1
|
Otarbayev D, Myung K. Exploring factors influencing choice of DNA double-strand break repair pathways. DNA Repair (Amst) 2024; 140:103696. [PMID: 38820807 DOI: 10.1016/j.dnarep.2024.103696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
DNA double-strand breaks (DSBs) represent one of the most severe threats to genomic integrity, demanding intricate repair mechanisms within eukaryotic cells. A diverse array of factors orchestrates the complex choreography of DSB signaling and repair, encompassing repair pathways, such as non-homologous end-joining, homologous recombination, and polymerase-θ-mediated end-joining. This review looks into the intricate decision-making processes guiding eukaryotic cells towards a particular repair pathway, particularly emphasizing the processing of two-ended DSBs. Furthermore, we elucidate the transformative role of Cas9, a site-specific endonuclease, in revolutionizing our comprehension of DNA DSB repair dynamics. Additionally, we explore the burgeoning potential of Cas9's remarkable ability to induce sequence-specific DSBs, offering a promising avenue for precise targeting of tumor cells. Through this comprehensive exploration, we unravel the intricate molecular mechanisms of cellular responses to DSBs, shedding light on both fundamental repair processes and cutting-edge therapeutic strategies.
Collapse
Affiliation(s)
- Daniyar Otarbayev
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, South Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, South Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea.
| |
Collapse
|
2
|
Medina-Suárez S, Ayra-Plasencia J, Pérez-Martínez L, Butter F, Machín F. Msc1 is a nuclear envelope protein that reinforces DNA repair in late mitosis. iScience 2024; 27:110250. [PMID: 39021806 PMCID: PMC11253511 DOI: 10.1016/j.isci.2024.110250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/15/2024] [Accepted: 06/08/2024] [Indexed: 07/20/2024] Open
Abstract
Precise double-strand break (DSB) repair is a paramount for genome stability. Homologous recombination (HR) repairs DSBs when cyclin-dependent kinase (CDK) activity is high, which correlates with the availability of the sister chromatid as a template. However, anaphase and telophase are paradoxical scenarios since high CDK favors HR despite sister chromatids being no longer aligned. To identify factors specifically involved in DSB repair in late mitosis, we have undertaken comparative proteomics in Saccharomyces cerevisiae and found that meiotic sister chromatid 1 (Msc1), a poorly characterized nuclear envelope protein, is significantly enriched upon both random and guided DSBs. We further show that Δmsc1 is more sensitive to DSBs in late mitosis, and has a delayed repair of DBSs, as indicated by increased Rad53 hyperphosphorylation, a higher presence of RPA foci, fewer Rad52 repair factories, and slower HR completion. We propose that Msc1 favors the later stages of HR and the timely completion of DSB repair before cytokinesis.
Collapse
Affiliation(s)
- Sara Medina-Suárez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Jessel Ayra-Plasencia
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | | | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich Loeffler Institute, 17493 Greifswald, Germany
| | - Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
3
|
Gao W, Lu J, Yang Z, Li E, Cao Y, Xie L. Mitotic Functions and Characters of KIF11 in Cancers. Biomolecules 2024; 14:386. [PMID: 38672404 PMCID: PMC11047945 DOI: 10.3390/biom14040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Mitosis mediates the accurate separation of daughter cells, and abnormalities are closely related to cancer progression. KIF11, a member of the kinesin family, plays a vital role in the formation and maintenance of the mitotic spindle. Recently, an increasing quantity of data have demonstrated the upregulated expression of KIF11 in various cancers, promoting the emergence and progression of cancers. This suggests the great potential of KIF11 as a prognostic biomarker and therapeutic target. However, the molecular mechanisms of KIF11 in cancers have not been systematically summarized. Therefore, we first discuss the functions of the protein encoded by KIF11 during mitosis and connect the abnormal expression of KIF11 with its clinical significance. Then, we elucidate the mechanism of KIF11 to promote various hallmarks of cancers. Finally, we provide an overview of KIF11 inhibitors and outline areas for future work.
Collapse
Affiliation(s)
| | | | | | | | - Yufei Cao
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (W.G.); (J.L.); (Z.Y.); (E.L.)
| | - Lei Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (W.G.); (J.L.); (Z.Y.); (E.L.)
| |
Collapse
|
4
|
Santana-Sosa S, Matos-Perdomo E, Ayra-Plasencia J, Machín F. A Yeast Mitotic Tale for the Nucleus and the Vacuoles to Embrace. Int J Mol Sci 2023; 24:9829. [PMID: 37372977 DOI: 10.3390/ijms24129829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The morphology of the nucleus is roughly spherical in most eukaryotic cells. However, this organelle shape needs to change as the cell travels through narrow intercellular spaces during cell migration and during cell division in organisms that undergo closed mitosis, i.e., without dismantling the nuclear envelope, such as yeast. In addition, the nuclear morphology is often modified under stress and in pathological conditions, being a hallmark of cancer and senescent cells. Thus, understanding nuclear morphological dynamics is of uttermost importance, as pathways and proteins involved in nuclear shaping can be targeted in anticancer, antiaging, and antifungal therapies. Here, we review how and why the nuclear shape changes during mitotic blocks in yeast, introducing novel data that associate these changes with both the nucleolus and the vacuole. Altogether, these findings suggest a close relationship between the nucleolar domain of the nucleus and the autophagic organelle, which we also discuss here. Encouragingly, recent evidence in tumor cell lines has linked aberrant nuclear morphology to defects in lysosomal function.
Collapse
Affiliation(s)
- Silvia Santana-Sosa
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Emiliano Matos-Perdomo
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Jessel Ayra-Plasencia
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Félix Machín
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Faculty of Health Sciences, Fernando Pessoa Canarias University, 35450 Santa María de Guía, Spain
| |
Collapse
|
5
|
Campos A, Ramos F, Iglesias L, Delgado C, Merino E, Esperilla-Muñoz A, Correa-Bordes J, Clemente-Blanco A. Cdc14 phosphatase counteracts Cdk-dependent Dna2 phosphorylation to inhibit resection during recombinational DNA repair. Nat Commun 2023; 14:2738. [PMID: 37173316 PMCID: PMC10182099 DOI: 10.1038/s41467-023-38417-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Cyclin-dependent kinase (Cdk) stimulates resection of DNA double-strand breaks ends to generate single-stranded DNA (ssDNA) needed for recombinational DNA repair. Here we show in Saccharomyces cerevisiae that lack of the Cdk-counteracting phosphatase Cdc14 produces abnormally extended resected tracts at the DNA break ends, involving the phosphatase in the inhibition of resection. Over-resection in the absence of Cdc14 activity is bypassed when the exonuclease Dna2 is inactivated or when its Cdk consensus sites are mutated, indicating that the phosphatase restrains resection by acting through this nuclease. Accordingly, mitotically activated Cdc14 promotes Dna2 dephosphorylation to exclude it from the DNA lesion. Cdc14-dependent resection inhibition is essential to sustain DNA re-synthesis, thus ensuring the appropriate length, frequency, and distribution of the gene conversion tracts. These results establish a role for Cdc14 in controlling the extent of resection through Dna2 regulation and demonstrate that the accumulation of excessively long ssDNA affects the accurate repair of the broken DNA by homologous recombination.
Collapse
Affiliation(s)
- Adrián Campos
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | - Facundo Ramos
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | - Lydia Iglesias
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | - Celia Delgado
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | - Eva Merino
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | | | - Jaime Correa-Bordes
- Departamento de Ciencias Biomédicas, Universidad de Extremadura, Badajoz, Spain
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain.
| |
Collapse
|
6
|
Matos-Perdomo E, Santana-Sosa S, Ayra-Plasencia J, Medina-Suárez S, Machín F. The vacuole shapes the nucleus and the ribosomal DNA loop during mitotic delays. Life Sci Alliance 2022; 5:5/10/e202101161. [PMID: 35961781 PMCID: PMC9375157 DOI: 10.26508/lsa.202101161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Chromosome structuring and condensation is one of the main features of mitosis. Here, Matos-Perdomo et al show how the nuclear envelope reshapes around the vacuole to give rise to the outstanding ribosomal DNA loop in budding yeast. The ribosomal DNA (rDNA) array of Saccharomyces cerevisiae has served as a model to address chromosome organization. In cells arrested before anaphase (mid-M), the rDNA acquires a highly structured chromosomal organization referred to as the rDNA loop, whose length can double the cell diameter. Previous works established that complexes such as condensin and cohesin are essential to attain this structure. Here, we report that the rDNA loop adopts distinct presentations that arise as spatial adaptations to changes in the nuclear morphology triggered during mid-M arrests. Interestingly, the formation of the rDNA loop results in the appearance of a space under the loop (SUL) which is devoid of nuclear components yet colocalizes with the vacuole. We show that the rDNA-associated nuclear envelope (NE) often reshapes into a ladle to accommodate the vacuole in the SUL, with the nucleus becoming bilobed and doughnut-shaped. Finally, we demonstrate that the formation of the rDNA loop and the SUL require TORC1, membrane synthesis and functional vacuoles, yet is independent of nucleus–vacuole junctions and rDNA-NE tethering.
Collapse
Affiliation(s)
- Emiliano Matos-Perdomo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Silvia Santana-Sosa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jessel Ayra-Plasencia
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Sara Medina-Suárez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain .,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Santa María de Guía, Spain
| |
Collapse
|
7
|
Liakopoulos D. Coupling DNA Replication and Spindle Function in Saccharomyces cerevisiae. Cells 2021; 10:cells10123359. [PMID: 34943867 PMCID: PMC8699587 DOI: 10.3390/cells10123359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/02/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae DNA replication and spindle assembly can overlap. Therefore, signaling mechanisms modulate spindle dynamics in order to ensure correct timing of chromosome segregation relative to genome duplication, especially when replication is incomplete or the DNA becomes damaged. This review focuses on the molecular mechanisms that coordinate DNA replication and spindle dynamics, as well as on the role of spindle-dependent forces in DNA repair. Understanding the coupling between genome duplication and spindle function in yeast cells can provide important insights into similar processes operating in other eukaryotic organisms, including humans.
Collapse
Affiliation(s)
- Dimitris Liakopoulos
- CRBM, Université de Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier, France;
- Laboratory of Biology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
- University Research Center of loannina, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
8
|
Uncovering bleomycin-induced genomic alterations and underlying mechanisms in yeast. Appl Environ Microbiol 2021; 88:e0170321. [PMID: 34731050 DOI: 10.1128/aem.01703-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bleomycin (BLM) is a widely used chemotherapeutic drug. BLM-treated cells showed an elevated rate of mutations, but the underlying mechanisms remained unclear. In this study, the global genomic alterations in BLM-treated cells were explored in the yeast Saccharomyces cerevisiae. Using genetic assay and whole-genome sequencing, we found that the mutation rate could be greatly elevated in S. cerevisiae cells that underwent ZeocinTM (a BLM member) treatment. One-base deletion and T to G substitution at the 5'-GT-3' motif was the most striking signature of ZeocinTM-induced mutations. This was mainly the result of translesion DNA synthesis involving Rev1 and polymerase ζ. ZeocinTM treatment led to the frequent loss of heterozygosity and chromosomal rearrangements in the diploid strains. The breakpoints of recombination events were significantly associated with certain chromosomal elements. Lastly, we identified multiple genomic alterations that contributed to BLM resistance in the ZeocinTM-treated mutants. Overall, this study provides new insights into the genotoxicity and evolutional effects of BLM. Importance Bleomycin is an antitumor antibiotic that can mutate genomic DNA. Using yeast models in combination with genome sequencing, the mutational signatures of ZeocinTM (a member of the bleomycin family) are disclosed. Translesion-synthesis polymerases are crucial for the viability of ZeocinTM-treated yeast cells at the sacrifice of a higher mutation rate. We also confirmed that multiple genomic alterations were associated with the improved resistance to ZeocinTM, providing novel insights into how bleomycin resistance is developed in cells.
Collapse
|
9
|
Topoisomerase II deficiency leads to a postreplicative structural shift in all Saccharomyces cerevisiae chromosomes. Sci Rep 2021; 11:14940. [PMID: 34294749 PMCID: PMC8298500 DOI: 10.1038/s41598-021-93875-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The key role of Topoisomerase II (Top2) is the removal of topological intertwines between sister chromatids. In yeast, inactivation of Top2 brings about distinct cell cycle responses. In the case of the conditional top2-5 allele, interphase and mitosis progress on schedule but cells suffer from a chromosome segregation catastrophe. We here show that top2-5 chromosomes fail to enter a Pulsed-Field Gel Electrophoresis (PFGE) in the first cell cycle, a behavior traditionally linked to the presence of replication and recombination intermediates. We distinguished two classes of affected chromosomes: the rDNA-bearing chromosome XII, which fails to enter a PFGE at the beginning of S-phase, and all the other chromosomes, which fail at a postreplicative stage. In synchronously cycling cells, this late PFGE retention is observed in anaphase; however, we demonstrate that this behavior is independent of cytokinesis, stabilization of anaphase bridges, spindle pulling forces and, probably, anaphase onset. Strikingly, once the PFGE retention has occurred it becomes refractory to Top2 re-activation. DNA combing, two-dimensional electrophoresis, genetic analyses, and GFP-tagged DNA damage markers suggest that neither recombination intermediates nor unfinished replication account for the postreplicative PFGE shift, which is further supported by the fact that the shift does not trigger the G2/M checkpoint. We propose that the absence of Top2 activity leads to a general chromosome structural/topological change in mitosis.
Collapse
|
10
|
D'Amico AM, Vasquez KM. The multifaceted roles of DNA repair and replication proteins in aging and obesity. DNA Repair (Amst) 2021; 99:103049. [PMID: 33529944 DOI: 10.1016/j.dnarep.2021.103049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Efficient mechanisms for genomic maintenance (i.e., DNA repair and DNA replication) are crucial for cell survival. Aging and obesity can lead to the dysregulation of genomic maintenance proteins/pathways and are significant risk factors for the development of cancer, metabolic disorders, and other genetic diseases. Mutations in genes that code for proteins involved in DNA repair and DNA replication can also exacerbate aging- and obesity-related disorders and lead to the development of progeroid diseases. In this review, we will discuss the roles of various DNA repair and replication proteins in aging and obesity as well as investigate the possible mechanisms by which aging and obesity can lead to the dysregulation of these proteins and pathways.
Collapse
Affiliation(s)
- Alexandra M D'Amico
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX, 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX, 78723, USA.
| |
Collapse
|
11
|
Summers MK. The DNA Damage Response in Telophase: Challenging Dogmas. Bioessays 2020; 42:e2000085. [PMID: 32484240 DOI: 10.1002/bies.202000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Matthew K Summers
- Department of Radiation Oncology, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| |
Collapse
|
12
|
Ivanova T, Maier M, Missarova A, Ziegler-Birling C, Dam M, Gomar-Alba M, Carey LB, Mendoza M. Budding yeast complete DNA synthesis after chromosome segregation begins. Nat Commun 2020; 11:2267. [PMID: 32385287 PMCID: PMC7210879 DOI: 10.1038/s41467-020-16100-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/14/2020] [Indexed: 01/22/2023] Open
Abstract
To faithfully transmit genetic information, cells must replicate their entire genome before division. This is thought to be ensured by the temporal separation of replication and chromosome segregation. Here we show that in 20–40% of unperturbed yeast cells, DNA synthesis continues during anaphase, late in mitosis. High cyclin-Cdk activity inhibits DNA synthesis in metaphase, and the decrease in cyclin-Cdk activity during mitotic exit allows DNA synthesis to finish at subtelomeric and some difficult-to-replicate regions. DNA synthesis during late mitosis correlates with elevated mutation rates at subtelomeric regions, including copy number variation. Thus, yeast cells temporally overlap DNA synthesis and chromosome segregation during normal growth, possibly allowing cells to maximize population-level growth rate while simultaneously exploring greater genetic space. In the S phase of the cell cycle, the full genome needs to be replicated before cell division occurs. Here, authors show that in budding yeast DNA synthesis is completed after chromosome segregation begins.
Collapse
Affiliation(s)
- Tsvetomira Ivanova
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Michael Maier
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | | | - Monica Dam
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Mercè Gomar-Alba
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Lucas B Carey
- Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Center for Quantitative Biology and Peking-Tsinghua Center for the Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | - Manuel Mendoza
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France. .,Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
13
|
Machín F, Ayra-Plasencia J. Are Anaphase Events Really Irreversible? The Endmost Stages of Cell Division and the Paradox of the DNA Double-Strand Break Repair. Bioessays 2020; 42:e2000021. [PMID: 32363600 DOI: 10.1002/bies.202000021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/16/2020] [Indexed: 12/25/2022]
Abstract
It has been recently demonstrated that yeast cells are able to partially regress chromosome segregation in telophase as a response to DNA double-strand breaks (DSBs), likely to find a donor sequence for homology-directed repair (HDR). This regression challenges the traditional concept that establishes anaphase events as irreversible, hence opening a new field of research in cell biology. Here, the nature of this new behavior in yeast is summarized and the underlying mechanisms are speculated about. It is also discussed whether it can be reproduced in other eukaryotes. Overall, this work brings forwards the need of understanding how cells attempt to repair DSBs when transiting the latest stages of mitosis, i.e., anaphase and telophase.
Collapse
Affiliation(s)
- Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, 38010, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, 38200, Spain.,Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, 35450, Spain
| | - Jessel Ayra-Plasencia
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, 38010, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, 38200, Spain
| |
Collapse
|
14
|
Matellán L, Monje-Casas F. Regulation of Mitotic Exit by Cell Cycle Checkpoints: Lessons From Saccharomyces cerevisiae. Genes (Basel) 2020; 11:E195. [PMID: 32059558 PMCID: PMC7074328 DOI: 10.3390/genes11020195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
In order to preserve genome integrity and their ploidy, cells must ensure that the duplicated genome has been faithfully replicated and evenly distributed before they complete their division by mitosis. To this end, cells have developed highly elaborated checkpoints that halt mitotic progression when problems in DNA integrity or chromosome segregation arise, providing them with time to fix these issues before advancing further into the cell cycle. Remarkably, exit from mitosis constitutes a key cell cycle transition that is targeted by the main mitotic checkpoints, despite these surveillance mechanisms being activated by specific intracellular signals and acting at different stages of cell division. Focusing primarily on research carried out using Saccharomyces cerevisiae as a model organism, the aim of this review is to provide a general overview of the molecular mechanisms by which the major cell cycle checkpoints control mitotic exit and to highlight the importance of the proper regulation of this process for the maintenance of genome stability during the distribution of the duplicated chromosomes between the dividing cells.
Collapse
Affiliation(s)
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC)—University of Seville—University Pablo de Olavide, Avda, Américo Vespucio, 24, 41092 Sevilla, Spain;
| |
Collapse
|
15
|
Ayra-Plasencia J, Machín F. Yeast cells can partially revert chromosome segregation to repair late DNA double-strand breaks through homologous recombination. Mol Cell Oncol 2019; 6:e1648027. [PMID: 31528706 DOI: 10.1080/23723556.2019.1648027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
Abstract
DNA repair in late mitosis sets paradoxical scenarios. Cyclin-dependent kinase (CDK) activity is high, which favors homologous recombination (HR), despite a sister chromatid is not physically close to recombine with. We have found that DNA double-strand breaks partially revert chromosome segregation to find an intact template and repair through HR.
Collapse
Affiliation(s)
- Jessel Ayra-Plasencia
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|