1
|
Wang S, Yao S, Zhang F, Ji K, Ji Y, Li J, Fu W, Liu Y, Yang J, Liu R, Xie J, Yang Z, Yan YM. Quantum Spin Exchange Interactions Trigger O p Band Broadening for Enhanced Aqueous Zinc-Ion Battery Performance. Angew Chem Int Ed Engl 2024:e202415997. [PMID: 39305188 DOI: 10.1002/anie.202415997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 11/01/2024]
Abstract
The pressing demand for large-scale energy storage solutions has propelled the development of advanced battery technologies, among which zinc-ion batteries (ZIBs) are prominent due to their resource abundance, high capacity, and safety in aqueous environments. However, the use of manganese oxide cathodes in ZIBs is challenged by their poor electrical conductivity and structural stability, stemming from the intrinsic properties of MnO2 and the destabilizing effects of ion intercalation. To overcome these limitations, our research delves into atomic-level engineering, emphasizing quantum spin exchange interactions (QSEI). These essential for modifying electronic characteristics, can significantly influence material efficiency and functionality. We demonstrate through density functional theory (DFT) calculations that enhanced QSEI in manganese oxides broadens the O p band, narrows the band gap, and optimizes both proton adsorption and electron transport. Empirical evidence is provided through the synthesis of Ru-MnO2 nanosheets, which display a marked increase in energy storage capacity, achieving 314.4 mAh g-1 at 0.2 A g-1 and maintaining high capacity after 2000 cycles. Our findings underscore the potential of QSEI to enhance the performance of TMO cathodes in ZIBs, pointing to new avenues for advancing battery technology.
Collapse
Affiliation(s)
- Shiyu Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Shuyun Yao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Feike Zhang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Kang Ji
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Yingjie Ji
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Jingxian Li
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Weijie Fu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Yuanming Liu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Jinghua Yang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Ruilong Liu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, 2052, Sydney, New South Wales, Australia
| | - Zhiyu Yang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Yi-Ming Yan
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| |
Collapse
|
2
|
Matetskiy AV, Milotti V, Sheverdyaeva PM, Moras P, Carbone C, Mihalyuk AN. Interplay between magnetic order and electronic band structure in ultrathin GdGe 2 metalloxene films. NANOSCALE 2023; 15:16080-16088. [PMID: 37750836 DOI: 10.1039/d3nr03398h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Dimensionality can strongly influence the magnetic structure of solid systems. Here, we predict theoretically and confirm experimentally that the antiferromagnetic (AFM) ground state of bulk gadolinium germanide metalloxene, which has a quasi-layered defective GdGe2 structure, is preserved in the ultrathin film limit. Ab initio calculations demonstrate that ultrathin GdGe2 films present in-plane intra-layer ferromagnetic coupling and AFM inter-layer coupling in the ground state. Angle-resolved photoemission spectroscopy finds the AFM-induced band splitting expected for the 2 and 3 GdGe2 trilayer (TL) films, which disappear above the Néel temperature. The comparative analysis of isostructural ultrathin DyGe2 and GdSi2 films confirms the magnetic origin of the observed band splitting. These findings are in contrast with the recent report of ferromagnetism in ultrathin metalloxene films, which we ascribe to the presence of uncompensated magnetic moments.
Collapse
Affiliation(s)
- Andrey V Matetskiy
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
| | - Valeria Milotti
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
| | - Polina M Sheverdyaeva
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
| | - Paolo Moras
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
| | - Carlo Carbone
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
| | - Alexey N Mihalyuk
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 690950 Vladivostok, Russia
| |
Collapse
|
3
|
Aldarawsheh A, Sallermann M, Abusaa M, Lounis S. Intrinsic Néel Antiferromagnetic Multimeronic Spin Textures in Ultrathin Films. J Phys Chem Lett 2023; 14:8970-8978. [PMID: 37773009 PMCID: PMC10577774 DOI: 10.1021/acs.jpclett.3c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
Topological antiferromagnetism is a vibrant and captivating research field, generating considerable enthusiasm with the aim of identifying topologically protected magnetic states of key importance in the hybrid realm of topology, magnetism, and spintronics. While topological antiferromagnetic (AFM) solitons bear various advantages with respect to their ferromagnetic cousins, their observation is scarce. Utilizing first-principles simulations, here we predict new chiral particles in the realm of AFM topological magnetism, exchange-frustrated multimeronic spin textures hosted by a Néel magnetic state, arising universally in single Mn layers directly grown on an Ir(111) surface or interfaced with Pd-based films. These nanoscale topological structures are intrinsic; i.e. they form in a single AFM material, can carry distinct topological charges, and can combine in various multimeronic sequences with enhanced stability against external magnetic fields. We envision the frustrated Néel AFM multimerons as exciting highly sought after AFM solitons having the potential to be utilized in novel spintronic devices hinging on nonsynthetic AFM quantum materials, further advancing the frontiers of nanotechnology and nanophysics.
Collapse
Affiliation(s)
- Amal Aldarawsheh
- Peter
Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany
- Faculty
of Physics, University of Duisburg-Essen
and CENIDE, 47053 Duisburg, Germany
| | - Moritz Sallermann
- Peter
Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany
- RWTH
Aachen University, 52056 Aachen, Germany
- Science
Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Muayad Abusaa
- Department
of Physics, Arab American University, 240 Jenin, Palestine
| | - Samir Lounis
- Peter
Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany
- Faculty
of Physics, University of Duisburg-Essen
and CENIDE, 47053 Duisburg, Germany
| |
Collapse
|
4
|
Hosseini M, Vanpoucke DEP, Giannozzi P, Berahman M, Hadipour N. Investigation of structural, electronic and magnetic properties of breathing metal-organic framework MIL-47(Mn): a first principles approach. RSC Adv 2020; 10:4786-4794. [PMID: 35495241 PMCID: PMC9049066 DOI: 10.1039/c9ra09196c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/23/2020] [Indexed: 11/21/2022] Open
Abstract
The structural, electronic and magnetic properties of the MIL-47(Mn) metal-organic framework are investigated using first principles calculations. We find that the large-pore structure is the ground state of this material. We show that upon transition from the large-pore to the narrow-pore structure, the magnetic ground-state configuration changes from antiferromagnetic to ferromagnetic, consistent with the computed values of the intra-chain coupling constant. Furthermore, the antiferromagnetic and ferromagnetic configuration phases have intrinsically different electronic behavior: the former is semiconducting, the latter is a metal or half-metal. The change of electronic properties during breathing posits MIL-47(Mn) as a good candidate for sensing and other applications. Our calculated electronic band structure for MIL-47(Mn) presents a combination of flat dispersionless and strongly dispersive regions in the valence and conduction bands, indicative of quasi-1D electronic behavior. The spin coupling constants are obtained by mapping the total energies onto a spin Hamiltonian. The inter-chain coupling is found to be at least one order of magnitude smaller than the intra-chain coupling for both large and narrow pores. Interestingly, the intra-chain coupling changes sign and becomes five times stronger going from the large pore to the narrow pore structure. As such MIL-47(Mn) could provide unique opportunities for tunable low-dimensional magnetism in transition metal oxide systems.
Collapse
Affiliation(s)
| | - Danny E P Vanpoucke
- UHasselt, Institute for Materials Research (IMO-IMOMEC) Agoralaan, 3590 Diepenbeek Belgium
- IMOMEC, IMEC vzw 3590 Diepenbeek Belgium
| | - Paolo Giannozzi
- Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università degli Studi di Udine Via delle Scienze 208 33100 Udine Italy
- CNR-IOM DEMOCRITOS, SISSA Trieste Italy
| | - Masoud Berahman
- Department of Electrical and Computer Engineering, Advanced Graduate University of Technology Kerman Iran
| | - Nasser Hadipour
- Department of Physical Chemistry, Tarbiat Modares University Tehran Iran
| |
Collapse
|