1
|
Chou-Zheng L, Howell O, Boyle TA, Hossain M, Walker FC, Sheriff EK, Aslan B, Hatoum-Aslan A. AcrIIIA1 is a protein-RNA anti-CRISPR complex that targets core Cas and accessory nucleases. Nucleic Acids Res 2024; 52:13490-13514. [PMID: 39551936 DOI: 10.1093/nar/gkae1006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Clustered regularly-interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins protect bacteria and archaea from their viruses, and anti-CRISPRs (Acrs) are small virus-encoded proteins that inhibit CRISPR-Cas immunity. Over 80 families of Acrs have been described to date; however, only three of these subvert Type III CRISPR-Cas immunity. Type III systems employ a complex network of Cas and accessory nucleases to degrade viral nucleic acids. Here, we discover and characterize AcrIIIA1, the first Type III-A specific anti-CRISPR protein. We demonstrate that AcrIIIA1 binds to Csm2 within the Cas10-Csm effector complex and attenuates Cas10's DNase activity and second messenger production. Additionally, AcrIIIA1 associates with fragmented t(m)RNAs (acrIIIA1-RNAs), and we show that they co-purify with the Cas10-Csm complex during phage infection. Although the precise role(s) of acrIIIA1-RNAs remain unclear, we found that they bind stably to RNase R, a host-encoded nuclease known to bolster immunity, and RNase R has the capacity to degrade them. Altogether, our results support a model in which AcrIIIA1 and its associated RNAs target both core Cas and accessory nucleases to provide robust protection against Type III CRISPR-Cas immunity.
Collapse
Affiliation(s)
- Lucy Chou-Zheng
- Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Olivia Howell
- Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Tori A Boyle
- Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Motaher Hossain
- Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Forrest C Walker
- Department of Biological Sciences, University of Alabama, 1325 Hackberry Lane, Tuscaloosa, AL 35401, USA
| | - Emma K Sheriff
- Department of Biological Sciences, University of Alabama, 1325 Hackberry Lane, Tuscaloosa, AL 35401, USA
| | - Barbaros Aslan
- Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Asma Hatoum-Aslan
- Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Ranasinghe W, Gillette D, Ho A, Cho H, Choudhary M. Taxonomic Distribution, Phylogenetic Relationship, and Domain Conservation of CRISPR-Associated Cas Proteins. Bioinform Biol Insights 2024; 18:11779322241274961. [PMID: 39397878 PMCID: PMC11468465 DOI: 10.1177/11779322241274961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024] Open
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a naturally occurring genetic defense system in bacteria and archaea. It is comprised of a series of DNA sequence repeats with spacers derived from previous exposures to plasmid or phage. Further understanding and applications of CRISPR system have revolutionized our capacity for gene or genome editing of prokaryotes and eukaryotes. The CRISPR systems are classified into 3 distinct types: type I, type II, and type III, each of which possesses an associated signature protein, Cas3, Cas9, and Cas10, respectively. As the CRISPR loci originated from earlier independent exposures of foreign genetic elements, it is likely that their associated signature proteins may have evolved rapidly. Also, their functional domain structures might have experienced different selective pressures, and therefore, they have differentially diverged in their amino acid sequences. We employed genomic, phylogenetic, and structure-function constraint analyses to reveal the evolutionary distribution, phylogenetic relationship, and structure-function constraints of Cas3, Cas9, and Cas10 proteins. Results reveal that all 3 Cas-associated proteins are highly represented in the phyla Bacteroidetes, Firmicutes, and Proteobacteria, including both pathogenic and non-pathogenic species. Genomic analysis of homologous proteins demonstrates that the proteins share 30% to 50% amino acid identity; therefore, they are low to moderately conserved and evolved rapidly. Phylogenetic analysis shows that 3 proteins originated monophyletically; however, the evolution rates were different among different branches of the clades. Furthermore, structure-function constraint analysis reveals that both Cas3 and Cas9 proteins experiences low to moderate levels of negative selection, and several protein domains of Cas3 and Cas9 proteins are highly conserved. To the contrary, most protein domains of Cas10 proteins experience neutral or positive selection, which supports rapid genetic divergence and less structure-function constraints.
Collapse
Affiliation(s)
- Weerakkody Ranasinghe
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Dorcie Gillette
- Department of Surgery, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Alexis Ho
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Hyuk Cho
- Department of Computer Science, Sam Houston State University, Huntsville, TX, USA
| | - Madhusudan Choudhary
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| |
Collapse
|
3
|
Ganguly C, Rostami S, Long K, Aribam SD, Rajan R. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms. J Biol Chem 2024; 300:107295. [PMID: 38641067 PMCID: PMC11127173 DOI: 10.1016/j.jbc.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are adaptive immune systems that protect bacteria and archaea from invading mobile genetic elements (MGEs). The Cas protein-CRISPR RNA (crRNA) complex uses complementarity of the crRNA "guide" region to specifically recognize the invader genome. CRISPR effectors that perform targeted destruction of the foreign genome have emerged independently as multi-subunit protein complexes (Class 1 systems) and as single multi-domain proteins (Class 2). These different CRISPR-Cas systems can cleave RNA, DNA, and protein in an RNA-guided manner to eliminate the invader, and in some cases, they initiate programmed cell death/dormancy. The versatile mechanisms of the different CRISPR-Cas systems to target and destroy nucleic acids have been adapted to develop various programmable-RNA-guided tools and have revolutionized the development of fast, accurate, and accessible genomic applications. In this review, we present the structure and interference mechanisms of different CRISPR-Cas systems and an analysis of their unified features. The three types of Class 1 systems (I, III, and IV) have a conserved right-handed helical filamentous structure that provides a backbone for sequence-specific targeting while using unique proteins with distinct mechanisms to destroy the invader. Similarly, all three Class 2 types (II, V, and VI) have a bilobed architecture that binds the RNA-DNA/RNA hybrid and uses different nuclease domains to cleave invading MGEs. Additionally, we highlight the mechanistic similarities of CRISPR-Cas enzymes with other RNA-cleaving enzymes and briefly present the evolutionary routes of the different CRISPR-Cas systems.
Collapse
Affiliation(s)
- Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Kole Long
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Swarmistha Devi Aribam
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
4
|
Irmisch P, Mogila I, Samatanga B, Tamulaitis G, Seidel R. Retention of the RNA ends provides the molecular memory for maintaining the activation of the Csm complex. Nucleic Acids Res 2024; 52:3896-3910. [PMID: 38340341 DOI: 10.1093/nar/gkae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
The type III CRISPR-Cas effector complex Csm functions as a molecular Swiss army knife that provides multilevel defense against foreign nucleic acids. The coordinated action of three catalytic activities of the Csm complex enables simultaneous degradation of the invader's RNA transcripts, destruction of the template DNA and synthesis of signaling molecules (cyclic oligoadenylates cAn) that activate auxiliary proteins to reinforce CRISPR-Cas defense. Here, we employed single-molecule techniques to connect the kinetics of RNA binding, dissociation, and DNA hydrolysis by the Csm complex from Streptococcus thermophilus. Although single-stranded RNA is cleaved rapidly (within seconds), dual-color FCS experiments and single-molecule TIRF microscopy revealed that Csm remains bound to terminal RNA cleavage products with a half-life of over 1 hour while releasing the internal RNA fragments quickly. Using a continuous fluorescent DNA degradation assay, we observed that RNA-regulated single-stranded DNase activity decreases on a similar timescale. These findings suggest that after fast target RNA cleavage the terminal RNA cleavage products stay bound within the Csm complex, keeping the Cas10 subunit activated for DNA destruction. Additionally, we demonstrate that during Cas10 activation, the complex remains capable of RNA turnover, i.e. of ongoing degradation of target RNA.
Collapse
Affiliation(s)
- Patrick Irmisch
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Leipzig 04103, Germany
| | - Irmantas Mogila
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Brighton Samatanga
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Leipzig 04103, Germany
| | - Gintautas Tamulaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Leipzig 04103, Germany
| |
Collapse
|
5
|
Özcan A, Yıbar A, Kiraz D, Ilıkkan ÖK. Comprehensive analysis of the CRISPR-Cas systems in Streptococcus thermophilus strains isolated from traditional yogurts. Antonie Van Leeuwenhoek 2024; 117:63. [PMID: 38561518 DOI: 10.1007/s10482-024-01960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Phage resistance is crucial for lactic acid bacteria in the dairy industry. However, identifying all phages affecting these bacteria is challenging. CRISPR-Cas systems offer a resistance mechanism developed by bacteria and archaea against phages and plasmids. In this study, 11 S. thermophilus strains from traditional yogurts underwent analysis using next-generation sequencing (NGS) and bioinformatics tools. Initial characterization involved molecular ribotyping. Bioinformatics analysis of the NGS raw data revealed that all 11 strains possessed at least one CRISPR type. A total of 21 CRISPR loci were identified, belonging to CRISPR types II-A, II-C, and III-A, including 13 Type II-A, 1 Type III-C, and 7 Type III-A CRISPR types. By analyzing spacer sequences in S. thermophilus bacterial genomes and matching them with phage/plasmid genomes, notable strains emerged. SY9 showed prominence with 132 phage matches and 30 plasmid matches, followed by SY12 with 35 phage matches and 25 plasmid matches, and SY18 with 49 phage matches and 13 plasmid matches. These findings indicate the potential of S. thermophilus strains in phage/plasmid resistance for selecting starter cultures, ultimately improving the quality and quantity of dairy products. Nevertheless, further research is required to validate these results and explore the practical applications of this approach.
Collapse
Affiliation(s)
- Ali Özcan
- Animal Originated Foodstuffs Department, Central Research Institute of Food and Feed Control, Bursa, Turkey.
- Food Hygiene and Technology Department, Faculty of Veterinary Medicine, Uludağ University, Bursa, Turkey.
| | - Artun Yıbar
- Food Hygiene and Technology Department, Faculty of Veterinary Medicine, Uludağ University, Bursa, Turkey
| | - Deniz Kiraz
- Animal Originated Foodstuffs Department, Central Research Institute of Food and Feed Control, Bursa, Turkey
| | - Özge Kahraman Ilıkkan
- Kahramankazan Vocational School, Food Quality Control and Analysis Program, Başkent University, Ankara, Turkey
| |
Collapse
|
6
|
Karneyeva K, Kolesnik M, Livenskyi A, Zgoda V, Zubarev V, Trofimova A, Artamonova D, Ispolatov Y, Severinov K. Interference Requirements of Type III CRISPR-Cas Systems from Thermus thermophilus. J Mol Biol 2024; 436:168448. [PMID: 38266982 DOI: 10.1016/j.jmb.2024.168448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/26/2024]
Abstract
Among the diverse prokaryotic adaptive immunity mechanisms, the Type III CRISPR-Cas systems are the most complex. The multisubunit Type III effectors recognize RNA targets complementary to CRISPR RNAs (crRNAs). Target recognition causes synthesis of cyclic oligoadenylates that activate downstream auxiliary effectors, which affect cell physiology in complex and poorly understood ways. Here, we studied the ability of III-A and III-B CRISPR-Cas subtypes from Thermus thermophilus to interfere with plasmid transformation. We find that for both systems, requirements for crRNA-target complementarity sufficient for interference depend on the target transcript abundance, with more abundant targets requiring shorter complementarity segments. This result and thermodynamic calculations indicate that Type III effectors bind their targets in a simple bimolecular reaction with more extensive crRNA-target base pairing compensating for lower target abundance. Since the targeted RNA used in our work is non-essential for either the host or the plasmid, the results also establish that a certain number of target-bound effector complexes must be present in the cell to interfere with plasmid establishment. For the more active III-A system, we determine the minimal length of RNA-duplex sufficient for interference and show that the position of this minimal duplex can vary within the effector. Finally, we show that the III-A immunity is dependent on the HD nuclease domain of the Cas10 subunit. Since this domain is absent from the III-B system the result implies that the T. thermophilus III-B system must elicit a more efficient cyclic oligoadenylate-dependent response to provide the immunity.
Collapse
Affiliation(s)
- Karyna Karneyeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Matvey Kolesnik
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Alexei Livenskyi
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, Moscow 119435, Russia
| | - Vasiliy Zubarev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Anna Trofimova
- Laboratory of Molecular Genetics of Microorganisms, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Daria Artamonova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Yaroslav Ispolatov
- Departamento de Física, Center for Interdisciplinary Research in Astrophysics and Space Science, Universidad de Santiago de Chile, Victor Jara 3493, Santiago, Chile
| | | |
Collapse
|
7
|
Li X, Han J, Yang J, Zhang H. The structural biology of type III CRISPR-Cas systems. J Struct Biol 2024; 216:108070. [PMID: 38395113 DOI: 10.1016/j.jsb.2024.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
CRISPR-Cas system is an RNA-guided adaptive immune system widespread in bacteria and archaea. Among them, type III CRISPR-Cas systems are the most ancient throughout the CRISPR-Cas family, proving anti-phage defense through a crRNA-guided RNA targeting manner and possessing multiple enzymatic activities. Type III CRISPR-Cas systems comprise four typical members (type III-A to III-D) and two atypical members (type III-E and type III-F), providing immune defense through distinct mechanisms. Here, we delve into structural studies conducted on three well-characterized members: the type III-A, III-B, and III-E systems, provide an overview of the structural insights into the crRNA-guided target RNA cleavage, self/non-self discrimination, and the target RNA-dependent regulation of enzymatic subunits in the effector complex.
Collapse
Affiliation(s)
- Xuzichao Li
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Han
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Yang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Heng Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
8
|
Zhang H, Shi M, Ma X, Liu M, Wang N, Lu Q, Li Z, Zhao Y, Zhao H, Chen H, Zhang H, Jiang T, Ouyang S, Huo Y, Bi L. Type-III-A structure of mycobacteria CRISPR-Csm complexes involving atypical crRNAs. Int J Biol Macromol 2024; 260:129331. [PMID: 38218299 DOI: 10.1016/j.ijbiomac.2024.129331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Tuberculosis (TB), a leading cause of mortality globally, is a chronic infectious disease caused by Mycobacterium tuberculosis that primarily infiltrates the lung. The mature crRNAs in M. tuberculosis transcribed from the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) locus exhibit an atypical structure featured with 5' and 3' repeat tags at both ends of the intact crRNA, in contrast to typical Type-III-A crRNAs that possess 5' repeat tags and partial crRNA sequences. However, this structural peculiarity particularly concerning the specific binding characteristics of the 3' repeat end within the mature crRNA within the Csm complex, has not been comprehensively elucidated. Here, our Mycobacteria CRISPR-Csm complexes structure represents the largest Csm complex reported to date. It incorporates an atypical Type-III-A CRISPR RNA (crRNA) (46 nt) with 5' 8-nt and 3' 4-nt repeat sequences in the stoichiometry of Mycobacteria Csm1125364151. The PAM-independent single-stranded RNAs (ssRNAs) are the most suitable substrate for the Csm complex. The 3'-repeat end trimming of mature crRNA was not necessary for its cleavage activity in Type-III-A Csm complex. Our work broadens our understanding of the Type-III-A Csm complex and identifies another mature crRNA processing mechanism in the Type-III-A CRISPR-Cas system based on structural biology.
Collapse
Affiliation(s)
- Hongtai Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Mingmin Shi
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoli Ma
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengxi Liu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Nenhan Wang
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Qiuhua Lu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Zekai Li
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yanfeng Zhao
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Hongshen Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huizhi Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| | - Yangao Huo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lijun Bi
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Guangzhou National Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
9
|
Aviram N, Shilton AK, Lyn NG, Reis BS, Brivanlou A, Marraffini LA. The Cas10 nuclease activity relieves host dormancy to facilitate spacer acquisition and retention during type III-A CRISPR immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579731. [PMID: 38405743 PMCID: PMC10888962 DOI: 10.1101/2024.02.11.579731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A hallmark of CRISPR immunity is the acquisition of short viral DNA sequences, known as spacers, that are transcribed into guide RNAs to recognize complementary sequences. The staphylococcal type III-A CRISPR-Cas system uses guide RNAs to locate viral transcripts and start a response that displays two mechanisms of immunity. When immunity is triggered by an early-expressed phage RNA, degradation of viral ssDNA can cure the host from infection. In contrast, when the RNA guide targets a late-expressed transcript, defense requires the activity of Csm6, a non-specific RNase. Here we show that Csm6 triggers a growth arrest of the host that provides immunity at the population level which hinders viral propagation to allow the replication of non-infected cells. We demonstrate that this mechanism leads to defense against not only the target phage but also other viruses present in the population that fail to replicate in the arrested cells. On the other hand, dormancy limits the acquisition and retention of spacers that trigger it. We found that the ssDNase activity of type III-A systems is required for the re-growth of a subset of the arrested cells, presumably through the degradation of the phage DNA, ending target transcription and inactivating the immune response. Altogether, our work reveals a built-in mechanism within type III-A CRISPR-Cas systems that allows the exit from dormancy needed for the subsistence of spacers that provide broad-spectrum immunity.
Collapse
Affiliation(s)
- Naama Aviram
- Laboratory of Bacteriology, the Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Amanda K Shilton
- Laboratory of Bacteriology, the Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Nia G Lyn
- Laboratory of Bacteriology, the Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, the Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Amir Brivanlou
- Laboratory of Bacteriology, the Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, the Rockefeller University, 1230 York Ave, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| |
Collapse
|
10
|
Mayorga-Ramos A, Zúñiga-Miranda J, Carrera-Pacheco SE, Barba-Ostria C, Guamán LP. CRISPR-Cas-Based Antimicrobials: Design, Challenges, and Bacterial Mechanisms of Resistance. ACS Infect Dis 2023; 9:1283-1302. [PMID: 37347230 PMCID: PMC10353011 DOI: 10.1021/acsinfecdis.2c00649] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 06/23/2023]
Abstract
The emergence of antibiotic-resistant bacterial strains is a source of public health concern across the globe. As the discovery of new conventional antibiotics has stalled significantly over the past decade, there is an urgency to develop novel approaches to address drug resistance in infectious diseases. The use of a CRISPR-Cas-based system for the precise elimination of targeted bacterial populations holds promise as an innovative approach for new antimicrobial agent design. The CRISPR-Cas targeting system is celebrated for its high versatility and specificity, offering an excellent opportunity to fight antibiotic resistance in pathogens by selectively inactivating genes involved in antibiotic resistance, biofilm formation, pathogenicity, virulence, or bacterial viability. The CRISPR-Cas strategy can enact antimicrobial effects by two approaches: inactivation of chromosomal genes or curing of plasmids encoding antibiotic resistance. In this Review, we provide an overview of the main CRISPR-Cas systems utilized for the creation of these antimicrobials, as well as highlighting promising studies in the field. We also offer a detailed discussion about the most commonly used mechanisms for CRISPR-Cas delivery: bacteriophages, nanoparticles, and conjugative plasmids. Lastly, we address possible mechanisms of interference that should be considered during the intelligent design of these novel approaches.
Collapse
Affiliation(s)
- Arianna Mayorga-Ramos
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Johana Zúñiga-Miranda
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Saskya E. Carrera-Pacheco
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Carlos Barba-Ostria
- Escuela
de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170902, Ecuador
| | - Linda P. Guamán
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| |
Collapse
|
11
|
Wiegand T, Wilkinson R, Santiago-Frangos A, Lynes M, Hatzenpichler R, Wiedenheft B. Functional and Phylogenetic Diversity of Cas10 Proteins. CRISPR J 2023; 6:152-162. [PMID: 36912817 PMCID: PMC10123807 DOI: 10.1089/crispr.2022.0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/30/2023] [Indexed: 03/14/2023] Open
Abstract
Cas10 proteins are large subunits of type III CRISPR RNA (crRNA)-guided surveillance complexes, many of which have nuclease and cyclase activities. Here, we use computational and phylogenetic methods to identify and analyze 2014 Cas10 sequences from genomic and metagenomic databases. Cas10 proteins cluster into five distinct clades that mirror previously established CRISPR-Cas subtypes. Most Cas10 proteins (85.0%) have conserved polymerase active-site motifs, while HD-nuclease domains are less well conserved (36.0%). We identify Cas10 variants that are split over multiple genes or genetically fused to nucleases activated by cyclic nucleotides (i.e., NucC) or components of toxin-antitoxin systems (i.e., AbiEii). To clarify the functional diversification of Cas10 proteins, we cloned, expressed, and purified five representatives from three phylogenetically distinct clades. None of the Cas10s are functional cyclases in isolation, and activity assays performed with polymerase domain active site mutants indicate that previously reported Cas10 DNA-polymerase activity may be a result of contamination. Collectively, this work helps clarify the phylogenetic and functional diversity of Cas10 proteins in type III CRISPR systems.
Collapse
Affiliation(s)
- Tanner Wiegand
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Royce Wilkinson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Andrew Santiago-Frangos
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Mackenzie Lynes
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Roland Hatzenpichler
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
12
|
Cannone G, Kompaniiets D, Graham S, White MF, Spagnolo L. Structure of the Saccharolobus solfataricus type III-D CRISPR effector. Curr Res Struct Biol 2023; 5:100098. [PMID: 36843655 PMCID: PMC9945777 DOI: 10.1016/j.crstbi.2023.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
CRISPR-Cas is a prokaryotic adaptive immune system, classified into six different types, each characterised by a signature protein. Type III systems, classified based on the presence of a Cas10 subunit, are rather diverse multi-subunit assemblies with a range of enzymatic activities and downstream ancillary effectors. The broad array of current biotechnological CRISPR applications is mainly based on proteins classified as Type II, however recent developments established the feasibility and efficacy of multi-protein Type III CRISPR-Cas effector complexes as RNA-targeting tools in eukaryotes. The crenarchaeon Saccharolobus solfataricus has two type III system subtypes (III-B and III-D). Here, we report the cryo-EM structure of the Csm Type III-D complex from S. solfataricus (SsoCsm), which uses CRISPR RNA to bind target RNA molecules, activating the Cas10 subunit for antiviral defence. The structure reveals the complex organisation, subunit/subunit connectivity and protein/guide RNA interactions of the SsoCsm complex, one of the largest CRISPR effectors known.
Collapse
Affiliation(s)
- Giuseppe Cannone
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Dmytro Kompaniiets
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shirley Graham
- School of Biology, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Malcolm F. White
- School of Biology, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Laura Spagnolo
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Abstract
CRISPR-Cas is a widespread adaptive immune system in bacteria and archaea that protects against viral infection by targeting specific invading nucleic acid sequences. Whereas some CRISPR-Cas systems sense and cleave viral DNA, type III and type VI CRISPR-Cas systems sense RNA that results from viral transcription and perhaps invasion by RNA viruses. The sequence-specific detection of viral RNA evokes a cell-wide response that typically involves global damage to halt the infection. How can one make sense of an immune strategy that encompasses broad, collateral effects rather than specific, targeted destruction? In this Review, we summarize the current understanding of RNA-targeting CRISPR-Cas systems. We detail the composition and properties of type III and type VI systems, outline the cellular defence processes that are instigated upon viral RNA sensing and describe the biological rationale behind the broad RNA-activated immune responses as an effective strategy to combat viral infection.
Collapse
|
14
|
Abstract
Advances in our understanding of prokaryotic antiphage defense mechanisms in the past few years have revealed a multitude of new cyclic nucleotide signaling molecules that play a crucial role in switching infected cells into an antiviral state. Defense pathways including type III CRISPR (clustered regularly interspaced palindromic repeats), CBASS (cyclic nucleotide-based antiphage signaling system), PYCSAR (pyrimidine cyclase system for antiphage resistance), and Thoeris all use cyclic nucleotides as second messengers to activate a diverse range of effector proteins. These effectors typically degrade or disrupt key cellular components such as nucleic acids, membranes, or metabolites, slowing down viral replication kinetics at great cost to the infected cell. Mechanisms to manipulate the levels of cyclic nucleotides are employed by cells to regulate defense pathways and by viruses to subvert them. Here we review the discovery and mechanism of the key pathways, signaling molecules and effectors, parallels and differences between the systems, open questions, and prospects for future research in this area.
Collapse
Affiliation(s)
- Januka S Athukoralage
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Malcolm F White
- School of Biology, University of St Andrews, St Andrews, United Kingdom;
| |
Collapse
|
15
|
Smith EM, Ferrell S, Tokars VL, Mondragón A. Structures of an active type III-A CRISPR effector complex. Structure 2022; 30:1109-1128.e6. [PMID: 35714601 PMCID: PMC9357104 DOI: 10.1016/j.str.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) provide many prokaryotes with an adaptive immune system against invading genetic material. Type III CRISPR systems are unique in that they can degrade both RNA and DNA. In response to invading nucleic acids, they produce cyclic oligoadenylates that act as secondary messengers, activating cellular nucleases that aid in the immune response. Here, we present seven single-particle cryo-EM structures of the type III-A Staphylococcus epidermidis CRISPR effector complex. The structures reveal the intact S. epidermidis effector complex in an apo, ATP-bound, cognate target RNA-bound, and non-cognate target RNA-bound states and illustrate how the effector complex binds and presents crRNA. The complexes bound to target RNA capture the type III-A effector complex in a post-RNA cleavage state. The ATP-bound structures give details about how ATP binds to Cas10 to facilitate cyclic oligoadenylate production.
Collapse
Affiliation(s)
- Eric M Smith
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sé Ferrell
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Valerie L Tokars
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
16
|
Lee H, Sashital DG. Creating memories: molecular mechanisms of CRISPR adaptation. Trends Biochem Sci 2022; 47:464-476. [DOI: 10.1016/j.tibs.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/22/2022]
|
17
|
Nasef M, Khweis SA, Dunkle JA. The effect of crRNA-target mismatches on cOA-mediated interference by a type III-A CRISPR-Cas system. RNA Biol 2022; 19:1293-1304. [PMID: 36424814 PMCID: PMC9704408 DOI: 10.1080/15476286.2022.2150812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
CRISPR systems elicit interference when a foreign nucleic acid is detected by its ability to base-pair to crRNA. Understanding what degree of complementarity between a foreign nucleic acid and crRNA is required for interference is a central question in the study of CRISPR systems. A clear description of which target-crRNA mismatches abrogate interference in type III, Cas10-containing, CRISPR systems has proved elusive due to the complexity of the system which utilizes three distinct interference activities. We characterized the effect of target-crRNA mismatches on in vitro cyclic oligoadenylate (cOA) synthesis and in vivo in an interference assay that depends on cOA synthesis. We found that sequence context affected whether a mismatched target was recognized by crRNA both in vitro and in vivo. We also investigated how the position of a mismatch within the target-crRNA duplex affected recognition by crRNA. Our data provide support for the hypothesis that a Cas10-activating region exists in the crRNA-target duplex, that the Cas10-proximal region of the duplex is the most critical in regulating cOA synthesis. Understanding the rules governing target recognition by type III CRISPR systems is critical: as one of the most prevalent CRISPR systems in nature, it plays an important role in the survival of many genera of bacteria. Recently, type III systems were re-purposed as a sensitive and accurate molecular diagnostic tool. Understanding the rules of target recognition in this system will be critical as it is engineered for biotechnology purposes.
Collapse
Affiliation(s)
- Mohamed Nasef
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, USA
| | - Sarah A. Khweis
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, USA
| | - Jack A. Dunkle
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, USA,CONTACT Jack A. Dunkle Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
18
|
Kolesnik MV, Fedorova I, Karneyeva KA, Artamonova DN, Severinov KV. Type III CRISPR-Cas Systems: Deciphering the Most Complex Prokaryotic Immune System. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1301-1314. [PMID: 34903162 PMCID: PMC8527444 DOI: 10.1134/s0006297921100114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022]
Abstract
The emergence and persistence of selfish genetic elements is an intrinsic feature of all living systems. Cellular organisms have evolved a plethora of elaborate defense systems that limit the spread of such genetic parasites. CRISPR-Cas are RNA-guided defense systems used by prokaryotes to recognize and destroy foreign nucleic acids. These systems acquire and store fragments of foreign nucleic acids and utilize the stored sequences as guides to recognize and destroy genetic invaders. CRISPR-Cas systems have been extensively studied, as some of them are used in various genome editing technologies. Although Type III CRISPR-Cas systems are among the most common CRISPR-Cas systems, they are also some of the least investigated ones, mostly due to the complexity of their action compared to other CRISPR-Cas system types. Type III effector complexes specifically recognize and cleave RNA molecules. The recognition of the target RNA activates the effector large subunit - the so-called CRISPR polymerase - which cleaves DNA and produces small cyclic oligonucleotides that act as signaling molecules to activate auxiliary effectors, notably non-specific RNases. In this review, we provide a historical overview of the sometimes meandering pathway of the Type III CRISPR research. We also review the current data on the structures and activities of Type III CRISPR-Cas systems components, their biological roles, and evolutionary history. Finally, using structural modeling with AlphaFold2, we show that the archaeal HRAMP signature protein, which heretofore has had no assigned function, is a degenerate relative of Type III CRISPR-Cas signature protein Cas10, suggesting that HRAMP systems have descended from Type III CRISPR-Cas systems or their ancestors.
Collapse
Affiliation(s)
- Matvey V Kolesnik
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| | - Iana Fedorova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Karyna A Karneyeva
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| | - Daria N Artamonova
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| | - Konstantin V Severinov
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
| |
Collapse
|
19
|
Sridhara S, Goswami HN, Whyms C, Dennis JH, Li H. Virus detection via programmable Type III-A CRISPR-Cas systems. Nat Commun 2021; 12:5653. [PMID: 34580296 PMCID: PMC8476571 DOI: 10.1038/s41467-021-25977-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Among the currently available virus detection assays, those based on the programmable CRISPR-Cas enzymes have the advantage of rapid reporting and high sensitivity without the requirement of thermocyclers. Type III-A CRISPR-Cas system is a multi-component and multipronged immune effector, activated by viral RNA that previously has not been repurposed for disease detection owing in part to the complex enzyme reconstitution process and functionality. Here, we describe the construction and application of a virus detection method, based on an in vivo-reconstituted Type III-A CRISPR-Cas system. This system harnesses both RNA- and transcription-activated dual nucleic acid cleavage activities as well as internal signal amplification that allow virus detection with high sensitivity and at multiple settings. We demonstrate the use of the Type III-A system-based method in detection of SARS-CoV-2 that reached 2000 copies/μl sensitivity in amplification-free and 60 copies/μl sensitivity via isothermal amplification within 30 min and diagnosed SARS-CoV-2-infected patients in both settings. The high sensitivity, flexible reaction conditions, and the small molecular-driven amplification make the Type III-A system a potentially unique nucleic acid detection method with broad applications.
Collapse
Affiliation(s)
- Sagar Sridhara
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Hemant N Goswami
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Charlisa Whyms
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Jonathan H Dennis
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA.
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
20
|
Liu TY, Knott GJ, Smock DCJ, Desmarais JJ, Son S, Bhuiya A, Jakhanwal S, Prywes N, Agrawal S, Díaz de León Derby M, Switz NA, Armstrong M, Harris AR, Charles EJ, Thornton BW, Fozouni P, Shu J, Stephens SI, Kumar GR, Zhao C, Mok A, Iavarone AT, Escajeda AM, McIntosh R, Kim S, Dugan EJ, Pollard KS, Tan MX, Ott M, Fletcher DA, Lareau LF, Hsu PD, Savage DF, Doudna JA. Accelerated RNA detection using tandem CRISPR nucleases. Nat Chem Biol 2021; 17:982-988. [PMID: 34354262 PMCID: PMC10184463 DOI: 10.1038/s41589-021-00842-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
Direct, amplification-free detection of RNA has the potential to transform molecular diagnostics by enabling simple on-site analysis of human or environmental samples. CRISPR-Cas nucleases offer programmable RNA-guided RNA recognition that triggers cleavage and release of a fluorescent reporter molecule, but long reaction times hamper their detection sensitivity and speed. Here, we show that unrelated CRISPR nucleases can be deployed in tandem to provide both direct RNA sensing and rapid signal generation, thus enabling robust detection of ~30 molecules per µl of RNA in 20 min. Combining RNA-guided Cas13 and Csm6 with a chemically stabilized activator creates a one-step assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA extracted from respiratory swab samples with quantitative reverse transcriptase PCR (qRT-PCR)-derived cycle threshold (Ct) values up to 33, using a compact detector. This Fast Integrated Nuclease Detection In Tandem (FIND-IT) approach enables sensitive, direct RNA detection in a format that is amenable to point-of-care infection diagnosis as well as to a wide range of other diagnostic or research applications.
Collapse
Affiliation(s)
- Tina Y Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Gavin J Knott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Victoria, Australia
| | - Dylan C J Smock
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - John J Desmarais
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Sungmin Son
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Abdul Bhuiya
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- UC Berkeley, UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Shrutee Jakhanwal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Noam Prywes
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Shreeya Agrawal
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - María Díaz de León Derby
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- UC Berkeley, UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Neil A Switz
- Department of Physics and Astronomy, San José State University, San José, CA, USA
| | - Maxim Armstrong
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew R Harris
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Emeric J Charles
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Brittney W Thornton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Parinaz Fozouni
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey Shu
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie I Stephens
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - G Renuka Kumar
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chunyu Zhao
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Amanda Mok
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA, USA
| | | | | | - Shineui Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Eli J Dugan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Katherine S Pollard
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel A Fletcher
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- UC Berkeley, UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
| | - Liana F Lareau
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Patrick D Hsu
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.
- Berkeley Stem Cell Center, University of California, Berkeley, Berkeley, CA, USA.
| | - David F Savage
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA.
| |
Collapse
|
21
|
Lin J, Shen Y, Ni J, She Q. A type III-A CRISPR-Cas system mediates co-transcriptional DNA cleavage at the transcriptional bubbles in close proximity to active effectors. Nucleic Acids Res 2021; 49:7628-7643. [PMID: 34197611 PMCID: PMC8287949 DOI: 10.1093/nar/gkab590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Many type III CRISPR–Cas systems rely on the cyclic oligoadenylate (cOA) signaling pathway to exert immunization. However, LdCsm, a type III-A lactobacilli immune system mediates efficient plasmid clearance in spite of lacking cOA signaling. Thus, the system provides a good model for detailed characterization of the RNA-activated DNase in vitro and in vivo. We found ATP functions as a ligand to enhance the LdCsm ssDNase, and the ATP enhancement is essential for in vivo plasmid clearance. In vitro assays demonstrated LdCsm cleaved transcriptional bubbles at any positions in non-template strand, suggesting that DNA cleavage may occur for transcribing DNA. Destiny of target plasmid versus nontarget plasmid in Escherichia coli cells was investigated, and this revealed that the LdCsm effectors mediated co-transcriptional DNA cleavage to both target and nontarget plasmids, suggesting LdCsm effectors can mediate DNA cleavage to any transcriptional bubbles in close proximity upon activation. Subcellular locations of active LdCsm effectors were then manipulated by differential expression of LdCsm and CTR, and the data supported the hypothesis. Strikingly, stepwise induction experiments indicated allowing diffusion of LdCsm effector led to massive chromosomal DNA degradation, suggesting this unique IIIA system can facilitate infection abortion to eliminate virus-infected cells.
Collapse
Affiliation(s)
- Jinzhong Lin
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong 266237, P.R. China.,Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong 266237, P.R. China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong 266237, P.R. China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong 266237, P.R. China.,Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
22
|
Santiago-Frangos A, Hall LN, Nemudraia A, Nemudryi A, Krishna P, Wiegand T, Wilkinson RA, Snyder DT, Hedges JF, Cicha C, Lee HH, Graham A, Jutila MA, Taylor MP, Wiedenheft B. Intrinsic signal amplification by type III CRISPR-Cas systems provides a sequence-specific SARS-CoV-2 diagnostic. Cell Rep Med 2021; 2:100319. [PMID: 34075364 PMCID: PMC8157118 DOI: 10.1016/j.xcrm.2021.100319] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/04/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022]
Abstract
There is an urgent need for inexpensive new technologies that enable fast, reliable, and scalable detection of viruses. Here, we repurpose the type III CRISPR-Cas system for sensitive and sequence-specific detection of SARS-CoV-2. RNA recognition by the type III CRISPR complex triggers Cas10-mediated polymerase activity, which simultaneously generates pyrophosphates, protons, and cyclic oligonucleotides. We show that all three Cas10-polymerase products are detectable using colorimetric or fluorometric readouts. We design ten guide RNAs that target conserved regions of SARS-CoV-2 genomes. Multiplexing improves the sensitivity of amplification-free RNA detection from 107 copies/μL for a single guide RNA to 106 copies/μL for ten guides. To decrease the limit of detection to levels that are clinically relevant, we developed a two-pot reaction consisting of RT-LAMP followed by T7-transcription and type III CRISPR-based detection. The two-pot reaction has a sensitivity of 200 copies/μL and is completed using patient samples in less than 30 min.
Collapse
Affiliation(s)
| | - Laina N. Hall
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Anna Nemudraia
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Artem Nemudryi
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Pushya Krishna
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Tanner Wiegand
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Royce A. Wilkinson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Deann T. Snyder
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Jodi F. Hedges
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Calvin Cicha
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Helen H. Lee
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Ava Graham
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Mark A. Jutila
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Matthew P. Taylor
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
23
|
Łobocka M, Dąbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs 2021; 35:255-280. [PMID: 33881767 PMCID: PMC8084836 DOI: 10.1007/s40259-021-00480-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
The current problems with increasing bacterial resistance to antibacterial therapies, resulting in a growing frequency of incurable bacterial infections, necessitates the acceleration of studies on antibacterials of a new generation that could offer an alternative to antibiotics or support their action. Bacteriophages (phages) can kill antibiotic-sensitive as well as antibiotic-resistant bacteria, and thus are a major subject of such studies. Their efficacy in curing bacterial infections has been demonstrated in in vivo experiments and in the clinic. Unlike antibiotics, phages have a narrow range of specificity, which makes them safe for commensal microbiota. However, targeting even only the most clinically relevant strains of pathogenic bacteria requires large collections of well characterized phages, whose specificity would cover all such strains. The environment is a rich source of diverse phages, but due to their complex relationships with bacteria and safety concerns, only some naturally occurring phages can be considered for therapeutic applications. Still, their number and diversity make a detailed characterization of all potentially promising phages virtually impossible. Moreover, no single phage combines all the features required of an ideal therapeutic agent. Additionally, the rapid acquisition of phage resistance by bacteria may make phages already approved for therapy ineffective and turn the search for environmental phages of better efficacy and new specificity into an endless race. An alternative strategy for acquiring phages with desired properties in a short time with minimal cost regarding their acquisition, characterization, and approval for therapy could be based on targeted genome modifications of phage isolates with known properties. The first example demonstrating the potential of this strategy in curing bacterial diseases resistant to traditional therapy is the recent successful treatment of a progressing disseminated Mycobacterium abscessus infection in a teenage patient with the use of an engineered phage. In this review, we briefly present current methods of phage genetic engineering, highlighting their advantages and disadvantages, and provide examples of genetically engineered phages with a modified host range, improved safety or antibacterial activity, and proven therapeutic efficacy. We also summarize novel uses of engineered phages not only for killing pathogenic bacteria, but also for in situ modification of human microbiota to attenuate symptoms of certain bacterial diseases and metabolic, immune, or mental disorders.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
24
|
Type III-A CRISPR immunity promotes mutagenesis of staphylococci. Nature 2021; 592:611-615. [PMID: 33828299 DOI: 10.1038/s41586-021-03440-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 03/10/2021] [Indexed: 12/26/2022]
Abstract
Horizontal gene transfer and mutation are the two major drivers of microbial evolution that enable bacteria to adapt to fluctuating environmental stressors1. Clustered, regularly interspaced, short palindromic repeats (CRISPR) systems use RNA-guided nucleases to direct sequence-specific destruction of the genomes of mobile genetic elements that mediate horizontal gene transfer, such as conjugative plasmids2 and bacteriophages3, thus limiting the extent to which bacteria can evolve by this mechanism. A subset of CRISPR systems also exhibit non-specific degradation of DNA4,5; however, whether and how this feature affects the host has not yet been examined. Here we show that the non-specific DNase activity of the staphylococcal type III-A CRISPR-Cas system increases mutations in the host and accelerates the generation of antibiotic resistance in Staphylococcus aureus and Staphylococcus epidermidis. These mutations require the induction of the SOS response to DNA damage and display a distinct pattern. Our results demonstrate that by differentially affecting both mechanisms that generate genetic diversity, type III-A CRISPR systems can modulate the evolution of the bacterial host.
Collapse
|
25
|
Liu TY, Knott GJ, Smock DCJ, Desmarais JJ, Son S, Bhuiya A, Jakhanwal S, Prywes N, Agrawal S, de León Derby MD, Switz NA, Armstrong M, Harris AR, Charles EJ, Thornton BW, Fozouni P, Shu J, Stephens SI, Kumar GR, Zhao C, Mok A, Iavarone AT, Escajeda AM, McIntosh R, Kim SE, Dugan EJ, Pollard KS, Tan MX, Ott M, Fletcher DA, Lareau LF, Hsu PD, Savage DF, Doudna JA. Accelerated RNA detection using tandem CRISPR nucleases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.19.21253328. [PMID: 33791736 PMCID: PMC8010768 DOI: 10.1101/2021.03.19.21253328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Direct, amplification-free detection of RNA has the potential to transform molecular diagnostics by enabling simple on-site analysis of human or environmental samples. CRISPR-Cas nucleases offer programmable RNA-guided recognition of RNA that triggers cleavage and release of a fluorescent reporter molecule1,2, but long reaction times hamper sensitivity and speed when applied to point-of-care testing. Here we show that unrelated CRISPR nucleases can be deployed in tandem to provide both direct RNA sensing and rapid signal generation, thus enabling robust detection of ~30 RNA copies/microliter in 20 minutes. Combining RNA-guided Cas13 and Csm6 with a chemically stabilized activator creates a one-step assay that detected SARS-CoV-2 RNA from nasopharyngeal samples with PCR-derived Ct values up to 29 in microfluidic chips, using a compact imaging system. This Fast Integrated Nuclease Detection In Tandem (FIND-IT) approach enables direct RNA detection in a format amenable to point-of-care infection diagnosis, as well as to a wide range of other diagnostic or research applications.
Collapse
Affiliation(s)
- Tina Y. Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Gavin J. Knott
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, VIC 3800, Australia
| | - Dylan C. J. Smock
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - John J. Desmarais
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Sungmin Son
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Abdul Bhuiya
- Department of Bioengineering, University of California, Berkeley, CA, USA
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Shrutee Jakhanwal
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Noam Prywes
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Shreeya Agrawal
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - María Díaz de León Derby
- Department of Bioengineering, University of California, Berkeley, CA, USA
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Neil A. Switz
- Department of Physics and Astronomy, San José State University, San José, CA, USA
| | - Maxim Armstrong
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew R. Harris
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Emeric J. Charles
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Brittney W. Thornton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Parinaz Fozouni
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey Shu
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stephanie I. Stephens
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - G. Renuka Kumar
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chunyu Zhao
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Amanda Mok
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Anthony T. Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA, USA
| | | | | | - Shin E. Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Eli J. Dugan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | | | - Katherine S. Pollard
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| | | | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel A. Fletcher
- Department of Bioengineering, University of California, Berkeley, CA, USA
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Liana F. Lareau
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Patrick D. Hsu
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - David F. Savage
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Jennifer A. Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
26
|
Huang F, Zhu B. The Cyclic Oligoadenylate Signaling Pathway of Type III CRISPR-Cas Systems. Front Microbiol 2021; 11:602789. [PMID: 33552016 PMCID: PMC7854544 DOI: 10.3389/fmicb.2020.602789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Type III CRISPR-Cas systems, which are widespread in both bacteria and archaea, provide immunity against DNA viruses and plasmids in a transcription-dependent manner. Since an unprecedented cyclic oligoadenylate (cOA) signaling pathway was discovered in type III systems in 2017, the cOA signaling has been extensively studied in recent 3 years, which has expanded our understanding of type III systems immune defense and also its counteraction by viruses. In this review, we summarized recent advances in cOA synthesis, cOA-activated effector protein, cOA signaling-mediated immunoprotection, and cOA signaling inhibition, and highlighted the crosstalk between cOA signaling and other cyclic oligonucleotide-mediated immunity discovered very recently.
Collapse
Affiliation(s)
- Fengtao Huang
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Shivram H, Cress BF, Knott GJ, Doudna JA. Controlling and enhancing CRISPR systems. Nat Chem Biol 2021; 17:10-19. [PMID: 33328654 PMCID: PMC8101458 DOI: 10.1038/s41589-020-00700-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
Many bacterial and archaeal organisms use clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) systems to defend themselves from mobile genetic elements. These CRISPR-Cas systems are classified into six types based on their composition and mechanism. CRISPR-Cas enzymes are widely used for genome editing and offer immense therapeutic opportunity to treat genetic diseases. To realize their full potential, it is important to control the timing, duration, efficiency and specificity of CRISPR-Cas enzyme activities. In this Review we discuss the mechanisms of natural CRISPR-Cas regulatory biomolecules and engineering strategies that enhance or inhibit CRISPR-Cas immunity by altering enzyme function. We also discuss the potential applications of these CRISPR regulators and highlight unanswered questions about their evolution and purpose in nature.
Collapse
Affiliation(s)
- Haridha Shivram
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Brady F Cress
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Gavin J Knott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Victoria, Australia
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, Berkeley, CA, USA.
- Gladstone Institutes, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
28
|
Mckay A, Burgio G. Harnessing CRISPR-Cas system diversity for gene editing technologies. J Biomed Res 2021; 35:91-106. [PMID: 33797415 PMCID: PMC8038530 DOI: 10.7555/jbr.35.20200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The discovery and utilization of RNA-guided surveillance complexes, such as CRISPR-Cas9, for sequence-specific DNA or RNA cleavage, has revolutionised the process of gene modification or knockdown. To optimise the use of this technology, an exploratory race has ensued to discover or develop new RNA-guided endonucleases with the most flexible sequence targeting requirements, coupled with high cleavage efficacy and specificity. Here we review the constraints of existing gene editing and assess the merits of exploiting the diversity of CRISPR-Cas effectors as a methodology for surmounting these limitations.
Collapse
Affiliation(s)
- Alexander Mckay
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
29
|
Molina R, Sofos N, Montoya G. Structural basis of CRISPR-Cas Type III prokaryotic defence systems. Curr Opin Struct Biol 2020; 65:119-129. [DOI: 10.1016/j.sbi.2020.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022]
|
30
|
Abstract
Prokaryotes have developed numerous defense strategies to combat the constant threat posed by the diverse genetic parasites that endanger them. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas loci guard their hosts with an adaptive immune system against foreign nucleic acids. Protection starts with an immunization phase, in which short pieces of the invader's genome, known as spacers, are captured and integrated into the CRISPR locus after infection. Next, during the targeting phase, spacers are transcribed into CRISPR RNAs (crRNAs) that guide CRISPR-associated (Cas) nucleases to destroy the invader's DNA or RNA. Here we describe the many different molecular mechanisms of CRISPR targeting and how they are interconnected with the immunization phase through a third phase of the CRISPR-Cas immune response: primed spacer acquisition. In this phase, Cas proteins direct the crRNA-guided acquisition of additional spacers to achieve a more rapid and robust immunization of the population.
Collapse
Affiliation(s)
- Philip M. Nussenzweig
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Luciano A. Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
31
|
Zink IA, Wimmer E, Schleper C. Heavily Armed Ancestors: CRISPR Immunity and Applications in Archaea with a Comparative Analysis of CRISPR Types in Sulfolobales. Biomolecules 2020; 10:E1523. [PMID: 33172134 PMCID: PMC7694759 DOI: 10.3390/biom10111523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Prokaryotes are constantly coping with attacks by viruses in their natural environments and therefore have evolved an impressive array of defense systems. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is an adaptive immune system found in the majority of archaea and about half of bacteria which stores pieces of infecting viral DNA as spacers in genomic CRISPR arrays to reuse them for specific virus destruction upon a second wave of infection. In detail, small CRISPR RNAs (crRNAs) are transcribed from CRISPR arrays and incorporated into type-specific CRISPR effector complexes which further degrade foreign nucleic acids complementary to the crRNA. This review gives an overview of CRISPR immunity to newcomers in the field and an update on CRISPR literature in archaea by comparing the functional mechanisms and abundances of the diverse CRISPR types. A bigger fraction is dedicated to the versatile and prevalent CRISPR type III systems, as tremendous progress has been made recently using archaeal models in discerning the controlled molecular mechanisms of their unique tripartite mode of action including RNA interference, DNA interference and the unique cyclic-oligoadenylate signaling that induces promiscuous RNA shredding by CARF-domain ribonucleases. The second half of the review spotlights CRISPR in archaea outlining seminal in vivo and in vitro studies in model organisms of the euryarchaeal and crenarchaeal phyla, including the application of CRISPR-Cas for genome editing and gene silencing. In the last section, a special focus is laid on members of the crenarchaeal hyperthermophilic order Sulfolobales by presenting a thorough comparative analysis about the distribution and abundance of CRISPR-Cas systems, including arrays and spacers as well as CRISPR-accessory proteins in all 53 genomes available to date. Interestingly, we find that CRISPR type III and the DNA-degrading CRISPR type I complexes co-exist in more than two thirds of these genomes. Furthermore, we identified ring nuclease candidates in all but two genomes and found that they generally co-exist with the above-mentioned CARF domain ribonucleases Csx1/Csm6. These observations, together with published literature allowed us to draft a working model of how CRISPR-Cas systems and accessory proteins cross talk to establish native CRISPR anti-virus immunity in a Sulfolobales cell.
Collapse
|
32
|
Liu TY, Doudna JA. Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation. J Biol Chem 2020; 295:14473-14487. [PMID: 32817336 PMCID: PMC7573268 DOI: 10.1074/jbc.rev120.007034] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Among the multiple antiviral defense mechanisms found in prokaryotes, CRISPR-Cas systems stand out as the only known RNA-programmed pathways for detecting and destroying bacteriophages and plasmids. Class 1 CRISPR-Cas systems, the most widespread and diverse of these adaptive immune systems, use an RNA-guided multiprotein complex to find foreign nucleic acids and trigger their destruction. In this review, we describe how these multisubunit complexes target and cleave DNA and RNA and how regulatory molecules control their activities. We also highlight similarities to and differences from Class 2 CRISPR-Cas systems, which use a single-protein effector, as well as other types of bacterial and eukaryotic immune systems. We summarize current applications of the Class 1 CRISPR-Cas systems for DNA/RNA modification, control of gene expression, and nucleic acid detection.
Collapse
Affiliation(s)
- Tina Y Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Department of Chemistry, University of California, Berkeley, California, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Gladstone Institutes, University of California, San Francisco, California, USA
| |
Collapse
|