1
|
Zhang H, Liu Q, Zhou P, Zhang H, Xu L, Sun X, Xu J. Co/SH-based MOFs incorporated nanofiltration membranes for efficient selenium uptake in water purification. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136836. [PMID: 39672069 DOI: 10.1016/j.jhazmat.2024.136836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/23/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Metal-Organic Frameworks (MOFs) with high adsorption capacity have shown potential in removing pollutants from water, particularly the toxic selenium (Se). However, MOFs face two challenges in the application of Se removal, that is low removal efficiency and unfavorable powder properties for recovery. In this study, a Co-MOF-74-SH with dual active adsorption sites was synthesized and subsequently immobilized into membrane to fabricate a multi-functional nanofiltration (NF) membrane for efficient Se removal and salt-salt separation. The strong cooperative interaction between the dual active Co/S sites and Se resulted in an impressive Se removal efficiency of 94.1 % for Co-MOF-74-SH. The adsorption energy and isosurface of electron density from DFT simulations showed the strong interaction between SeO32- and S sites in Co-MOF-74-SH. NF membrane with Co-MOF-74-SH incorporation was fabricated. This membrane showed Se removal of ∼99.6 %, surpassing original membrane of ∼74.4 %, which was attributed to synergetic mechanism of adsorption and separation. Simultaneously, the membrane exhibited excellent separation performance, with divalent/monovalent salt selectivity up to more than 80 as well as high water permeance of 15.80 L m-2 h-1 bar-1. This work not only broadens efficient adsorbents for Se removal, but also paves the way for membrane material for water purification and wastewater resource utilization.
Collapse
Affiliation(s)
- Hansi Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Qingzhi Liu
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Peilei Zhou
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Huiting Zhang
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Lishan Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Xiaoxia Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China; College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Jia Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China.
| |
Collapse
|
2
|
Zhao R, Meng F, Wu Q, Zhong Z, Liu Y, Yang R, Li A, Liu H, Lu Y, Zhang Z, Li Q, Zhao H, Li J, Han L, Zuo K. Ultra-antiwetting Membrane for Hypersaline Water Crystallization in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14929-14939. [PMID: 39126388 DOI: 10.1021/acs.est.4c05283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Membrane distillation (MD) has great potential in the management of hypersaline water for zero liquid discharge (ZLD) due to its high salinity tolerance. However, the membrane wetting issue significantly restricts its practical application. In this study, a composite membrane tailored for extreme concentrations and even crystallization of hypersaline water is synthesized by coating a commercial hydrophobic porous membrane with a composite film containing a dense polyamide layer, a cation exchange layer (CEL), and an anion exchange layer (AEL). When used in direct contact MD for treating a 100 g L-1 NaCl hypersaline solution, the membrane achieves supersaturation of feed solution and a salt crystal yield of 38.0%, with the permeate concentration at <5 mg L-1. The composite membrane also demonstrates ultrahigh antiwetting stability in 360 h of long-term operation. Moreover, ion diffusion analysis reveals that the ultrahigh wetting resistance of the composite membrane is attributed to the bipolar AEL and CEL that eliminate ion crossover. The literature review elucidates that the composite membrane is superior to state-of-the-art membranes. This study demonstrates the great potential of the composite membrane for direct crystallization of hypersaline water, offering a promising approach to filling the gap between reverse osmosis and conventional thermal desalination processes for ZLD application.
Collapse
Affiliation(s)
- Ruixue Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fanxu Meng
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qinghao Wu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zihan Zhong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanfeng Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ruotong Yang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
- Pollution Prevention Biotechnology Laboratory of Hebei Province, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Huan Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China
| | - Yanyu Lu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zishuai Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, MS 319, 6100 Main Street, Houston, Texas 77005, United States
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianfeng Li
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China
| | - Le Han
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Kuichang Zuo
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Paul S, Bhoumick MC, Mitra S. Fouling Reduction and Thermal Efficiency Enhancement in Membrane Distillation Using a Bilayer-Fluorinated Alkyl Silane-Carbon Nanotube Membrane. MEMBRANES 2024; 14:152. [PMID: 39057660 PMCID: PMC11279159 DOI: 10.3390/membranes14070152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
In this study, we report the robust hydrophobicity, lower fouling propensity, and high thermal efficiency of the 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FAS)-coated, carbon nanotube-immobilized membrane (CNIM) when applied to desalination via membrane distillation. Referred to as FAS-CNIM, the membrane was developed through a process that combined the drop-casting of nanotubes flowed by a dip coating of the FAS layer. The membranes were tested for porosity, surface morphology, thermal stability, contact angle, and flux. The static contact angle of the FAS-CNIM was 153 ± 1°, and the modified membrane showed enhancement in water flux by 18% compared to the base PTFE membrane. The flux was tested at different operating conditions and the fouling behavior was investigated under extreme conditions using a CaCO3 as well as a mixture of CaCO3 and CaSO4 solution. The FAS-CNIM showed significantly lower fouling than plain PTFE or the CNIM; the relative flux reduction was 34.4% and 37.6% lower than the control for the CaCO3 and CaCO3/CaSO4 mixed salt solution. The FAS-CNIM exhibited a notable decrease in specific energy consumption (SEC). Specifically, the SEC for the FAS-CNIM measured 311 kwh/m3 compared to 330.5 kwh/m3 for the CNIM and 354 kwh/m3 for PTFE using a mixture of CaCO3/CaSO4. This investigation underscores the significant contribution of the carbon nanotubes' (CNTs) intermediate layer in creating a durable superhydrophobic membrane, highlighting the potential of utilizing carbon nanotubes for tailored interface engineering to tackle fouling for salt mixtures. The innovative design of a superhydrophobic membrane has the potential to alleviate wetting issues resulting from low surface energy contaminants present in the feed of membrane distillation processes.
Collapse
Affiliation(s)
| | | | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (S.P.); (M.C.B.)
| |
Collapse
|
4
|
Rible GPS, Spinazzola MA, Jones RE, Constantin RU, Wang W, Dickerson AK. Dynamic Drop Penetration of Horizontally Oriented Fiber Arrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13339-13354. [PMID: 38864721 DOI: 10.1021/acs.langmuir.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
In this experimental study, we combine drop impact into porous media and onto a single fiber to study drop impact into fiber arrays inspired by mammalian fur coats. In our 3D-printed arrays, we vary the packing density, fiber alignment, strand cross-section, and wettability. Drops impact fibers fixed at both ends, penetrating over short periods of time by momentum and laterally spreading throughout the array. Using image analysis, we measure penetration depth and wetted width into the array. Impact Weber number and intrinsic porosity define penetration, retraction, and rebound regimes. On average, at an impact Weber number of ≈80, staggered fibers reduce penetration by 24% in hydrophilic fibers and 34% in hydrophobic fibers, and the penetration reduction percentage is expected to increase with increasing Weber number. Our results indicate that as density grows toward the density of mammalian pelts, penetration will reach a maximum value independent of drop impact velocity, thereby providing an effective rain barrier. Hydrophilicity at the densities we test, 50-150 strands/cm2, aids fiber array resistance to dynamic penetration by impacting drops through the promotion of lateral drop spreading and inhibition of drop fragmentation. Conversely, hydrophobic fibers best resist low-speed wicking. The fraction of a drop that infiltrates hydrophilic and hydrophobic fibers is nearly identical for a fixed Weber number because lateral spreading restricts the penetration depth into hydrophilic fibers but does not restrict mass infiltration. Above a critical Weber number, the entire drop mass penetrates fiber arrays regardless of strand wettability.
Collapse
Affiliation(s)
- Gene Patrick S Rible
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Michael A Spinazzola
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Robert E Jones
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Rachel U Constantin
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Wei Wang
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Andrew K Dickerson
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
5
|
Zhang H, Zhang X, Li F, Zhao X. Constructing spherical-beads-on-string structure of electrospun membrane to achieve high vapor flux in membrane distillation. WATER RESEARCH 2024; 256:121605. [PMID: 38626613 DOI: 10.1016/j.watres.2024.121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Hydrophobic membranes with a reentrant-like structure have shown high hydrophobicity and high anti-wetting properties in membrane distillation (MD). Here, PVDF spherical-beads-on-string (SBS) fibers were electrospun on nonwoven fabric and used in the MD process. Such a reentrant-like structure was featured with fine fibers, a low ratio of bead length to bead diameter, and high bead frequency. It was revealed that the SBS-structured membranes exhibited an exceptional capability for vapor flux, due to the formation of a network of more interconnected macropores than that of fibers and fusiform-beads-on-string structures, ensuring unimpeded vapor diffusion. In the desalination of formulated seawater (3.5 wt.% NaCl solution), a vapor flux of 61 ± 3 kg m-2 h-1 with a salt rejection of >99.98 % was achieved at a feed temperature of 60 °C. Furthermore, this SBS structured membrane showed satisfactory seawater desalination performance with a stable flux of 40 kg m-2 h-1 over a 27 h MD process. These findings suggest a viable approach for fabricating SBS-structured membranes that significantly enhance vapor flux in MD for desalination applications. Besides, the hydrophobic membranes with SBS structure can be prepared by single-step electrospinning, and it is facile to scale-up manufacture. This strategy holds promise for advancing the development of high-performance MD membranes tailored for efficient seawater desalination processes.
Collapse
Affiliation(s)
- Honglong Zhang
- Lab of Environmental Science & Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Xue Zhang
- Lab of Environmental Science & Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Fuzhi Li
- Lab of Environmental Science & Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Xuan Zhao
- Lab of Environmental Science & Technology, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
6
|
Liu Y, Meng Z, Zou R, Zhu L, Wang X, Zhu M. Crosslinking and fluorination reinforced PTFE nanofibrous membrane with excellent amphiphobic performance for low-scaling membrane distillations. WATER RESEARCH 2024; 256:121594. [PMID: 38615603 DOI: 10.1016/j.watres.2024.121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Membrane distillation (MD) has emerged as a promising technology for desalination and concentration of hypersaline brine. However, the efficient preparation of a structurally stable and salinity-resistant membrane remains a significant challenge. In this study, an amphiphobic polytetrafluoroethylene nanofibrous membrane (PTFE NFM) with exceptional resistance to scaling has been developed, using an energy-efficient method. This innovative approach avoids the high-temperature sintering treatment, only involving electrospinning with PTFE/PVA emulsion and subsequent low-temperature crosslinking and fluorination. The impact of the PVA and PTFE contents, as well as the crosslinking and subsequent fluorination on the morphology and MD performance of the NFM, were systematically investigated. The optimized PTFE NFM displayed robust amphiphobicity, boasting a water contact angle of 155.2º and an oil contact angle of 132.7º. Moreover, the PTFE NFM exhibited stable steam flux of 52.1 L·m-2·h-1 and 26.7 L·m-2·h-1 when fed with 3.5 wt % and 25.0 wt % NaCl solutions, respectively, and an excellent salt rejection performance (99.99 %, ΔT = 60 °C) in a continuous operation for 24 h, showing exceptional anti-scaling performance. It also exhibited stable anti-wetting and anti-fouling properties against surfactants (sodium dodecyl sulfate) and hydrophobic contaminants (diesel oil). These results underscore the significant potential of the PTFE nanofibrous membrane for practical applications in desalination, especially in hypersaline or polluted aqueous environments.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zheyi Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China.
| | - Rujia Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China.
| | - Xuefen Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Asif M, Kim S, Nguyen TS, Mahmood J, Yavuz CT. Covalent Organic Framework Membranes and Water Treatment. J Am Chem Soc 2024; 146:3567-3584. [PMID: 38300989 PMCID: PMC10870710 DOI: 10.1021/jacs.3c10832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Covalent organic frameworks (COFs) are an emerging class of highly porous crystalline organic polymers comprised entirely of organic linkers connected by strong covalent bonds. Due to their excellent physicochemical properties (e.g., ordered structure, porosity, and stability), COFs are considered ideal materials for developing state-of-the-art separation membranes. In fact, significant advances have been made in the last six years regarding the fabrication and functionalization of COF membranes. In particular, COFs have been utilized to obtain thin-film, composite, and mixed matrix membranes that could achieve effective rejection (mostly above 80%) of organic dyes and model organic foulants (e.g., humic acid). COF-based membranes, especially those prepared by embedding into polyamide thin-films, obtained adequate rejection of salts in desalination applications. However, the claims of ordered structure and separation mechanisms remain unclear and debatable. In this perspective, we analyze critically the design and exploitation of COFs for membrane fabrication and their performance in water treatment applications. In addition, technological challenges associated with COF properties, fabrication methods, and treatment efficacy are highlighted to redirect future research efforts in realizing highly selective separation membranes for scale-up and industrial applications.
Collapse
Affiliation(s)
- Muhammad
Bilal Asif
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Seokjin Kim
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Thien S. Nguyen
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Javeed Mahmood
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Cafer T. Yavuz
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
8
|
Meng QW, Wu D, Wang S, Sun Q. Function-Led Design of Covalent-Organic-Framework Membranes for Precise Ion Separation. Chemistry 2023; 29:e202302460. [PMID: 37605607 DOI: 10.1002/chem.202302460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023]
Abstract
Insufficient access to clean water and resources has emerged as one of the most pressing issues affecting people globally. Membrane-based ion separation has become a focal point of research for the generation of fresh water and the extraction of energy elements. This Review encapsulates recent advancements in the selective ion transport of covalent organic framework (COF) membranes, accomplished by strategically pairing diverse monomers to create membranes with various pore sizes and environments for specific purposes. We first discuss the merits of using COF materials as a basis for fabricating membranes for ion separation. We then explore the development of COF membranes in areas such as desalination, acid recovery, and energy element extraction, with a particular emphasis on the fundamental principles of membrane design. Lastly, we address both theoretical and practical challenges, as well as potential opportunities in the targeted design of ion-selective membranes. The goal of this Review is to stimulate future investigative efforts in this field, which is of significant scientific and strategic importance.
Collapse
Affiliation(s)
- Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Di Wu
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
9
|
Liu D, Yusufu K, Yu F, Wu C, Zhong L, Xu Y, Liu J, Ma J, Wang W. Quasi-critical condition to balance the scaling and membrane lifespan tradeoff in hypersaline water concentration. WATER RESEARCH 2023; 242:120265. [PMID: 37390652 DOI: 10.1016/j.watres.2023.120265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/03/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Mineral scaling is an inconvenient obstacle for membrane distillation in hypersaline wastewater concentration applications, compromising membrane lifespan to maintain high water recovery. Although various measures are devoted to alleviating mineral scaling, the uncertainty and complexity of scale characteristics make it difficult to accurately identify and effectively prevent. Herein, we systematically elucidate a practically applicable principle to balance the trade-off between mineral scaling and membrane lifespan. Through experimental demonstration and mechanism analysis, we find a consistent concentration phenomenon of hypersaline concentration in different situations. Based on the characteristics of the binding force between the primary scale crystal and the membrane, the quasi-critical concentration condition is sought to prevent the accumulation and intrusion of mineral scale. The quasi-critical condition achieves the maximum water flux on the premise of guaranteeing the membrane tolerance, and the membrane performance can be restored by undamaged physical cleaning. This report opens up an informative horizon for circumventing the inexplicable scaling explorations and develops a universal evaluation strategy to provide technical support for membrane desalination.
Collapse
Affiliation(s)
- Dongqing Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P R China
| | - Kudereti Yusufu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P R China
| | - Fuyun Yu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P R China
| | - Chuandong Wu
- National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, P R China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, P R China
| | - Lingling Zhong
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P R China
| | - Ying Xu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China
| | - Jie Liu
- Department of Military Facilities, Army Logistics University, Chongqing 401331, P R China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P R China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P R China.
| |
Collapse
|
10
|
Zhang H, Zhao X. Enhanced Anti-Wetting Methods of Hydrophobic Membrane for Membrane Distillation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300598. [PMID: 37219004 PMCID: PMC10427381 DOI: 10.1002/advs.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Increasing issues of hydrophobic membrane wetting occur in the membrane distillation (MD) process, stimulating the research on enhanced anti-wetting methods for membrane materials. In recent years, surface structural construction (i.e., constructing reentrant-like structures), surface chemical modification (i.e., coating organofluorides), and their combination have significantly improved the anti-wetting properties of the hydrophobic membranes. Besides, these methods change the MD performance (i.e., increased/decreased vapor flux and increased salt rejection). This review first introduces the characterization parameters of wettability and the fundamental principles of membrane surface wetting. Then it summarizes the enhanced anti-wetting methods, the related principles, and most importantly, the anti-wetting properties of the resultant membranes. Next, the MD performance of hydrophobic membranes prepared by different enhanced anti-wetting methods is discussed in desalinating different feeds. Finally, facile and reproducible strategies are aspired for the robust MD membrane in the future.
Collapse
Affiliation(s)
- Honglong Zhang
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| | - Xuan Zhao
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
11
|
Meng L, Shi W, Li Y, Li X, Tong X, Wang Z. Janus membranes at the water-energy nexus: A critical review. Adv Colloid Interface Sci 2023; 318:102937. [PMID: 37315418 DOI: 10.1016/j.cis.2023.102937] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Membrane technology has emerged as a highly efficient strategy for alleviating water and energy scarcity globally. As the key component, the membrane plays a fatal role in different membrane systems; however, traditional membranes still suffer from shortcomings including low permeability, low selectivity, and high fouling tendency. Janus membranes are promising to overcome those shortcomings and appealing for applications in the realm of water-energy nexus, due to their special transport behaviors and separation properties as a result of their unique asymmetric wetting or surface charge properties. Recently, numerous research studies have been conducted on the design, fabrication, and application of Janus membranes. In this review, we aim to provide a state-of-the-art summary and a critical discussion on the research advances of Janus membranes at the water-energy nexus. The innovative design strategies of different types of Janus membranes are summarized and elucidated in detail. The fundamental working principles of various Janus membranes and their applications in oil/water separation, membrane distillation, solar evaporation, electrodialysis, nanofiltration, and forward osmosis are discussed systematically. The mechanisms of directional transport properties, switchable permeability, and superior separation properties of Janus membranes in those different applications are elucidated. Lastly, future research directions and challenges are highlighted in improving Janus membrane performance for various membrane systems.
Collapse
Affiliation(s)
- Lijun Meng
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xin Tong
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
12
|
Nguyen DT, Lee S, Lopez KP, Lee J, Straub AP. Pressure-driven distillation using air-trapping membranes for fast and selective water purification. SCIENCE ADVANCES 2023; 9:eadg6638. [PMID: 37450594 PMCID: PMC10348675 DOI: 10.1126/sciadv.adg6638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Membrane technologies that enable the efficient purification of impaired water sources are needed to address growing water scarcity. However, state-of-the-art engineered membranes are constrained by a universal, deleterious trade-off where membranes with high water permeability lack selectivity. Current membranes also poorly remove low-molecular weight neutral solutes and are vulnerable to degradation from oxidants used in water treatment. We report a water desalination technology that uses applied pressure to drive vapor transport through membranes with an entrapped air layer. Since separation occurs due to a gas-liquid phase change, near-complete rejection of dissolved solutes including sodium chloride, boron, urea, and N-nitrosodimethylamine is observed. Membranes fabricated with sub-200-nm-thick air layers showed water permeabilities that exceed those of commercial membranes without sacrificing salt rejection. We also find the air-trapping membranes tolerate exposure to chlorine and ozone oxidants. The results advance our understanding of evaporation behavior and facilitate high-throughput ultraselective separations.
Collapse
Affiliation(s)
- Duong T. Nguyen
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sangsuk Lee
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kian P. Lopez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jongho Lee
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Anthony P. Straub
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
13
|
Dhar M, Kara UI, Das S, Xu Y, Mandal S, Dupont RL, Boerner EC, Chen B, Yao Y, Wang X, Manna U. Design of a self-cleanable multilevel anticounterfeiting interface through covalent chemical modulation. MATERIALS HORIZONS 2023; 10:2204-2214. [PMID: 37000456 DOI: 10.1039/d3mh00180f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Counterfeit products have posed a significant threat to consumers safety and the global economy. To address this issue, extensive studies have been exploring the use of coatings with unclonable, microscale features for authentication purposes. However, the ease of readout, and the stability of these features against water, deposited dust, and wear, which are required for practical use, remain challenging. Here we report a novel class of chemically functionalizable coatings with a combination of a physically unclonable porous topography and distinct physiochemical properties (e.g., fluorescence, water wettability, and water adhesion) obtained through orthogonal chemical modifications (i.e., 1,4-conjugate addition reaction and Schiff-base reaction at ambient conditions). Unprecedentedly, a self-cleanable and physically unclonable coating is introduced to develop a multilevel anticounterfeiting interface. We demonstrate that the authentication of the fluorescent porous topography can be verified using deep learning. More importantly, the spatially selective chemical modifications can be read with the naked eye via underwater exposure and UV light illumination. Overall, the results reported in this work provide a facile basis for designing functional surfaces capable of independent and multilevel decryption of authenticity.
Collapse
Affiliation(s)
- Manideepa Dhar
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Ufuoma I Kara
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Supriya Das
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Sohini Mandal
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Robert L Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Eric C Boerner
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Boyuan Chen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Sustainability Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Kamrup, Assam 781039, India
- Centre for Nanotechnology, School of Health Science and Technology, Indian Institute of Technology Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
14
|
Zhu Z, Liu Z, Tan G, Qi J, Zhou Y, Li J. Interlayered Interface of a Thin Film Composite Janus Membrane for Sieving Volatile Substances in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7612-7623. [PMID: 37104662 DOI: 10.1021/acs.est.3c00093] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Hypersaline wastewater treatment using membrane distillation (MD) has gained significant attention due to its ability to completely reject nonvolatile substances. However, a critical limitation of current MD membranes is their inability to intercept volatile substances owing to their large membrane pores. Additionally, the strong interaction between volatile substances and MD membranes underwater tends to cause membrane wetting. To overcome these challenges, we developed a dual-layer thin film composite (TFC) Janus membrane through electrospinning and sequential interfacial polymerization of a polyamide (PA) layer and cross-linking a polyvinyl alcohol/polyacrylic acid (PP) layer. The resulting Janus membrane exhibited high flux (>27 L m-2 h-1), salt rejection of ∼100%, phenol rejection of ∼90%, and excellent resistance to wetting and fouling. The interlayered interface between the PA and PP layer allowed the sieve of volatile substances by limiting their dissolution-diffusion, with the increasing hydrogen bond network formation preventing their transport. In contrast, small water molecules with powerful dynamics were permeable through the TFC membrane. Both experimental and molecular dynamics simulation results elucidated the sieving mechanism. Our findings demonstrate that this type of TFC Janus membrane can serve as a novel strategy to design next-generation MD membranes against volatile and non-volatile contaminants, which can have significant implications in the treatment of complex hypersaline wastewater.
Collapse
Affiliation(s)
- Zhigao Zhu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhu Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Guangming Tan
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yujun Zhou
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
15
|
Zhang N, Zhang J, Yang X, Zhou C, Zhu X, Liu B, Chen Y, Lin S, Wang Z. Janus Membrane with Hydrogel-like Coating for Robust Fouling and Wetting Resistance in Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19504-19513. [PMID: 37022125 DOI: 10.1021/acsami.3c02781] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Membrane distillation (MD) is a promising technique for water reclamation from hypersaline wastewater. However, fouling and wetting of the hydrophobic membranes are two prominent challenges for the widespread application of MD. Herein, we developed an antiwetting and antifouling Janus membrane comprising a hydrogel-like polyvinyl alcohol/tannic acid (PVA/TA) top layer and a hydrophobic polytetrafluoroethylene (PTFE) membrane substrate via a facile and benign strategy combining mussel-amine co-deposition with the shrinkage-rehydration process. Interestingly, the vapor flux of the Janus membrane was not compromised, though a microscale PVA/TA layer was introduced, possibly due to the high water uptake and reduced water evaporation enthalpy of the hydrogel-like structure. Moreover, the PVA/TA-PTFE Janus membrane sustained stable MD performance while treating a challenging saline feed containing surfactants and mineral oils. The robust wetting resistance arises from the synergistic effects of the elevated liquid entry pressure (1.01 ± 0.02 MPa) of the membrane and the retardation of surfactant transport to the substrate PTFE layer. Meanwhile, the hydrogel-like PVA/TA layer hinders oil fouling due to its strongly hydrated state. Furthermore, the PVA/TA-PTFE membrane exhibited improved performance in purifying shale gas wastewater and landfill leachate. This study provides new insights into the facile design and fabrication of promising MD membranes for hypersaline wastewater treatment.
Collapse
Affiliation(s)
- Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Jiaojiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Xin Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Changxu Zhou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Xiaohui Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Baicang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610207, P. R. China
| | - Yue Chen
- State Key Lab of Fluorinated Functional Membrane Materials, Shandong Dongyue Polymer Material Co., Ltd., Zibo 256401, P. R. China
| | - Shihong Lin
- Department of Civil and Environmental Engineering and Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
16
|
Di Luca G, Chen G, Jin W, Gugliuzza A. Aliquots of MIL-140 and Graphene in Smart PNIPAM Mixed Hydrogels: A Nanoenvironment for a More Eco-Friendly Treatment of NaCl and Humic Acid Mixtures by Membrane Distillation. MEMBRANES 2023; 13:437. [PMID: 37103864 PMCID: PMC10142398 DOI: 10.3390/membranes13040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
The problem of water scarcity is already serious and risks becoming dramatic in terms of human health as well as environmental safety. Recovery of freshwater by means of eco-friendly technologies is an urgent matter. Membrane distillation (MD) is an accredited green operation for water purification, but a viable and sustainable solution to the problem needs to be concerned with every step of the process, including managed amounts of materials, membrane fabrication procedures, and cleaning practices. Once it is established that MD technology is sustainable, a good strategy would also be concerned with the choice of managing low amounts of functional materials for membrane manufacturing. These materials are to be rearranged in interfaces so as to generate nanoenvironments wherein local events, conceived to be crucial for the success and sustainability of the separation, can take place without endangering the ecosystem. In this work, discrete and random supramolecular complexes based on smart poly(N-isopropyl acrylamide) (PNIPAM) mixed hydrogels with aliquots of ZrO(O2C-C10H6-CO2) (MIL-140) and graphene have been produced on a polyvinylidene fluoride (PVDF) sublayer and have been proven to enhance the performance of PVDF membranes for MD operations. Two-dimensional materials have been adhered to the membrane surface through combined wet solvent (WS) and layer-by-layer (LbL) spray deposition without requiring further subnanometer-scale size adjustment. The creation of a dual responsive nanoenvironment has enabled the cooperative events needed for water purification. According to the MD's rules, a permanent hydrophobic state of the hydrogels together with a great ability of 2D materials to assist water vapor diffusion through the membranes has been targeted. The chance to switch the density of charge at the membrane-aqueous solution interface has further allowed for the choice of greener and more efficient self-cleaning procedures with a full recovery of the permeation properties of the engineered membranes. The experimental evidence of this work confirms the suitability of the proposed approach to obtain distinct effects on a future production of reusable water from hypersaline streams under somewhat soft working conditions and in full respect to environmental sustainability.
Collapse
Affiliation(s)
- Giuseppe Di Luca
- Institute on Membrane Technology, National Research Council (CNR-ITM), Via Pietro Bucci 17C, 87036 Rende, Italy;
| | - Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, China; (G.C.); (W.J.)
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, China; (G.C.); (W.J.)
| | - Annarosa Gugliuzza
- Institute on Membrane Technology, National Research Council (CNR-ITM), Via Pietro Bucci 17C, 87036 Rende, Italy;
| |
Collapse
|
17
|
Li M, Cao Y, Zhang X. Hierarchically Structured Nanoparticle-Free Omniphobic Membrane for High-Performance Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5841-5851. [PMID: 36989064 DOI: 10.1021/acs.est.2c07880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The functional loss of membranes caused by pore wetting, mineral scaling, or structural instability is a critical challenge in membrane distillation (MD), which primarily hinders its practical applications. Herein, we propose a novel and facile strategy to fabricate omniphobic membranes with exceptionally robust MD performance. Specifically, a substrate with a hierarchical re-entrant architecture was constructed via spray-water-assisted non-solvent-induced phase separation (SWNIPS), followed by a direct fluorinated surface decoration via "thiol-ene" click chemistry. Deionized (DI) water contact angle measurements revealed an ultrahigh surface water contact angle (166.8 ± 1.8°) and an ultralow sliding angle (3.6 ± 1.1°) of the resultant membrane. Destructive abrasion cycle and ultrasonication tests confirmed its structural robustness. Moreover, the membrane possessed excellent wetting resistance, as evidenced by the prevention of membrane pore penetration by all low-surface-tension testing liquids, allowing stable long-term MD operation to treat brine wastewater with a surfactant content of 0.6 mM. In a desalination experiment using shale gas wastewater, the omniphobic membrane exhibited robust MD performance, achieving a high water recovery ratio of ∼60% without apparent changes in water flux and permeate conductivity over the entire membrane process. Overall, our study paves the way for a nanoparticle-free methodology for the scalable fabrication of high-performance MD membranes with surface omniphobicity and structural robustness in hypersaline wastewater treatment.
Collapse
Affiliation(s)
- Meng Li
- Laboratory of New Membrane Materials, Ministry of Industry and Information Technology; School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yang Cao
- Customs Targeting Bureau, Nanjing Customs District, Nanjing 210001, China
| | - Xuan Zhang
- Laboratory of New Membrane Materials, Ministry of Industry and Information Technology; School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
18
|
Zhang J, Li Z, Zhang Q, Zhang L, Ma T, Ma X, Liang K, Ying Y, Fu Y. Nanoconfined MXene-MOF Nanolaminate Film for Molecular Removal/Collection and Multiple Sieving. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17222-17232. [PMID: 36877589 DOI: 10.1021/acsami.3c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Balancing the trade-off between permeability and selectivity while realizing multiple sieving from complex matrices remains as bottlenecks for membrane-based separation. Here, a unique nanolaminate film of transition metal carbide (MXene) nanosheets intercalated by metal-organic framework (MOF) nanoparticles was developed. The intercalation of MOFs modulated the interlayer spacing and created nanochannels between MXene nanosheets, promoting a fast water permeance of 231 L m-2 h-1 bar-1. The nanochannel endowed a 10-fold lengthened diffusion path and the nanoconfinement effect to enhance the collision probability, establishing an adsorption model with a separation performance above 99% to chemicals and nanoparticles. In addition to the remained rejection function of nanosheets, the film integrated dual separation mechanisms of both size exclusion and selective adsorption, enabling a rapid and selective liquid phase separation paradigm that performs simultaneous multiple chemicals and nanoparticles sieving. The unique MXenes-MOF nanolaminate film and multiple sieving concepts are expected to pave a promising way toward highly efficient membranes and additional water treatment applications.
Collapse
Affiliation(s)
- Jie Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhishang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Lin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tongtong Ma
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xinyue Ma
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
19
|
Seo D, Cho YH, Kim G, Shin H, Lee SK, Kim JE, Chun H, Jung JS, Choi Y. Permanent Anticoagulation Blood-Vessel by Mezzo-Sized Double Re-Entrant Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300564. [PMID: 37010002 DOI: 10.1002/smll.202300564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Indexed: 06/19/2023]
Abstract
Having a permanent omniphobicity on the inner surface of the tube can bring enormous advantages, such as reducing resistance and avoiding precipitation during mass transfer. For example, such a tube can prevent blood clotting when delivering blood composed of complex hydrophilic and lipophilic compounds. However, it is very challenging to fabricate micro and nanostructures inside a tube. To overcome these, a wearability and deformation-free structural omniphobic surface is fabricated. The omniphobic surface can repel liquids by its "air-spring" under the structure, regardless of surface tension. Furthermore, it is not lost an omniphobicity under physical deformation like curved or twisted. By using these properties, omniphobic structures on the inner wall of the tube by the "roll-up" method are fabricated. Fabricated omniphobic tubes still repels liquids, even complex liquids like blood. According to the ex vivo blood tests for medical usage, the tube can reduce thrombus formation by 99%, like the heparin-coated tube. So, it is believed the tube can be soon replaced typical coating-based medical surfaces or anticoagulation blood vessel.
Collapse
Affiliation(s)
- Dongkwon Seo
- Department of Bio-Convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
| | - Yang Hyun Cho
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Gijung Kim
- Department of Bio-Convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunku Shin
- Exopert Corporation, Seoul, 02841, Republic of Korea
| | - Su Kyoung Lee
- Korea Artificial Organ Center, Seoul, 02841, Republic of Korea
| | - Ji Eon Kim
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Honggu Chun
- Department of Bio-Convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jae Seung Jung
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Yeonho Choi
- Department of Bio-Convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
- Exopert Corporation, Seoul, 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
20
|
Liu W, Wang R, Straub AP, Lin S. Membrane Design Criteria and Practical Viability of Pressure-Driven Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2129-2137. [PMID: 36693171 DOI: 10.1021/acs.est.2c07765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pressure-driven distillation (PD) is a novel desalination technology based on hydraulic pressure driving force and vapor transport across a hydrophobic porous membrane. In theory, PD offers near-perfect rejection for nonvolatile solutes, chlorine resistance, and the ability to decouple water and solute transport. Despite its advantages, pore wetting and the development of a reverse transmembrane temperature difference are potential critical concerns in PD, with the former compromising the salt rejection and the latter reducing or even eliminating the driving force for vapor transport. We herein present an analysis to evaluate the practical viability and membrane design principles of PD with a focus on the dependence of flux and salt rejection (SR) on membrane properties. By modeling the mass transfer in a PD process under different conditions, we arrive at two important conclusions. First, a practically detrimental reverse transmembrane temperature difference does not develop in PD under all relevant circumstances and is thus not a practical concern. Second, for a PD process to achieve an acceptable SR, the membrane pores should be at the nanometer scale with a highly uniform pore size distribution. This analysis demonstrates the practical viability of PD and provides the principles for designing robust and high-performance PD membranes.
Collapse
Affiliation(s)
- Weifan Liu
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee37235-1831, United States
| | - Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee37235-1831, United States
| | - Anthony P Straub
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado80309-0428, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee37235-1831, United States
- Department of Chemical and Bimolecular Engineering, Vanderbilt University, Nashville, Tennessee37235-1831, United States
| |
Collapse
|
21
|
Oxygen plasma-assisted contra-diffusion self-assembly of covalent organic framework pervaporation membranes for organic-solvent dehydration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Engineering omniphobic corrugated membranes for scaling mitigation in membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Zhang Y, Guo F. Breaking the Saturated Vapor Layer with a Thin Porous Membrane. MEMBRANES 2022; 12:1231. [PMID: 36557138 PMCID: PMC9784513 DOI: 10.3390/membranes12121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The main idea of membrane distillation is to use a porous hydrophobic membrane as a barrier that isolates vapor from aqueous solutions. It is similar to the evaporation process from a free water surface but introduces solid-liquid interfaces and solid-vapor interfaces to a liquid-vapor interface. The transmembrane mass flux of a membrane-distillation process is affected by the membrane's intrinsic properties and the temperature gradient across the membrane. It is interesting and important to know whether the evaporation process of membrane distillation is faster or slower than that of a free-surface evaporation under the same conditions and know the capacity of the transmembrane mass flux of a membrane-distillation process. In this work, a set of proof-of-principle experiments with various water surface/membrane interfacial conditions is performed. The effect and mechanism of membrane-induced evaporation are investigated. Moreover, a practical engineering model is proposed based on mathematical fitting and audacious simplification, which reflects the capacity of transmembrane flux.
Collapse
|
24
|
Xu H, Zhang Q, Song N, Chen J, Ding M, Mei C, Zong Y, Chen X, Gao L. Membrane distillation by novel Janus-enhanced membrane featuring hydrophobic-hydrophilic dual-surface for freshwater recovery. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Plasma-assisted facile fabrication of omniphobic graphene oxide membrane with anti-wetting property for membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Xie S, Pang Z, Hou C, Wong NH, Sunarso J, Peng Y. One-step preparation of omniphobic membrane with concurrent anti-scaling and anti-wetting properties for membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Tan G, Xu D, Zhu Z, Zhang X, Li J. Tailoring pore size and interface of superhydrophobic nanofibrous membrane for robust scaling resistance and flux enhancement in membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Qtaishat MR, Obaid M, Matsuura T, Al-Samhouri A, Lee JG, Soukane S, Ghaffour N. Desalination at ambient temperature and pressure by a novel class of biporous anisotropic membrane. Sci Rep 2022; 12:13564. [PMID: 35945430 PMCID: PMC9363466 DOI: 10.1038/s41598-022-17876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Recent scientific advances have made headway in addressing pertinient issues in climate change and the sustainability of our natural environment. This study makes use of a novel approach to desalination that is environment friendly, naturally sustainable and energy efficient, meaning that it is also cost efficient. Evaporation is a key phenomenon in the natural environment and used in many industrial applications including desalination. For a liquid droplet, the vapor pressure changes due to the curved liquid–vapor interface at the droplet surface. The vapor pressure at a convex surface in a pore is, therefore, higher than that at a flat surface due to the capillary effect, and this effect is enhanced as the pore radius decreases. This concept inspired us to design a novel biporous anisotropic membrane for membrane distillation (MD), which enables to desalinate water at ambient temperature and pressure by applying only a small transmembrane temperature gradient. The novel membrane is described as a super-hydrophobic nano-porous/micro-porous composite membrane. A laboratory-made membrane with specifications determined by the theoretical model was prepared for model validation and tested for desalination at different feed inlet temperatures by direct contact MD. A water vapor flux as high as 39.94 ± 8.3 L m−2 h−1 was achieved by the novel membrane at low feed temperature (25 °C, permeate temperature = 20 °C), while the commercial PTFE membrane, which is widely used in MD research, had zero flux under the same operating conditions. As well, the fluxes of the fabricated membrane were much higher than the commercial membrane at various inlet feed temperatures.
Collapse
Affiliation(s)
- Mohammed Rasool Qtaishat
- Chemical Engineering Department, School of Engineering, The University of Jordan, Amman, 11942, Jordan. .,Arab Open University/ Jordan Branch, Amman, 11731, Jordan. .,Saudi Membrane Distillation Desalination (SMDD) Co. Ltd., Innovation and Economic Development, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Mohammed Obaid
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Takeshi Matsuura
- Chemical and Biological Engineering Department, University of Ottawa, 161 Luis Pasteur Street, Ottawa, ON, K1N 6N5, Canada
| | - Areej Al-Samhouri
- Saudi Membrane Distillation Desalination (SMDD) Co. Ltd., Innovation and Economic Development, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jung-Gil Lee
- Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, 89, Yangdaegiro-gil, Seobuk-gu, Cheonan-si, Chungcheongnam-do, 31056, South Korea
| | - Sofiane Soukane
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Noreddine Ghaffour
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
29
|
Zhang B, Wong PW, Guo J, Zhou Y, Wang Y, Sun J, Jiang M, Wang Z, An AK. Transforming Ti 3C 2T x MXene's intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination. Nat Commun 2022; 13:3315. [PMID: 35676294 PMCID: PMC9177613 DOI: 10.1038/s41467-022-31028-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Owing to its 100% theoretical salt rejection capability, membrane distillation (MD) has emerged as a promising seawater desalination approach to address freshwater scarcity. Ideal MD requires high vapor permeate flux established by cross-membrane temperature gradient (∆T) and excellent membrane durability. However, it’s difficult to maintain constant ∆T owing to inherent heat loss at feedwater side resulting from continuous water-to-vapor transition and prevent wetting transition-induced membrane fouling and scaling. Here, we develop a Ti3C2Tx MXene-engineered membrane that imparts efficient localized photothermal effect and strong water-repellency, achieving significant boost in freshwater production rate and stability. In addition to photothermal effect that circumvents heat loss, high electrically conductive Ti3C2Tx MXene also allows for self-assembly of uniform hierarchical polymeric nanospheres on its surface via electrostatic spraying, transforming intrinsic hydrophilicity into superhydrophobicity. This interfacial engineering renders energy-efficient and hypersaline-stable photothermal membrane distillation with a high water production rate under one sun irradiation. Membrane distillation is susceptible to thermal inefficiency and membrane wetting issues during seawater desalination. Here, authors design a MXene-engineered membrane that imparts efficient localized photothermal effect and strong water repellency, achieving sustainable freshwater production.
Collapse
Affiliation(s)
- Baoping Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong.,Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Jiaxin Guo
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Yongsen Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Yang Wang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Mengnan Jiang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong.
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong.
| |
Collapse
|
30
|
Xu D, Zhu Z, Tan G, Xue X, Li J. Mechanism insight into gypsum scaling of differently wettable membrane surfaces with antiscalants in membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Kolya H, Jang E, Hashitsume K, Kang C. Effects of ammonium persulfate on coconut wood (
Cocos nucifera L
.) cellulose, hemicellulose, and lignin polymers: Improved sound absorption capacity. J Appl Polym Sci 2022. [DOI: 10.1002/app.52674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haradhan Kolya
- Department of Housing Environmental Design and Research Institute of Human Ecology, College of Human Ecology Jeonbuk National University Jeonju Republic of Korea
| | - Eun‐Suk Jang
- Department of Housing Environmental Design and Research Institute of Human Ecology, College of Human Ecology Jeonbuk National University Jeonju Republic of Korea
| | | | - Chun‐Won Kang
- Department of Housing Environmental Design and Research Institute of Human Ecology, College of Human Ecology Jeonbuk National University Jeonju Republic of Korea
| |
Collapse
|
32
|
Du X, Alipanahrostami M, Wang W, Tong T. Long-Chain PFASs-Free Omniphobic Membranes for Sustained Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23808-23816. [PMID: 35536240 DOI: 10.1021/acsami.2c01499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Omniphobic membranes possessing high wetting resistance have been created for the treatment of challenging hypersaline feedwaters with low surface tension through membrane distillation (MD). However, virtually all such membranes are fabricated with long-chain per- and polyfluoroalkyl substances (PFASs, ≥8 fluorinated carbons). The environmental risks and high bioaccumulation potential of long-chain PFASs have raised increasing concerns. Developing highly wetting-resistant MD membranes while avoiding the use of long-chain PFASs is essential to improve the viability of MD for resilient and sustainable water purification. We demonstrate that MD membranes with exceptional wetting resistance can be designed through the combination of hierarchically structured membranes consisting of re-entrant texture at different length scales and (ultra)short-chain fluorocarbons, which have lower acute toxicity and bioaccumulation potentials than long-chain PFASs. Our hierarchically structured membrane with three-tier micro/nanostructure fabricated with short-chain fluorocarbon possesses superior wetting resistance, which is comparable to or higher than the long-chain PFASs-based omniphobic membranes reported in the literature. Furthermore, the hierarchically structured membranes fabricated with ultrashort-chain fluorocarbons display improved wetting resistance against feedwaters with low surface tension. Our findings indicate that long-chain PFASs are not required when designing wetting-resistant membranes and that the balance between sustainability and wetting resistance should be tailored to the wetting potential of the feedwater.
Collapse
Affiliation(s)
- Xuewei Du
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Mohammad Alipanahrostami
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Wei Wang
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
33
|
Sun C, Lyu Q, Si Y, Tong T, Lin LC, Yang F, Tang CY, Dong Y. Superhydrophobic Carbon Nanotube Network Membranes for Membrane Distillation: High-Throughput Performance and Transport Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5775-5785. [PMID: 35465657 DOI: 10.1021/acs.est.1c08842] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite increasing sustainable water purification, current desalination membranes still suffer from insufficient permeability and treatment efficiency, greatly hindering extensive practical applications. In this work, we provide a new membrane design protocol and molecule-level mechanistic understanding of vapor transport for the treatment of hypersaline waters via a membrane distillation process by rationally fabricating more robust metal-based carbon nanotube (CNT) network membranes, featuring a superhydrophobic superporous surface (80.0 ± 2.3% surface porosity). With highly permeable ductile metal hollow fibers as substrates, the construction of a superhydrophobic (water contact angle ∼170°) CNT network layer endows the membranes with not only almost perfect salt rejection (over 99.9%) but a promising water flux (43.6 L·m-2·h-1), which outperforms most existing inorganic distillation membranes. Both experimental and molecular dynamics simulation results indicate that such an enhanced water flux can be ascribed to an ultra-low liquid-solid contact interface (∼3.23%), allowing water vapor to rapidly transport across the membrane structure via a combined mechanism of Knudsen diffusion (more dominant) and viscous flow while efficiently repelling high-salinity feed via forming a Cassie-Baxter state. A more hydrophobic surface is more in favor of not only water desorption from the CNT outer surface but superfast and frictionless water vapor transport. By constructing a new superhydrophobic triple-phase interface, the conceptional design strategy proposed in this work can be expected to be extended to other membrane material systems as well as more water treatment applications.
Collapse
Affiliation(s)
- Chunyi Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Lyu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yiran Si
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Li-Chiang Lin
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
34
|
Gypsum scaling mechanisms on hydrophobic membranes and its mitigation strategies in membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
|
36
|
Lu D, Zhou Z, Wang Z, Ho DT, Sheng G, Chen L, Zhao Y, Li X, Cao L, Schwingenschlögl U, Ma J, Lai Z. An Ultrahigh-Flux Nanoporous Graphene Membrane for Sustainable Seawater Desalination using Low-Grade Heat. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109718. [PMID: 34990512 DOI: 10.1002/adma.202109718] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Membrane distillation has attracted great attention in the development of sustainable desalination and zero-discharge processes because of its possibility of recovering 100% water and the potential for integration with low-grade heat, such as solar energy. However, the conventional membrane structures and materials afford limited flux thus obstructing its practical application. Here, ultrathin nanoporous graphene membranes are reported by selectively forming thin graphene layers on the top edges of a highly porous anodic alumina oxide support, which creates short and fast transport pathways for water vapor but not liquid. The process avoids the challenging pore-generation and substrate-transfer processes required to prepare regular graphene membranes. In the direct-contact membrane distillation mode under a mild temperature pair of 65/25 °C, the nanoporous graphene membranes show an average water flux of 421.7 L m-2 h-1 with over 99.8% salt rejection, which is an order of magnitude higher than any reported polymeric membranes. The mechanism for high water flux is revealed by detailed characterizations and theoretical modeling. Outdoor field tests using water from the Red Sea heated under direct sunlight radiation show that the membranes have an average water flux of 86.3 L m-2 h-1 from 8 am to 8 pm, showing a great potential for real applications in seawater desalination.
Collapse
Affiliation(s)
- Dongwei Lu
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Zongyao Zhou
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhihong Wang
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Duc Tam Ho
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Guan Sheng
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Long Chen
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Xiang Li
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Li Cao
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Udo Schwingenschlögl
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
37
|
Li H, Feng H, Li M, Zhang X. Engineering a covalently constructed superomniphobic membrane for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Liu Y, Horseman T, Wang Z, Arafat HA, Yin H, Lin S, He T. Negative Pressure Membrane Distillation for Excellent Gypsum Scaling Resistance and Flux Enhancement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1405-1412. [PMID: 34941244 DOI: 10.1021/acs.est.1c07144] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane distillation (MD) has potential to become a competitive technology for managing hypersaline brine but not until the critical challenge of mineral scaling is addressed. The state-of-the-art approach for mitigating mineral scaling in MD involves the use of superhydrophobic membranes that are difficult to fabricate and are commercially unavailable. This study explores a novel operational strategy, namely, negative pressure direct contact membrane distillation (NP-DCMD) that can minimize mineral scaling with commercially available hydrophobic membranes and at the same time enhance the water vapor flux substantially. By applying a negative gauge pressure on the feed stream, NP-DCMD achieved prolonged resistance to CaSO4 scaling and a dramatic vapor flux enhancement up to 62%. The exceptional scaling resistance is attributable to the formation of a concave liquid-gas under a negative pressure that changes the position of the water-air interface to hinder interfacial nucleation and crystal growth. The substantial flux enhancement is caused by the reduced molecular diffusion resistance within the pores and the enhanced heat transfer kinetics across the boundary layer in NP-DCMD. Achieving substantial performance improvement in both the scaling resistance and vapor flux with commercial membranes, NP-DCMD is a significant innovation with vast potential for practical adoption due to its simplicity and effectiveness.
Collapse
Affiliation(s)
- Yongjie Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Thomas Horseman
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Zhangxin Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watershed, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hassan A Arafat
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Huabing Yin
- School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K
| | - Shihong Lin
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Tao He
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
39
|
Liu Y, Shen L, Huang Z, Liu J, Xu Y, Li R, Zhang M, Hong H, Lin H. A novel in-situ micro-aeration functional membrane with excellent decoloration efficiency and antifouling performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119925] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Zhu Z, Tan G, Lei D, Yang Q, Tan X, Liang N, Ma D. Omniphobic membrane with process optimization for advancing flux and durability toward concentrating reverse-osmosis concentrated seawater with membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Omniphobic membrane with nest-like re-entrant structure via electrospraying strategy for robust membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Cao C, Huang X, Lv D, Ai L, Chen W, Hou C, Yi B, Luo J, Yao X. Ultrastretchable conductive liquid metal composites enabled by adaptive interfacial polarization. MATERIALS HORIZONS 2021; 8:3399-3408. [PMID: 34679157 DOI: 10.1039/d1mh00924a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gallium-based liquid metals (LMs) are emerging candidates for the development of metal/polymer-based flexible circuits in wearable electronics. However, the high surface energies of LMs make them easily depleted from the polymer matrix and therefore substantially suppress the stretchability of the conductive composites. Here, we reveal that a dynamic interplay between the LM and the polyvinylidene fluoride (PVDF) copolymer can help to address these issues. Weak and abundant interfacial polarization interactions between the PVDF copolymer and the oxide layer allow continuous and adaptive configuration of the compartmented LM channels, enabling ultra-stretchability of the composites. The conductive LM-polymer composites can maintain their structural integrity with a high surface conductivity and small resistance changes under large strains from 1000% to 10 000%. Taking advantage of their flexible processability under mild conditions and exceptional performance, our design strategy allows the scalable fabrication of conductive LM-polymer composites for a range of applications in wearable devices and sensors.
Collapse
Affiliation(s)
- Chunyan Cao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China.
| | - Xin Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China.
| | - Dong Lv
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China.
| | - Liqing Ai
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China.
| | - Weilong Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, P. R. China.
| | - Changshun Hou
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China.
| | - Bo Yi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China.
| | - Jingdong Luo
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, P. R. China.
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| |
Collapse
|
43
|
Yang Y, Zhang Y, Hu Y, Li G, Zhang C, Song Y, Li L, Ni C, Dai N, Cai Y, Li J, Wu D, Chu J. Femtosecond Laser Regulated Ultrafast Growth of Mushroom-Like Architecture for Oil Repellency and Manipulation. NANO LETTERS 2021; 21:9301-9309. [PMID: 34709839 DOI: 10.1021/acs.nanolett.1c03506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural organisms can create various microstructures via a spontaneous growth mode. In contrast, artificial protruding microstructures are constructed by subtractive methods that waste materials and time or by additive methods that require additional materials. Here, we report a facile and straightforward strategy for a laser-induced self-growing mushroom-like microstructure on a flat surface. By simply controlling the localized femtosecond laser heating and ablation on the poly(ethylene terephthalate) tape/heat-shrinkable polystyrene bilayer surface, it is discovered that a mushroom-like architecture can spontaneously and rapidly grow out from the original surface within 0.36 s. The dimension of the re-entrant micropillar array (cap diameter, pillar spacing, and height) can be accurately controlled through the intentional control of laser scanning. Followed by a fluorination and spray coating, the obtained surface can realize the repellency and manipulation of oil droplets. This work provides new opportunities in the fields of microfabrication, microfluidics, microreactor engineering, and wearable antifouling electronics.
Collapse
Affiliation(s)
- Yi Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
- Key Laboratory of Testing Technology for Manufacturing Process of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yachao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yanlei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Guoqiang Li
- Key Laboratory of Testing Technology for Manufacturing Process of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Cong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yuegan Song
- Key Laboratory of Testing Technology for Manufacturing Process of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Longfu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Caiding Ni
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Nianwei Dai
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yong Cai
- Key Laboratory of Testing Technology for Manufacturing Process of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiawen Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Dong Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Jiaru Chu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
44
|
Li H, Fu M, Wang SQ, Zheng X, Zhao M, Yang F, Tang CY, Dong Y. Stable Zr-Based Metal-Organic Framework Nanoporous Membrane for Efficient Desalination of Hypersaline Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14917-14927. [PMID: 34661395 DOI: 10.1021/acs.est.1c06105] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Treatment of hypersaline waters is a critical environmental challenge. Pervaporation (PV) desalination is a promising technique to address this challenge, but current PV membranes still suffer from challenging issues such as low flux and insufficient stability. Herein, we propose in situ nanoseeding followed by a secondary growth strategy to fabricate a high-quality stable metal-organic framework (MOF) thin membrane (UiO-66) for high-performance pervaporation desalination of hypersaline waters. To address the issue of membrane quality, a TiO2 nano-interlayer was introduced on coarse mullite substrates to favor the growth of a UiO-66 nanoseed layer, on which a well-intergrown UiO-66 selective membrane layer with thickness as low as 1 μm was finally produced via subsequent secondary growth. The PV separation performance for hypersaline waters was systematically investigated at different salt concentrations, feed temperatures, and long-term operation in different extreme chemical environments. Besides having nearly complete rejection (99.9%), the UiO-66 membrane exhibited high flux (37.4 L·m-2·h-1) for hypersaline waters, outperforming current existing zeolite and MOF membranes. The membrane also demonstrated superior long-term operational stability under various harsh environments (hypersaline, hot, and acidic/alkaline feed water) and mild fouling behavior. The rational design proposed in this study is not only applicable for the development of a high-quality UiO-66 membrane enabling harsh hypersaline water treatment but can also be potentially extended to other next-generation nanoporous MOF membranes for more environmental applications.
Collapse
Affiliation(s)
- Haotian Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mao Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shi-Qiang Wang
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
45
|
Ni T, Lin J, Kong L, Zhao S. Omniphobic membranes for distillation: Opportunities and challenges. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Zhao S, Jiang C, Fan J, Hong S, Mei P, Yao R, Liu Y, Zhang S, Li H, Zhang H, Sun C, Guo Z, Shao P, Zhu Y, Zhang J, Guo L, Ma Y, Zhang J, Feng X, Wang F, Wu H, Wang B. Hydrophilicity gradient in covalent organic frameworks for membrane distillation. NATURE MATERIALS 2021; 20:1551-1558. [PMID: 34294883 DOI: 10.1038/s41563-021-01052-w] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 06/10/2021] [Indexed: 05/27/2023]
Abstract
Desalination can help to alleviate the fresh-water crisis facing the world. Thermally driven membrane distillation is a promising way to purify water from a variety of saline and polluted sources by utilizing low-grade heat. However, membrane distillation membranes suffer from limited permeance and wetting owing to the lack of precise structural control. Here, we report a strategy to fabricate membrane distillation membranes composed of vertically aligned channels with a hydrophilicity gradient by engineering defects in covalent organic framework films by the removal of imine bonds. Such functional variation in individual channels enables a selective water transport pathway and a precise liquid-vapour phase change interface. In addition to having anti-fouling and anti-wetting capability, the covalent organic framework membrane on a supporting layer shows a flux of 600 l m-2 h-1 with 85 °C feed at 16 kPa absolute pressure, which is nearly triple that of the state-of-the-art membrane distillation membrane for desalination. Our results may promote the development of gradient membranes for molecular sieving.
Collapse
Affiliation(s)
- Shuang Zhao
- Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, P. R. China
| | - Chenghao Jiang
- Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Jingcun Fan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, P. R. China
| | - Shanshan Hong
- Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Pei Mei
- Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Ruxin Yao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Linfen, P. R. China
| | - Yilin Liu
- Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Sule Zhang
- Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Hui Li
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, P. R. China
| | - Huaqian Zhang
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, P. R. China
| | - Chao Sun
- Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Zhenbin Guo
- Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, P. R. China
| | - Pengpeng Shao
- Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Yuhao Zhu
- Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Jinwei Zhang
- Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Linshuo Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, P. R. China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, P. R. China
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, P. R. China
| | - Xiao Feng
- Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, P. R. China.
| | - Fengchao Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, P. R. China.
| | - Hengan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, P. R. China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, P. R. China.
| |
Collapse
|
47
|
Liao X, Goh K, Liao Y, Wang R, Razaqpur AG. Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications. Adv Colloid Interface Sci 2021; 297:102547. [PMID: 34687984 DOI: 10.1016/j.cis.2021.102547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023]
Abstract
With the aggravation of the global water crisis, membrane distillation (MD) for seawater desalination and hypersaline wastewater treatment is highlighted due to its low operating temperature, low hydrostatic pressure, and theoretically 100% rejection. However, some issues still impede the large-scale applications of MD technology, such as membrane fouling, scaling and unsatisfactory wetting resistance. Bio-inspired super liquid-repellent membranes have progressed rapidly in the past decades and been considered as one of the most promising approaches to overcome the above problems. This review for the first time systematically summarizes and analyzes the mechanisms of different super liquid-repellent surfaces, their preparation and modification methods, and anti-wetting/fouling/scaling performances in the MD process. Firstly, the topology theories of in-air superhydrophobic, in-air omniphobic and underwater superoleophobic surfaces are illustrated using different models. Secondly, the fabrication methods of various super liquid-repellent membranes are classified. The merits and demerits of each method are illustrated. Thirdly, the anti-wetting/fouling/scaling mechanisms of super liquid-repellent membranes are summarized. Finally, the conclusions and perspectives of the bio-inspired super liquid-repellent membranes are elaborated. It is anticipated that the systematic review herein can provide readers with foundational knowledge and current progress of super liquid-repellent membranes, and inspire researchers to overcome the challenges up ahead.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
48
|
Liao X, Wang Y, Liao Y, You X, Yao L, Razaqpur AG. Effects of different surfactant properties on anti-wetting behaviours of an omniphobic membrane in membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Chen Y, Lu KJ, Gai W, Chung TS. Nanofiltration-Inspired Janus Membranes with Simultaneous Wetting and Fouling Resistance for Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7654-7664. [PMID: 34014649 DOI: 10.1021/acs.est.1c01269] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Membranes with robust antiwetting and antifouling properties are highly desirable for membrane distillation (MD) of wastewater. Herein, we have proposed and demonstrated a highly effective method to mitigate wetting and fouling by designing nanofiltration (NF)-inspired Janus membranes for MD applications. The NF-inspired Janus membrane (referred to as PVDF-P-CQD) consists of a hydrophobic polyvinylidene fluoride (PVDF) membrane and a thin polydopamine/polyethylenimine (PDA/PEI) layer grafted by sodium-functionalized carbon quantum dots (Na+-CQDs) to improve its hydrophilicity. The vapor flux data have confirmed that the hydrophilic layer does not add extra resistance to water vapor transport. The PVDF-P-CQD membrane exhibits excellent resistance toward both surfactant-induced wetting and oil-induced fouling in direct contact MD (DCMD) experiments. The impressive performance arises from the fact that the nanoscale pore sizes of the PDA/PEI layer would reject surfactant molecules by size exclusion and lower the propensity of surfactant-induced wetting, while the high surface hydrophilicity resulted from Na+-CQDs would induce a robust hydration layer to prevent oil from attachment. Therefore, this study may provide useful insights and strategies to design novel membranes for next-generation MD desalination with minimal wetting and fouling propensity.
Collapse
Affiliation(s)
- Yuanmiaoliang Chen
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Kang-Jia Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Wenxiao Gai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Tai-Shung Chung
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 119077, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
50
|
Fan X, Tan C, Li Y, Chen Z, Li Y, Huang Y, Pan Q, Zheng F, Wang H, Li Q. A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi 0.5Co 0.2Mn 0.3O 2 cathode material from spent lithium-ion batteries. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124610. [PMID: 33243647 DOI: 10.1016/j.jhazmat.2020.124610] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Lithium nickel manganese cobalt oxide in the spent lithium ion batteries (LIBs) contains a lot of lithium, nickel, cobalt and manganese. However, how to effectively recover these valuable metals under the premise of reducing environmental pollution is still a challenge. In this work, a green, efficient, closed-loop direct regeneration technology is proposed to reconstruct LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials from spent LIBs. Firstly, the failure mechanism of NCM523 cathode materials in the spent LIBs is analyzed deeply. It is found that the spent NCM523 material has problems such as the dissolution of lithium and transition metals, surface interface failure and structural transformation, resulting in serious deterioration of electrochemical performance. Then NCM523 material was directly regenerated by supplementing metal ions, granulation, ion doping and heat treatment. Meanwhile, PO43- polyanions were doped into the regenerated NCM material in the recovery process, showing excellent electrochemical performance with discharge capacity of 189.8 mAh g-1 at 0.1 C. The recovery process proposed in this study puts forward a new strategy for the recovery various lithium nickel cobalt manganese oxide (e.g., LiNi1/3Co1/3Mn1/3O2, LiNi0.5Co0.2Mn0.3O2, LiNi0.6Co0.2Mn0.2O2 and LiNi0.8Co0.1Mn0.1O2) and accelerates the industrialization of spent lithium ion battery recycling.
Collapse
Affiliation(s)
- Xiaoping Fan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Chunlei Tan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Yu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Zhiqiang Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Yahao Li
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Youguo Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Qichang Pan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Fenghua Zheng
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China.
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|