Oita University Hospital, Oita 879-5593, Japan (T.M.)
| | - Masanagi Arakura
- Department of Clinical Engineering, Oita University Hospital, Oita 879-5593, Japan (T.M.)
| | - Yoshifumi Oda
- Department of Clinical Engineering, Oita University Hospital, Oita 879-5593, Japan (T.M.)
| | - Takayuki Mizoguchi
- Department of Clinical Engineering, Oita University Hospital, Oita 879-5593, Japan (T.M.)
| | - Ryosuke Iwai
- Institute of Frontier Science and Technology, Okayama University of Science, Okayama 700-0005, Japan;
| | - Tsutomu Tajikawa
- Department of Mechanical Engineering, Faculty of Engineering Science, Kansai University, Osaka 564-8680, Japan;
| | | | - Shinji Miyamoto
- Department of Cardiovascular Surgery, Oita University, Oita 879-5593, Japan; (T.U.); (T.K.); (T.W.); (S.M.)
| |
Collapse
|
3
|
Yamasaki M, Maki T, Mochida T, Hamada T, Watanabe-Matsumoto S, Konagaya S, Kaneko M, Ito R, Ueno H, Toyoda T. Xenogenic Engraftment of Human-Induced Pluripotent Stem Cell-Derived Pancreatic Islet Cells in an Immunosuppressive Diabetic Göttingen Mini-Pig Model. Cell Transplant 2024; 33:9636897241288932. [PMID: 39401129 PMCID: PMC11489945 DOI: 10.1177/09636897241288932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024] Open
Abstract
In the development of cell therapy products, immunocompromised animal models closer in size to humans are valuable for enhancing the translatability of in vivo findings to clinical trials. In the present study, we generated immunocompromised type 1 diabetic Göttingen mini-pig models and demonstrated the engraftment of human-induced pluripotent stem cell-derived pancreatic islet cells (iPICs). We induced hyperglycemia with a concomitant reduction in endogenous C-peptide levels in pigs that underwent thymectomy and splenectomy. After estimating the effective in vivo dose of immunosuppressants (ISs) via in vitro testing, we conducted exploratory implantation of iPICs using various implantation methods under IS treatments in one pig. Five weeks after implantation, histological analysis of the implanted iPICs embedded in fibrin gel revealed numerous islet-like structures with insulin-positive cells. Moreover, the area of the insulin-positive cells in the pre-peritoneally implanted grafts was greater than in the subcutaneously implanted grafts. Immunohistochemical analyses further revealed that these iPIC grafts contained cells positive for glucagon, somatostatin, and pancreatic polypeptides, similar to naturally occurring islets. The engraftment of iPICs was successfully reproduced. These data support the observation that the iPICs engrafted well, particularly in the pre-peritoneal space of the newly generated immunocompromised diabetic mini-pigs, forming islet-like endocrine clusters. Future evaluation of human cells in this immunocompromised pig model could accelerate and development of cell therapy products.
Collapse
Affiliation(s)
- Midori Yamasaki
- T-CiRA Discovery and Innovation, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
| | | | - Taisuke Mochida
- T-CiRA Discovery and Innovation, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
| | - Teruki Hamada
- Axcelead Drug Discovery Partners, Inc., Fujisawa, Japan
| | - Saori Watanabe-Matsumoto
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shuhei Konagaya
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Orizuru Therapeutics, Inc., Fujisawa, Japan
| | - Manami Kaneko
- Axcelead Drug Discovery Partners, Inc., Fujisawa, Japan
| | - Ryo Ito
- T-CiRA Discovery and Innovation, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
- Orizuru Therapeutics, Inc., Fujisawa, Japan
| | - Hikaru Ueno
- T-CiRA Discovery and Innovation, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
- Orizuru Therapeutics, Inc., Fujisawa, Japan
| | - Taro Toyoda
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Wu X, Hua X, Xu K, Song Y, Lv T. Zebrafish in Lung Cancer Research. Cancers (Basel) 2023; 15:4721. [PMID: 37835415 PMCID: PMC10571557 DOI: 10.3390/cancers15194721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Zebrafish is increasingly used as a model organism for cancer research because of its genetic and physiological similarities to humans. Modeling lung cancer (LC) in zebrafish has received significant attention. This review focuses on the insights gained from using zebrafish in LC research. These insights range from investigating the genetic and molecular mechanisms that contribute to the development and progression of LC to identifying potential drug targets, testing the efficacy and toxicity of new therapies, and applying zebrafish for personalized medicine studies. This review provides a comprehensive overview of the current state of LC research performed using zebrafish, highlights the advantages and limitations of this model organism, and discusses future directions in the field.
Collapse
Affiliation(s)
- Xiaodi Wu
- Department of Clinical Medicine, Medical School of Nanjing University, Nanjing 210093, China; (X.W.); (K.X.)
| | - Xin Hua
- Department of Clinical Medicine, Southeast University Medical College, Nanjing 210096, China;
| | - Ke Xu
- Department of Clinical Medicine, Medical School of Nanjing University, Nanjing 210093, China; (X.W.); (K.X.)
| | - Yong Song
- Department of Clinical Medicine, Southeast University Medical College, Nanjing 210096, China;
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Tangfeng Lv
- Department of Clinical Medicine, Medical School of Nanjing University, Nanjing 210093, China; (X.W.); (K.X.)
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| |
Collapse
|
5
|
Otsuka K, Takata T, Sasaki H, Shikano M. Horizon Scanning in Tissue Engineering Using Citation Network Analysis. Ther Innov Regul Sci 2023; 57:810-822. [PMID: 37204641 PMCID: PMC10276778 DOI: 10.1007/s43441-023-00529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Establishing a horizon scanning method is critical for identifying technologies that require new guidelines or regulations. We studied the application of bibliographic citation network analysis to horizon scanning. OBJECTIVE The possibility of applying the proposed method to interdisciplinary fields was investigated with the emphasis on tissue engineering and its example, three-dimensional bio-printing. METHODOLOGY AND RESULTS In all, 233,968 articles on tissue engineering, regenerative medicine, biofabrication, and additive manufacturing published between January 1, 1900 and November 3, 2021 were obtained from the Web of Science Core Collection. The citation network of the articles was analyzed for confirmation that the evolution of 3D bio-printing is reflected by tracking the key articles in the field. However, the results revealed that the major articles on the clinical application of 3D bio-printed products are located in clusters other than that of 3D bio-printers. We investigated the research trends in this field by analyzing the articles published between 2019 and 2021 and detected various basic technologies constituting tissue engineering, including microfluidics and scaffolds such as electrospinning and conductive polymers. The results suggested that the research trend of technologies required for product development and future clinical applications of the product are sometimes detected independently by bibliographic citation network analysis, particularly for interdisciplinary fields. CONCLUSION This method can be applied to the horizon scanning of an interdisciplinary field. However, identifying basic technologies of the targeted field and following the progress of research and the integration process of each component of technology are critical.
Collapse
Affiliation(s)
- Kouhei Otsuka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Takuya Takata
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Hajime Sasaki
- Institute for Future Initiatives, The University of Tokyo, Tokyo, Japan
| | - Mayumi Shikano
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan.
| |
Collapse
|
6
|
Wu P, Asada H, Hakamada M, Mabuchi M. Bioengineering of High Cell Density Tissues with Hierarchical Vascular Networks for Ex Vivo Whole Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209149. [PMID: 36545785 DOI: 10.1002/adma.202209149] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The development of tissue-like structures such as cell sheets, spheroids, and organoids has contributed to progress in regenerative medicine. Simultaneous achievement of scale up and high cell density of these tissues is challenging because sufficient oxygen cannot be supplied to the inside of large, high cell density tissues. Here, in vitro fabrication of vessels to supply oxygen to the inside of millimeter-sized scaffold-free tissues whose cell density is ≈200 million cells mL-1 , corresponding to those of native tissues, is shown. Hierarchical vascular networks by anastomosis of capillaries and a large vessel are essential for oxygen supply, whereas a large vessel or capillary networks alone make negligible contributions to the supply. The hierarchical vascular networks are formed by a top-down approach, which offers a new option for ex vivo whole organs without decellularization and 3D-bioprinting.
Collapse
Affiliation(s)
- Peizheng Wu
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Hiroki Asada
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Masataka Hakamada
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Mamoru Mabuchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
7
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
8
|
Jo Y, Hwang DG, Kim M, Yong U, Jang J. Bioprinting-assisted tissue assembly to generate organ substitutes at scale. Trends Biotechnol 2023; 41:93-105. [PMID: 35907704 DOI: 10.1016/j.tibtech.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/29/2022] [Accepted: 07/01/2022] [Indexed: 12/27/2022]
Abstract
Various external cues can guide cellular behavior and maturation during developmental processes. Recent studies on bioprinting-assisted tissue engineering have considered this a practical, versatile, and flexible way to provide external cues to developing engineered tissues. An ensemble of multiple external cues can improve the speed and capability of morphogenesis. In this review, we discuss how bioprinting and biomaterials provide multiple guidance to generate micro-sized building blocks with specific shapes and also highlight their applications in tissue assembly toward volumetric tissue and organ generation. Furthermore, we discuss our perspectives on the future translation of bioprinting technologies integrated with artificial intelligence (AI) and robot-assisted apparatus to promote automation, standardization, and clinical translation of bioprinted tissues.
Collapse
Affiliation(s)
- Yeonggwon Jo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Dong Gyu Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Myungji Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Uijung Yong
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea; Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Wu X, Han Z, Liu B, Yu D, Sun J, Ge L, Tang W, Liu S. Gut microbiota contributes to the methionine metabolism in host. Front Microbiol 2022; 13:1065668. [PMID: 36620044 PMCID: PMC9815504 DOI: 10.3389/fmicb.2022.1065668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Methionine (Met) metabolism provides methyl groups for many important physiological processes and is implicated in multiple inflammatory diseases associated with the disrupted intestinal microbiota; nevertheless, whether intestinal microbiota determines Met metabolism in the host remains largely unknown. Here, we found that gut microbiota is responsible for host Met metabolism by using various animal models, including germ-free (GF) pigs and mice. Specifically, the Met levels are elevated in both GF pigs and GF mice that mainly metabolized to S-adenosine methionine (SAM) in the liver. Furthermore, antibiotic clearance experiments demonstrate that the loss of certain ampicillin- or neomycin-sensitive gut microbiota causes decreased Met in murine colon. Overall, our study suggests that gut microbiota mediates Met metabolism in the host and is a prospective target for the treatment of Met metabolism-related diseases.
Collapse
Affiliation(s)
- Xiaoyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ziyi Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Bingnan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dongming Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd., Chengdu, China,*Correspondence: Wenjie Tang, ; Shaojuan Liu,
| | - Shaojuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China,*Correspondence: Wenjie Tang, ; Shaojuan Liu,
| |
Collapse
|
10
|
Hasegawa K, Nakano K, Nagaya M, Watanabe M, Uchikura A, Matsunari H, Umeyama K, Kobayashi E, Nagashima H. Transplantation of human cells into Interleukin-2 receptor gamma gene knockout pigs under several conditions. Regen Ther 2022; 21:62-72. [PMID: 35765545 PMCID: PMC9198816 DOI: 10.1016/j.reth.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Previously, we performed gene knockout (KO) of interleukin-2 receptor gamma (IL2RG) in porcine fetal fibroblasts using zinc finger nuclease-encoding mRNAs, subsequently generating IL2RG KO pigs using these cells through somatic cell nuclear transfer. The IL2RG KO pigs lacked a thymus and were deficient in T lymphocytes and natural killer cells, similar to human X-linked severe combined immunodeficiency (SCID) patients. The present study aimed to evaluate whether pigs can support the growth of xenografted human cells and have the potential to be an effective animal model. Methods The IL2RG XKOY pigs used in this study were obtained by mating IL2RG XKOX females with wild-type boars. This permitted the routine production of IL2RG KO pigs via natural breeding without complicated somatic cell cloning procedures; therefore, a sufficient number of pigs could be prepared. We transplanted human HeLa S3 cells expressing the tandem dimer tomato into the ears and pancreas of IL2RG KO pigs. Additionally, a newly developed method for the aseptic rearing of SCID pigs was used in case of necessity. Results Tumors from the transplanted cells quickly developed in all pigs and were verified by histology and immunohistochemistry. We also transplanted these cells into the pancreas of designated pathogen-free pigs housed in novel biocontainment facilities, and large tumors were confirmed. Conclusions IL2RG KO pigs have the potential to become useful animal models in a variety of translational biology fields. The present study aimed to evaluate whether IL2RG KO SCID-like pigs can host and support the growth of xenografted human cells under several conditions. Tumors from transplanted cells quickly developed in all pigs, as verified by histology and immunohistochemistry. IL2RG KO pigs have the potential to become extremely useful animal models in a variety of translational biology fields.
Collapse
Key Words
- DPF, designated pathogen-free
- IL, Interleukin
- IL2RG, interleukin-2 receptor gamma
- Interleukin-2 receptor gamma
- KO, knock out pigs
- NK cells, natural killer cells
- OIDP, operational immunodeficient pig
- PCR, polymerase chain reaction
- Pig
- SCID
- SCID, Severe combined immunodeficiency
- SCNT, somatic cell nuclear transfer
- SD, standard deviation
- U-iR, uterectomy-isolated rearing
- WT, wild-type pigs
- XLGD, X-linked genetic diseases
- Xenotransplantation
- ZFN, Zinc finger nuclease
- tdTomato, tandem dimer Tomato
Collapse
Affiliation(s)
- Koki Hasegawa
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Kazuaki Nakano
- PorMedTec Co. Ltd., 2-3227 MIta, Tama-ku, Kawasaki, Kanagawa, 214-0034, Japan.,Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Masahito Watanabe
- PorMedTec Co. Ltd., 2-3227 MIta, Tama-ku, Kawasaki, Kanagawa, 214-0034, Japan.,Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Ayuko Uchikura
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan.,Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Hitomi Matsunari
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan.,Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Kazuhiro Umeyama
- PorMedTec Co. Ltd., 2-3227 MIta, Tama-ku, Kawasaki, Kanagawa, 214-0034, Japan.,Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Eiji Kobayashi
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine - Tokyo, Japan
| | - Hiroshi Nagashima
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan.,Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| |
Collapse
|
11
|
Li X, Zhang X, Luo Y, Liu R, Sun Y, Zhao S, Yu M, Cao J. Large Fragment InDels Reshape Genome Structure of Porcine Alveolar Macrophage 3D4/21 Cells. Genes (Basel) 2022; 13:genes13091515. [PMID: 36140681 PMCID: PMC9498719 DOI: 10.3390/genes13091515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022] Open
Abstract
The porcine monomyeloid cell line, or 3D4/21 cells, is an effective tool to study the immune characteristics and virus infection mechanism of pigs. Due to the introduction of the neomycin resistance gene and the SV40 large T antigen gene, its genome has undergone essential changes, which are still unknown. Studying the variation in genome structure, especially the large fragments of insertions and deletions (InDels), is one of the proper ways to reveal these issues. In this study, an All-seq method was established by combining Mate-pair and Shotgun sequencing methods, and the detection and verification of large fragments of InDels were performed on 3D4/21 cells. The results showed that there were 844 InDels with a length of more than 1 kb, of which 12 regions were deletions of more than 100 kb in the 3D4/21 cell genome. In addition, compared with porcine primary alveolar macrophages, 82 genes including the CD163 had lost transcription in 3D4/21 cells, and 72 genes gained transcription as well. Further referring to the Hi-C structure, it was found that the fusion of the topologically associated domains (TADs) caused by the deletion may lead to abnormal gene function. The results of this study provide a basis for elaborating the genome structure and functional variation in 3D4/21 cells, provide a method for rapid and convenient detection of large-scale InDels, and provide useful clues for the study of the porcine immune function genome and the molecular mechanism of virus infection.
Collapse
Affiliation(s)
- Xiaolong Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqian Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yandong Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ru Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhua Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
- 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
12
|
Zhao H, Ye W, Guo J, Wang J, Jiao D, Xu K, Yang C, Chen S, Jamal MA, Bai Z, Wei T, Cai J, Nguyen TD, Qing Y, Cheng W, Jia B, Li H, Zhao HY, Chen Q, Wei HJ. Development of RAG2-/-IL2Rγ-/Y immune deficient FAH-knockout miniature pig. Front Immunol 2022; 13:950194. [PMID: 36032112 PMCID: PMC9400017 DOI: 10.3389/fimmu.2022.950194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Human hepatocyte transplantation for liver disease treatment have been hampered by the lack of quality human hepatocytes. Pigs with their large body size, longevity and physiological similarities with human are appropriate animal models for the in vivo expansion of human hepatocytes. Here we report on the generation of RAG2-/-IL2Rγ-/YFAH-/- (RGFKO) pigs via CRISPR/Cas9 system and somatic cell nuclear transfer. We showed that thymic and splenic development in RGFKO pigs was impaired. V(D)J recombination processes were also inactivated. Consequently, RGFKO pigs had significantly reduced numbers of porcine T, B and NK cells. Moreover, due to the loss of FAH, porcine hepatocytes continuously undergo apoptosis and consequently suffer hepatic damage. Thus, RGFKO pigs are both immune deficient and constantly suffer liver injury in the absence of NTBC supplementation. These results suggest that RGFKO pigs have the potential to be engrafted with human hepatocytes without immune rejection, thereby allowing for large scale expansion of human hepatocytes.
Collapse
Affiliation(s)
- Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Weijian Ye
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianxiong Guo
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Jiaoxiang Wang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Deling Jiao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kaixiang Xu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chang Yang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Shuhan Chen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | | | - Zhongbin Bai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Taiyun Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Jie Cai
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Tien Dat Nguyen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yubo Qing
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Wenmin Cheng
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Baoyu Jia
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Honghui Li
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- *Correspondence: Hong-Jiang Wei, ; Qingfeng Chen, ; Hong-Ye Zhao,
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Hong-Jiang Wei, ; Qingfeng Chen, ; Hong-Ye Zhao,
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Hong-Jiang Wei, ; Qingfeng Chen, ; Hong-Ye Zhao,
| |
Collapse
|
13
|
Souto EP, Dobrolecki LE, Villanueva H, Sikora AG, Lewis MT. In Vivo Modeling of Human Breast Cancer Using Cell Line and Patient-Derived Xenografts. J Mammary Gland Biol Neoplasia 2022; 27:211-230. [PMID: 35697909 PMCID: PMC9433358 DOI: 10.1007/s10911-022-09520-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Historically, human breast cancer has been modeled largely in vitro using long-established cell lines primarily in two-dimensional culture, but also in three-dimensional cultures of varying cellular and molecular complexities. A subset of cell line models has also been used in vivo as cell line-derived xenografts (CDX). While outstanding for conducting detailed molecular analysis of regulatory mechanisms that may function in vivo, results of drug response studies using long-established cell lines have largely failed to translate clinically. In an attempt to address this shortcoming, many laboratories have succeeded in developing clinically annotated patient-derived xenograft (PDX) models of human cancers, including breast, in a variety of host systems. While immunocompromised mice are the predominant host, the immunocompromised rat and pig, zebrafish, as well as the chicken egg chorioallantoic membrane (CAM) have also emerged as potential host platforms to help address perceived shortcomings of immunocompromised mice. With any modeling platform, the two main issues to be resolved are criteria for "credentialing" the models as valid models to represent human cancer, and utility with respect to the ability to generate clinically relevant translational research data. Such data are beginning to emerge, particularly with the activities of PDX consortia such as the NCI PDXNet Program, EuroPDX, and the International Breast Cancer Consortium, as well as a host of pharmaceutical companies and contract research organizations (CRO). This review focuses primarily on these important aspects of PDX-related research, with a focus on breast cancer.
Collapse
Affiliation(s)
- Eric P Souto
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hugo Villanueva
- Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Baylor College of Medicine, One Baylor Plaza, BCM-600; Room N1210, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
15
|
Hu K, Li Y, Ke Z, Yang H, Lu C, Li Y, Guo Y, Wang W. History, progress and future challenges of artificial blood vessels: a narrative review. BIOMATERIALS TRANSLATIONAL 2022; 3:81-98. [PMID: 35837341 PMCID: PMC9255792 DOI: 10.12336/biomatertransl.2022.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
Cardiovascular disease serves as the leading cause of death worldwide, with stenosis, occlusion, or severe dysfunction of blood vessels being its pathophysiological mechanism. Vascular replacement is the preferred surgical option for treating obstructed vascular structures. Due to the limited availability of healthy autologous vessels as well as the incidence of postoperative complications, there is an increasing demand for artificial blood vessels. From synthetic to natural, or a mixture of these components, numerous materials have been used to prepare artificial vascular grafts. Although synthetic grafts are more appropriate for use in medium to large-diameter vessels, they fail when replacing small-diameter vessels. Tissue-engineered vascular grafts are very likely to be an ideal alternative to autologous grafts in small-diameter vessels and are worthy of further investigation. However, a multitude of problems remain that must be resolved before they can be used in biomedical applications. Accordingly, this review attempts to describe these problems and provide a discussion of the generation of artificial blood vessels. In addition, we deliberate on current state-of-the-art technologies for creating artificial blood vessels, including advances in materials, fabrication techniques, various methods of surface modification, as well as preclinical and clinical applications. Furthermore, the evaluation of grafts both in vivo and in vitro, mechanical properties, challenges, and directions for further research are also discussed.
Collapse
Affiliation(s)
- Ke Hu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yuxuan Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zunxiang Ke
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongjun Yang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, Hubei Province, China
| | - Chanjun Lu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yi Guo
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Clinical Centre of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding author: Yi Guo, ; Weici Wang,
| | - Weici Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding author: Yi Guo, ; Weici Wang,
| |
Collapse
|
16
|
Kawai Y, Tohyama S, Arai K, Tamura T, Soma Y, Fukuda K, Shimizu H, Nakayama K, Kobayashi E. Scaffold-Free Tubular Engineered Heart Tissue From Human Induced Pluripotent Stem Cells Using Bio-3D Printing Technology in vivo. Front Cardiovasc Med 2022; 8:806215. [PMID: 35127867 PMCID: PMC8811174 DOI: 10.3389/fcvm.2021.806215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/28/2021] [Indexed: 01/14/2023] Open
Abstract
Engineered heart tissues (EHTs) that are fabricated using human induced pluripotent stem cells (hiPSCs) have been considered as potential cardiac tissue substitutes in case of heart failure. In the present study, we have created hiPSC-derived cardiac organoids (hiPSC-COs) comprised of hiPSC-derived cardiomyocytes, human umbilical vein endothelial cells, and human fibroblasts. To produce a beating conduit for patients suffering from congenital heart diseases, we constructed scaffold-free tubular EHTs (T-EHTs) using hiPSC-COs and bio-3D printing with needle arrays. The bio-3D printed T-EHTs were cut open and transplanted around the abdominal aorta as well as the inferior vena cava (IVC) of NOG mice. The transplanted T-EHTs were covered with the omentum, and the abdomen was closed after completion of the procedure. Additionally, to compare the functionality of hiPSC-COs with that of T-EHTs, we transplanted the former around the aorta and IVC as well as injecting them into the subcutaneous tissue on the back of the mice. After 1 m of the transplantation procedures, we observed the beating of the T-EHTs in the mice. In histological analysis, the T-EHTs showed clear striation of the myocardium and vascularization compared to hiPSC-COs transplanted around the aorta or in subcutaneous tissue. Based on these results, bio-3D-printed T-EHTs exhibited a better maturation in vivo as compared to the hiPSC-COs. Therefore, these beating T-EHTs may form conduits for congenital heart disease patients, and T-EHT transplantation can form a treatment option in such cases.
Collapse
Affiliation(s)
- Yujiro Kawai
- Department of Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Shugo Tohyama
| | - Kenichi Arai
- Department of Regenerative Medicine and Biomedical Engineering, Saga University, Saga, Japan
| | - Tadashi Tamura
- Department of Regenerative Medicine and Biomedical Engineering, Saga University, Saga, Japan
| | - Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Shimizu
- Department of Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering, Saga University, Saga, Japan
- Koichi Nakayama
| | - Eiji Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Durán-Rey D, Crisóstomo V, Sánchez-Margallo JA, Sánchez-Margallo FM. Systematic Review of Tissue-Engineered Vascular Grafts. Front Bioeng Biotechnol 2021; 9:771400. [PMID: 34805124 PMCID: PMC8595218 DOI: 10.3389/fbioe.2021.771400] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023] Open
Abstract
Pathologies related to the cardiovascular system are the leading causes of death worldwide. One of the main treatments is conventional surgery with autologous transplants. Although donor grafts are often unavailable, tissue-engineered vascular grafts (TEVGs) show promise for clinical treatments. A systematic review of the recent scientific literature was performed using PubMed (Medline) and Web of Science databases to provide an overview of the state-of-the-art in TEVG development. The use of TEVG in human patients remains quite restricted owing to the presence of vascular stenosis, existence of thrombi, and poor graft patency. A total of 92 original articles involving human patients and animal models were analyzed. A meta-analysis of the influence of the vascular graft diameter on the occurrence of thrombosis and graft patency was performed for the different models analyzed. Although there is no ideal animal model for TEVG research, the murine model is the most extensively used. Hybrid grafting, electrospinning, and cell seeding are currently the most promising technologies. The results showed that there is a tendency for thrombosis and non-patency in small-diameter grafts. TEVGs are under constant development, and research is oriented towards the search for safe devices.
Collapse
Affiliation(s)
- David Durán-Rey
- Laparoscopy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Crisóstomo
- Cardiovascular Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,Centro de Investigacion Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan A Sánchez-Margallo
- Bioengineering and Health Technologies Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Francisco M Sánchez-Margallo
- Centro de Investigacion Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Scientific Direction, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| |
Collapse
|
18
|
Moriyama M, Matsumoto K, Taniguchi D, Machino R, Tsuchiya T, Nakayama K, Nagayasu T. Successful use of bio plugs for delayed bronchial closure after pneumonectomy in experimental settings. Interact Cardiovasc Thorac Surg 2021; 34:660-667. [PMID: 34738099 PMCID: PMC9026198 DOI: 10.1093/icvts/ivab306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Cell therapies, such as stem cell suspension injection, are used to treat bronchopleural fistula. Although it is safe and effective, injected cells cannot remain within the bronchioles of the fistula due to cell leakage into the thoracic cavity. Here, we inserted a 'bio plug' into the fistula, produced using cells and a bio-3D printer, to examine the effectiveness of bio plugs for the closure of bronchopleural fistulas, the optimal cell source and the closure mechanism. METHODS Bio plugs were made with mesenchymal stem (stromal) cells derived from bone marrow (MSCBM), fibroblasts and rat lung micro-vessel endothelial cells using a bio-3D printer with different cell mixing ratios. Six groups, according to the presence or absence and the type of bio plugs, were compared. The plugs were inserted into the bronchi of F344 rats. The obstruction ratio and histological and immunohistochemical findings were evaluated. RESULTS MSCBM+ rat lung micro-vessel endothelial cell group exhibited a higher obstruction ratio among all groups excluding the MSCBM group (P = 0.039). This group had fibrosis and CD31-positive cells and fewer CD68-positive cells than MSCBM and MSCBM+ fibroblast groups. CONCLUSIONS Bio plugs with mixed cells, including stem cells, contribute to bronchial closure in the current experimental setting. Endothelial cells effectively maintain the structure in this model. Although bronchial closure for bronchopleural fistula could not be described as clinical conditions were not reproduced, we collected essential data on bronchial closure; however, further experiments are warranted.
Collapse
Affiliation(s)
- Masaaki Moriyama
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Keitaro Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Daisuke Taniguchi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Ryusuke Machino
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Tomoshi Tsuchiya
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering Faculty of Medicine, Saga University, Saga, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
19
|
Rahimnejad M, Nasrollahi Boroujeni N, Jahangiri S, Rabiee N, Rabiee M, Makvandi P, Akhavan O, Varma RS. Prevascularized Micro-/Nano-Sized Spheroid/Bead Aggregates for Vascular Tissue Engineering. NANO-MICRO LETTERS 2021; 13:182. [PMID: 34409511 PMCID: PMC8374027 DOI: 10.1007/s40820-021-00697-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/13/2021] [Indexed: 05/02/2023]
Abstract
Efficient strategies to promote microvascularization in vascular tissue engineering, a central priority in regenerative medicine, are still scarce; nano- and micro-sized aggregates and spheres or beads harboring primitive microvascular beds are promising methods in vascular tissue engineering. Capillaries are the smallest type and in numerous blood vessels, which are distributed densely in cardiovascular system. To mimic this microvascular network, specific cell components and proangiogenic factors are required. Herein, advanced biofabrication methods in microvascular engineering, including extrusion-based and droplet-based bioprinting, Kenzan, and biogripper approaches, are deliberated with emphasis on the newest works in prevascular nano- and micro-sized aggregates and microspheres/microbeads.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montreal, Canada
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montreal, Canada
| | | | - Sepideh Jahangiri
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montreal, Canada
- Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interfaces, Istituto Italiano Di Tecnologia, viale Rinaldo Piaggio 34, 56 025, Pontedera, Pisa, Italy
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
20
|
Ludwig AL, Gamm DM. Outer Retinal Cell Replacement: Putting the Pieces Together. Transl Vis Sci Technol 2021; 10:15. [PMID: 34724034 PMCID: PMC8572485 DOI: 10.1167/tvst.10.10.15] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022] Open
Abstract
Retinal degenerative diseases (RDDs) affecting photoreceptors (PRs) are one of the most prevalent sources of incurable blindness worldwide. Due to a lack of endogenous repair mechanisms, functional cell replacement of PRs and/or retinal pigmented epithelium (RPE) cells are among the most anticipated approaches for restoring vision in advanced RDD. Human pluripotent stem cell (hPSC) technologies have accelerated development of outer retinal cell therapies as they provide a theoretically unlimited source of donor cells. Human PSC-RPE replacement therapies have progressed rapidly, with several completed and ongoing clinical trials. Although potentially more promising, hPSC-PR replacement therapies are still in their infancy. A first-in-human trial of hPSC-derived neuroretinal transplantation has recently begun, but a number of questions regarding survival, reproducibility, functional integration, and mechanism of action remain. The discovery of biomaterial transfer between donor and PR cells has highlighted the need for rigorous safety and efficacy studies of PR replacement. In this review, we briefly discuss the history of neuroretinal and PR cell transplantation to identify remaining challenges and outline a stepwise approach to address specific pieces of the outer retinal cell replacement puzzle.
Collapse
Affiliation(s)
- Allison L. Ludwig
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin–Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - David M. Gamm
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin–Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
21
|
Masumoto S, Ono A, Ito A, Kawabe Y, Kamihira M. Hypoxia-responsive expression of vascular endothelial growth factor for induction of angiogenesis in artificial three-dimensional tissues. J Biosci Bioeng 2021; 132:399-407. [PMID: 34364783 DOI: 10.1016/j.jbiosc.2021.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Constructing three-dimensional (3D) tissues is an important process to improve cellular functions in tissue engineering. When transplanting artificially constructed tissues, a poor vascular network restricts oxygen and nutrient supplies to the tissue cells, which leads to cell death and reduced rates of tissue engraftment. Therefore, it is necessary to develop a system that builds a vascular network within 3D tissues. Here, we developed a hypoxia-responsive gene expression system for production of an angiogenic factor, vascular endothelial growth factor (VEGF), to improve hypoxia and nutrition deficiencies inside artificial 3D tissues. We demonstrated that cells into which the hypoxia-responsive VEGF gene expression system had been introduced autonomously controlled VEGF expression in a hypoxic stress-dependent manner. Next, we confirmed that VEGF expression within a 3D cell sheet was induced in response to a hypoxic environment in vitro. The genetically modified cell sheet was subcutaneously transplanted into mice to evaluate the feasibility of the hypoxia-responsive VEGF gene expression system in vivo. The results suggest that the hypoxia-responsive VEGF gene expression system is promising to prepare artificial 3D tissues in regenerative medicine.
Collapse
Affiliation(s)
- Shinya Masumoto
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihiko Ono
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
22
|
Arai K, Kitsuka T, Nakayama K. Scaffold-based and scaffold-free cardiac constructs for drug testing. Biofabrication 2021; 13. [PMID: 34233316 DOI: 10.1088/1758-5090/ac1257] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
The safety and therapeutic efficacy of new drugs are tested in experimental animals. However, besides being a laborious, costly process, differences in drug responses between humans and other animals and potential cardiac adverse effects lead to the discontinued development of new drugs. Thus, alternative approaches to animal tests are needed. Cardiotoxicity and responses of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to drugs are conventionally evaluated by cell seeding and two-dimensional (2D) culture, which allows measurements of field potential duration and the action potentials of CMs using multielectrode arrays. However, 2D-cultured hiPSC-CMs lack 3D spatial adhesion, and have fewer intercellular and extracellular matrix interactions, as well as different contractile behavior from CMsin vivo. This issue has been addressed using tissue engineering to fabricate three-dimensional (3D) cardiac constructs from hiPSC-CMs culturedin vitro. Tissue engineering can be categorized as scaffold-based and scaffold-free. In scaffold-based tissue engineering, collagen and fibrin gel scaffolds comprise a 3D culture environment in which seeded cells exhibit cardiac-specific functions and drug responses, whereas 3D cardiac constructs fabricated by tissue engineering without a scaffold have high cell density and form intercellular interactions. This review summarizes the characteristics of scaffold-based and scaffold-free cardiac tissue engineering and discusses the applications of fabricated cardiac constructs to drug screening.
Collapse
Affiliation(s)
- Kenichi Arai
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan.,Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takahiro Kitsuka
- Department of Cardiovascular Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
23
|
Kami D, Yamanami M, Tsukimura T, Maeda H, Togawa T, Sakuraba H, Gojo S. Cell Transplantation Combined with Recombinant Collagen Peptides for the Treatment of Fabry Disease. Cell Transplant 2021; 29:963689720976362. [PMID: 33300391 PMCID: PMC7873760 DOI: 10.1177/0963689720976362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fabry disease is caused by a decrease in or loss of the activity of alpha-galactosidase, which causes its substrates globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) to accumulate in cells throughout the body. This accumulation results in progressive kidney injury due to glomerulosclerosis and in heart failure due to hypertrophy. Enzyme replacement therapy (ERT) has been used as the standard therapy for Fabry disease, but it causes a significant financial burden, and regular administration is inconvenient for patients. Because of the short half-life of alpha-galactosidase in vivo, therapeutic methods that can supplement or replace ERT are expected to involve continuous release of alpha-galactosidase, even at low doses. Cell transplantation therapy is one of these methods; however, its use has been hindered by the short-term survival of transplanted cells. CellSaic technology, which utilizes cell spheroids that form after cells are seeded simultaneously with a recombinant collagen peptide scaffold called a μ-piece, has been used to improve cell survival upon implantation. In this study, syngeneic murine embryonic fibroblasts were used to generate CellSaic that were transplanted into Fabry mice. These spheroids survived for 28 days in the renal subcapsular space with forming blood vessels. These results indicate CellSaic technology could be a platform to promote cellular graft survival and may facilitate the development of cell transplantation methods for lysosomal diseases.
Collapse
Affiliation(s)
- Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masashi Yamanami
- Department of Cardiovascular Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Tsukimura
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hideki Maeda
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadayasu Togawa
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
24
|
Yurie H, Ikeguchi R, Aoyama T, Tanaka M, Oda H, Takeuchi H, Mitsuzawa S, Ando M, Yoshimoto K, Noguchi T, Akieda S, Nakayama K, Matsuda S. Bio 3D Conduits Derived from Bone Marrow Stromal Cells Promote Peripheral Nerve Regeneration. Cell Transplant 2021; 29:963689720951551. [PMID: 32830545 PMCID: PMC7784509 DOI: 10.1177/0963689720951551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We previously reported that a nerve conduit created from fibroblasts promotes nerve regeneration in a rat sciatic nerve model. This study aims to determine whether a nerve conduit created from bone marrow stromal cells (BMSCs) can promote nerve regeneration. Primary BMSCs were isolated from femur bone marrow of two Lewis rats, and cells at passages 4–7 were used. We created seven Bio 3D nerve conduits from BMSCs using a Bio-3D Printer. The conduits were transplanted to other Lewis rats to bridge 5-mm right sciatic nerve gaps (Bio 3D group, n = 7). We created two control groups: a silicone group (S group, n = 5) in which the same nerve gap was bridged with a silicone tube, and a silicone cell group (SC group, n = 5) in which the gap was bridged with a BMSC injection. Twelve weeks after transplantation, nerve regeneration was evaluated functionally and morphologically. In addition, PKH26-labeled BMSCs were used to fabricate a Bio 3D conduit that was transplanted for cell trafficking analysis. Electrophysiological study, kinematic analysis, wet muscle weight, and morphological parameters showed significantly better nerve regeneration in the Bio 3D group than in the S group or SC group. In immunohistochemical studies, sections from the Bio 3D group contained abundant S-100-positive cells. In cell trafficking analysis, PKH26-positive cells stained positive for the Schwann cell markers S-100, p75NTR, and GFAP. Bio 3D nerve conduits created from BMSCs can promote peripheral nerve regeneration in a rat sciatic nerve model through BMSC differentiation into Schwann-like cells.
Collapse
Affiliation(s)
- Hirofumi Yurie
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Ikeguchi
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mai Tanaka
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroki Oda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hisataka Takeuchi
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sadaki Mitsuzawa
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Maki Ando
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koichi Yoshimoto
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Noguchi
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering, 13030Saga University, Saga, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
25
|
Zhao Q, Li G, Wang T, Jin Y, Lu W, Ji J. Human Periodontal Ligament Stem Cells Transplanted with Nanohydroxyapatite/Chitosan/Gelatin 3D Porous Scaffolds Promote Jaw Bone Regeneration in Swine. Stem Cells Dev 2021; 30:548-559. [PMID: 33736461 DOI: 10.1089/scd.2020.0204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dental-tissue-derived stem cells have been used for tissue engineering owing to their ease of isolation and efficacy in in vitro and in vivo proliferation and differentiation. Nanohydroxyapatite/chitosan/gelatin (nHA/CG) three-dimensional porous scaffolds are promising for bone tissue engineering, especially jaw bone regeneration, because of their structural and functional similarity to natural bone. In our previous study, the efficiency of scaffolds with stem cell complexes in osteogenesis was confirmed in vivo in immunocompromised mice. However, studies on the bone regeneration efficiency of stem cell-seeded nHA/CG scaffolds using large animal jaw bone defect models have not been conducted. This study evaluated the bone regeneration potential of the nHA/CG scaffolds with transplanted human periodontal ligament stem cells (hPDLSCs) in critical-sized jaw bone defects in minipigs. The hPDLSCs isolated from periodontal ligaments of discarded teeth (postorthodontic purposes) were seeded onto the nHA/CG scaffolds. The scaffold was successfully synthesized according to our previous studies. Forty-eight critical-sized jaw bone defects were created in 12 minipigs. The defects were randomly assigned to one of three groups [scaffolds with seeded hPDLSCs (hPDLSCs/nHA/CG), only scaffold (nHA/CG), and a negative control group, ie, no cells and scaffolds implanted into defects] to investigate jaw bone regeneration. The bone regeneration capacities of the three groups were assessed for up to 12 weeks. The results showed that the hPDLSCs adhered well to the nHA/CG scaffold in vitro, and the cell-nHA/CG composites significantly increased new bone formation and generated large bones with normal architectures and vascularization in vivo compared to the nHA/CG and control groups. Immunohistochemistry staining showed that runt-related transcription factor 2 (Runx2) was highly expressed in the bone marrow formed in the hPDLSCs/nHA/CG group. This study provides strong evidence for future clinical applications of the nHA/CG scaffolds transplanted with hPDLSCs to regenerate the bone in large jaw bone defects.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Guifeng Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Tiancong Wang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Yuqin Jin
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Wei Lu
- Department of Prosthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Jun Ji
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
26
|
Hamada T, Nakamura A, Soyama A, Sakai Y, Miyoshi T, Yamaguchi S, Hidaka M, Hara T, Kugiyama T, Takatsuki M, Kamiya A, Nakayama K, Eguchi S. Bile duct reconstruction using scaffold-free tubular constructs created by Bio-3D printer. Regen Ther 2021; 16:81-89. [PMID: 33732817 PMCID: PMC7921183 DOI: 10.1016/j.reth.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/16/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction Biliary strictures after bile duct injury or duct-to-duct biliary reconstruction are serious complications that markedly reduce patients’ quality of life because their treatment involves periodic stent replacements. This study aimed to create a scaffold-free tubular construct as an interposition graft to treat biliary complications. Methods Scaffold-free tubular constructs of allogeneic pig fibroblasts, that is, fibroblast tubes, were created using a Bio-3D Printer and implanted into pigs as interposition grafts for duct-to-duct biliary reconstruction. Results Although the fibroblast tube was weaker than the native bile duct, it was sufficiently strong to enable suturing. The pigs' serum hepatobiliary enzyme levels remained stable during the experimental period. Micro-computed tomography showed no biliary strictures, no biliary leakages, and no intrahepatic bile duct dilations. The tubular structure was retained in all resected specimens, and the fibroblasts persisted at the graft sites. Immunohistochemical analyses revealed angiogenesis in the fibroblast tube and absence of extensions of the biliary epithelium into the fibroblast tube's lumen. Conclusions This study's findings demonstrated successful reconstruction of the extrahepatic bile duct with a scaffold-free tubular construct created from pig fibroblasts using a novel Bio-3D Printer. This construct could provide a novel regenerative treatment for patients with hepatobiliary diseases.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Artificial bile duct
- Bio-3D printer
- Cr, creatinine
- DMEM, Dulbecco's Modified Eagle's Medium
- EDTA, trypsin-ethylenediaminetetraacetic acid
- FBS, fetal bovine serum
- IBDI, iatrogenic bile duct injury
- KCL, potassium chloride
- LDLT, living donor liver transplantation
- PBS, phosphate-buffered saline
- QOL, quality of life
- Reconstruction
- Scaffold-free tubular construct
- T-Bil, total bilirubin
- γ-GTP, γ-glutamyl transpeptidase
Collapse
Affiliation(s)
- Takashi Hamada
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Anna Nakamura
- Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Yusuke Sakai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan.,Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, Japan
| | - Takayuki Miyoshi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Shun Yamaguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Tota Kugiyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Mitsuhisa Takatsuki
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, Japan
| | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| |
Collapse
|
27
|
Ono T, Tomokiyo A, Ipposhi K, Yamashita K, Alhasan MA, Miyazaki Y, Kunitomi Y, Tsuchiya A, Ishikawa K, Maeda H. Generation of biohybrid implants using a multipotent human periodontal ligament cell line and bioactive core materials. J Cell Physiol 2021; 236:6742-6753. [PMID: 33604904 DOI: 10.1002/jcp.30336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
We aimed to generate periodontal ligament (PDL) tissue-like structures from a multipotent human PDL cell line using three-dimensional (3D) bioprinting technology and to incorporate these structures with bioactive core materials to develop a new biohybrid implant system. After 3D bioprinting, single-cell spheroids were able to form 3D tubular structures (3DTBs). We established three types of complexes using 3DTBs and different core materials: 3DTB-titanium core (TIC), 3DTB-hydroxyapatite core (HAC), and 3DTB without a core material (WOC). The expressions of PDL-, angiogenesis-, cementum-, and bone-related genes were significantly increased in the three complexes compared with monolayer-cultured cells. Abundant collagen fibers and cells positive for the above markers were confirmed in the three complexes. However, more positive cells were detected in HAC than in WOC or TIC. The present results suggest that 3D-bioprinted structures and hydroxyapatite core materials can function similarly to the PDL and may be useful for the development of a new biohybrid implant system.
Collapse
Affiliation(s)
- Taiga Ono
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| | - Atsushi Tomokiyo
- Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| | - Keita Ipposhi
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kozue Yamashita
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - M Anas Alhasan
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | | | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
28
|
Yamashita A, Tsumaki N. Recent progress of animal transplantation studies for treating articular cartilage damage using pluripotent stem cells. Dev Growth Differ 2021; 63:72-81. [PMID: 33411345 DOI: 10.1111/dgd.12706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
Focal articular cartilage damage can eventually lead to the onset of osteoarthritis with degradation around healthy articular cartilage. Currently, there are no drugs available that effectively repair articular cartilage damage. Several surgical techniques exist and are expected to prevent progression to osteoarthritis, but they do not offer a long-term clinical solution. Recently, regenerative medicine approaches using human pluripotent stem cells (PSCs) have gained attention as new cell sources for therapeutic products. To translate PSCs to clinical application, appropriate cultures that produce large amounts of chondrocytes and hyaline cartilage are needed. So too are assays for the safety and efficacy of the cellular materials in preclinical studies including animal transplantation models. To confirm safety and efficacy, transplantation into the subcutaneous space and articular cartilage defects have been performed in animal models. All but one study we reviewed that transplanted PSC-derived cellular products into articular cartilage defects found safe and effective recovery. However, for most of those studies, the quality of the PSCs was not verified, and the evaluations were done with small animals over short observation periods. Large animals and longer observation times are preferred. We will discuss the recent progress and future direction of the animal transplantation studies for the treatment of focal articular cartilage damages using PSCs.
Collapse
Affiliation(s)
- Akihiro Yamashita
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Noriyuki Tsumaki
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Kobayashi E. Viral infections of pigs used for medical education. A Japanese experience. Acta Cir Bras 2020; 35:e202000808. [PMID: 32965305 PMCID: PMC7518223 DOI: 10.1590/s0102-865020200080000008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/11/2020] [Indexed: 08/30/2023] Open
Abstract
Infectious viruses pose a threat to all living organisms, including humans, and can cause significant morbidity. Previous experience with pigs in medical education and research, rather than in domestic control settings, has led to a unique perspective on viral infections in swine. In this article, common porcine infectious diseases have been listed, based mainly on the authors' experience thus far. For example, young domestic pigs that were used in surgical training and infected with hepatitis E were subjected to quarantine and isolation treatment, and attempts were made to develop a DNA vaccine for swine influenza arising from swine-to-human transmission. More recent research has focused on preventing infection by the African swine virus, a current threat. We hope that this article of porcine infectious diseases identified at the School of Medicine will help develop a breakthrough with regard to coronavirus disease.
Collapse
|
30
|
Murata D, Arai K, Nakayama K. Scaffold-Free Bio-3D Printing Using Spheroids as "Bio-Inks" for Tissue (Re-)Construction and Drug Response Tests. Adv Healthc Mater 2020; 9:e1901831. [PMID: 32378363 DOI: 10.1002/adhm.201901831] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/21/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
In recent years, scaffold-free bio-3D printing using cell aggregates (spheroids) as "bio-inks" has attracted increasing attention as a method for 3D cell construction. Bio-3D printing uses a technique called the Kenzan method, wherein spheroids are placed one-by-one in a microneedle array (the "Kenzan") using a bio-3D printer. The bio-3D printer is a machine that was developed to perform bio-3D printing automatically. Recently, it has been reported that cell constructs can be produced by a bio-3D printer using spheroids composed of many types of cells and that this can contribute to tissue (re-)construction. This progress report summarizes the production and effectiveness of various cell constructs prepared using bio-3D printers. It also considers the future issues and prospects of various cell constructs obtained by using this method for further development of scaffold-free 3D cell constructions.
Collapse
Affiliation(s)
- Daiki Murata
- Center for Regenerative Medicine ResearchFaculty of MedicineSaga University Honjo‐machi Saga 840‐8502 Japan
| | - Kenichi Arai
- Center for Regenerative Medicine ResearchFaculty of MedicineSaga University Honjo‐machi Saga 840‐8502 Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine ResearchFaculty of MedicineSaga University Honjo‐machi Saga 840‐8502 Japan
| |
Collapse
|
31
|
Kalla D, Kind A, Schnieke A. Genetically Engineered Pigs to Study Cancer. Int J Mol Sci 2020; 21:E488. [PMID: 31940967 PMCID: PMC7013672 DOI: 10.3390/ijms21020488] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Recent decades have seen groundbreaking advances in cancer research. Genetically engineered animal models, mainly in mice, have contributed to a better understanding of the underlying mechanisms involved in cancer. However, mice are not ideal for translating basic research into studies closer to the clinic. There is a need for complementary information provided by non-rodent species. Pigs are well suited for translational biomedical research as they share many similarities with humans such as body and organ size, aspects of anatomy, physiology and pathophysiology and can provide valuable means of developing and testing novel diagnostic and therapeutic procedures. Porcine oncology is a new field, but it is clear that replication of key oncogenic mutation in pigs can usefully mimic several human cancers. This review briefly outlines the technology used to generate genetically modified pigs, provides an overview of existing cancer models, their applications and how the field may develop in the near future.
Collapse
Affiliation(s)
| | | | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany; (D.K.); (A.K.)
| |
Collapse
|
32
|
Yamanaka S, Saito Y, Fujimoto T, Takamura T, Tajiri S, Matsumoto K, Yokoo T. Kidney Regeneration in Later-Stage Mouse Embryos via Transplanted Renal Progenitor Cells. J Am Soc Nephrol 2019; 30:2293-2305. [PMID: 31548350 DOI: 10.1681/asn.2019020148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The limited availability of donor kidneys for transplantation has spurred interest in investigating alternative strategies, such as regenerating organs from stem cells transplanted into animal embryos. However, there is no known method for transplanting cells into later-stage embryos, which may be the most suitable host stages for organogenesis, particularly into regions useful for kidney regeneration. METHODS We demonstrated accurate transplantation of renal progenitor cells expressing green fluorescent protein to the fetal kidney development area by incising the opaque uterine muscle layer but not the transparent amniotic membrane. We allowed renal progenitor cell-transplanted fetuses to develop for 6 days postoperatively before removal for analysis. We also transplanted renal progenitor cells into conditional kidney-deficient mouse embryos. We determined growth and differentiation of transplanted cells in all cases. RESULTS Renal progenitor cell transplantation into the retroperitoneal cavity of fetuses at E13-E14 produced transplant-derived, vascularized glomeruli with filtration function and did not affect fetal growth or survival. Cells transplanted to the nephrogenic zone produced a chimera in the cap mesenchyme of donor and host nephron progenitor cells. Renal progenitor cells transplanted to conditional kidney-deficient fetuses induced the formation of a new nephron in the fetus that is connected to the host ureteric bud. CONCLUSIONS We developed a cell transplantation method for midstage to late-stage fetuses. In vivo kidney regeneration from renal progenitor cells using the renal developmental environment of the fetus shows promise. Our findings suggest that fetal transplantation methods may contribute to organ regeneration and developmental research.
Collapse
Affiliation(s)
- Shuichiro Yamanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yatsumu Saito
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshinari Fujimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Takamura
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Susumu Tajiri
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kei Matsumoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
33
|
Abstract
We present the most recent research results on the creation of pigs that can accept human cells. Pigs in which grafted human cells can flourish are essential for studies of the production of human organs in the pig and for verification of the efficacy of cells and tissues of human origin for use in regenerative therapy. First, against the background of a worldwide shortage of donor organs, the need for future medical technology to produce human organs for transplantation is discussed. We then describe proof-of-concept studies in small animals used to produce human organs. An overview of the history of studies examining the induction of immune tolerance by techniques involving fertilized animal eggs and the injection of human cells into fetuses or neonatal animals is also presented. Finally, current and future prospects for producing pigs that can accept human cells and tissues for experimental purposes are discussed.
Collapse
|