1
|
Liu XC, Wu G, Han X, Wang Y, Wu B, Wang G, Mu Y, Hong X. High-Entropy Metal Interstitials Activate TiO 2 for Robust Catalytic Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416749. [PMID: 39743965 DOI: 10.1002/adma.202416749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Substitution metal doping strategies are crucial for developing catalysts capable of activating O2, but the leaching of metal dopants has greatly hindered their potential for extensive oxidation reactions under mild conditions. Here, the study develops an entropy-increase strategy to synthesize high-entropy metal (Mg, Ca, Mn, Fe, and Co) interstitial functionalized anatase TiO2 (HE-TiO2) nanosheets, demonstrating remarkable degradation efficiency across a wide pH range and exceptional stability in a flow-by electro-catalytic reactor. Relative to that of pristine TiO2, the intense lattice distortion on the (001) plane, an average lattice expansion of 2% on the (100) plane, and decrease of second shell peak of X-ray absorption spectra serve as compelling evidence for the formation of metal interstitials in HE-TiO2. Theoretical analysis and in situ synchrotron radiation Fourier transform infrared studies reveal that the electron of metal interstitials can populate the subgap states within the host TiO2, enabling a moderate adsorption band for robust and efficient O2 activation. This study introduces a universal strategy for synthesizing a novel class of high-entropy materials with integrated metal interstitials in metal oxides, promising to enhance the stability and efficiency of O2 activation catalysts and broaden their potential applications.
Collapse
Affiliation(s)
- Xiao-Cheng Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Geng Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiao Han
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bei Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Gongming Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Mu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xun Hong
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
2
|
Zhang S, Hong H, Zhang R, Wei Z, Wang Y, Chen D, Li C, Li P, Cui H, Hou Y, Wang S, Ho JC, Guo Y, Huang Z, Zhi C. Modulating the Leverage Relationship in Nitrogen Fixation Through Hydrogen-Bond-Regulated Proton Transfer. Angew Chem Int Ed Engl 2025; 64:e202412830. [PMID: 39157915 DOI: 10.1002/anie.202412830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 08/20/2024]
Abstract
In the electrochemical nitrogen reduction reaction (NRR), a leverage relationship exists between NH3-producing activity and selectivity because of the competing hydrogen evolution reaction (HER), which means that high activity with strong protons adsorption causes low product selectivity. Herein, we design a novel metal-organic hydrogen bonding framework (MOHBF) material to modulate this leverage relationship by a hydrogen-bond-regulated proton transfer pathway. The MOHBF material was composited with reduced graphene oxide (rGO) to form a Ni-N2O2 molecular catalyst (Ni-N2O2/rGO). The unique structure of O atoms in Ni-O-C and N-O-H could form hydrogen bonds with H2O molecules to interfere with protons being directly adsorbed onto Ni active sites, thus regulating the proton transfer mechanism and slowing the HER kinetics, thereby modulating the leverage relationship. Moreover, this catalyst has abundant Ni-single-atom sites enriched with Ni-N/O coordination, conducive to the adsorption and activation of N2. The Ni-N2O2/rGO exhibits simultaneously enhanced activity and selectivity of NH3 production with a maximum NH3 yield rate of 209.7 μg h-1 mgcat. -1 and a Faradaic efficiency of 45.7 %, outperforming other reported single-atom NRR catalysts.
Collapse
Affiliation(s)
- Shaoce Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Rong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Zhiquan Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yiqiao Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Dong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Chuan Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Huilin Cui
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Yue Hou
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Shengnan Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ying Guo
- College of Materials Science and Engineering, Shenzhen University, 518061, Shenzhen, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
- Centre for Functional Photonics, City University of Hong Kong, Kowloon, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
3
|
Hong H, Liu D, Yang B, Cao Q, Liu C, Wu L, Wang D. Exploring the Intrinsic Effects of Lattice Strain on the Hydrogen Evolution Reaction via Electric-Field-Induced Strain in FePt Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69599-69607. [PMID: 39630485 DOI: 10.1021/acsami.4c16120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Strain engineering has the potential to modify the adsorption process and enhance the electrocatalytic activity, especially in the hydrogen evolution reaction (HER). However, the introduction of lattice strain in electrocatalysts is often accompanied by a change in chemical composition, surface morphology, or phase structure to a certain extent, impeding the investigation of the intrinsic strain effect on HER. In this work, the FePt film was deposited on a Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) substrate to construct the FePt/PMN-PT heterojunction, and the continuously adjustable nonvolatile lattice strain is induced by the asymmetric electric field manipulation avoiding the aforementioned disturbance factors. HER experimental results demonstrate a drastic improvement in the overpotential of FePt with the largest tensile strain of 3000 ppm, and the observed variation of HER performance indicates an upward trend as the tensile strain increases. Density functional theory calculations reveal that the Gibbs free energy of FePt with the appropriate tensile strain is closer to zero, attributed to the downward shift of the d-band center. Our study provides an approach to continuously regulate the lattice strain with less interference factors, facilitating the exploration of the intrinsic strain effect on a wide range of catalysts.
Collapse
Affiliation(s)
- Hong Hong
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing 210093, China
| | - Dongxue Liu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing 210093, China
| | - Bo Yang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Qingqi Cao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing 210093, China
| | - Chaoran Liu
- Hangzhou Dianzi University, Hangzhou 310018, China
| | - Liqian Wu
- Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dunhui Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing 210093, China
- Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
4
|
Zhang L, Wang R, Liang Li G, Niu H, Bai Y, Jiao T, Zhang X, Liu R, Streb C, Yuan M, Zhang G. Boosting electrocatalytic ammonia synthesis from nitrate by asymmetric chemical potential activated interfacial electric fields. J Colloid Interface Sci 2024; 676:636-646. [PMID: 39053411 DOI: 10.1016/j.jcis.2024.07.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The electrocatalytic nitrate reduction reaction (NO3- RR) has immense potential to alleviate the problem of groundwater pollution and may also become a key route for the environmentally benign production of ammonia (NH3) products. Here, the unique effects of interfacial electric fields arising from asymmetric chemical potentials and local defects were integrated into the binary Bi2S3-Bi2O3 sublattices for enhancing electrocatalytic nitrate reduction reactions. The obtained binary system showed a superior Faraday efficiency (FE) for ammonia production of 94 % and an NH3 yield rate of 89.83 mg gcat-1h-1 at -0.4 V vs. RHE. Systematic experimental and computational results confirmed that the concerted interplay between interfacial electric fields and local defects not only promoted the accumulation and adsorption of NO3-, but also contributed to the destabilization of *NO and the subsequent deoxygenation hydrogenation reaction. This work will stimulate future designs of heterostructured catalysts for efficient electrocatalytic nitrate reduction reactions.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; Center of Materials Science and Optoelectronics Engineering, Chinese Academy of Sciences, Beijing 100049, PR China; CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Runzhi Wang
- Center of Materials Science and Optoelectronics Engineering, Chinese Academy of Sciences, Beijing 100049, PR China; CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Guo Liang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Hexu Niu
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Queen Mary University of London Engineering School, Northwestern Polytechnical University Xi'an, 710072, PR China
| | - Yiling Bai
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; National Energy Center for Coal to Liquids, Synfuels China Technology C. Ltd, Beijing 101400, PR China
| | - Tianao Jiao
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Queen Mary University of London Engineering School, Northwestern Polytechnical University Xi'an, 710072, PR China
| | - Xuehua Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Rongji Liu
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Carsten Streb
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Menglei Yuan
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Queen Mary University of London Engineering School, Northwestern Polytechnical University Xi'an, 710072, PR China.
| | - Guangjin Zhang
- Center of Materials Science and Optoelectronics Engineering, Chinese Academy of Sciences, Beijing 100049, PR China; CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
5
|
Krishnapriya VU, Suresh CH. Beyond the triple bond: unlocking dinitrogen activation with tailored superbase phosphines. Dalton Trans 2024; 53:19235-19245. [PMID: 39530230 DOI: 10.1039/d4dt02703e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Activating atmospheric dinitrogen (N2), a molecule with a remarkably strong triple bond, remains a major challenge in chemistry. This theoretical study explores the potential of superbase phosphines, specifically those decorated with imidazolin-2-imine ((ImN)3P) and imidazolin-2-methylidene ((ImCH)3P) to facilitate N2 activation and subsequent hydrazine (H2NNH2) formation. Using density functional theory (DFT) at the M06L/6-311++G(d,p) level, we investigated the interactions between these phosphines and N2. Mono-phosphine-N2 complexes exhibit weak, noncovalent interactions (-0.6 to -7.1 kcal mol-1). Notably, two superbasic phosphines also form high-energy hypervalent complexes with N2, albeit at significantly higher energies. The superbasic nature and potential for the hypervalency of these phosphines lead to substantial N2 activation in bis-phosphine-N2 complexes, where N2 is "sandwiched" between two phosphine moieties through hypervalent P-N bonds. Among the phosphines studied, only (ImN)3P forms an exothermic sandwich complex with N2, stabilized by hydrogen bonding between the ImN substituents and the central N2 molecule. A two-step, exothermic hydrogen transfer pathway from (ImN)3P to N2 results in the formation of a bis-phosphine-diimine (HNNH) sandwich complex. Subsequent hydrogen transfer leads to the formation of a bis-phosphine-hydrazine (H2NNH2) complex, a process that, although endothermic, exhibits surmountable activation barriers. The relatively low energy requirements for this overall transformation suggest its potential feasibility under the optimized conditions. This theoretical exploration highlights the promise of superbase phosphines as a strategy for metal-free N2 activation, opening doors for the development of more efficient and sustainable nitrogen fixation and utilization methods.
Collapse
Affiliation(s)
- Vilakkathala U Krishnapriya
- Chemical Science and Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram - 695019, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram, 695034, Kerala, India.
| | - Cherumuttathu H Suresh
- Research Centre, University of Kerala, Thiruvananthapuram, 695034, Kerala, India.
- Srinivasa Ramanujan Institute for Basic Sciences, Kerala State Council for Science Technology and Environment, Kottayam, 686501, Kerala, India
| |
Collapse
|
6
|
Zhen Z, Gao X, Chen J, Chen Y, Chen X, Cui L. Research Progress on Ni-Based Electrocatalysts for the Electrochemical Reduction of Nitrogen to Ammonia. Chemistry 2024; 30:e202402562. [PMID: 39210677 DOI: 10.1002/chem.202402562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The electrochemical nitrogen reduction reaction (NRR) to synthesize ammonia (NH3) is considered as a promising method due to its approvable advantages of zero-pollution emission, feasible reaction proceedings, good safety and easy management. The multiple efforts have been devoted to the exploration of earth-abundant-element-based nanomaterials as high-efficiency electrocatalysts for realizing their industrial applications. Among these, the Ni-based nanomaterials is prioritized as an attractive non-noble-metal electrocatalysts for catalyzing NRR because they are earth-abundance and exceedingly easy to synthesize as well as also delivers the potential of high electrocatalytic activity and durability. In this review, after briefly elucidating the underlying mechanisms of NRR during the electrochemical process, we systematically sum up the recent research progress in representative Ni-based electrocatalysts, including monometallic Ni-based nanomaterials, bimetallic Ni-based nanomaterials, polymetallic Ni-based nanomaterials, etc. In particular, we discuss the effects of physicochemical properties, such as phases, crystallinity, morphology, composition, defects, heteroatom doping, and strain engineering, on the comprehensive performance of the abovementioned electrocatalysts, with the aim of establishing the nanostructure-function relationships of the electrocatalysts. In addition, the promising directions of Ni-based electrocatalysts for NRR are also pointed out and highlighted. The generic approach in this review may expand the frontiers of NRR and provides the inspiration for developing high-efficiently Ni-based electrocatalysts.
Collapse
Affiliation(s)
- Zheng Zhen
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Gao
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiayi Chen
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ya Chen
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Chen
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lifeng Cui
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
7
|
He C, Li Q, Ye Z, Wang L, Gong Y, Li S, Wu J, Lu Z, Wu S, Zhang J. Regulating Atomically-Precise Pt Sites for Boosting Light-Driven Dry Reforming of Methane. Angew Chem Int Ed Engl 2024; 63:e202412308. [PMID: 39129646 DOI: 10.1002/anie.202412308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Light-driven dry reforming of methane is a promising and mild route to convert two greenhouse gas into valuable syngas. However, developing facile strategy to atomically-precise regulate the active sites and realize balanced and stable syngas production is still challenging. Herein, we developed a spatial confinement approach to precisely control over platinum species on TiO2 surfaces, from single atoms to nanoclusters. The configuration comprising single atoms and sub-nanoclusters engenders pronounced electronic metal-support interactions, with resultant interfacial states prompting surface charge rearrangement. The unique geometric and electronic properties of these atom-cluster assemblies facilitate effective activation of CH4 and CO2, accelerating intermediate coupling and minimizing side reactions. Our catalyst exhibits an outstanding syngas generation rate of 34.41 mol gPt -1 h-1 with superior durability, displaying high apparent quantum yield of 9.1 % at 365 nm and turnover frequency of 1289 h-1. This work provides insightful understanding for exploring more multi-molecule systems at an atomic scale.
Collapse
Affiliation(s)
- Chengxuan He
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Qixin Li
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Zhicheng Ye
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Lijie Wang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Yalin Gong
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Songting Li
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Jiaxin Wu
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Zhaojun Lu
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Shiqun Wu
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| |
Collapse
|
8
|
Hou X, Li Y, Zhang H, Lund PD, Kwan J, Tsang SCE. Black titanium oxide: synthesis, modification, characterization, physiochemical properties, and emerging applications for energy conversion and storage, and environmental sustainability. Chem Soc Rev 2024; 53:10660-10708. [PMID: 39269216 DOI: 10.1039/d4cs00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Since its advent in 2011, black titanium oxide (B-TiOx) has garnered significant attention due to its exceptional optical characteristics, notably its enhanced absorption spectrum ranging from 200 to 2000 nm, in stark contrast to its unmodified counterpart. The escalating urgency to address global climate change has spurred intensified research into this material for sustainable hydrogen production through thermal, photocatalytic, electrocatalytic, or hybrid water-splitting techniques. The rapid advancements in this dynamic field necessitate a comprehensive update. In this review, we endeavor to provide a detailed examination and forward-looking insights into the captivating attributes, synthesis methods, modifications, and characterizations of B-TiOx, as well as a nuanced understanding of its physicochemical properties. We place particular emphasis on the potential integration of B-TiOx into solar and electrochemical energy systems, highlighting its applications in green hydrogen generation, CO2 reduction, and supercapacitor technology, among others. Recent breakthroughs in the structure-property relationship of B-TiOx and its applications, grounded in both theoretical and empirical studies, are underscored. Additionally, we will address the challenges of scaling up B-TiOx production, its long-term stability, and economic viability to align with ambitious future objectives.
Collapse
Affiliation(s)
- Xuelan Hou
- Department of Engineering Sciences, University of Oxford, Oxford, OX1 3PJ, UK.
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| | - Yiyang Li
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| | - Hang Zhang
- Department of Applied Physics, School of Science, Aalto University, P. O. Box 15100, FI-00076 Aalto, Finland
| | - Peter D Lund
- Department of Applied Physics, School of Science, Aalto University, P. O. Box 15100, FI-00076 Aalto, Finland
| | - James Kwan
- Department of Engineering Sciences, University of Oxford, Oxford, OX1 3PJ, UK.
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| |
Collapse
|
9
|
Liu C, Li T, Dai X, Zhao J, Zhang L, Cui X. Mechanism regulation over dual-atom catalyst enables high-performance oxidative alcohol esterification. Sci Bull (Beijing) 2024:S2095-9273(24)00631-5. [PMID: 39277521 DOI: 10.1016/j.scib.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
The development of heterogeneous catalysts with well-defined uniform isolated or multiple active sites is of great importance for understanding catalytic performances and studying reaction mechanisms. Herein, we present a CoCu dual-atom catalyst (CoCu-DAC) where bonded Co-Cu dual-atom sites are embedded in N-doped carbon matrix with a well-defined Co(OH)CuN6 structure. The CoCu-DAC exhibits higher catalytic activity and selectivity than the Co single-atom catalyst (Co-SAC) and Cu single-atom catalyst (Cu-SAC) counterparts in the catalytic oxidative esterification of alcohols and a variety of methyl and alkyl esters have been successfully synthesized. Kinetic studies reveal that the activation energy (29.7 kJ mol-1) over CoCu-DAC is much lower than that over Co-SAC (38.4 kJ mol-1) and density functional theory (DFT) studies disclose that two different mechanisms are regulated over CoCu-DAC and Co-SAC/Cu-SAC in three-step esterification of alcohols. The bonded Co-Cu and adjacent N species efficiently catalyze the elementary reactions of alcohol dehydrogenation, O2 activation and ester formation, respectively. The stepwise alkoxy pathway (O-H and C-H scissions) is preferred for both alcohol dehydrogenation and ester formation over CoCu-DAC, while the progressive hydroxylalkyl pathway (C-H and O-H scissions) for alcohol dehydrogenation and simultaneous hemiacetal dehydrogenation are favored over Co-SAC and Cu-SAC. Characteristic peaks in the Fourier transform infrared spectroscopy analysis may confirm the formation of the metal-C intermediate and the hydroxylalkyl pathway over Co-SAC.
Collapse
Affiliation(s)
- Ce Liu
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Teng Li
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xingchao Dai
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jian Zhao
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Liping Zhang
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjiang Cui
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
10
|
Li Y, Wei Z, Sun Z, Zhai H, Li S, Chen W. Sulfur Modified Carbon-Based Single-Atom Catalysts for Electrocatalytic Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401900. [PMID: 38798155 DOI: 10.1002/smll.202401900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/05/2024] [Indexed: 05/29/2024]
Abstract
Efficient and sustainable energy development is a powerful tool for addressing the energy and environmental crises. Single-atom catalysts (SACs) have received high attention for their extremely high atom utilization efficiency and excellent catalytic activity, and have broad application prospects in energy development and chemical production. M-N4 is an active center model with clear catalytic activity, but its catalytic properties such as catalytic activity, selectivity, and durability need to be further improved. Adjustment of the coordination environment of the central metal by incorporating heteroatoms (e.g., sulfur) is an effective and feasible modification method. This paper describes the precise synthetic methods for introducing sulfur atoms into M-N4 and controlling whether they are directly coordinated with the central metal to form a specific coordination configuration, the application of sulfur-doped carbon-based single-atom catalysts in electrocatalytic reactions such as ORR, CO2RR, HER, OER, and other electrocatalytic reaction are systematically reviewed. Meanwhile, the effect of the tuning of the electronic structure and ligand configuration parameters of the active center due to doped sulfur atoms with the improvement of catalytic performance is introduced by combining different characterization and testing methods. Finally, several opinions on development of sulfur-doped carbon-based SACs are put forward.
Collapse
Affiliation(s)
- Yinqi Li
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zihao Wei
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhiyi Sun
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huazhang Zhai
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shenghua Li
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
11
|
Lee W, Choung S, Kim S, Hong J, Kim D, Tarpeh WA, Han JW, Cho K. Atomically Dispersed Ru-doped Ti 4O 7 Electrocatalysts for Chlorine Evolution Reaction with a Universal Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401248. [PMID: 38639029 DOI: 10.1002/smll.202401248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Chlorine has been supplied by the chlor-alkali process that deploys dimensionally stable anodes (DSAs) for the electrochemical chlorine evolution reaction (ClER). The paramount bottlenecks have been ascribed to an intensive usage of precious elements and inevitable competition with the oxygen evolution reaction. Herein, a unique case of Ru2+-O4 active motifs anchored on Magnéli Ti4O7 (Ru-Ti4O7) via a straightforward wet impregnation and mild annealing is reported. The Ru-Ti4O7 performs radically active ClER with minimal deployment of Ru (0.13 wt%), both in 5 m NaCl (pH 2.3) and 0.1 m NaCl (pH 6.5) electrolytes. Scanning electrochemical microscopy demonstrates superior ClER selectivity on Ru-Ti4O7 compared to the DSA. Operando X-ray absorption spectroscopy and density functional theory calculations reveal a universally active ClER (over a wide range of pH and [Cl-]), through a direct adsorption of Cl- on Ru2+-O4 sites as the most plausible pathway, together with stabilized ClO* at low [Cl-] and high pH.
Collapse
Affiliation(s)
- Woonghee Lee
- Department of Chemical Engineering, Stanford University, California, 94305, USA
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seokhyun Choung
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seok Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600, Switzerland
| | - Jiyun Hong
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, California, 94025, USA
| | - Doyeon Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, California, 94305, USA
| | - Jeong Woo Han
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangwoo Cho
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University International Campus, Incheon, 21983, Republic of Korea
| |
Collapse
|
12
|
Ismael M, Wark M. A recent review on photochemical and electrochemical nitrogen reduction to ammonia: Strategies to improve NRR selectivity and faradaic efficiency. APPLIED MATERIALS TODAY 2024; 39:102253. [DOI: 10.1016/j.apmt.2024.102253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
He C, Chen Y, Hao Z, Wang L, Wang M, Cui X. Mechanocatalytic Synthesis of Ammonia by Titanium Dioxide with Bridge-Oxygen Vacancies: Investigating Mechanism from the Experimental and First-Principle Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309500. [PMID: 38368265 DOI: 10.1002/smll.202309500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Indexed: 02/19/2024]
Abstract
Mechanochemical ammonia (NH3) synthesis is an emerging mild approach derived from nitrogen (N2) gas and hydrogen (H) source. The gas-liquid phase mechanochemical process utilizes water (H2O), rather than conventional hydrogen (H2) gas, as H sources, thus avoiding carbon dioxide (CO2) emission during H2 production. However, ammonia yield is relatively low to meet practical demand due to huge energy barriers of N2 activation and H2O dissociation. Here, six transition metal oxides (TMO) such as titanium dioxide (TiO2), iron(III) oxide (Fe2O3), copper(II) oxide (CuO), niobium(V) oxide(Nb2O5), zinc oxide (ZnO), and copper(I) oxide (Cu2O) are investigated as catalysts in mechanochemical N2 fixation. Among them, TiO2 shows the best mechanocatalytic effect and the optimum reaction rate constant is 3.6-fold higher than the TMO-free process. The theoretical calculations show that N2 molecules prefer to side-on chemisorb on the mechano-induced bridge-oxygen vacancies in the (101) crystal plane of TiO2 catalyst, while H2O molecules can dissociate on the same sites more easily to provide free H atoms, enabling an alternative-way hydrogeneration process of activated N2 molecules to release NH3 eventually. This work highlights the cost-effective TiO2 mechanocatalyst for ammonia synthesis under mild conditions and proposes a defect-engineering-induced mechanocatalytic mechanism to promote N2 activation and H2O dissociation.
Collapse
Affiliation(s)
- Chengli He
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yang Chen
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Zixiang Hao
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Linrui Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Mingyan Wang
- School of Environment and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Xiaoli Cui
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
14
|
He Y, Dai S, Sheng J, Ren Q, Lv Y, Sun Y, Dong F. In situ fabrication of atomically adjacent dual-vacancy sites for nearly 100% selective CH 4 production. Proc Natl Acad Sci U S A 2024; 121:e2322107121. [PMID: 38857396 PMCID: PMC11194552 DOI: 10.1073/pnas.2322107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/26/2024] [Indexed: 06/12/2024] Open
Abstract
The photocatalytic CO2-to-CH4 conversion involves multiple consecutive proton-electron coupling transfer processes. Achieving high CH4 selectivity with satisfactory conversion efficiency remains challenging since the inefficient proton and electron delivery path results in sluggish proton-electron transfer kinetics. Herein, we propose the fabrication of atomically adjacent anion-cation vacancy as paired redox active sites that could maximally promote the proton- and electron-donating efficiency to simultaneously enhance the oxidation and reduction half-reactions, achieving higher photocatalytic CO2 reduction activity and CH4 selectivity. Taking TiO2 as a photocatalyst prototype, the operando electron paramagnetic resonance spectra, quasi in situ X-ray photoelectron spectroscopy measurements, and high-angle annular dark-field-scanning transmission electron microscopy image analysis prove that the VTi on TiO2 as initial sites can induce electron redistribution and facilitate the escape of the adjacent oxygen atom, thereby triggering the dynamic creation of atomically adjacent dual-vacancy sites during photocatalytic reactions. The dual-vacancy sites not only promote the proton- and electron-donating efficiency for CO2 activation and protonation but also modulate the coordination modes of surface-bound intermediate species, thus converting the endoergic protonation step to an exoergic reaction process and steering the CO2 reduction pathway toward CH4 production. As a result, these in situ created dual active sites enable nearly 100% CH4 selectivity and evolution rate of 19.4 μmol g-1 h-1, about 80 times higher than that of pristine TiO2. Thus, these insights into vacancy dynamics and structure-function relationship are valuable to atomic understanding and catalyst design for achieving highly selective catalysis.
Collapse
Affiliation(s)
- Ye He
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu611731, China
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Jianping Sheng
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Qin Ren
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Yao Lv
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Yanjuan Sun
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Fan Dong
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu611731, China
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| |
Collapse
|
15
|
Biswas S, Zhou J, Chen XL, Chi C, Pan YA, Cui P, Li J, Liu C, Xia XH. Synergistic Al-Al Dual-Atomic Site for Efficient Artificial Nitrogen Fixation. Angew Chem Int Ed Engl 2024; 63:e202405493. [PMID: 38604975 DOI: 10.1002/anie.202405493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Synthesis of ammonia by electrochemical nitrogen reduction reaction (NRR) is a promising alternative to the Haber-Bosch process. However, it is commonly obstructed by the high activation energy. Here, we report the design and synthesis of an Al-Al bonded dual atomic catalyst stabilized within an amorphous nitrogen-doped porous carbon matrix (Al2NC) with high NRR performance. The dual atomic Al2-sites act synergistically to catalyze the complex multiple steps of NRR through adsorption and activation, enhancing the proton-coupled electron transfer. This Al2NC catalyst exhibits a high Faradaic efficiency of 16.56±0.3 % with a yield rate of 29.22±1.2 μg h-1 mgcat -1. The dual atomic Al2NC catalyst shows long-term repeatable, and stable NRR performance. This work presents an insight into the identification of synergistic dual atomic catalytic site and mechanistic pathway for the electrochemical conversion of N2 to NH3.
Collapse
Affiliation(s)
- Sudip Biswas
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jingwen Zhou
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xue-Lu Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chen Chi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-An Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Peixin Cui
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jian Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chungen Liu
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
16
|
Gu Y, Chen W, Chen L, Liu M, Zhao K, Wang Z, Yu H. Electrochemical coalescence of oil-in-water droplets in microchannels of TiO 2-x/Ti anode via polarization eliminating electrostatic repulsion and ·OH oxidation destroying oil-water interface film. WATER RESEARCH 2024; 255:121550. [PMID: 38579590 DOI: 10.1016/j.watres.2024.121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Electrochemistry is a sustainable technology for oil-water separation. In the common flat electrode scheme, due to a few centimeters away from the anode, oil droplets have to undergo electromigration to and electrical neutralization at the anodic surface before they coalesce into large oil droplets and rise to water surface, resulting in slow demulsification and easy anode fouling. Herein, a novel strategy is proposed on basis of a TiO2-x/Ti anode with microchannels to overcome these problems. When oil droplets with several microns in diameter flow through channels with tens of microns in diameter, the electromigration distance is shortened by three orders of magnitude, electrical neutralization is replaced by polarization coupling ·OH oxidation. The new strategy was supported by experimental results and theoretical analysis. Taking the suspension containing emulsified oil as targets, COD value dropped from initial 500 mg/L to 117 mg/L after flowing through anodic microchannels in only 58 s of running time, and the COD removal was 21 times higher than that for a plate anode. At similar COD removal, the residence time was 48 times shorter than that of reported flat electrodes. Coalescences of oil droplets in microchannels were observed by a confocal laser scanning microscopy. This new strategy opens a door for using microchannel electrodes to accelerate electrochemical coalescence of oil-in-water droplets.
Collapse
Affiliation(s)
- Yuwei Gu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Weiqiang Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Li Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Meng Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Kun Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhichen Wang
- Suzhou Guolong Technology Development Co., Ltd, Suzhou 215217, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
17
|
Zhang Y, Wang Y, Ma N, Liang B, Xiong Y, Fan J. Revealing the Adsorption Behavior of Nitrogen Reduction Reaction on Strained Ti 2 CO 2 by a Spin-Polarized d-band Center Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306840. [PMID: 37863825 DOI: 10.1002/smll.202306840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/08/2023] [Indexed: 10/22/2023]
Abstract
Electrocatalytic reduction of dinitrogen to ammonia has attracted significant research interest. Herein, it reports the boosting performance of electrocatalytic nitrogen reduction on Ti2 CO2 MXene with an oxygen vacancy through biaxial tensile strain engineering. Specifically, tensile strain modified electronic structures and formation energy of oxygen vacancy are evaluated. The exposed Ti atoms with additional electron states near the Fermi level serve as active site for intermediate adsorption, leading to superior catalytic performance (Ulimit = -0.44 V) under 2.5% biaxial tensile strain through a distal mechanism. However, the two sides of the "Sabatier optimum" in volcano plot are not limited by two different electronic steps, but are induced by the diverse adsorption behaviors of intermediates. Crucially, the "Sabatier optimum" results from the different response speeds of the adsorption energy for *N2 and *NNH to strains. Moreover, the authors observe conventional d-band adsorption for *N2 and *NNH, non-linear adsorption for *NNH2 , and abnormal d-band adsorption for *N, *NH, *NH2 , and *NH3 , which can be explained by the competition between attractive orbital hybridization and repulsive orbital orthogonalization with the spin-polarized d-band model, which further clarifies the contributions of 3σ → dz2 and dxz /dyz → 2π* to the overall population of bonding and anti-bonding states.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yuhang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ninggui Ma
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Bochun Liang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yu Xiong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
18
|
Tang JY, Liu XJ, Guo RT, Wang J, Wang QS, Pan WG. Constructing Cu defect band within TiO 2 and supporting NiO x nanoparticles for efficient CO 2 photoreduction. Dalton Trans 2024; 53:4088-4097. [PMID: 38314797 DOI: 10.1039/d3dt04191c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Effectively harnessing solar energy for the conversion of CO2 into valuable chemical energy presents a viable solution to address energy scarcity and climate change concerns. Nonetheless, the limited light absorption and sluggish charge kinetics significantly hinder the photoreduction of CO2. In this study, we employed a facile sol-gel method combined with wetness impregnation to synthesize Cu-doped TiO2 coated with NiOx nanoparticles. Various characterizations verified the successful incorporation of Cu ions into the TiO2 crystal lattice and the formation of NiOx co-catalysts within the composites. The optimal performance attained with CTN-0.5 demonstrates an output of 11.85 μmol h-1 g-1 for CO and 9.51 μmol h-1 g-1 for CH4, which represent a 4.4-fold and 15.6-fold increase, respectively, compared to those achieved with pure TiO2. The induced Cu defect band broadens the light absorption by decreasing the conduction band edge of TiO2, while NiOx upshifts the valence band of TiO2 because of the interaction of valence orbitals. Light irradiation EPR and FTIR tests suggest that the collaboration of CuOx and NiOx promotes the formation of oxygen vacancies/defects and a rapid charge transfer pathway, thereby provides numerous active sites and electrons to enhance CO2 photoreduction performance.
Collapse
Affiliation(s)
- Jun-Ying Tang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao-Jing Liu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
| | - Juan Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qing-Shan Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
| |
Collapse
|
19
|
Yuan J, Feng W, Zhang Y, Xiao J, Zhang X, Wu Y, Ni W, Huang H, Dai W. Unraveling Synergistic Effect of Defects and Piezoelectric Field in Breakthrough Piezo-Photocatalytic N 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303845. [PMID: 37638643 DOI: 10.1002/adma.202303845] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/27/2023] [Indexed: 08/29/2023]
Abstract
Piezo-photocatalysis is a frontier technology for converting mechanical and solar energies into crucial chemical substances and has emerged as a promising and sustainable strategy for N2 fixation. Here, for the first time, defects and piezoelectric field are synergized to achieve unprecedented piezo-photocatalytic nitrogen reduction reaction (NRR) activity and their collaborative catalytic mechanism is unraveled over BaTiO3 with tunable oxygen vacancies (OVs). The introduced OVs change the local dipole state to strengthen the piezoelectric polarization of BaTiO3 , resulting in a more efficient separation of photogenerated carrier. Ti3+ sites adjacent to OVs promote N2 chemisorption and activation through d-π back-donation with the help of the unpaired d-orbital electron. Furthermore, a piezoelectric polarization field could modulate the electronic structure of Ti3+ to facilitate the activation and dissociation of N2 , thereby substantially reducing the reaction barrier of the rate-limiting step. Benefitting from the synergistic reinforcement mechanism and optimized surface dynamics processes, an exceptional piezo-photocatalytic NH3 evolution rate of 106.7 µmol g-1 h-1 is delivered by BaTiO3 with moderate OVs, far surpassing that of previously reported piezocatalysts/piezo-photocatalysts. New perspectives are provided here for the rational design of an efficient piezo-photocatalytic system for the NRR.
Collapse
Affiliation(s)
- Jie Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wenhui Feng
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha, 410022, P. R. China
| | - Yongfan Zhang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jianyu Xiao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiaoyan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yinting Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wenkang Ni
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Wenxin Dai
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
20
|
Cooney S, Walls MRA, Schreiber E, Brennessel WW, Matson EM. Heterometal Dopant Changes the Mechanism of Proton-Coupled Electron Transfer at the Polyoxovanadate-Alkoxide Surface. J Am Chem Soc 2024; 146:2364-2369. [PMID: 38241170 PMCID: PMC10835708 DOI: 10.1021/jacs.3c14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
The transfer of two H-atom equivalents to the titanium-doped polyoxovanadate-alkoxide, [TiV5O6(OCH3)13], results in the formation of a V(III)-OH2 site at the surface of the assembly. Incorporation of the group (IV) metal ion results in a weakening of the O-H bonds of [TiV5O5(OH2)(OCH3)13] in comparison to its homometallic congener, [V6O6(OH2)(OCH3)12], resembling more closely the thermodynamics reported for the one-electron reduced derivative, [V6O6(OH2)(OCH3)12]1-. An analysis of early time points of the reaction of [TiV5O6(OCH3)13] and 5,10-dihydrophenazine reveals the formation of an oxidized substrate, suggesting that proton-coupled electron transfer proceeds via initial electron transfer from substrate to cluster prior to proton transfer. These results demonstrate the profound influence of heterometal dopants on the mechanism of PCET with respect to the surface of the assembly.
Collapse
Affiliation(s)
- Shannon
E. Cooney
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - M. Rebecca A. Walls
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - Eric Schreiber
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - William W. Brennessel
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - Ellen M. Matson
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
21
|
Peng H, Yang H, Han J, Liu X, Su D, Yang T, Liu S, Pao CW, Hu Z, Zhang Q, Xu Y, Geng H, Huang X. Defective ZnIn 2S 4 Nanosheets for Visible-Light and Sacrificial-Agent-Free H 2O 2 Photosynthesis via O 2/H 2O Redox. J Am Chem Soc 2023; 145:27757-27766. [PMID: 38059839 DOI: 10.1021/jacs.3c10390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
H2O2 photosynthesis has attracted great interest in harvesting and converting solar energy to chemical energy. Nevertheless, the high-efficiency process of H2O2 photosynthesis is driven by the low H2O2 productivity due to the recombination of photogenerated electron-hole pairs, especially in the absence of a sacrificial agent. In this work, we demonstrate that ultrathin ZnIn2S4 nanosheets with S vacancies (Sv-ZIS) can serve as highly efficient catalysts for H2O2 photosynthesis via O2/H2O redox. Mechanism studies confirm that Sv in ZIS can extend the lifetimes of photogenerated carriers and suppress their recombination, which triggers the O2 reduction and H2O oxidation to H2O2 through radical initiation. Theoretical calculations suggest that the formation of Sv can strongly change the coordination structure of ZIS, modulating the adsorption abilities to intermediates and avoiding the overoxidation of H2O to O2 during O2/H2O redox, synergistically promoting 2e- O2 reduction and 2e- H2O oxidation for ultrahigh H2O2 productivity. The optimal catalyst displays a H2O2 productivity of 1706.4 μmol g-1 h-1 under visible-light irradiation without a sacrificial agent, which is ∼29 times higher than that of pristine ZIS (59.4 μmol g-1 h-1) and even much higher than those of reported photocatalysts. Impressively, the apparent quantum efficiency is up to 9.9% at 420 nm, and the solar-to-chemical conversion efficiency reaches ∼0.81%, significantly higher than the value for natural synthetic plants (∼0.10%). This work provides a facile strategy to separate the photogenerated electron-hole pairs of ZIS for H2O2 photosynthesis, which may promote fundamental research on solar energy harvest and conversion.
Collapse
Affiliation(s)
- Huiping Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongcen Yang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
| | - Jiajia Han
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Tang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | - Qiaobao Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yong Xu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
22
|
Guo H, Yang P, Yang Y, Wu H, Zhang F, Huang ZF, Yang G, Zhou Y. Vacancy-Mediated Control of Local Electronic Structure for High-Efficiency Electrocatalytic Conversion of N 2 to NH 3. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2309007. [PMID: 38037488 DOI: 10.1002/smll.202309007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Ambient electrocatalytic nitrogen (N2 ) reduction has gained significant recognition as a potential substitute for producing ammonia (NH3 ). However, N2 adsorption and *NN protonation for N2 activation reaction with the competing hydrogen evolution reaction remain a daunting challenge. Herein, a defect-rich TiO2 nanosheet electrocatalyst with PdCu alloy nanoparticles (PdCu/TiO2-x ) is designed to elucidate the reactivity and selectivity trends of N2 cleavage path for N2 -to-NH3 catalytic conversion. The introduction of oxygen vacancy (OV) not only acts as active sites but also effectively promotes the electron transfer from Pd-Cu sites to high-concentration Ti3+ sites, and thus lends to the N2 activation via electron donation of PdCu. OVs-mediated control effectively lowers the reaction barrier of *N2 H and *H adsorption and facilitates the first hydrogenation process of N2 activation. Consequently, PdCu/TiO2-x catalyst attains a high rate of NH3 evolution, reaching 5.0 mmol gcat. -1 h-1 . This work paves a pathway of defect-engineering metal-supported electrocatalysts for high-efficient ammonia electrosynthesis.
Collapse
Affiliation(s)
- Heng Guo
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Peng Yang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Yuantao Yang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Haoran Wu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Fengying Zhang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Zhen-Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Guidong Yang
- XJTU-Oxford International Joint Laboratory for Catalysis School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 7010049, China
| | - Ying Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| |
Collapse
|
23
|
Zhang H, Diao J, Liu Y, Zhao H, Ng BKY, Ding Z, Guo Z, Li H, Jia J, Yu C, Xie F, Henkelman G, Titirici MM, Robertson J, Nellist P, Duan C, Guo Y, Riley DJ, Qiu J. In-Situ-Grown Cu Dendrites Plasmonically Enhance Electrocatalytic Hydrogen Evolution on Facet-Engineered Cu 2 O. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305742. [PMID: 37667462 DOI: 10.1002/adma.202305742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Herein, facet-engineered Cu2 O nanostructures are synthesized by wet chemical methods for electrocatalytic HER, and it is found that the octahedral Cu2 O nanostructures with exposed crystal planes of (111) (O-Cu2 O) has the best hydrogen evolution performance. Operando Raman spectroscopy and ex-situ characterization techniques showed that Cu2 O is reduced during HER, in which Cu dendrites are grown on the surface of the Cu2 O nanostructures, resulting in the better HER performance of O-Cu2 O after HER (O-Cu2 O-A) compared with that of the as-prepared O-Cu2 O. Under illumination, the onset potential of O-Cu2 O-A is ca. 52 mV positive than that of O-Cu2 O, which is induced by the plasmon-activated electrochemical system consisting of Cu2 O and the in-situ generated Cu dendrites. Incident photon-to-current efficiency (IPCE) measurements and the simulated UV-Vis spectrum demonstrate the hot electron injection (HEI) from Cu dendrites to Cu2 O. Ab initio nonadiabatic molecular dynamics (NAMD) simulations revealed the transfer of photogenerated electrons (27 fs) from Cu dendrites to Cu2 O nanostructures is faster than electron relaxation (170 fs), enhancing its surface plasmons activity, and the HEI of Cu dendrites increases the charge density of Cu2 O. These make the energy level of the catalyst be closer to that of H+ /H2 , evidenced by the plasmon-enhanced HER electrocatalytic activity.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Materials and London Center for Nanotechnology, Imperial College London, London, SW7 2AZ, UK
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Jiefeng Diao
- Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yonghui Liu
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, P. R. China
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Bryan K Y Ng
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Zhiyuan Ding
- Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
| | - Zhenyu Guo
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Huanxin Li
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Jun Jia
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, P. R. China
| | - Chang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fang Xie
- Department of Materials and London Center for Nanotechnology, Imperial College London, London, SW7 2AZ, UK
| | - Graeme Henkelman
- Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - John Robertson
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, P. R. China
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Peter Nellist
- Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
| | - Chunying Duan
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Yuzheng Guo
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, P. R. China
| | - D Jason Riley
- Department of Materials and London Center for Nanotechnology, Imperial College London, London, SW7 2AZ, UK
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
24
|
He L, Bao L, He X, Chen J, Li X, Dong K, Cai Z, Sun S, Zheng D, Luo Y, Liu Q, Ren Z, Wu M, Sun X. Cobalt-Nanoparticles-Decorated 3D Porous Nitrogen-Doped Carbon Network for Electrocatalytic Nitrite Reduction to Ammonia. Inorg Chem 2023; 62:15352-15357. [PMID: 37695036 DOI: 10.1021/acs.inorgchem.3c02734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Electrocatalytic nitrite (NO2-) reduction offers the potential to synthesize high-value ammonia (NH3) while simultaneously removing NO2- pollution from aqueous solutions, but it requires high-efficiency catalysts to drive the complex six-electron reaction. Herein, cobalt-nanoparticle-decorated 3D porous nitrogen-doped carbon network (Co@NC) is proven as a high-efficiency catalyst for the selective electroreduction of NO2- to NH3. Such Co@NC attains a large NH3 yield of 922.7 μmol h-1 cm-2 and a high Faradaic efficiency of 95.4% under alkaline conditions. Furthermore, it shows remarkable electrochemical stability during cyclic electrolysis.
Collapse
Affiliation(s)
- Lang He
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637002, Sichuan, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Li Bao
- Radiology of Department, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jie Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Xiuhong Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Kai Dong
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Zhaogang Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637002, Sichuan, China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
25
|
Li Y, He X, Chen J, Fan X, Yao Y, Ouyang L, Luo Y, Liu Q, Sun S, Cai Z, Alfaifi S, Du J, Zheng B, Sun X. 3D cauliflower-like Ni foam: a high-efficiency electrocatalyst for ammonia production via nitrite reduction. Chem Commun (Camb) 2023; 59:10805-10808. [PMID: 37594506 DOI: 10.1039/d3cc03121g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
A 3D cauliflower-like Ni foam on titanium plate (Ni foam/TP) shows high electrocatalytic performance for ambient ammonia (NH3) synthesis via nitrite (NO2-) reduction. In 0.1 M phosphate-buffered saline solution with 0.1 M NO2-, such Ni foam/TP attains a high NH3 Faradaic efficiency (FE) of 95.9% and a large NH3 yield of 742.7 μmol h-1 cm-2 at -0.8 V. Its Zn-NO2- battery offers a high power density of 6.2 mW cm-2 and an NH3 FE of 90.1%.
Collapse
Affiliation(s)
- Ye Li
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Jie Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Xiaoya Fan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Yongchao Yao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Ling Ouyang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Yonglan Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Sulaiman Alfaifi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Juan Du
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Baozhan Zheng
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China.
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
26
|
Yang X, An P, Wang R, Jia J. Tuning the Site-to-Site Interaction of Heteronuclear Diatom Catalysts MoTM/C 2N (TM = 3d Transition Metal) for Electrochemical Ammonia Synthesis. Molecules 2023; 28:molecules28104003. [PMID: 37241745 DOI: 10.3390/molecules28104003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Ammonia (NH3) synthesis is one of the most important catalytic reactions in energy and chemical fertilizer production, which is of great significance to the sustainable development of society and the economy. The electrochemical nitrogen reduction reaction (eNRR), especially when driven by renewable energy, is generally regarded as an energy-efficient and sustainable process to synthesize NH3 in ambient conditions. However, the performance of the electrocatalyst is far below expectations, with the lack of a high-efficiency catalyst being the main obstacle. Herein, by means of comprehensive spin-polarized density functional theory (DFT) computations, the catalytic performance of MoTM/C2N (TM = 3d transition metal) for use in eNRR was systematically evaluated. Among the results, MoFe/C2N can be considered the most promising catalyst due to its having the lowest limiting potential (-0.26 V) and high selectivity in the context of eNRR. Compared with its homonuclear counterparts, MoMo/C2N and FeFe/C2N, MoFe/C2N can balance the first protonation step and the sixth protonation step synergistically, showing outstanding activity regarding eNRR. Our work not only opens a new door to advancing sustainable NH3 production by tailoring the active sites of heteronuclear diatom catalysts but also promotes the design and production of novel low-cost and efficient nanocatalysts.
Collapse
Affiliation(s)
- Xiaoli Yang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
- Department of Pharmacy, Changzhi Medical College, Changzhi 046000, China
| | - Ping An
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Ruiying Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| |
Collapse
|
27
|
Wang L, Liu Y, Wang H, Yang T, Luo Y, Lee S, Kim MG, Nga TTT, Dong CL, Lee H. Oxygen-Bridged Vanadium Single-Atom Dimer Catalysts Promoting High Faradaic Efficiency of Ammonia Electrosynthesis. ACS NANO 2023; 17:7406-7416. [PMID: 37042711 DOI: 10.1021/acsnano.2c11954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Single-atom catalysts have already been widely investigated for the nitrogen reduction reaction (NRR). However, the simplicity of a single atom as an active center encounters the challenge of modulating the multiple reaction intermediates during the NRR process. Moving toward the single-atom-dimer (SAD) structures can not only buffer the multiple reaction intermediates but also provide a strategy to modify the electronic structure and environment of the catalysts. Here, a structure of a vanadium SAD (V-O-V) catalyst on N-doped carbon (O-V2-NC) is proposed for the electrochemical nitrogen reduction reaction, in which the vanadium dimer is coordinated with nitrogen and simultaneously bridged by one oxygen. The oxygen-bridged metal atom dimer that has more electron deficiency is perceived to be the active center for nitrogen reduction. A loop evolution of the intermediate structure was found during the theoretical process simulated by density functional theory (DFT) calculation. The active center V-O-V breaks down to V-O and V during the protonation process and regenerates to the original V-O-V structure after releasing all the nitrogen species. Thus, the O-V2-NC structure presents excellent activity toward the electrochemical NRR, achieving an outstanding faradaic efficiency (77%) along with the yield of 9.97 μg h-1 mg-1 at 0 V (vs RHE) and comparably high ammonia yield (26 μg h-1 mg-1) with the FE of 4.6% at -0.4 V (vs RHE). This report synthesizes and proves the peculiar V-O-V dimer structure experimentally, which also contributes to the library of SAD catalysts with superior performance.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yang Liu
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hongdan Wang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taehun Yang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yongguang Luo
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Ta Thi Thuy Nga
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Creative Research Institute, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
28
|
Yang P, Guo H, Wu H, Zhang F, Liu J, Li M, Yang Y, Cao Y, Yang G, Zhou Y. Boosting charge-transfer in tuned Au nanoparticles on defect-rich TiO 2 nanosheets for enhancing nitrogen electroreduction to ammonia production. J Colloid Interface Sci 2023; 636:184-193. [PMID: 36634390 DOI: 10.1016/j.jcis.2023.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (eNRR) to ammonia (NH3) has been recognized as an effective, carbon-neutral, and great-potential strategy for ammonia production. However, the conversion efficiency and selectivity of eNRR still face significant challenges due to the slow transfer kinetics and lack of effective N2 adsorption and activation sites in this process. Herein, we designed and fabricated defect-rich TiO2 nanosheets furnished with oxygen vacancies (OVs) and Au nanoparticles (Au/TiO2-x) as the electrocatalyst for efficient N2-fixing. The experimental results demonstrate that OVs act as active sites, which enable efficient chemisorption and activation of N2 molecules. The Au nanoparticles loaded on the OVs-rich TiO2 nanosheets not only accelerate charge transfer but also change the local electronic structure, thus enhancing N2 adsorption and activation. In this work, the optimal Au/TiO2-x electrocatalyst displays a considerable NH3 yield activity of 12.5 μg h-1 mgcat.-1 and a faradaic efficiency (FE) of 10.2 % at -0.40 V vs reversible hydrogen electrode (RHE). More importantly, the Au/TiO2-x exhibits a stable N2-fixing activity in cycling and it persists even after 80 h of consecutive electrolysis. Density functional theory (DFT) calculations reveal that the OVs serve as the active sites in TiO2, while Au nanoparticles are crucial for improving N2 chemisorption and lowering the reaction energy barrier by facilitating the charge transfer for eNRR with a distal hydrogenation pathway. This research offers a rational catalytic site design for modulating charge transfer of active sites on metal-supported defective catalysts to boost N2 electroreduction to NH3.
Collapse
Affiliation(s)
- Peng Yang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Heng Guo
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China; School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China.
| | - Haoran Wu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Fengying Zhang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China; School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Jiaxin Liu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Mengyue Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Yuantao Yang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Yuehan Cao
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Guidong Yang
- XJTU-Oxford International Joint Research Laboratory of Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 7010049, China
| | - Ying Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China; School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; Tianfu Yongxing Laboratory, Chengdu 611130, China.
| |
Collapse
|
29
|
Liu S, Wang M, Ji H, Zhang L, Ni J, Li N, Qian T, Yan C, Lu J. Solvent-in-Gas System for Promoted Photocatalytic Ammonia Synthesis on Porous Framework Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211730. [PMID: 36646430 DOI: 10.1002/adma.202211730] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Photocatalytic nitrogen reduction reaction (PNRR) is emerging as a sustainable ammonia synthesis approach to meet global carbon neutrality. Porous framework materials with well-designed structures have great opportunities in PNRR; however, they suffer from unsatisfactory activity in the conventional gas-in-solvent system (GIS), owing to the hindrance of nitrogen utilization and strong competing hydrogen evolution caused by overwhelming solvent. In this study, porous framework materials are combined with a novel "solvent-in-gas" system, which can bring their superiority into full play. This system enables photocatalysts to directly operate in a gas-dominated environment with a limited proton source uniformly suspended in it, achieving the accumulation of high-concentrated nitrogen within porous framework while efficiently restricting the solvent-photocatalyst contact. An over eightfold increase in ammonia production rate (1820.7 µmol g-1 h-1 ) compared with the conventional GIS and an apparent quantum efficiency as high as ≈0.5% at 400 nm are achieved. This system-level strategy further finds applicability in photocatalytic CO2 reduction, featuring it as a staple for photosynthetic methodology.
Collapse
Affiliation(s)
- Sisi Liu
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Mengfan Wang
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Haoqing Ji
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lifang Zhang
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Jiajie Ni
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Najun Li
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tao Qian
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Chenglin Yan
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jianmei Lu
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
30
|
Guo M, Fang L, Zhang L, Li M, Cong M, Guan X, Shi C, Gu C, Liu X, Wang Y, Ding X. Pulsed Electrocatalysis Enabling High Overall Nitrogen Fixation Performance for Atomically Dispersed Fe on TiO 2. Angew Chem Int Ed Engl 2023; 62:e202217635. [PMID: 36744701 DOI: 10.1002/anie.202217635] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 02/06/2023] [Indexed: 02/07/2023]
Abstract
Atomically dispersed Fe was designed on TiO2 and explored as a Janus electrocatalyst for both nitrogen oxidation reaction (NOR) and nitrogen reduction reaction (NRR) in a two-electrode system. Pulsed electrochemical catalysis (PE) was firstly involved to inhibit the competitive hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Excitingly, an unanticipated yield of 7055.81 μmol h-1 g-1 cat. and 12 868.33 μmol h-1 g-1 cat. were obtained for NOR and NRR at 3.5 V, respectively, 44.94 times and 7.8 times increase in FE than the conventional constant voltage electrocatalytic method. Experiments and density functional theory (DFT) calculations revealed that the single-atom Fe could stabilize the oxygen vacancy, lower the energy barrier for the vital rupture of N≡N, and result in enhanced N2 fixation performance. More importantly, PE could effectively enhance the N2 supply by reducing competitive O2 and H2 agglomeration, inhibit the electrocatalytic by-product formation for longstanding *OOH and *H intermediates, and promote the non-electrocatalytic process of N2 activation.
Collapse
Affiliation(s)
- Mingxia Guo
- College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071, Shandong, P. R. China
| | - Long Fang
- College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071, Shandong, P. R. China
| | - Linlin Zhang
- College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071, Shandong, P. R. China
| | - Mingzhu Li
- College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071, Shandong, P. R. China
| | - Meiyu Cong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian, 116024, Liaoning, P. R. China
| | - Xiping Guan
- College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071, Shandong, P. R. China
| | - Chuanwei Shi
- College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071, Shandong, P. R. China
| | - ChunLei Gu
- College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071, Shandong, P. R. China
| | - Xia Liu
- College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071, Shandong, P. R. China
| | - Yong Wang
- Technische Universität München Department Chemie, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Xin Ding
- College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071, Shandong, P. R. China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian, 116024, Liaoning, P. R. China
| |
Collapse
|
31
|
He X, Hu L, Xie L, Li Z, Chen J, Li X, Li J, Zhang L, Fang X, Zheng D, Sun S, Zhang J, Ali Alshehri A, Luo Y, Liu Q, Wang Y, Sun X. Ambient ammonia synthesis via nitrite electroreduction over NiS 2 nanoparticles-decorated TiO 2 nanoribbon array. J Colloid Interface Sci 2023; 634:86-92. [PMID: 36535172 DOI: 10.1016/j.jcis.2022.12.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Nitrite (NO2-), as a N-containing pollutant, widely exists in aqueous solution, causing a series of environmental and health problems. Electrocatalytic NO2- reduction is a promising and sustainable strategy to remove NO2-, meanwhile, producing high value-added ammonia (NH3). But the NO2- reduction reaction (NO2-RR) involves complex 6-electron transfer process that requires high-efficiency electrocatalysts to accomplish NO2--to-NH3 conversion. Herein, we report NiS2 nanoparticles decorated TiO2 nanoribbon array on titanium mesh (NiS2@TiO2/TM) as a fantastic NO2-RR electrocatalyst for ambient NH3 synthesis. When tested in NO2--containing solution, NiS2@TiO2/TM achieves a satisfactory NH3 yield of 591.9 µmol h-1 cm-2 and a high Faradaic efficiency of 92.1 %. Besides, it shows remarkable stability during 12-h electrolysis test.
Collapse
Affiliation(s)
- Xun He
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Long Hu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Lisi Xie
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Zerong Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jie Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Xiuhong Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Xiaodong Fang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Dongdong Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Jing Zhang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China.
| |
Collapse
|
32
|
Zhang S, Liu Q, Tang X, Zhou Z, Fan T, You Y, Zhang Q, Zhang S, Luo J, Liu X. Electrocatalytic reduction of NO to NH3 in ionic liquids by P-doped TiO2 nanotubes. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
33
|
Single atomic Ru in TiO 2 boost efficient electrocatalytic water oxidation to hydrogen peroxide. Sci Bull (Beijing) 2023; 68:613-621. [PMID: 36914544 DOI: 10.1016/j.scib.2023.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Electrocatalytic two-electron water oxidation affords a promising approach for distributed production of H2O2 using electricity. However, it suffers from the trade-off between the selectivity and high production rate of H2O2 due to the lack of suitable electrocatalysts. In this study, single atoms of Ru were controllably introduced into titanium dioxide to produce H2O2 through an electrocatalytic two-electron water oxidation reaction. The adsorption energy values of OH intermediates could be tuned by introducing Ru single atoms, offering superior H2O2 production under high current density. Notably, a Faradaic efficiency of 62.8% with an H2O2 production rate of 24.2 μmol min-1 cm-2 (>400 ppm within 10 min) was achieved at a current density of 120 mA cm-2. Consequently, herein, the possibility of high-yield H2O2 production under high current density was demonstrated and the importance of regulating intermediate adsorption during electrocatalysis was evidenced.
Collapse
|
34
|
Lv C, Jia N, Qian Y, Wang S, Wang X, Yu W, Liu C, Pan H, Zhu Q, Xu J, Tao X, Loh KP, Xue C, Yan Q. Ammonia Electrosynthesis with a Stable Metal-Free 2D Silicon Phosphide Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205959. [PMID: 36564359 DOI: 10.1002/smll.202205959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Metal-free 2D phosphorus-based materials are emerging catalysts for ammonia (NH3 ) production through a sustainable electrochemical nitrogen reduction reaction route under ambient conditions. However, their efficiency and stability remain challenging due to the surface oxidization. Herein, a stable phosphorus-based electrocatalyst, silicon phosphide (SiP), is explored. Density functional theory calculations certify that the N2 activation can be realized on the zigzag Si sites with a dimeric end-on coordinated mode. Such sites also allow the subsequent protonation process via the alternating associative mechanism. As the proof-of-concept demonstration, both the crystalline and amorphous SiP nanosheets (denoted as C-SiP NSs and A-SiP NSs, respectively) are obtained through ultrasonic exfoliation processes, but only the crystalline one enables effective and stable electrocatalytic nitrogen reduction reaction, in terms of an NH3 yield rate of 16.12 µg h-1 mgcat. -1 and a Faradaic efficiency of 22.48% at -0.3 V versus reversible hydrogen electrode. The resistance to oxidization plays the decisive role in guaranteeing the NH3 electrosynthesis activity for C-SiP NSs. This surface stability endows C-SiP NSs with the capability to serve as appealing electrocatalysts for nitrogen reduction reactions and other promising applications.
Collapse
Affiliation(s)
- Chade Lv
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ning Jia
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Yumin Qian
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shanpeng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xuechun Wang
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wei Yu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold Ministry of Education, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Qiang Zhu
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Jurong Island, Singapore, 627833, Singapore
| | - Xutang Tao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Can Xue
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| |
Collapse
|
35
|
Nicole SLD, Li Y, Xie W, Wang G, Lee JM. Heterointerface and Tensile Strain Effects Synergistically Enhances Overall Water-Splitting in Ru/RuO 2 Aerogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206844. [PMID: 36642855 DOI: 10.1002/smll.202206844] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Designing robust electrocatalysts for water-splitting is essential for sustainable hydrogen generation, yet difficult to accomplish. In this study, a fast and facile two-step technique to synthesize Ru/RuO2 aerogels for catalyzing overall water-splitting under alkaline conditions is reported. Benefiting from the synergistic combination of high porosity, heterointerface, and tensile strain effects, the Ru/RuO2 aerogel exhibits low overpotential for oxygen evolution reaction (189 mV) and hydrogen evolution reaction (34 mV) at 10 mA cm-2 , surpassing RuO2 (338 mV) and Pt/C (53 mV), respectively. Notably, when the Ru/RuO2 aerogels are applied at the anode and cathode, the resultant water-splitting cell reflected a low potential of 1.47 V at 10 mA cm-2 , exceeding the commercial Pt/C||RuO2 standard (1.63 V). X-ray adsorption spectroscopy and theoretical studies demonstrate that the heterointerface of Ru/RuO2 optimizes charge redistribution, which reduces the energy barriers for hydrogen and oxygen intermediates, thereby enhancing oxygen and hydrogen evolution reaction kinetics.
Collapse
Affiliation(s)
- Sui L D Nicole
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute (NEWRI), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637141, Singapore
| | - Yinghao Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Wenjie Xie
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Guangzhao Wang
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
36
|
Ke Z, He D, Yan X, Hu W, Williams N, Kang H, Pan X, Huang J, Gu J, Xiao X. Selective NO x- Electroreduction to Ammonia on Isolated Ru Sites. ACS NANO 2023; 17:3483-3491. [PMID: 36745389 DOI: 10.1021/acsnano.2c09691] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nitrate and nitrite (NOx-) are widespread contaminants in industrial wastewater and groundwater. Sustainable ammonia (NH3) production via NOx- electroreduction provides a prospective alternative to the energy-intensive industrialized Haber-Bosch process. However, selectively regulating the reaction pathway, which involves complicated electron/proton transfer, toward NH3 generation relies on the robust catalyst. A specific consideration in designing selective NOx--to-NH3 catalysts should meet the criteria to suppress competing hydrogen evolution and avoid the presence of neighboring active sites that are in favor of adverse N-N coupling. Nevertheless, efforts in this regard are still inadequate. Herein, we demonstrate that isolated ruthenium sites can selectively reduce NOx- into NH3, with maximal Faradaic efficiencies of 97.8% (NO2- reduction) and 72.8% (NO3- reduction) at -0.6 and -0.4 V, respectively. Density functional theory calculations simulated the reaction mechanisms and identified the *NO → *NOH as the potential rate-limiting step for NOx--to-NH3 conversion on single-atom Ru sites.
Collapse
Affiliation(s)
- Zunjian Ke
- Department of Physics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Dong He
- Department of Physics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Xingxu Yan
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Wenhui Hu
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Nicholas Williams
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Hongxing Kang
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
- Irvine Materials Research Institute, University of California, Irvine, Irvine, California 92697, United States
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jing Gu
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Xiangheng Xiao
- Department of Physics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
37
|
Ji Y, Liu P, Huang Y. First-principles screening of transition metal doped anatase TiO 2(101) surfaces for the electrocatalytic nitrogen reduction. Phys Chem Chem Phys 2023; 25:5827-5835. [PMID: 36745429 DOI: 10.1039/d2cp04635k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (eNRR) has been attracting intensive scientific attention as a potential alternative to the industrial Haber-Bosch process for ammonia production. Although many materials have been investigated, optimal catalysts for the reaction remain to be found. In this work, we performed the theoretical screening of 3d-5d transition metal doped anatase TiO2 for the eNRR. The most favorable doping site of each transition metal on the (101) surface was located. We found that the doping of transition metals promotes the formation of oxygen vacancies which are beneficial for the reaction. The scaling relations between the energies of the key intermediates were investigated. Using a machine learning algorithm (SVM), we identified two adsorption modes for the end-on adsorbed *HNN, which exhibited different scaling relations with *NH2. From a two-step process, we screened out several candidates, among which Au and Ta were proposed to be the most efficient dopants. Electronic structure analysis reveals that they can efficiently lower the energy of the intermediates. These results should be helpful for the design of more efficient TiO2-based catalysts for the eNRR.
Collapse
Affiliation(s)
- Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, Guangdong, P. R. China.
| | - Paiyong Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, Guangdong, P. R. China.
| | - Yungan Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, Guangdong, P. R. China.
| |
Collapse
|
38
|
Ouyang L, Fan X, Li Z, He X, Sun S, Cai Z, Luo Y, Zheng D, Ying B, Zhang J, Alshehri AA, Wang Y, Ma K, Sun X. High-efficiency electroreduction of nitrite to ammonia on a Cu@TiO 2 nanobelt array. Chem Commun (Camb) 2023; 59:1625-1628. [PMID: 36661388 DOI: 10.1039/d2cc06261e] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Electrochemical nitrite (NO2-) reduction is a potential and sustainable route to produce high-value ammonia (NH3), but it requires highly active electrocatalysts. Herein, Cu nanoparticles anchored on a TiO2 nanobelt array on a titanium plate (Cu@TiO2/TP) are reported as a high-efficiency electrocatalyst for NO2--to-NH3 conversion. The designed Cu@TiO2/TP catalyst exhibits outstanding catalytic performance toward the NO2-RR, with a high NH3 yield of 760.5 μmol h-1 cm-2 (237.7 μmol h-1 mgcat.-1) and an excellent faradaic efficiency of 95.3% in neutral solution. Meanwhile, it also presents strong electrochemical stability during cyclic tests and long-term electrolysis.
Collapse
Affiliation(s)
- Ling Ouyang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Xiaoya Fan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Zerong Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Dongdong Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Binwu Ying
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Jing Zhang
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Ke Ma
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China. .,College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
39
|
Ji Y, Liu P, Fan T. Unifying the Nitrogen Reduction Activity of Anatase and Rutile TiO 2 Surfaces. Chemphyschem 2023; 24:e202200653. [PMID: 36195557 DOI: 10.1002/cphc.202200653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Indexed: 01/20/2023]
Abstract
TiO2 is a model transition metal oxide that has been applied frequently in both photocatalytic and electrocatalytic nitrogen reduction reactions (NRR). However, the phase which is more NRR active still remains a puzzle. This work presents a theoretical study on the NRR activity of the (001), (100), (101), and (110) surfaces of both anatase and rutile TiO2 . We found that perfect surfaces are not active for NRR, while the oxygen vacancy can promote the reaction by providing excess electrons and low-coordinated Ti atoms that enhance the binding of the key intermediate (HNN*). The NRR activity of the eight facets can be unified into a single scaling line. The anatase TiO2 (101) and rutile TiO2 (101) surfaces were found to be the most and the second most active surfaces with a limiting potential of -0.91 V and -0.95 V respectively, suggesting that the TiO2 NRR activity is not very phase-sensitive. For photocatalytic NRR, the results suggest that the anatase TiO2 (101) surface is still the most active facet. We further found that the binding strength of key intermediates scale well with the formation energy of oxygen vacancy, which is determined by the oxygen coordination number and the degree of relaxation of the surface after the creation of oxygen vacancy. This work provides a comprehensive understanding of the activity of TiO2 surfaces. The results should be helpful for the design of more efficient TiO2 -based NRR catalysts.
Collapse
Affiliation(s)
- Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Waihuanxi Road, Guangzhou, 510006, Guangdong, P. R. China
| | - Paiyong Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Waihuanxi Road, Guangzhou, 510006, Guangdong, P. R. China
| | - Ting Fan
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, Guangdong, P. R. China
| |
Collapse
|
40
|
Liao W, Liu K, Wang J, Stefancu A, Chen Q, Wu K, Zhou Y, Li H, Mei L, Li M, Fu J, Miyauchi M, Cortés E, Liu M. Boosting Nitrogen Activation via Ag Nanoneedle Arrays for Efficient Ammonia Synthesis. ACS NANO 2023; 17:411-420. [PMID: 36524975 DOI: 10.1021/acsnano.2c08853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrocatalytic N2 reduction reaction (eNRR) provides a promising carbon-neutral and sustainable ammonia-synthesizing alternative to the Haber-Bosch process. However, the nonpolar N2 has significant thermodynamic stability and requires ultrahigh energy to break down the N≡N bond. Here, we report the construction of local enhanced electric fields (LEEFs) by Ag nanoneedle arrays to promote N≡N fracture thus assisting the eNRR. The LEEFs could induce charge polarization on nitrogen atoms and reduce the energy barrier in the N2 first-protonation step. The detected N─N and N─H intermediates prove the cleavage of the N≡N bond and the hydrogenation of N2 by LEEFs. The increased LEEFs lead to logarithmic growth rates for the targeted eNRR and exponential growth rates for the unavoidable competitive hydrogen evolution reaction. Thus, regulation and tuning of LEEFs to ∼4 × 104 kV m-1 endows the raise of eNRR to the summit, achieving high ammonia selectivity with a Faradaic efficiency of 72.3 ± 4.0%.
Collapse
Affiliation(s)
- Wanru Liao
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha410083, Hunan, P. R. China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha410083, Hunan, P. R. China
| | - Jun Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha410083, Hunan, P. R. China
| | - Andrei Stefancu
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München80539, Germany
| | - Qin Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha410083, Hunan, P. R. China
| | - Kuangzhe Wu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha410083, Hunan, P. R. China
| | - Yajiao Zhou
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha410083, Hunan, P. R. China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha410083, Hunan, P. R. China
| | - Lin Mei
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha410083, Hunan, P. R. China
| | - Ming Li
- College of Science & Ministry-province jointly constructed Cultivation Base for State Key Laboratory of Processing for Mom-ferrous Metal and Featured Materials & Key Lab. of Nonferrous Materials and New Processing Technology, Guilin University of Technology, Guilin541004, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha410083, Hunan, P. R. China
| | - Masahiro Miyauchi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo152-8552, Japan
| | - Emiliano Cortés
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München80539, Germany
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha410083, Hunan, P. R. China
| |
Collapse
|
41
|
He X, Li J, Li R, Zhao D, Zhang L, Ji X, Fan X, Chen J, Wang Y, Luo Y, Zheng D, Xie L, Sun S, Cai Z, Liu Q, Ma K, Sun X. Ambient Ammonia Synthesis via Nitrate Electroreduction in Neutral Media on Fe 3O 4 Nanoparticles-decorated TiO 2 Nanoribbon Array. Inorg Chem 2023; 62:25-29. [PMID: 36537850 DOI: 10.1021/acs.inorgchem.2c03640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Electrochemical nitrate (NO3-) reduction is a potential approach to produce high-value ammonia (NH3) while removing NO3- pollution, but it requires electrocatalysts with high efficiency and selectivity. Herein, we report the development of Fe3O4 nanoparticles decorated TiO2 nanoribbon array on titanium plate (Fe3O4@TiO2/TP) as an efficient electrocatalyst for NO3--to-NH3 conversion. When operated in 0.1 M phosphate-buffered saline and 0.1 M NO3-, such Fe3O4@TiO2/TP achieves a prominent NH3 yield of 12394.3 μg h-1 cm-2 and a high Faradaic efficiency of 88.4%. In addition, it exhibits excellent stability during long-time electrolysis.
Collapse
Affiliation(s)
- Xun He
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Ruizhi Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Donglin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Xianchang Ji
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Xiaoya Fan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jie Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Dongdong Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Lisi Xie
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ke Ma
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.,College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
42
|
Li J, Zhao D, Zhang L, Ren Y, Yue L, Li Z, Sun S, Luo Y, Chen Q, Li T, Dong K, Liu Q, Kong Q, Sun X. Boosting electrochemical nitrate-to-ammonia conversion by self-supported MnCo2O4 nanowire array. J Colloid Interface Sci 2023; 629:805-812. [DOI: 10.1016/j.jcis.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
|
43
|
Unveiling selective nitrate reduction to ammonia with Co3O4 nanosheets/TiO2 nanobelt heterostructure catalyst. J Colloid Interface Sci 2023; 630:714-720. [DOI: 10.1016/j.jcis.2022.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
|
44
|
Luo Y, Cao S, Du X, Wang Y, Li J. Nitrogen reduction reaction mechanism on Fe-doped TiO2 from theoretical perspective: A kinetic and electronic structure study. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
45
|
Wang F, Yang S, Lu Q, Liu W, Sun P, Wang Q, Cao W. Colloidal Cu-doped TiO2 nanocrystals containing oxygen vacancies for highly-efficient photocatalytic degradation of benzene and antibacterial. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
46
|
Self-supported Mo-doped TiO2 electrode for ambient electrocatalytic nitrogen oxidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Deng Z, Ma C, Li Z, Luo Y, Zhang L, Sun S, Liu Q, Du J, Lu Q, Zheng B, Sun X. High-Efficiency Electrochemical Nitrate Reduction to Ammonia on a Co 3O 4 Nanoarray Catalyst with Cobalt Vacancies. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46595-46602. [PMID: 36198136 DOI: 10.1021/acsami.2c12772] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrocatalytic nitrate reduction reaction (NO3RR) affords a bifunctional character in the carbon-free ammonia synthesis and remission of nitrate pollution in water. Here, we fabricated the Co3O4 nanosheet array with cobalt vacancies on carbon cloth (vCo-Co3O4/CC) by in situ etching aluminum-doped Co3O4/CC, which exhibits an excellent Faradaic efficiency of 97.2% and a large NH3 yield as high as 517.5 μmol h-1 cm-2, better than the pristine Co3O4/CC. Theoretical calculative results imply that the cobalt vacancies can tune the local electronic environment around Co sites of Co3O4, increasing the charge and reducing the electron cloud density of Co sites, which is thus conducive to adsorption of NO3- on Co sites for greatly enhanced nitrate reduction. Furthermore, the vCo-Co3O4 (311) facet presents excellent NO3RR activity with a low energy barrier of about 0.63 eV on a potential-determining step, which is much smaller than pristine Co3O4 (1.3 eV).
Collapse
Affiliation(s)
- Zhiqin Deng
- College of Chemistry, Sichuan University, Chengdu610064, Sichuan, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, Sichuan, China
| | - Chaoqun Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, Beijing, China
| | - Zerong Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, Sichuan, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, Sichuan, China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, Sichuan, China
| | - Shengjun Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, Sichuan, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu610106, Sichuan, China
| | - Juan Du
- College of Chemistry, Sichuan University, Chengdu610064, Sichuan, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, Beijing, China
| | - Baozhan Zheng
- College of Chemistry, Sichuan University, Chengdu610064, Sichuan, China
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang453007, Henan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, Sichuan, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, Shandong, China
| |
Collapse
|
48
|
Li X, Li Z, Zhang L, Zhao D, Li J, Sun S, Xie L, Liu Q, Alshehri AA, Luo Y, Liao Y, Kong Q, Sun X. Ni nanoparticle-decorated biomass carbon for efficient electrocatalytic nitrite reduction to ammonia. NANOSCALE 2022; 14:13073-13077. [PMID: 36069959 DOI: 10.1039/d2nr03540e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrocatalytic nitrite (NO2-) reduction to ammonia (NH3) can not only synthesize value-added NH3, but also remove NO2- pollutants from the environment. However, the low efficiency of NO2--to-NH3 conversion hinders its applications. Here, Ni nanoparticle-decorated juncus-derived biomass carbon prepared at 800 °C (Ni@JBC-800) serves as an efficient catalyst for NH3 synthesis by selective electroreduction of NO2-. This catalyst shows a remarkable NH3 yield of 4117.3 μg h-1 mgcat.-1 and a large faradaic efficiency of 83.4% in an alkaline electrolyte. The catalytic mechanism is further investigated by theoretical calculations.
Collapse
Affiliation(s)
- Xiuhong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, Sichuan, China.
| | - Zerong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, Sichuan, China.
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Donglin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Shengjun Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Lisi Xie
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Yonglan Luo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, Sichuan, China.
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, Sichuan, China.
| | - Qingquan Kong
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| |
Collapse
|
49
|
Xie T, Li X, Li J, Chen J, Sun S, Luo Y, Liu Q, Zhao D, Xu C, Xie L, Sun X. Co Nanoparticles Decorated Corncob-Derived Biomass Carbon as an Efficient Electrocatalyst for Nitrate Reduction to Ammonia. Inorg Chem 2022; 61:14195-14200. [DOI: 10.1021/acs.inorgchem.2c02499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ting Xie
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Xiuhong Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jie Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Shengjun Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Donglin Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Chenggang Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Lisi Xie
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
50
|
Xie L, Liu Q, Sun S, Hu L, Zhang L, Zhao D, Liu Q, Chen J, Li J, Ouyang L, Alshehri AA, Hamdy MS, Kong Q, Sun X. High-Efficiency Electrosynthesis of Ammonia with Selective Reduction of Nitrate in Neutral Media Enabled by Self-Supported Mn 2CoO 4 Nanoarray. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33242-33247. [PMID: 35834395 DOI: 10.1021/acsami.2c07818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ambient ammonia synthesis by electroreduction of nitrate (NO3-) provides us a sustainable and environmentally friendly alternative to the traditional Haber-Bosch process. In this work, Mn2CoO4 nanoarray grown on carbon cloth (Mn2CoO4/CC) serves as a superior electrocatalyst for efficient NH3 synthesis by selective reduction of NO3-. When operated in 0.1 M PBS with 0.1 M NaNO3, Mn2CoO4/CC reaches a high Faraday efficiency of 98.6% and a large NH3 yield up to 11.19 mg/h/cm2. Moreover, it exhibits excellent electrocatalytic stability. Theory calculations show that the Mn2CoO4 surface has strong interaction with NO3-, which can effectively inhibit the occurrence of hydrogen evolution, beneficial for NO3--to-NH3 conversion.
Collapse
Affiliation(s)
- Lisi Xie
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Shengjun Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Long Hu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Donglin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Qin Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jie Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Ling Ouyang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohamed S Hamdy
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Qingquan Kong
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|