1
|
Gilbert FB, Rainard P. Expression of the receptor for IgM (FcμR) by bovine neutrophils. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 160:105235. [PMID: 39089639 DOI: 10.1016/j.dci.2024.105235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Bovine neutrophils possess a particular set of receptors for immunoglobulins. They have been shown to express a distinctive receptor for IgG2, and it has long been known that they interact poorly with IgG1 but that they can use IgM antibodies as opsonins. We show that the binding of labeled IgM was inhibited by unlabeled IgM but not by IgA, suggesting that bovine neutrophils express a specific IgM receptor. The binding of non-aggregated IgM is strong at 4 °C, but shedding occurs at 37 °C. We designed anti-peptide antibodies based on the sequence of the FcμR, the newly described receptor for IgM. These antibodies bound to bovine neutrophils at 4 °C. At 37 °C, labeling was lost, but the loss was inhibited by pretreatment with cytochalasin D, indicating internalization of the receptor after cross-linking by antibodies. Neutrophils that had internalized the receptor were no longer able to bind IgM. Eosinophils showed a low level of FcμR expression. FcμR expression by neutrophils was not increased by stimulation with Toll-like receptor agonists or the complement anaphylatoxin C5a, and decreased by TNF-α. Exposure of neutrophils to IFN-γ for 18 h increased FcμR expression without augmenting the binding of IgG1 or IgG2. We confirmed that bovine neutrophils can use IgM to phagocytose and kill bacteria without the help of Complement. Neutrophils that have migrated into the lumen of inflamed lactating mammary glands expressed the FcμR. These results indicate that bovine neutrophils express an IgM receptor, the FcμR, which is functional to contribute to the opsonophagocytosis of bacteria at inflammatory sites. Expression of the FcμR by neutrophils gives IgM a particular importance for the immune defense in the bovine species.
Collapse
|
2
|
Lara-Vega I. Upgrading Melanoma Treatment: Promising Immunotherapies Combinations
in the Preclinical Mouse Model. CURRENT CANCER THERAPY REVIEWS 2024; 20:489-509. [DOI: 10.2174/0115733947263244231002042219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Accepted: 08/25/2023] [Indexed: 01/03/2025]
Abstract
Background:
Melanoma, known for its high metastatic potential, does not respond well to
existing treatments in advanced stages. As a solution, immunotherapy-based treatments, including
anti-PD-1/L1 and anti-CTLA-4, have been developed and evaluated in preclinical mouse models to
overcome resistance. Although these treatments display the potential to suppress tumor growth, there
remains a crucial requirement for a thorough assessment of long-term efficacy in preventing metastasis
or recurrence and improving survival rates.
Methods:
From 2016 onwards, a thorough examination of combined immunotherapies for the treatment
of cutaneous melanoma in preclinical mouse models was conducted. The search was conducted
using MeSH Terms algorithms in PubMed®, resulting in the identification of forty-five studies that
met the rigorous inclusion criteria for screening.
Results:
The C57 mouse model bearing B16-melanoma has been widely utilized to assess the efficacy
of immunotherapies. The combination of therapies has demonstrated a synergistic impact, leading
to potent antitumor activity. One extensively studied method for establishing metastatic models involves
the intravenous administration of malignant cells, with several combined therapies under investigation.
The primary focus of evaluation has been on combined immunotherapies utilizing PD-
1/L1 and CTLA-4 blockade, although alternative immunotherapies not involving PD-1/L1 and
CTLA-4 blockade have also been identified. Additionally, the review provides detailed treatment regimens
for each combined approach.
Conclusion:
The identification of techniques for generating simulated models of metastatic melanoma
and investigating various therapeutic combinations will greatly aid in evaluating the overall systemic
efficacy of immunotherapy. This will be especially valuable for conducting short-term preclinical
experiments that have the potential for clinical studies.
Collapse
Affiliation(s)
- Israel Lara-Vega
- National School of Biological Sciences, IPN. Av. Wilfrido Massieu s/n, Professional Unit Adolfo Lopez Mateos, Mexico
City, CP 07738, Mexico
| |
Collapse
|
3
|
Ali N, Wolf C, Kanchan S, Veerabhadraiah SR, Bond L, Turner MW, Jorcyk CL, Hampikian G. 9S1R nullomer peptide induces mitochondrial pathology, metabolic suppression, and enhanced immune cell infiltration, in triple-negative breast cancer mouse model. Biomed Pharmacother 2024; 170:115997. [PMID: 38118350 PMCID: PMC10872342 DOI: 10.1016/j.biopha.2023.115997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023] Open
Abstract
Nullomers are the shortest strings of absent amino acid (aa) sequences in a species or group of species. Primes are those nullomers that have not been detected in the genome of any species. 9S1R is a 5-aa peptide prime sequence attached to 5-arginine aa, used to treat triple negative breast cancer (TNBC) in an in vivo mouse model. This unique peptide, administered with a trehalose carrier (9S1R-NulloPT), offers enhanced solubility and exhibits distinct anti-cancer effects against TNBC. In our study, we investigated the effect of 9S1R-NulloPT on tumor growth, metabolism, metastatic burden, tumor immune-microenvironment (TME), and transcriptome of aggressive mouse TNBC tumors. Notably, treated mice had smaller tumors in the initial phase of the treatment, as compared to untreated control, and diminished in vivo and ex vivo bioluminescence at later-stages - indicative of metabolically quiescent, dying tumors. The treatment also caused changes in TME with increased infiltration of immune cells and altered tumor transcriptome, with 365 upregulated genes and 710 downregulated genes. Consistent with in vitro data, downregulated genes were enriched in cellular metabolic processes (179), specifically mitochondrial TCA cycle/oxidative phosphorylation (44), and translation machinery/ribosome biogenesis (45). The upregulated genes were associated with the developmental (13), ECM organization (12) and focal adhesion pathways (7). In conclusion, our study demonstrates that 9S1R-NulloPT effectively reduced tumor growth during its initial phase, altering the TME and tumor transcriptome. The treatment induced mitochondrial pathology which led to a metabolic deceleration in tumors, aligning with in vitro observations.
Collapse
Affiliation(s)
- Nilufar Ali
- Department of Biological Sciences, Boise State University, Boise, ID, USA.
| | - Cody Wolf
- Department of Biological Sciences, Boise State University, Boise, ID, USA; Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Swarna Kanchan
- Department of Biological Sciences, Boise State University, Boise, ID, USA; Department of Biomedical Sciences, Jaon C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Shivakumar R Veerabhadraiah
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA; Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Laura Bond
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID, USA
| | - Matthew W Turner
- Biomolecular Research Center, Boise State University, Boise, ID, USA; Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Cheryl L Jorcyk
- Department of Biological Sciences, Boise State University, Boise, ID, USA; Biomolecular Research Center, Boise State University, Boise, ID, USA; Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Greg Hampikian
- Department of Biological Sciences, Boise State University, Boise, ID, USA.
| |
Collapse
|
4
|
Ali N, Wolf C, Kanchan S, Veerabhadraiah SR, Bond L, Turner MW, Jorcyk CL, Hampikian G. Nullomer peptide increases immune cell infiltration and reduces tumor metabolism in triple negative breast cancer mouse model. RESEARCH SQUARE 2023:rs.3.rs-3097552. [PMID: 37461536 PMCID: PMC10350184 DOI: 10.21203/rs.3.rs-3097552/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Background Nullomers are the shortest strings of absent amino acid (aa) sequences in a species or group of species. Primes are those nullomers that have not been detected in the genome of any species. 9S1R is a 5-aa peptide derived from a prime sequence that is tagged with 5 arginine aa, used to treat triple negative breast cancer (TNBC) in an in vivo TNBC mouse model. 9S1R is administered in trehalose (9S1R-NulloPT), which enhances solubility and exhibits some independent effects against tumor growth and is thus an important component in the drug preparation. Method We examined the effect of 9S1R-NulloPT on tumor growth, metabolism, metastatic burden, necrosis, tumor immune microenvironment, and the transcriptome of aggressive mouse TNBC tumors. Results The peptide-treated mice had smaller tumors in the initial phase of the treatment, as compared to the untreated control, and reduced in vivo bioluminescence at later stages, which is indicative of metabolically inactive tumors. A decrease in ex vivo bioluminescence was also observed in the excised tumors of treated mice, but not in the secondary metastasis in the lungs. The treatment also caused changes in tumor immune microenvironment with increased infiltration of immune cells and margin inflammation. The treatment upregulated 365 genes and downregulated 710 genes in tumors compared to the untreated group. Consistent with in vitro findings in breast cancer cell lines, downregulated genes in the treated TNBC tumors include Cellular Metabolic Process Related genes (179), specifically mitochondrial genes associated with TCA cycle/oxidative phosphorylation (44), and translation machinery/ribosome biogenesis genes (45). Among upregulated genes, the Developmental Pathway (13), ECM Organization (12) and Focal Adhesion Related Pathways (7) were noteworthy. We also present data from a pilot study using a bilateral BC mouse model, which supports our findings. Conclusion In conclusion, although 9S1R-NulloPT was moderate at reducing the tumor volume, it altered the tumor immune microenvironment as well as the tumor transcriptome, rendering tumors metabolically less active by downregulating the mitochondrial function and ribosome biogenesis. This corroborates previously published in vitro findings.
Collapse
|
5
|
Li Y, Shen H, Zhang R, Ji C, Wang Y, Su C, Xiao J. Immunoglobulin M perception by FcμR. Nature 2023; 615:907-912. [PMID: 36949194 DOI: 10.1038/s41586-023-05835-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/13/2023] [Indexed: 03/24/2023]
Abstract
Immunoglobulin M (IgM) is the first antibody to emerge during embryonic development and the humoral immune response1. IgM can exist in several distinct forms, including monomeric, membrane-bound IgM within the B cell receptor (BCR) complex, pentameric and hexameric IgM in serum and secretory IgM on the mucosal surface. FcμR, the only IgM-specific receptor in mammals, recognizes different forms of IgM to regulate diverse immune responses2-5. However, the underlying molecular mechanisms remain unknown. Here we delineate the structural basis of the FcμR-IgM interaction by crystallography and cryo-electron microscopy. We show that two FcμR molecules interact with a Fcμ-Cμ4 dimer, suggesting that FcμR can bind to membrane-bound IgM with a 2:1 stoichiometry. Further analyses reveal that FcμR-binding sites are accessible in the context of IgM BCR. By contrast, pentameric IgM can recruit four FcμR molecules to bind on the same side and thereby facilitate the formation of an FcμR oligomer. One of these FcμR molecules occupies the binding site of the secretory component. Nevertheless, four FcμR molecules bind to the other side of secretory component-containing secretory IgM, consistent with the function of FcμR in the retrotransport of secretory IgM. These results reveal intricate mechanisms of IgM perception by FcμR.
Collapse
Affiliation(s)
- Yaxin Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Hao Shen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Ruixue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, P. R. China
| | - Chenggong Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Yuxin Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Chen Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P. R. China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, P. R. China.
- Changping Laboratory, Beijing, P. R. China.
| |
Collapse
|
6
|
Kubagawa H, Clark C, Skopnik CM, Mahmoudi Aliabadi P, Al-Qaisi K, Teuber R, Jani PK, Radbruch A, Melchers F, Engels N, Wienands J. Physiological and Pathophysiological Roles of IgM Fc Receptor (FcµR) Isoforms. Int J Mol Sci 2023; 24:ijms24065728. [PMID: 36982860 PMCID: PMC10058298 DOI: 10.3390/ijms24065728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
IgM is the first antibody to emerge during phylogeny, ontogeny, and immune responses and serves as a first line of defense. Effector proteins interacting with the Fc portion of IgM, such as complement and its receptors, have been extensively studied for their functions. IgM Fc receptor (FcµR), identified in 2009, is the newest member of the FcR family and is intriguingly expressed by lymphocytes only, suggesting the existence of distinct functions as compared to the FcRs for switched Ig isotypes, which are expressed by various immune and non-hematopoietic cells as central mediators of antibody-triggered responses by coupling the adaptive and innate immune responses. Results from FcµR-deficient mice suggest a regulatory function of FcµR in B cell tolerance, as evidenced by their propensity to produce autoantibodies of both IgM and IgG isotypes. In this article, we discuss conflicting views about the cellular distribution and potential functions of FcµR. The signaling function of the Ig-tail tyrosine-like motif in the FcµR cytoplasmic domain is now formally shown by substitutional experiments with the IgG2 B cell receptor. The potential adaptor protein associating with FcµR and the potential cleavage of its C-terminal cytoplasmic tail after IgM binding are still enigmatic. Critical amino acid residues in the Ig-like domain of FcµR for interacting with the IgM Cµ4 domain and the mode of interaction are now defined by crystallographic and cryo-electron microscopic analyses. Some discrepancies on these interactions are discussed. Finally, elevated levels of a soluble FcµR isoform in serum samples are described as the consequence of persistent B cell receptor stimulation, as seen in chronic lymphocytic leukemia and probably in antibody-mediated autoimmune disorders.
Collapse
Affiliation(s)
| | - Caren Clark
- Institute of Cellular & Molecular Immunology, University Medical Center, 37073 Göttingen, Germany
| | | | | | | | - Ruth Teuber
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
| | - Peter K Jani
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
| | | | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
| | - Niklas Engels
- Institute of Cellular & Molecular Immunology, University Medical Center, 37073 Göttingen, Germany
| | - Jürgen Wienands
- Institute of Cellular & Molecular Immunology, University Medical Center, 37073 Göttingen, Germany
| |
Collapse
|
7
|
Melcher C, Yu J, Duong VHH, Westphal K, Helmi Siasi Farimany N, Shaverskyi A, Zhao B, Strowig T, Glage S, Brand K, Chan AC, Föger N, Lee KH. B cell-mediated regulatory mechanisms control tumor-promoting intestinal inflammation. Cell Rep 2022; 40:111051. [PMID: 35830810 DOI: 10.1016/j.celrep.2022.111051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022] Open
Abstract
Mechanisms underlying tumor-promoting inflammatory processes in colitis-associated colorectal cancer (CAC) remain largely elusive. Here, we provide genetic evidence for distinct B cell-mediated immunoregulatory mechanisms that protect from chronic colitis versus CAC. We demonstrate an inherent capacity of interleukin-10 (IL-10)-producing B cells to differentiate into immunoglobulin A (IgA) plasma cells (PCs) upon Toll-like receptor (TLR) activation. Our data show that B cell-derived IL-10 is essential to limit pathogenic T helper type 1 (Th1)/Th17 T cell responses during chronic colitis, while IgA PCs derived from IL-10+ B cells are being implicated in restraining tumorigenesis during CAC. Formation of a tumor-protective intestinal environment was associated with clonal expansion of specific types of colonic IgA PCs and development of an altered microbiota that attenuated CAC. We thus propose that regulatory B cell-mediated immunomodulation entails temporal release of IL-10, which is superseded by the generation of specific IgA affecting the microbial community, thereby controlling chronic inflammation and tumorigenesis in a distinctive but interrelated manner.
Collapse
Affiliation(s)
- Christian Melcher
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Jinbo Yu
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Vu Huy Hoang Duong
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Katrin Westphal
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Noushin Helmi Siasi Farimany
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Anton Shaverskyi
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Bei Zhao
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Hannover Medical School, 30625 Hannover, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Hannover Medical School, 30625 Hannover, Germany
| | - Silke Glage
- Experimental Pathology, Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Andrew C Chan
- Research, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Niko Föger
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Kyeong-Hee Lee
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
8
|
Kubli SP, Ramachandran P, Duncan G, Brokx R, Mak TW. Reply to: Questioning whether the IgM Fc receptor (FcμR) is expressed by innate immune cells. Nat Commun 2022; 13:3950. [PMID: 35817786 PMCID: PMC9273603 DOI: 10.1038/s41467-022-31226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Shawn P Kubli
- Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | | | - Gordon Duncan
- Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Rich Brokx
- Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada.
- Department of Immunology, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada.
- Department of Medicine, University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
9
|
Skopnik CM, Riedel R, Addo RK, Heinz GA, Heinrich F, Honjo K, Durek P, Enghard P, Mashreghi MF, Radbruch A, Kubagawa H. Questioning whether IgM Fc receptor (FcµR) is expressed by innate immune cells. Nat Commun 2022; 13:3951. [PMID: 35817797 PMCID: PMC9273587 DOI: 10.1038/s41467-022-29407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - René Riedel
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany
| | - Richard K Addo
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany
| | - Gitta Anne Heinz
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany
| | - Frederik Heinrich
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany
| | - Kazuhito Honjo
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35209, USA
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité-Universitätmedizin, 10117, Berlin, Germany
| | | | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany
| | - Hiromi Kubagawa
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany.
| |
Collapse
|
10
|
Ahmed U, Graf JF, Daytz A, Yaipen O, Mughrabi I, Jayaprakash N, Cotero V, Morton C, Deutschman CS, Zanos S, Puleo C. Ultrasound Neuromodulation of the Spleen Has Time-Dependent Anti-Inflammatory Effect in a Pneumonia Model. Front Immunol 2022; 13:892086. [PMID: 35784337 PMCID: PMC9244783 DOI: 10.3389/fimmu.2022.892086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 12/27/2022] Open
Abstract
Interfaces between the nervous and immune systems have been shown essential for the coordination and regulation of immune responses. Non-invasive ultrasound stimulation targeted to the spleen has recently been shown capable of activating one such interface, the splenic cholinergic anti-inflammatory pathway (CAP). Over the past decade, CAP and other neuroimmune pathways have been activated using implanted nerve stimulators and tested to prevent cytokine release and inflammation. However, CAP studies have typically been performed in models of severe, systemic (e.g., endotoxemia) or chronic inflammation (e.g., collagen-induced arthritis or DSS-induced colitis). Herein, we examined the effects of activation of the splenic CAP with ultrasound in a model of local bacterial infection by lung instillation of 105 CFU of Streptococcus pneumoniae. We demonstrate a time-dependent effect of CAP activation on the cytokine response assay during infection progression. CAP activation-induced cytokine suppression is absent at intermediate times post-infection (16 hours following inoculation), but present during the early (4 hours) and later phases (48 hours). These results indicate that cytokine inhibition associated with splenic CAP activation is not observed at all timepoints following bacterial infection and highlights the importance of further studying neuroimmune interfaces within the context of different immune system and inflammatory states.
Collapse
Affiliation(s)
- Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - John F. Graf
- General Electric Research, Niskayuna, NY, United States
| | - Anna Daytz
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Omar Yaipen
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ibrahim Mughrabi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Naveen Jayaprakash
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | | | | | - Clifford Scott Deutschman
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Chris Puleo
- General Electric Research, Niskayuna, NY, United States
- *Correspondence: Chris Puleo,
| |
Collapse
|
11
|
Beyond immune checkpoint blockade: emerging immunological strategies. Nat Rev Drug Discov 2021; 20:899-919. [PMID: 33686237 DOI: 10.1038/s41573-021-00155-y] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
The success of checkpoint inhibitors has accelerated the clinical implementation of a vast mosaic of single agents and combination immunotherapies. However, the lack of clinical translation for a number of immunotherapies as monotherapies or in combination with checkpoint inhibitors has clarified that new strategies must be employed to advance the field. The next chapter of immunotherapy should examine the immuno-oncology therapeutic failures, and consider the complexity of immune cell-cancer cell interactions to better design more effective anticancer drugs. Herein, we briefly review the history of immunotherapy and checkpoint blockade, highlighting important clinical failures. We discuss the critical aspects - beyond T cell co-receptors - of immune processes within the tumour microenvironment (TME) that may serve as avenues along which new therapeutic strategies in immuno-oncology can be forged. Emerging insights into tumour biology suggest that successful future therapeutics will focus on two key factors: rescuing T cell homing and dysfunction in the TME, and reappropriating mononuclear phagocyte function for TME inflammatory remodelling. New drugs will need to consider the complex cell networks that exist within tumours and among cancer types.
Collapse
|
12
|
Kubagawa H, Skopnik CM, Al-Qaisi K, Calvert RA, Honjo K, Kubagawa Y, Teuber R, Aliabadi PM, Enghard P, Radbruch A, Sutton BJ. Differences between Human and Mouse IgM Fc Receptor (FcµR). Int J Mol Sci 2021; 22:ijms22137024. [PMID: 34209905 PMCID: PMC8267714 DOI: 10.3390/ijms22137024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 01/02/2023] Open
Abstract
Both non-immune "natural" and antigen-induced "immune" IgM are important for protection against pathogens and for regulation of immune responses to self-antigens. Since the bona fide IgM Fc receptor (FcµR) was identified in humans by a functional cloning strategy in 2009, the roles of FcµR in these IgM effector functions have begun to be explored. In this short essay, we describe the differences between human and mouse FcµRs in terms of their identification processes, cellular distributions and ligand binding activities with emphasis on our recent findings from the mutational analysis of human FcµR. We have identified at least three sites of human FcµR, i.e., Asn66 in the CDR2, Lys79 to Arg83 in the DE loop and Asn109 in the CDR3, responsible for its constitutive IgM-ligand binding. Results of computational structural modeling analysis are consistent with these mutational data and a model of the ligand binding, Ig-like domain of human FcµR is proposed. Serendipitously, substitution of Glu41 and Met42 in the CDR1 of human FcµR with mouse equivalents Gln and Leu, either single or more prominently in combination, enhances both the receptor expression and IgM binding. These findings would help in the future development of preventive and therapeutic interventions targeting FcµR.
Collapse
Affiliation(s)
- Hiromi Kubagawa
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany; (C.M.S.); (K.A.-Q.); (R.T.); (P.M.A.); (A.R.)
- Correspondence: ; Tel.: +49-030-2846-0782
| | - Christopher M. Skopnik
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany; (C.M.S.); (K.A.-Q.); (R.T.); (P.M.A.); (A.R.)
| | - Khlowd Al-Qaisi
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany; (C.M.S.); (K.A.-Q.); (R.T.); (P.M.A.); (A.R.)
| | - Rosaleen A. Calvert
- Randall Centre for Cell and Molecular Biophysics, King’s College, London SE1 1UL, UK; (R.A.C.); (B.J.S.)
| | - Kazuhito Honjo
- Department of Pathology of University of Alabama at Birmingham, Birmingham, AL 35294, USA.; (K.H.); (Y.K.)
| | - Yoshiki Kubagawa
- Department of Pathology of University of Alabama at Birmingham, Birmingham, AL 35294, USA.; (K.H.); (Y.K.)
| | - Ruth Teuber
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany; (C.M.S.); (K.A.-Q.); (R.T.); (P.M.A.); (A.R.)
| | - Pedram Mahmoudi Aliabadi
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany; (C.M.S.); (K.A.-Q.); (R.T.); (P.M.A.); (A.R.)
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité-Universitätmedizin, 10117 Berlin, Germany;
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany; (C.M.S.); (K.A.-Q.); (R.T.); (P.M.A.); (A.R.)
| | - Brian J. Sutton
- Randall Centre for Cell and Molecular Biophysics, King’s College, London SE1 1UL, UK; (R.A.C.); (B.J.S.)
| |
Collapse
|
13
|
Liu J, Xu T, Jin Y, Huang B, Zhang Y. Progress and Clinical Application of Single-Cell Transcriptional Sequencing Technology in Cancer Research. Front Oncol 2021; 10:593085. [PMID: 33614479 PMCID: PMC7886993 DOI: 10.3389/fonc.2020.593085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer has been a daunting challenge for human beings because of its clonal heterogeneity and compositional complexity. Tumors are composed of cancer cells and a variety of non-cancer cells, which together with the extracellular matrix form the tumor microenvironment. These cancer-related cells and components and immune mechanisms can affect the development and progression of cancer and are associated with patient diagnosis, treatment and prognosis. As the first choice for the study of complex biological systems, single-cell transcriptional sequencing (scRNA-seq) has been widely used in cancer research. ScRNA-seq has made breakthrough discoveries in tumor heterogeneity, tumor evolution, metastasis and spread, development of chemoresistance, and the relationship between the tumor microenvironment and the immune system. These results will guide clinical cancer treatment and promote personalized and highly accurate cancer treatment. In this paper, we summarize the latest research progress of scRNA-seq and its guiding significance for clinical treatment.
Collapse
Affiliation(s)
- Jian Liu
- Department of Gynaecology and Obstetrics, Jilin University Second Hospital, ChangChun, China
| | - Tianmin Xu
- Department of Gynaecology and Obstetrics, Jilin University Second Hospital, ChangChun, China
| | - Yuemei Jin
- Department of Gynaecology and Obstetrics, Jilin University Second Hospital, ChangChun, China
| | - Bingyu Huang
- Department of Gynaecology and Obstetrics, Jilin University Second Hospital, ChangChun, China
| | - Yan Zhang
- Department of Breast Surgery, Jilin University Second Hospital, ChangChun, China
| |
Collapse
|