1
|
Muñoz-Reyes D, McClelland LJ, Arroyo-Urea S, Sánchez-Yepes S, Sabín J, Pérez-Suárez S, Menendez M, Mansilla A, García-Nafría J, Sprang S, Sanchez-Barrena MJ. The neuronal calcium sensor NCS-1 regulates the phosphorylation state and activity of the Gα chaperone and GEF Ric-8A. eLife 2023; 12:e86151. [PMID: 38018500 PMCID: PMC10732572 DOI: 10.7554/elife.86151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023] Open
Abstract
The neuronal calcium sensor 1 (NCS-1), an EF-hand Ca2+ binding protein, and Ric-8A coregulate synapse number and probability of neurotransmitter release. Recently, the structures of Ric-8A bound to Gα have revealed how Ric-8A phosphorylation promotes Gα recognition and activity as a chaperone and guanine nucleotide exchange factor. However, the molecular mechanism by which NCS-1 regulates Ric-8A activity and its interaction with Gα subunits is not well understood. Given the interest in the NCS-1/Ric-8A complex as a therapeutic target in nervous system disorders, it is necessary to shed light on this molecular mechanism of action at atomic level. We have reconstituted NCS-1/Ric-8A complexes to conduct a multimodal approach and determine the sequence of Ca2+ signals and phosphorylation events that promote the interaction of Ric-8A with Gα. Our data show that the binding of NCS-1 and Gα to Ric-8A are mutually exclusive. Importantly, NCS-1 induces a structural rearrangement in Ric-8A that traps the protein in a conformational state that is inaccessible to casein kinase II-mediated phosphorylation, demonstrating one aspect of its negative regulation of Ric-8A-mediated G-protein signaling. Functional experiments indicate a loss of Ric-8A guanine nucleotide exchange factor (GEF) activity toward Gα when complexed with NCS-1, and restoration of nucleotide exchange activity upon increasing Ca2+ concentration. Finally, the high-resolution crystallographic data reported here define the NCS-1/Ric-8A interface and will allow the development of therapeutic synapse function regulators with improved activity and selectivity.
Collapse
Affiliation(s)
- Daniel Muñoz-Reyes
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry 'Blas Cabrera', CSICMadridSpain
| | - Levi J McClelland
- Center for Biomolecular Structure and Dynamics, and Division of Biological Sciences, University of MontanaMissoulaUnited States
| | - Sandra Arroyo-Urea
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of ZaragozaZaragozaSpain
| | - Sonia Sánchez-Yepes
- Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y CajalMadridSpain
| | - Juan Sabín
- AFFINImeter Scientific & Development team, Software 4 Science DevelopmentsSantiago de CompostelaSpain
- Departamento de Física Aplicada, Universidad de Santiago de CompostelaSantiago de CompostelaSpain
| | - Sara Pérez-Suárez
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry 'Blas Cabrera', CSICMadridSpain
| | - Margarita Menendez
- Department of Biological Physical-Chemisty, Institute of Physical-Chemistry 'Blas Cabrera', CSICMadridSpain
- Ciber of Respiratory Diseases, ISCIIIMadridSpain
| | - Alicia Mansilla
- Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y CajalMadridSpain
- Department of Systems Biology, Universidad de AlcalaMadridSpain
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of ZaragozaZaragozaSpain
| | - Stephen Sprang
- Center for Biomolecular Structure and Dynamics, and Division of Biological Sciences, University of MontanaMissoulaUnited States
| | - Maria Jose Sanchez-Barrena
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry 'Blas Cabrera', CSICMadridSpain
| |
Collapse
|
2
|
Zhang Z, Le GNT, Ge Y, Tang X, Chen X, Ejim L, Bordeleau E, Wright GD, Burns DC, Tran S, Axerio-Cilies P, Wang YT, Dong M, Woolley GA. Isomerization of bioactive acylhydrazones triggered by light or thiols. Nat Chem 2023; 15:1285-1295. [PMID: 37308709 DOI: 10.1038/s41557-023-01239-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2023] [Indexed: 06/14/2023]
Abstract
The acylhydrazone unit is well represented in screening databases used to find ligands for biological targets, and numerous bioactive acylhydrazones have been reported. However, potential E/Z isomerization of the C=N bond in these compounds is rarely examined when bioactivity is assayed. Here we analysed two ortho-hydroxylated acylhydrazones discovered in a virtual drug screen for modulators of N-methyl-D-aspartate receptors and other bioactive hydroxylated acylhydrazones with structurally defined targets reported in the Protein Data Bank. We found that ionized forms of these compounds, which are populated under laboratory conditions, photoisomerize readily and the isomeric forms have markedly different bioactivity. Furthermore, we show that glutathione, a tripeptide involved with cellular redox balance, catalyses dynamic E⇄Z isomerization of acylhydrazones. The ratio of E to Z isomers in cells is determined by the relative stabilities of the isomers regardless of which isomer was applied. We conclude that E/Z isomerization may be a common feature of the bioactivity observed with acylhydrazones and should be routinely analysed.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Giang N T Le
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yang Ge
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xin Chen
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Linda Ejim
- David Braley Centre for Antibiotics Discovery M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Emily Bordeleau
- David Braley Centre for Antibiotics Discovery M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Gerard D Wright
- David Braley Centre for Antibiotics Discovery M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Darcy C Burns
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Susannah Tran
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Peter Axerio-Cilies
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Yu Tian Wang
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Mingxin Dong
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China.
| | - G Andrew Woolley
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Acylhydrazones and Their Biological Activity: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248719. [PMID: 36557851 PMCID: PMC9783609 DOI: 10.3390/molecules27248719] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Due to the structure of acylhydrazones both by the pharmacophore -CO-NH-N= group and by the different substituents present in the molecules of compounds of this class, various pharmacological activities were reported, including antitumor, antimicrobial, antiviral, antiparasitic, anti-inflammatory, immunomodulatory, antiedematous, antiglaucomatous, antidiabetic, antioxidant, and actions on the central nervous system and on the cardiovascular system. This fragment is found in the structure of several drugs used in the therapy of some diseases that are at the top of public health problems, like microbial infections and cardiovascular diseases. Moreover, the acylhydrazone moiety is present in the structure of some compounds with possible applications in the treatment of other different pathologies, such as schizophrenia, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Considering these aspects, we consider that a study of the literature data regarding the structural and biological properties of these compounds is useful.
Collapse
|
4
|
Li Z, Wu Y, Zhen S, Su K, Zhang L, Yang F, McDonough MA, Schofield CJ, Zhang X. In Situ Inhibitor Synthesis and Screening by Fluorescence Polarization: An Efficient Approach for Accelerating Drug Discovery. Angew Chem Int Ed Engl 2022; 61:e202211510. [PMID: 36112310 PMCID: PMC9827864 DOI: 10.1002/anie.202211510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 01/12/2023]
Abstract
Target-directed dynamic combinatorial chemistry has emerged as a useful tool for hit identification, but has not been widely used, in part due to challenges associated with analyses involving complex mixtures. We describe an operationally simple alternative: in situ inhibitor synthesis and screening (ISISS), which links high-throughput bioorthogonal synthesis with screening for target binding by fluorescence. We exemplify the ISISS method by showing how coupling screening for target binding by fluorescence polarization with the reaction of acyl-hydrazides and aldehydes led to the efficient discovery of a potent and novel acylhydrazone-based inhibitor of human prolyl hydroxylase 2 (PHD2), a target for anemia treatment, with equivalent in vivo potency to an approved medicine.
Collapse
Affiliation(s)
- Zhihong Li
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Yue Wu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Shuai Zhen
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Kaijun Su
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Linjian Zhang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Fulai Yang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Michael A. McDonough
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Christopher J. Schofield
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Xiaojin Zhang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| |
Collapse
|
5
|
Li Z, Wu Y, Zhen S, Su K, Zhang L, Yang F, McDonough MA, Schofield CJ, Zhang X. In Situ Inhibitor Synthesis and Screening by Fluorescence Polarization: An Efficient Approach for Accelerating Drug Discovery. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202211510. [PMID: 38505687 PMCID: PMC10947266 DOI: 10.1002/ange.202211510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/09/2022]
Abstract
Target-directed dynamic combinatorial chemistry has emerged as a useful tool for hit identification, but has not been widely used, in part due to challenges associated with analyses involving complex mixtures. We describe an operationally simple alternative: in situ inhibitor synthesis and screening (ISISS), which links high-throughput bioorthogonal synthesis with screening for target binding by fluorescence. We exemplify the ISISS method by showing how coupling screening for target binding by fluorescence polarization with the reaction of acyl-hydrazides and aldehydes led to the efficient discovery of a potent and novel acylhydrazone-based inhibitor of human prolyl hydroxylase 2 (PHD2), a target for anemia treatment, with equivalent in vivo potency to an approved medicine.
Collapse
Affiliation(s)
- Zhihong Li
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Yue Wu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Shuai Zhen
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Kaijun Su
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Linjian Zhang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Fulai Yang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Michael A. McDonough
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Christopher J. Schofield
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Xiaojin Zhang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| |
Collapse
|
6
|
A preliminary, prospective study of peripheral neuropathy and cognitive function in patients with breast cancer during taxane therapy. PLoS One 2022; 17:e0275648. [PMID: 36206298 PMCID: PMC9543876 DOI: 10.1371/journal.pone.0275648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022] Open
Abstract
Dramatic improvements in cancer survival have occurred in the last decade, but the quality of life for many survivors is compromised due to severe, long-lasting, and often irreversible side effects of chemotherapy. The neurological side effects, chemotherapy induced peripheral neuropathy (CIPN) and cancer related/induced cognitive impairment (CRCI/CICI), are under-recognized and can occur after chemotherapy, immunotherapy, or radiation. The cellular mechanisms underlying these neurological side effects are poorly understood and there are no effective treatments or preventions, other than reduction or termination of cancer therapy. In our preliminary prospective, non-interventional study to examine the side effects of chemotherapy in patients with breast cancer (NCT03872141), patients with breast cancer who received standard of care single agent weekly taxane-based chemotherapy were assessed at baseline, midpoint, and end of treatment for neurological and cognitive changes and for blood levels of potential protein biomarkers (n = 13). CIPN and CRCI both showed an increase in severity with accumulating taxane and these changes were compared to protein alternations over the course of treatment. Using peripheral blood collected from patients (n = 10) during chemotherapy and tested with an antibody array curated by the MD Anderson RPPA Core), we found that 19 proteins were increased, and 12 proteins decreased over 12 weeks of treatment. Among those downregulate were proteins known to be critical for neuronal viability and function including GRB2 (growth factor receptor-bound protein 2) and NCS1 (neuronal calcium sensor 1). Concurrently, proteins associated with apoptosis, including BAK1 (Bcl-1 homologous antagonist/killer), were upregulated. These results support the proposal that CIPN and CRCI increase with increasing taxane exposure, and identified several proteins that are altered with taxane exposure that could be implicated in their pathogenesis. In conclusion, our study provides evidence for progressive neurological changes and the rationale to investigate the molecular basis for these changes with the goal of target identification for mitigation of these neurological side effects.
Collapse
|
7
|
Carbajo D, Pérez Y, Guerra-Rebollo M, Prats E, Bujons J, Alfonso I. Dynamic Combinatorial Optimization of In Vitro and In Vivo Heparin Antidotes. J Med Chem 2022; 65:4865-4877. [PMID: 35235323 PMCID: PMC8958503 DOI: 10.1021/acs.jmedchem.1c02054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Heparin-like macromolecules
are widely used in clinics as anticoagulant,
antiviral, and anticancer drugs. However, the search of heparin antidotes
based on small synthetic molecules to control blood coagulation still
remains a challenging task due to the physicochemical properties of
this anionic polysaccharide. Here, we use a dynamic combinatorial
chemistry approach to optimize heparin binders with submicromolar
affinity. The recognition of heparin by the most amplified members
of the dynamic library has been studied with different experimental
(SPR, fluorescence, NMR) and theoretical approaches, rendering a detailed
interaction model. The enzymatic assays with selected library members
confirm the correlation between the dynamic covalent screening and
the in vitro heparin inhibition. Moreover, both ex vivo and in vivo blood coagulation assays
with mice show that the optimized molecules are potent antidotes with
potential use as heparin reversal drugs. Overall, these results underscore
the power of dynamic combinatorial chemistry targeting complex and
elusive biopolymers.
Collapse
Affiliation(s)
| | | | - Marta Guerra-Rebollo
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | |
Collapse
|
8
|
Fischer TT, Nguyen LD, Ehrlich BE. Neuronal calcium sensor 1 (NCS1) dependent modulation of neuronal morphology and development. FASEB J 2021; 35:e21873. [PMID: 34499766 DOI: 10.1096/fj.202100731r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+ ) signaling is critical for neuronal functioning and requires the concerted interplay of numerous Ca2+ -binding proteins, including neuronal calcium sensor 1 (NCS1). Although an important role of NCS1 in neuronal processes and in neurodevelopmental and neurodegenerative diseases has been established, the underlying mechanisms remain enigmatic. Here, we systematically investigated the functions of NCS1 in the brain. Using Golgi-Cox staining, we observed a reduction in dendritic complexity and spine density in the prefrontal cortex and the dorsal hippocampus of Ncs1-/- mice, which may underlie concomitantly observed deficits in memory acquisition. Subsequent RNA sequencing of Ncs1-/- and Ncs1+/+ mouse brain tissues revealed that NCS1 modulates gene expression related to neuronal morphology and development. Investigation of developmental databases further supported a molecular role of NCS1 during brain development by identifying temporal gene expression patterns. Collectively, this study provides insights into NCS1-dependent signaling and lays the foundation for a better understanding of NCS1-associated diseases.
Collapse
Affiliation(s)
- Tom T Fischer
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.,Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Lien D Nguyen
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA.,Department of Celluar and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Canal-Martín A, Navo CD, Sáez E, Molero D, Jiménez-Osés G, Pérez-Fernández R. Nucleophilic catalysis of p-substituted aniline derivatives in acylhydrazone formation and exchange. Org Biomol Chem 2021; 19:7202-7210. [PMID: 34612342 DOI: 10.1039/d1ob00871d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrazone bond formation is a versatile reaction employed in several research fields. It is one of the most popular reversible reactions in dynamic combinatorial chemistry. Under physiological conditions, hydrazone exchange benefits from the addition of a nucleophilic catalyst. We report a mechanistic study and superior performance of electron-rich p-substituted aniline derivatives as catalysts for efficient hydrazone formation and exchange in both protic and aprotic solvents. Rigorous kinetic analyses demonstrate that imine formation with 3-hydroxy-4-nitrobenzaldehyde and aniline derivatives proceeds with unprecedented third-order kinetics in which the aldehyde consistently shows a partial order of two. Computational investigations provide insights into the mechanisms of these transformations.
Collapse
Affiliation(s)
- Andrea Canal-Martín
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid 28040, Spain.
| | | | | | | | | | | |
Collapse
|
10
|
Jumde RP, Guardigni M, Gierse RM, Alhayek A, Zhu D, Hamid Z, Johannsen S, Elgaher WAM, Neusens PJ, Nehls C, Haupenthal J, Reiling N, Hirsch AKH. Hit-optimization using target-directed dynamic combinatorial chemistry: development of inhibitors of the anti-infective target 1-deoxy-d-xylulose-5-phosphate synthase. Chem Sci 2021; 12:7775-7785. [PMID: 34168831 PMCID: PMC8188608 DOI: 10.1039/d1sc00330e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 01/12/2023] Open
Abstract
Target-directed dynamic combinatorial chemistry (tdDCC) enables identification, as well as optimization of ligands for un(der)explored targets such as the anti-infective target 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). We report the use of tdDCC to first identify and subsequently optimize binders/inhibitors of the anti-infective target DXPS. The initial hits were also optimized for their antibacterial activity against E. coli and M. tuberculosis during subsequent tdDCC runs. Using tdDCC, we were able to generate acylhydrazone-based inhibitors of DXPS. The tailored tdDCC runs also provided insights into the structure-activity relationship of this novel class of DXPS inhibitors. The competition tdDCC runs provided important information about the mode of inhibition of acylhydrazone-based inhibitors. This approach holds the potential to expedite the drug-discovery process and should be applicable to a range of biological targets.
Collapse
Affiliation(s)
- Ravindra P Jumde
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
| | - Melissa Guardigni
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- D3-PharmaChemistry, Istituto Italiano di Tecnologia Via Morego 30 16163 Genoa Italy
| | - Robin M Gierse
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Alaa Alhayek
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Di Zhu
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Zhoor Hamid
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Sandra Johannsen
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Walid A M Elgaher
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
| | - Philipp J Neusens
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Christian Nehls
- RG Biophysics, Research Center Borstel, Leibniz Lung Center Borstel Germany
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
| | - Norbert Reiling
- RG Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center Borstel Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems Borstel Germany
| | - Anna K H Hirsch
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| |
Collapse
|
11
|
Biomimetic selenocystine based dynamic combinatorial chemistry for thiol-disulfide exchange. Nat Commun 2021; 12:163. [PMID: 33420034 PMCID: PMC7794297 DOI: 10.1038/s41467-020-20415-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
Dynamic combinatorial chemistry applied to biological environments requires the exchange chemistry of choice to take place under physiological conditions. Thiol-disulfide exchange, one of the most popular dynamic combinatorial chemistries, usually needs long equilibration times to reach the required equilibrium composition. Here we report selenocystine as a catalyst mimicking Nature's strategy to accelerate thiol-disulfide exchange at physiological pH and low temperatures. Selenocystine is able to accelerate slow thiol-disulfide systems and to promote the correct folding of an scrambled RNase A enzyme, thus broadening the practical range of pH conditions for oxidative folding. Additionally, dynamic combinatorial chemistry target-driven self-assembly processes are tested using spermine, spermidine and NADPH (casting) and glucose oxidase (molding). A non-competitive inhibitor is identified in the glucose oxidase directed dynamic combinatorial library.
Collapse
|
12
|
Canal-Martín A, Pérez-Fernández R. Protein-Directed Dynamic Combinatorial Chemistry: An Efficient Strategy in Drug Design. ACS OMEGA 2020; 5:26307-26315. [PMID: 33110958 PMCID: PMC7581073 DOI: 10.1021/acsomega.0c03800] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/24/2020] [Indexed: 05/05/2023]
Abstract
Protein-directed dynamic combinatorial chemistry (P-D DCC) is considered a powerful strategy to identify ligands to pharmacologically relevant protein targets. The protein selects its affinity ligands in situ through a thermodynamic templated effect in which the library composition shifts to the formation of specific library members at the expense of other (nonbinding) species. The increase in concentration of the selected species is known as amplification and leads to the discovery of new hit compounds for protein targets. This Mini-Review contains an updated overview of the protein-directed DCC applications and the fundamental aspects to take into account when designing a P-D DCC experiment such as the most biocompatible reversible reactions and the methodology used to analyze the experiments.
Collapse
|
13
|
Zhang Y, Zhang Y, Ramström O. Dynamic Covalent Kinetic Resolution. CATALYSIS REVIEWS, SCIENCE AND ENGINEERING 2019; 62:66-95. [PMID: 33716355 PMCID: PMC7953846 DOI: 10.1080/01614940.2019.1664031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Implemented with the highly efficient concept of Dynamic Kinetic Resolution (DKR), dynamic covalent chemistry can be a useful strategy for the synthesis of enantioenriched compounds. This gives rise to dynamic covalent kinetic resolution (DCKR), a subset of DKR that over the last decades has emerged as increasingly fruitful, with many applications in asymmetric synthesis and catalysis. All DKR protocols are composed of two important parts: substrate racemization and asymmetric transformation, which can lead to yields of >50% with good enantiomeric excesses (ee) of the products. In DCKR systems, by utilizing reversible covalent reactions as the racemization strategy, the substrate enantiomers can be easily interconverted without the presence of any racemase or transition metal catalyst. Enzymes or other chiral catalysts can then be adopted for the resolution step, leading to products with high enantiopurities. This tutorial review focuses on the development of DCKR systems, based on different reversible reactions, and their applications in asymmetric synthesis.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yang Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., MA, 01854 Lowell, USA
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|