1
|
Xu A, Liu T, Liu D, Li W, Huang H, Wang S, Xu L, Liu X, Jiang S, Chen Y, Sun M, Luo Q, Ding T, Yao T. Edge-Rich Pt-O-Ce Sites in CeO 2 Supported Patchy Atomic-Layer Pt Enable a Non-CO Pathway for Efficient Methanol Oxidation. Angew Chem Int Ed Engl 2024; 63:e202410545. [PMID: 38940407 DOI: 10.1002/anie.202410545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Rational design of efficient methanol oxidation reaction (MOR) catalyst that undergo non-CO pathway is essential to resolve the long-standing poisoning issue. However, it remains a huge challenge due to the rather difficulty in maximizing the non-CO pathway by the selective coupling between the key *CHO and *OH intermediates. Here, we report a high-performance electrocatalyst of patchy atomic-layer Pt epitaxial growth on CeO2 nanocube (Pt ALs/CeO2) with maximum electronic metal-support interaction for enhancing the coupling selectively. The small-size monolayer material achieves an optimal geometrical distance between edge Pt-O-Ce sites and *OH absorbed on CeO2, which well restrains the dehydrogenation of *CHO, resulting in the non-CO pathway. Meanwhile, the *CHO/*CO intermediate generated at inner Pt-O-Ce sites can migrate to edge, inducing the subsequent coupling reaction, thus avoiding poisoning while promoting reaction efficiency. Consequently, Pt ALs/CeO2 exhibits exceptionally catalytic stability with negligible degradation even under 1000 s pure CO poisoning operation and high mass activity (14.87 A/mgPt), enabling it one of the best-performing alkali-stable MOR catalysts.
Collapse
Affiliation(s)
- Airong Xu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Tong Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Dong Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Wenzhi Li
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Hui Huang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Sicong Wang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Li Xu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Xiaokang Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Shuaiwei Jiang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Yudan Chen
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Mei Sun
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Tao Ding
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Tao Yao
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| |
Collapse
|
2
|
Chen K, Li G, Gong X, Ren Q, Wang J, Zhao S, Liu L, Yan Y, Liu Q, Cao Y, Ren Y, Qin Q, Xin Q, Liu SL, Yao P, Zhang B, Yang J, Zhao R, Li Y, Luo R, Fu Y, Li Y, Long W, Zhang S, Dai H, Liu C, Zhang J, Chang J, Mu X, Zhang XD. Atomic-scale strain engineering of atomically resolved Pt clusters transcending natural enzymes. Nat Commun 2024; 15:8346. [PMID: 39333142 PMCID: PMC11436958 DOI: 10.1038/s41467-024-52684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt1), several Pt atoms (Ptn) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d-band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency (Kcat/Km) of 1.50 × 109 mM-1 min-1, about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder.
Collapse
Affiliation(s)
- Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Guo Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Xiaoqun Gong
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin, China
| | - Qinjuan Ren
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Junying Wang
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shuang Zhao
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin, China
| | - Ling Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yuxing Yan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Qingshan Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yang Cao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yaoyao Ren
- Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiong Qin
- Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Peiyu Yao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Bo Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jingkai Yang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ruoli Zhao
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Yuan Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Ran Luo
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin, China
| | - Yikai Fu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Yonghui Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Wei Long
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine Chinese Academy of Medical, Sciences and Peking Union Medical College, Tianjin, China
| | - Shu Zhang
- Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Haitao Dai
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Changlong Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Jianning Zhang
- Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jin Chang
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China.
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China.
| |
Collapse
|
3
|
Zhu L, Zhao Y, Zhai T, Yan Y, Jiang Y, Zhang H, Zhang R, Gan Y, Zhang P, Zhou K, Wu S, Tian C, Jiang N, Liu P. Laser Irradiation Induced Electronic Structure Modulation of the Palladium-Based Nanosheets for Efficient Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405107. [PMID: 39300865 DOI: 10.1002/smll.202405107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Palladium nanosheets (Pd NSs) are widely used as electrocatalysts due to their high atomic utilization efficiency, and long-term stability. Here, the electronic structure modulation of the Pd NSs is realized by a femtosecond laser irradiation strategy. Experimental results indicate that laser irradiation induces the variation in the atomic structures and the macrostrain effects in the Pd NSs. The electronic structure of Pd NSs is modulated by laser irradiation through the balancing between Au-Pd charge transfer and the macros-strain effects. Finite element analysis (FEA) indicates that the lattice of the nanostructures undergoes fast heating and cooling during laser irradiation. The structural evolution mechanism is disclosed by a combined FEA and molecule dynamics (MD) simulation. These results coincide well with the experimental results. The L-AuPd NSs exhibit excellent mass activity and specific activity of 7.44 A mg-1 Pd and 18.70 mA cm-2 toward ethanol oxidation reaction (EOR), 4.3 and 4.4 times higher than the commercial Pd/C. The 2500-cycle accelerated durability (ADT) test confirms the outstanding catalytic stability of the L-AuPd NSs. Density functional theory (DFT) calculations reveal the catalytic mechanism. This unique strategy provides a new pathway to design the ultrathin nanosheet-based materials with excellent performance.
Collapse
Affiliation(s)
- Liye Zhu
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yan Zhao
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Tianrui Zhai
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yinzhou Yan
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yijian Jiang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Huanzhen Zhang
- School of Mathematics and Physics, Hebei University of Engineering, Handan, 056000, P. R. China
| | - Ran Zhang
- Research Centre for Laser Extreme Manufacturing, Ningbo Institute of Materials Engineering and Technology, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yuqi Gan
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pengju Zhang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Kailing Zhou
- Key Laboratory of Advanced Functional Materials Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Shengbo Wu
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Chenhe Tian
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Nan Jiang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Peng Liu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Zhang S, Yin L, Liu Q, Hai G, Du Y. Lanthanide-Induced Ligand Effect to Regulate the Electronic Structure of Platinum-Lanthanide Nanoalloys for Efficient Methanol Oxidation. ACS NANO 2024; 18:25754-25764. [PMID: 39102015 DOI: 10.1021/acsnano.4c08156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The ligand effect in alloy catalysts is one of the decisive parameters of the catalytic performance. However, the strong interrelation between the ligand effect and the geometric effect of the active atom and its neighbors as well as the systematic alteration of the microenvironment of the active site makes the active mechanism unclear. Herein, Pt3Tm, Pt3Yb, and Pt3Lu with a cubic crystal system (Pm-3m) were selected. With the difference of Pt-Pt interatomic distance within 0.02 Å, we minimize the geometric effect to realize the disentanglement of the system. Through precise characterization, due to the low electronegativity of Ln (Ln = Tm, Yb, and Lu) and the ligand effect in the alloy, the electronic structure of Pt is continuously optimized, which improves the electrochemical methanol oxidation reaction (MOR) performance. The Ln electronegativity has a linear relationship with the MOR performance, and Pt3Yb/C achieves a high mass activity of up to 11.61 A mgPt-1, which is the highest value reported so far in Pt-based electrocatalysts. The results obtained in this study provide fundamental insights into the mechanism of ligand effects on the enhancement of electrochemical activity in rare-earth nanoalloys.
Collapse
Affiliation(s)
- Shuai Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Leilei Yin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Qian Liu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Guangtong Hai
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Yang J, Xia T, Li H, Yan H, Kong X, Li Z, Shao M, Duan X. Evaluation of Active Oxygen Species Derived from Water Splitting for Electrocatalytic Organic Oxidation. Angew Chem Int Ed Engl 2024:e202413457. [PMID: 39254544 DOI: 10.1002/anie.202413457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Active oxygen species (OH*/O*) derived from water electrolysis are essential for the electrooxidation of organic compounds into high-value chemicals, which can determine activity and selectivity, whereas the relationship between them remains unclear. Herein, using glycerol (GLY) electrooxidation as a model reaction, we systematically investigated the relationship between GLY oxidation activity and the formation energy of OH* (ΔGOH*). We first identified that OH* on Au demonstrates the highest activity for GLY electrooxidation among various pure metals, based on experiments and density functional theory, and revealed that ΔGOH* on Au-based alloys is influenced by the metallic composition of OH* coordination sites. Moreover, we observed a linear correlation between the adsorption energy of GLY (Eads) and the d-band center of Au-based alloys. Comprehensive microkinetic analysis further reveals a volcano relationship between GLY oxidation activity, the ΔGOH* and the adsorption free energy of GLY (ΔGads). Notably, Au3Pd and Au3Ag alloys, positioned near the peak of the volcano plot, show excellent activity, attributed to their moderate ΔGOH* and ΔGads, striking a balance that is neither too high nor too low. This research provides theoretical insights into modulating active oxygen species from water electrolysis to enhance organic electrooxidation reactions.
Collapse
Affiliation(s)
- Jiangrong Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tian Xia
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon, 440746, Korea
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 323000, China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 323000, China
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 323000, China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 323000, China
| |
Collapse
|
6
|
Zhang T, Hang L, Liu Q, Tao S, Bao H, Fan HJ. Positively Charged Hollow Co Nanoshells by Kirkendall Effect Stabilized by Electron Sink for Alkaline Water Dissociation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405386. [PMID: 39022849 DOI: 10.1002/adma.202405386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/10/2024] [Indexed: 07/20/2024]
Abstract
While cobalt (Co) exhibits a comparable energy barrier for H* adsorption/desorption to platinum in theory, it is generally not suitable for alkaline hydrogen evolution reaction (HER) because of unfavorable water dissociation. Here, the Kirkendall effect is adopted to fabricate positive-charged hollow metal Co (PHCo) nanoshells that are stabilized by MoO2 and chainmail carbon as the electron sink. Compared to the zero-valent Co, the PHCo accelerates the water dissociation and changes the rate-determining step from Volmer to Heyrovsky process. Alkaline HER occurs with a low overpotential of 59.0 mV at 10 mA cm-2. Operando Raman and first principles calculations reveal that the interfacial water to the PHCo sites and the accelerated proton transfer are conducive to the adsorption and dissociation of H2O molecules. Meanwhile, the upshifted d-band center of PHCo optimizes the adsorption/desorption of H*. This work provides a unique synthesis of hollow Co nanoshells via the Kirkendall effect and insights to water dissociation on catalyst surfaces with tailored charge states.
Collapse
Affiliation(s)
- Tao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Lifeng Hang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 518037, China
| | - Qingyi Liu
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Shi Tao
- School of Electronic and Information Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, 215500, China
| | - Haoming Bao
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
7
|
Singha T, Tomar S, Das S, Satpati B. D-Band Engineering in Pd-Based Nanowire Networks for Further Enhancement in Ethanol Electrooxidation Reaction. SMALL METHODS 2024; 8:e2400368. [PMID: 38745535 DOI: 10.1002/smtd.202400368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Indexed: 05/16/2024]
Abstract
The development of highly efficient electrocatalysts for the ethanol oxidation reaction (EOR) is essential for the commercialization of direct ethanol fuel cells, yet challenges remain. In this study, a one-pot solution-phase method to synthesize Pd nanowire networks (NNWs) with very high surface-to-volume ratio having numerous twin and grain boundaries is developed. Using the same method, the Pd lattice is further engineered by introducing Ag and Cu atoms to produce AgPd, and CuPd alloy structure which significantly shifts the Pd d-band center upward and downward, respectively due to strain and ligand effects. Theoretical analysis employing density functional theory (DFT) demonstrates that such modification of the d-band center significantly influences the adsorption energies of reactants on the catalytic surface. Owing to their notably high surface-to-volume ratio and the presence of multiple twin and grain boundaries, Pd NNWs demonstrate significantly enhanced electrocatalytic activity toward EOR, ≈7.2 times greater than that of commercial Pd/C. Remarkably, compared to Pd NNWs, AgPd, and CuPd NNWs display enlarged and reduced electrocatalytic activity toward EOR, respectively. Specifically, Ag4Pd7 NNWs achieve a remarkable mass activity of 9.00 A mgpd -1 for EOR, which is 13.6 times higher than commercial Pd/C.
Collapse
Affiliation(s)
- Tukai Singha
- Surface Physics & Material Science Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Shalini Tomar
- Indo-Korea Science and Technology Center (IKST), Bangalore, 560065, India
| | - Shuvankar Das
- Surface Physics & Material Science Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Biswarup Satpati
- Surface Physics & Material Science Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| |
Collapse
|
8
|
Zheng D, Liu K, Zhang Z, Fu Q, Bian M, Han X, Shen X, Chen X, Xie H, Wang X, Yang X, Zhang Y, Song S. Essential features of weak current for excellent enhancement of NO x reduction over monoatomic V-based catalyst. Nat Commun 2024; 15:6688. [PMID: 39107273 PMCID: PMC11303551 DOI: 10.1038/s41467-024-51034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024] Open
Abstract
Human society is facing increasingly serious problems of environmental pollution and energy shortage, and up to now, achieving high NH3-SCR activity at ultra-low temperatures (<150 °C) remains challenging for the V-based catalysts with V content below 2%. In this study, the monoatomic V-based catalyst under the weak current-assisted strategy can completely convert NOx into N2 at ultra-low temperature with V content of 1.36%, which shows the preeminent turnover frequencies (TOF145 °C = 1.97×10-3 s-1). The improvement of catalytic performance is mainly attributed to the enhancement catalysis of weak current (ECWC) rather than electric field, which significantly reduce the energy consumption of the catalytic system by more than 90%. The further mechanism research for the ECWC based on a series of weak current-assisted characterization means and DFT calculations confirms that migrated electrons mainly concentrate around the V single atoms and increase the proportion of antibonding orbitals, which make the V-O chemical bond weaker (electron scissors effect) and thus accelerate oxygen circulation. The novel current-assisted catalysis in the present work can potentially apply to other environmental and energy fields.
Collapse
Affiliation(s)
- Daying Zheng
- Ganjiang Innovation Academy, Chinese Academy of Sciences, No.1, Science Academy Road, Ganzhou, 341000, China
- University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Kaijie Liu
- Ganjiang Innovation Academy, Chinese Academy of Sciences, No.1, Science Academy Road, Ganzhou, 341000, China.
- University of Science and Technology of China, Hefei, 230026, China.
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China.
| | - Zeshu Zhang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, No.1, Science Academy Road, Ganzhou, 341000, China
- University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Qi Fu
- Ganjiang Innovation Academy, Chinese Academy of Sciences, No.1, Science Academy Road, Ganzhou, 341000, China
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Mengyao Bian
- Ganjiang Innovation Academy, Chinese Academy of Sciences, No.1, Science Academy Road, Ganzhou, 341000, China
- University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Xinyu Han
- Ganjiang Innovation Academy, Chinese Academy of Sciences, No.1, Science Academy Road, Ganzhou, 341000, China
- University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Xin Shen
- Ganjiang Innovation Academy, Chinese Academy of Sciences, No.1, Science Academy Road, Ganzhou, 341000, China
- University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Xiaohui Chen
- Ganjiang Innovation Academy, Chinese Academy of Sciences, No.1, Science Academy Road, Ganzhou, 341000, China
- University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, 310003, China
| | - Xiao Wang
- University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xiangguang Yang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, No.1, Science Academy Road, Ganzhou, 341000, China
- University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yibo Zhang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, No.1, Science Academy Road, Ganzhou, 341000, China.
- University of Science and Technology of China, Hefei, 230026, China.
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Shuyan Song
- University of Science and Technology of China, Hefei, 230026, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
9
|
Jung S, Senthil RA, Min A, Kumar A, Moon CJ, Choi MY. Laser-Synthesized Co-Doped CuO Electrocatalyst: Unveiling Boosted Methanol Oxidation Kinetics for Enhanced Hydrogen Production Efficiency by In Situ/Operando Raman and Theoretical Analyses. SMALL METHODS 2024; 8:e2301628. [PMID: 38412410 DOI: 10.1002/smtd.202301628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The present study details the strategic development of Co-doped CuO nanostructures via sophisticated and expedited pulsed laser ablation in liquids (PLAL) technique. Subsequently, these structures are employed as potent electrocatalysts for the anodic methanol oxidation reaction (MOR), offering an alternative to the sluggish oxygen evolution reaction (OER). Electrochemical assessments indicate that the Co-CuO catalyst exhibits exceptional MOR activity, requiring a reduced potential of 1.42 V at 10 mA cm-2 compared to that of pure CuO catalyst (1.57 V at 10 mA cm-2). Impressively, the Co-CuO catalyst achieved a nearly 180 mV potential reduction in MOR compared to its OER performance (1.60 V at 10 mA cm-2). Furthermore, when pairing Co-CuO(+)ǀǀPt/C(-) in methanol electrolysis, the cell voltage required is only 1.51 V at 10 mA cm-2, maintaining remarkable stability over 12 h. This represents a substantial voltage reduction of ≈160 mV relative to conventional water electrolysis (1.67 V at 10 mA cm-2). Additionally, both in situ/operando Raman spectroscopy studies and theoretical calculations have confirmed that Co-doping plays a crucial role in enhancing the activity of the Co-CuO catalyst. This research introduces a novel synthetic approach for fabricating high-efficiency electrocatalysts for large-scale hydrogen production while co-synthesizing value-added formic acid.
Collapse
Affiliation(s)
- Sieon Jung
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Raja Arumugam Senthil
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Cheol Joo Moon
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
10
|
Singha T, Tomar S, Chakraborty S, Das S, Satpati B. Improved Alcohol Oxidation through Combined Effects of Tensile Lattice Strain and Twin Defects in Core-Shell Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309736. [PMID: 38459644 DOI: 10.1002/smll.202309736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/28/2024] [Indexed: 03/10/2024]
Abstract
The direct alcohol fuel cells (DAFCs) rely on alcohol oxidation reactions (AORs) to produce electricity, which require catalysts with optimized electronic structure to accelerate the sluggish AORs. Herein, an epitaxial growth of Pd layer onto the pentatwinned Au@Ag core-shell nanorods (NRs) is reported to synthesize highly strained Au@AgPd core-shell NRs. The tensile strain in the AgPd shell of the Au@AgPd nanorods (NRs) arises not only from the core-shell lattice mismatch but also from twinning and lattice distortion occurring at the five twinned boundaries present in the structure. Theoretical simulations prove that the presence of tensile strains in the AgPd layer leads to a significant upward shift of the d-band center of the Pd site toward the Fermi level which remarkably changes the adsorption energy of alcohols on the surface. Highly strained Au@AgPd NRs show exceptional mass activities in electrochemical oxidation of biomass-derived alcohols (ethylene glycol, ethanol, and glycerol) reaching up to 18.66, 15.6, and 7.90 A mgpd -1, respectively. These values are 23.3, 23.6, and 23.2 times higher than commercial Pd/C catalysts. This strain engineering strategy set the platform for the design and synthesis of highly efficient and versatile catalysts for the construction of high-performance DAFCs.
Collapse
Affiliation(s)
- Tukai Singha
- Surface Physics & Material Science Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Shalini Tomar
- Material Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI), A CI of Homi Bhabha National Institute, Chhatnag Road, Jhunsi, Prayagraj, 211019, India
| | - Sudip Chakraborty
- Material Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI), A CI of Homi Bhabha National Institute, Chhatnag Road, Jhunsi, Prayagraj, 211019, India
| | - Shuvankar Das
- Surface Physics & Material Science Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Biswarup Satpati
- Surface Physics & Material Science Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| |
Collapse
|
11
|
Wang P, Zheng J, Xu X, Zhang YQ, Shi QF, Wan Y, Ramakrishna S, Zhang J, Zhu L, Yokoshima T, Yamauchi Y, Long YZ. Unlocking Efficient Hydrogen Production: Nucleophilic Oxidation Reactions Coupled with Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404806. [PMID: 38857437 DOI: 10.1002/adma.202404806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/19/2024] [Indexed: 06/12/2024]
Abstract
Electrocatalytic water splitting driven by sustainable energy is a clean and promising water-chemical fuel conversion technology for the production of high-purity green hydrogen. However, the sluggish kinetics of anodic oxygen evolution reaction (OER) pose challenges for large-scale hydrogen production, limiting its efficiency and safety. Recently, the anodic OER has been replaced by a nucleophilic oxidation reaction (NOR) with biomass as the substrate and coupled with a hydrogen evolution reaction (HER), which has attracted great interest. Anode NOR offers faster kinetics, generates high-value products, and reduces energy consumption. By coupling NOR with hydrogen evolution reaction, hydrogen production efficiency can be enhanced while yielding high-value oxidation products or degrading pollutants. Therefore, NOR-coupled HER hydrogen production is another new green electrolytic hydrogen production strategy after electrolytic water hydrogen production, which is of great significance for realizing sustainable energy development and global decarbonization. This review explores the potential of nucleophilic oxidation reactions as an alternative to OER and delves into NOR mechanisms, guiding future research in NOR-coupled hydrogen production. It assesses different NOR-coupled production methods, analyzing reaction pathways and catalyst effects. Furthermore, it evaluates the role of electrolyzers in industrialized NOR-coupled hydrogen production and discusses future prospects and challenges. This comprehensive review aims to advance efficient and economical large-scale hydrogen production.
Collapse
Affiliation(s)
- Peng Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Xue Xu
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Yu-Qing Zhang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Qiao-Fu Shi
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Yong Wan
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Jun Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Liyang Zhu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Tokihiko Yokoshima
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Yun-Ze Long
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
12
|
Lei H, Cui M, Cao J, Li K, Chen Z, Sun L, Huang Y. In Situ Pt Migration Enabled Resurrection of Electrocatalyst and Fuel Cell Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309068. [PMID: 38149506 DOI: 10.1002/smll.202309068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/03/2023] [Indexed: 12/28/2023]
Abstract
In direct methanol fuel cells (DMFCs), the poisoning of noble metals is considered to be a major impediment to their commercial development. Here, it is found that the loss of surface Pt is one main reason for the attenuation of catalyst performance during long-time methanol oxidation reaction (MOR). A strategy to realize in situ resurrection of the deactivated catalyst by migrating Pt atoms inside to the surface is innovatively proposed. A high-activity Pt-SnO2 is designed, whose MOR activity is resurrected to 97.4% of the initial value. Based on this, the multiple resurrection of a DMFC device is also achieved for the first time. This work provides a new approach for the solution of catalyst deactivation and the development of sustainable catalysts as well as fuel cells.
Collapse
Affiliation(s)
- Hao Lei
- State Key Laboratory of Advanced Welding and Joining, Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Mangwei Cui
- State Key Laboratory of Advanced Welding and Joining, Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jian Cao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaikai Li
- State Key Laboratory of Advanced Welding and Joining, Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Zuhuang Chen
- State Key Laboratory of Advanced Welding and Joining, Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Ligang Sun
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yan Huang
- State Key Laboratory of Advanced Welding and Joining, Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
13
|
Wan J, Kong H, Li Z, Ma L, Ma Y, Wang Y, Zheng Y. Seeded Growth of Size-Tunable Au@Ag Core-Shell Nano-Octahedra and Their Yolk-Shell Derivatives for Near Infrared Photothermal Conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11030-11038. [PMID: 38747679 DOI: 10.1021/acs.langmuir.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Gold-based nanostructures with well-defined morphologies and hollow interiors have significant potential as a versatile platform for various plasmonic applications including biomedical diagnostics and sensing. In this study, we report the synthesis of Au@Ag core-shell nanocrystals with perfect octahedral shapes and tunable edge lengths via seeded growth. These nanocrystals were then oxidatively carved into yolk-shell nanocages with a retained octahedral morphology. The increase in octahedral edge length and volume of the interior hollow cavity synergistically leads to a red-shift of the LSPR peak. As a result, the optimized Au@AuAg yolk-shell octahedral nanocages showed a remarkable temperature increase of 23 °C upon 15 min irradiation of an 808 nm laser at a power density of 1 W cm-2. This study provides a feasible strategy for creating octahedral AuAg nanostructures with tunable sizes and hollow interiors and validates their promising use in NIR photothermal conversion.
Collapse
Affiliation(s)
- Jiating Wan
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong 273155, China
| | - Haixia Kong
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Zhiyong Li
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing 314000, China
| | - Le Ma
- Shandong Leadernano Tech. Co., Ltd., Jining, Shandong 272000, China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yi Wang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Yiqun Zheng
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong 273155, China
| |
Collapse
|
14
|
Lv Y, Liu P, Xue R, Guo Q, Ye J, Gao D, Jiang G, Zhao S, Xie L, Ren Y, Zhang P, Wang Y, Qin Y. Cascaded p-d Orbital Hybridization Interaction in Ultrathin High-Entropy Alloy Nanowires Boosts Complete Non-CO Pathway of Methanol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309813. [PMID: 38482730 PMCID: PMC11109631 DOI: 10.1002/advs.202309813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 05/23/2024]
Abstract
Designing high efficiency platinum (Pt)-based catalysts for methanol oxidation reaction (MOR) with high "non-CO" pathway selectivity is strongly desired and remains a grand challenge. Herein, PtRuNiCoFeGaPbW HEA ultrathin nanowires (HEA-8 UNWs) are synthesized, featuring unique cascaded p-d orbital hybridization interaction by inducing dual p-block metals (Ga and Pb). In comparison with Pt/C, HEA-8 UNWs exhibit 15.0- and 4.2-times promotion of specific and mass activity for MOR. More importantly, electrochemical in situ FITR spectroscopy reveals that the production/adsorption of CO (CO*) intermediate is effectively avoided on HEA-8 UNWs, leading to the complete "non-CO" pathway for MOR. Theoretical calculations demonstrate the optimized electronic structure of HEA-8 UNWs can facilitates a lower energy barrier for the "non-CO" pathway in the MOR.
Collapse
Affiliation(s)
- Yipin Lv
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
- School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Pei Liu
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| | - Ruixin Xue
- School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Qiudi Guo
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| | - Jinyu Ye
- College of Chemistry and Chemical EngineeringXiamen University XiamenFujian361005P. R. China
| | - Daowei Gao
- School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Guangce Jiang
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| | - Shiju Zhao
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| | - Lixia Xie
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| | - Yunlai Ren
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| | - Pengfang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell TechnologyLiaocheng UniversityLiaocheng252000P. R. China
| | - Yao Wang
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringInternational Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxi214122P. R. China
| | - Yuchen Qin
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| |
Collapse
|
15
|
Chepkasov IV, Radina AD, Kvashnin AG. Structure-driven tuning of catalytic properties of core-shell nanostructures. NANOSCALE 2024; 16:5870-5892. [PMID: 38450538 DOI: 10.1039/d3nr06194a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The annual increase in demand for renewable energy is driving the development of catalysis-based technologies that generate, store and convert clean energy by splitting and forming chemical bonds. Thanks to efforts over the last two decades, great progress has been made in the use of core-shell nanostructures to improve the performance of metallic catalysts. The successful preparation and application of a large number of bimetallic core-shell nanocrystals demonstrates the wide range of possibilities they offer and suggests further advances in this field. Here, we have reviewed recent advances in the synthesis and study of core-shell nanostructures that are promising for catalysis. Particular attention has been paid to the structural tuning of the catalytic properties of core-shell nanostructures and to theoretical methods capable of describing their catalytic properties in order to efficiently search for new catalysts with desired properties. We have also identified the most promising areas of research in this field, in terms of experimental and theoretical studies, and in terms of promising materials to be studied.
Collapse
Affiliation(s)
- Ilya V Chepkasov
- Skolkovo Institute of Science and Technology, 121205, Bolshoi Blv. 30, Building 1, Moscow, Russia.
| | - Aleksandra D Radina
- Skolkovo Institute of Science and Technology, 121205, Bolshoi Blv. 30, Building 1, Moscow, Russia.
| | - Alexander G Kvashnin
- Skolkovo Institute of Science and Technology, 121205, Bolshoi Blv. 30, Building 1, Moscow, Russia.
| |
Collapse
|
16
|
Liu S, Wang Y, Jiang T, Jin S, Sajid M, Zhang Z, Xu J, Fan Y, Wang X, Chen J, Liu Z, Zheng X, Zhang K, Nian Q, Zhu Z, Peng Q, Ahmad T, Li K, Chen W. Non-Noble Metal High-Entropy Alloy-Based Catalytic Electrode for Long-Life Hydrogen Gas Batteries. ACS NANO 2024; 18:4229-4240. [PMID: 38277276 DOI: 10.1021/acsnano.3c09482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The development of efficient, stable, and low-cost bifunctional catalysts for the hydrogen evolution/oxidation reaction (HER/HOR) is critical to promote the application of hydrogen gas batteries in large scale energy storage systems. Here we demonstrate a non-noble metal high-entropy alloy grown on Cu foam (NNM-HEA@CF) as a self-supported catalytic electrode for nickel-hydrogen gas (Ni-H2) batteries. Experimental and theoretical calculation results reveal that the NNM-HEA catalyst greatly facilitates the HER/HOR catalytic process through the optimized electronic structures of the active sites. The assembled Ni-H2 battery with NNM-HEA@CF as the anode shows excellent rate capability and exceptional cycling performance of over 1800 h without capacity decay at an areal capacity of 15 mAh cm-2. Furthermore, a scaled-up Ni-H2 battery fabricated with an extended capacity of 0.45 Ah exhibits a high cell-level energy density of ∼109.3 Wh kg-1. Moreover, its estimated cost reaches as low as ∼107.8 $ kWh-1 based on all key components of electrodes, separator and electrolyte, which is reduced by more than 6 times compared to that of the commercial Pt/C-based Ni-H2 battery. This work provides an approach to develop high-efficiency non-noble metal-based bifunctional catalysts for hydrogen batteries in large-scale energy storage applications.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ying Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Song Jin
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Muhammad Sajid
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zuodong Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingwen Xu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanpeng Fan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoyang Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinghao Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zaichun Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinhua Zheng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kai Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qingshun Nian
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qia Peng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Touqeer Ahmad
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ke Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
17
|
Zhao Q, Lee J, Oh MJ, Park W, Lee S, Jung I, Park S. Three-Dimensional Au Octahedral Nanoheptamers: Single-Particle and Bulk Near-Field Focusing for Surface-Enhanced Raman Scattering. NANO LETTERS 2024; 24:1074-1080. [PMID: 38236762 DOI: 10.1021/acs.nanolett.3c03469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Herein, we present a synthetic approach to fabricate Au nanoheptamers composed of six individual Au nanospheres interconnected through thin metal bridges arranged in an octahedral configuration. The resulting structures envelop central Au nanospheres, producing Au nanosphere heptamers with an open architectural arrangement. Importantly, the initial Pt coating of the Au nanospheres is a crucial step for protecting the inner Au nanospheres during multiple reactions. As-synthesized Au nanoheptamers exhibit multiple hot spots formed by nanogaps between nanospheres, resulting in strong electromagnetic near-fields. Additionally, we conducted surface-enhanced Raman-scattering-based detection of a chemical warfare agent simulant in the gas phase and achieved a limit of detection of 100 ppb, which is 3 orders lower than that achieved using Au nanospheres and Au nanohexamers. This pseudocore-shell nanostructure represents a significant advancement in the realm of complex nanoparticle synthesis, moving the field one step closer to sophisticated nanoparticle engineering.
Collapse
Affiliation(s)
- Qiang Zhao
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaewon Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Myeong Jin Oh
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Woocheol Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
18
|
Zhao Q, Zhao B, Long X, Feng R, Shakouri M, Paterson A, Xiao Q, Zhang Y, Fu XZ, Luo JL. Interfacial Electronic Modulation of Dual-Monodispersed Pt-Ni 3S 2 as Efficacious Bi-Functional Electrocatalysts for Concurrent H 2 Evolution and Methanol Selective Oxidation. NANO-MICRO LETTERS 2024; 16:80. [PMID: 38206434 PMCID: PMC10784266 DOI: 10.1007/s40820-023-01282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/08/2023] [Indexed: 01/12/2024]
Abstract
Constructing the efficacious and applicable bi-functional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction (OER) are critical to the development of electrochemically-driven technologies for efficient hydrogen production and avoid CO2 emission. Herein, the hetero-nanocrystals between monodispersed Pt (~ 2 nm) and Ni3S2 (~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H2 generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt-Ni3S2 could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH3OH to formate is accomplished at very low potentials (1.45 V) to attain 100 mA cm-2 with high electronic utilization rate (~ 98%) and without CO2 emission. Meanwhile, the Pt-Ni3S2 can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction (HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction (MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 mA cm-2 with good reusability.
Collapse
Affiliation(s)
- Qianqian Zhao
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Bin Zhao
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Xin Long
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Renfei Feng
- Canadian Light Source Inc., Saskatoon, SK, S7N 0X4, Canada
| | | | - Alisa Paterson
- Canadian Light Source Inc., Saskatoon, SK, S7N 0X4, Canada
| | - Qunfeng Xiao
- Canadian Light Source Inc., Saskatoon, SK, S7N 0X4, Canada
| | - Yu Zhang
- Instrumental Analysis Center of Shenzhen University (Lihu Campus), Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
19
|
Xu M, Deng T, Liu LX, Han X. Enrichment Strategies for Efficient CO 2 Electroreduction in Acidic Electrolytes. Chemistry 2023; 29:e202302382. [PMID: 37707507 DOI: 10.1002/chem.202302382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) has been recognized as an appealing route to remarkably accelerate the carbon-neutral cycle and reduce carbon emissions. Notwithstanding great catalytic activity that has been acquired in neutral and alkaline conditions, the carbonates generated from the inevitable reaction of the input CO2 with the hydroxide severely lower carbon utilization and energy efficiency. By contrast, CO2 RR in an acidic condition can effectively circumvent the carbonate issues; however, the activity and selectivity of CO2 RR in acidic electrolytes will be decreased significantly due to the competing hydrogen evolution reaction (HER). Enriching the CO2 and the key intermediates around the catalyst surface can promote the reaction rate and enhance the product selectivity, providing a promising way to boost the performance of CO2 RR. In this review, the catalytic mechanism and key technique challenges of CO2 RR are first introduced. Then, the critical progress of enrichment strategies for promoting the CO2 RR in the acidic electrolyte is summarized with three aspects: catalyst design, electrolyte regulation, and electrolyzer optimization. Finally, some insights and perspectives for further development of enrichment strategies in acidic CO2 RR are expounded.
Collapse
Affiliation(s)
- Meng Xu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Taojiang Deng
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Li-Xia Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Xiguang Han
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| |
Collapse
|
20
|
Qiu Y, Fan J, Wu J, Lu W, Wang S, Wang D, Ge X, Zhao X, Zhang W, Zheng W, Cui X. Atomically Dispersed CrO X on Pd Metallene for CO-Resistant Methanol Oxidation. NANO LETTERS 2023; 23:9555-9562. [PMID: 37787483 DOI: 10.1021/acs.nanolett.3c03141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The effective design and construction of high-performance methanol oxidation reaction (MOR) electrocatalysts are significant for the development of direct methanol fuel cells. But the active sites of the MOR electrocatalysts are susceptible to being poisoned by CO, resulting in poor durability. Herein, we report an atomically dispersed CrOX species anchored on Pd metallene through bridging O atoms. This catalyst shows an outstanding MOR performance with 7 times higher mass activity and 100 mV lower CO electrooxidation potential than commercial Pd/C. The results of operando electrochemical Fourier transform infrared spectroscopy demonstrate the rapid removal of CO* on CrOX-Pd metallene. Theoretical calculations reveal that atomically dispersed CrOX can lower the adsorption energy of CO* on Pd sites and enhance that of OH* through the formation of a hydrogen bond, decreasing the formation energy of COOH*. This work provides a new strategy for improving MOR performance via atomically engineering oxide/metal interfaces.
Collapse
Affiliation(s)
- Yu Qiu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Jinchang Fan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Jiandong Wu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
- Key Laboratory of Pathobiology of MOE, Nanomedicine and Translational Research Center, The Third Bethune Hospital of Jilin University, 126 Sendai Street, Changchun 130033, People's Republic of China
| | - Wenting Lu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Shengwei Wang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, 5988 Renmin Street, Changchun 130025, People's Republic of China
| | - Dewen Wang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Xin Ge
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Xiao Zhao
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| |
Collapse
|
21
|
Zhang X, Hui L, Yan D, Li J, Chen X, Wu H, Li Y. Defect Rich Structure Activated 3D Palladium Catalyst for Methanol Oxidation Reaction. Angew Chem Int Ed Engl 2023; 62:e202308968. [PMID: 37581223 DOI: 10.1002/anie.202308968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Controlling the structure and properties of catalysts through atomic arrangement is the source of producing a new generation of advanced catalysts. A highly active and stable catalyst in catalytic reactions strongly depends on an ideal arrangement structure of metal atoms. We demonstrated that the introduction of the defect-rich structures, low coordination number (CN), and tensile strain in three-dimensional (3D) urchin-like palladium nanoparticles through chlorine bonded with sp-C in graphdiyne (Pd-UNs/Cl-GDY) can regulate the arrangement of metal atoms in the palladium nanoparticles to form a special structure. In situ Fourier infrared spectroscopy (FTIR) and theoretical calculation results show that Pd-UNs/Cl-GDY catalyst is beneficial to the oxidation and removal of CO intermediates. The Pd-UNs/Cl-GDY for methanol oxidation reaction (MOR) that display high current density (363.6 mA cm-2 ) and mass activity (3.6 A mgPd -1 ), 12.0 and 10.9 times higher than Pd nanoparticles, respectively. The Pd-UNs/Cl-GDY catalyst also exhibited robust stability with still retained 95 % activity after 2000 cycles. A defects libraries of the face-centered cubic and hexagonal close-packed crystal catalysts (FH-NPs) were synthesized by introducing chlorine in graphdiyne. Such defect-rich structures, low CN, and tensile strain tailoring methods have opened up a new way for the catalytic reaction of MOR.
Collapse
Affiliation(s)
- Xueting Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lan Hui
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dengxin Yan
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052, Gent, Belgium
| | - Jinze Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xi Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Han Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Chen J, Dong J, Huo J, Li C, Du L, Cui Z, Liao S. Ultrathin Co-N-C Layer Modified Pt-Co Intermetallic Nanoparticles Leading to a High-Performance Electrocatalyst toward Oxygen Reduction and Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301337. [PMID: 37144456 DOI: 10.1002/smll.202301337] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Indexed: 05/06/2023]
Abstract
The development of low platinum-based alloy electrocatalysts is crucial to accelerate the commercialization of fuel cells, yet remains a synthetic challenge and an incompatibility between activity and stability. Herein, a facile procedure to fabricate a high-performance composite that comprises Pt-Co intermetallic nanoparticles (IMNs) and Co, N co-doped carbon (Co-N-C) electrocatalyst is proposed. It is prepared by direct annealing of homemade carbon black-supported Pt nanoparticles (Pt/KB) covered with a Co-phenanthroline complex. During this process, most of Co atoms in the complex are alloyed with Pt to form ordered Pt-Co IMNs, while some Co atoms are atomically dispersed and doped in the framework of superthin carbon layer derived from phenanthroline, which is coordinated with N to form Co-Nx moieties. Moreover, the Co-N-C film obtained from complex is observed to cover the surface of Pt-Co IMNs, which prevent the dissolution and agglomeration of nanoparticles. The composite catalyst exhibits high activity and stability toward oxygen reduction reactions (ORR) and methanol oxidation reactions (MOR), delivering outstanding mass activities of 1.96 and 2.92 A mgPt -1 for ORR and MOR respectively, owing to the synergistic effect of Pt-Co IMNs and Co-N-C film. This study may provide a promising strategy to improve the electrocatalytic performance of Pt-based catalysts.
Collapse
Affiliation(s)
- Jiaxiang Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jiangbo Dong
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd. , Guangzhou, 510641, China
| | - Junlang Huo
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Chaozhong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Li Du
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhiming Cui
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Shijun Liao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
23
|
Meng F, Wu Q, Elouarzaki K, Luo S, Sun Y, Dai C, Xi S, Chen Y, Lin X, Fang M, Wang X, Mandler D, Xu ZJ. Essential role of lattice oxygen in methanol electrochemical refinery toward formate. SCIENCE ADVANCES 2023; 9:eadh9487. [PMID: 37624888 PMCID: PMC10456837 DOI: 10.1126/sciadv.adh9487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Developing technologies based on the concept of methanol electrochemical refinery (e-refinery) is promising for carbon-neutral chemical manufacturing. However, a lack of mechanism understanding and material properties that control the methanol e-refinery catalytic performances hinders the discovery of efficient catalysts. Here, using 18O isotope-labeled catalysts, we find that the oxygen atoms in formate generated during the methanol e-refinery reaction can originate from the catalysts' lattice oxygen and the O-2p-band center levels can serve as an effective descriptor to predict the catalytic performance of the catalysts, namely, the formate production rates and Faradaic efficiencies. Moreover, the identified descriptor is consolidated by additional catalysts and theoretical mechanisms from density functional theory. This work provides direct experimental evidence of lattice oxygen participation and offers an efficient design principle for the methanol e-refinery reaction to formate, which may open up new research directions in understanding and designing electrified conversions of small molecules.
Collapse
Affiliation(s)
- Fanxu Meng
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, NEW-CREATE Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Qian Wu
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Kamal Elouarzaki
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Songzhu Luo
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yuanmiao Sun
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chencheng Dai
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Singapore 627833, Singapore
| | - Yubo Chen
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xinlong Lin
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Daniel Mandler
- Singapore-HUJ Alliance for Research and Enterprise, NEW-CREATE Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Zhichuan J. Xu
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, NEW-CREATE Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
24
|
Li X, Min Y, Liu F, Liu M, Zheng Y. Glutathione-Mediated Synthesis of Yolk-Shell AuAg Nanostructures Containing a Spherical Core and Cuboctahedral Skeletons and Their Applications in Plasmonic Catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11788-11796. [PMID: 37567582 DOI: 10.1021/acs.langmuir.3c01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Frame/skeleton-like nanostructures are of great value in plasmonic catalysis as a result of the synergetic structural advantages arising from both maximized surface atomic exposure and efficient incident light absorptions. Herein, we report the size-tunable fabrication of yolk-shell AuAg nanoparticles containing a spherical core and cuboctahedral skeletons (AuAg YSCNSs), together with the exploration of their applications for assisting the reduction of 4-nitrophenol (4-NP) under ultraviolet-visible (UV-vis) light irradiation. The use of glutathione (GSH) at an appropriate amount to mediate the galvanic replacement reaction between Au@Ag core-shell nanocubes and HAuCl4 is found to be crucial in regulating the shape evolution. Their sizes could be readily tuned by altering the edge lengths of Au@Ag core-shell nanocubes. When working as the photocatalyst assisting the reduction of 4-NP, the AuAg YSCNSs exhibit a higher apparent rate constant under UV-vis light irradiation. The current work demonstrates the feasibility to create skeleton-like noble metal nanocrystals with the shape largely deviated from that of the original template via the "top-down" carving strategy by introducing non-metallic surface doping, which could be potentially extended to other noble metals or alloys.
Collapse
Affiliation(s)
- Xiaoyu Li
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong 273155, People's Republic of China
| | - Yuanyuan Min
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong 273155, People's Republic of China
| | - Feng Liu
- International Research Center for Renewable Energy, National Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Maochang Liu
- International Research Center for Renewable Energy, National Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Yiqun Zheng
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong 273155, People's Republic of China
| |
Collapse
|
25
|
Zhang J, Yan L, Xue K, Wu J, Ku R, Ding YM, Dong H, Zhou L. Understanding Trends in Electrochemical Methanol Oxidation Reaction Activity on a Single Transition-Metal Atom Embedded in N-Coordinated Graphene Catalysts. J Phys Chem Lett 2023; 14:3384-3390. [PMID: 36995147 DOI: 10.1021/acs.jpclett.2c03874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The lack of efficient catalysts and research on the mechanism for the methanol oxidation reaction (MOR) impedes the development of direct methanol fuel cells. In this work, based on density functional theory calculations, we systematically investigated the activity trends of electrochemical MOR on a single transition-metal atom embedded in N-coordinated graphene (M@N4C). By calculating the free energy diagrams of MOR on M@N4C, Co@N4C was screened out to be the most effective MOR catalyst with a low limiting potential of 0.41 V due to the unique charge transfers and electronic structures. Importantly, one- and two-dimensional volcano relationships in MOR on M@N4C catalysts are established based on the d-band center and the Gibbs free energy of ΔG*CH3OH and ΔG*CO, respectively. In one word, this work provides theoretical guides toward the improved activity of MOR on M@N4C and hints for the design of active and efficient MOR electrocatalysts.
Collapse
Affiliation(s)
- Jing Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Luo Yan
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Kui Xue
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jie Wu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ruiqi Ku
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Yi-Min Ding
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Liujiang Zhou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
26
|
Liu Y, Zhu E, Huang J, Zhang A, Shah AH, Jia Q, Xu M, Liu E, Sun Q, Duan X, Huang Y. Periodic Assembly of Diblock Pt-Au Heteronanowires for the Methanol Oxidation Reaction. NANO LETTERS 2023; 23:2758-2763. [PMID: 36971471 DOI: 10.1021/acs.nanolett.3c00029] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Periodic assembly of heterogeneous nanoparticles provides a strategy for integrating distinct nanocatalyst blocks where their synergic effects can be explored for diverse applications. To achieve the synergistic enhancement, an intimate clean interface is preferred which however is usually plagued by the bulky surfactant molecules used in the synthesis and assembly process. Herein, we showed the creation of one-dimensional Pt-Au nanowires (NWs) with periodic alternating Pt and Au nanoblocks, by assembling Pt-Au Janus nanoparticles with the assistance of peptide T7 (Ac-TLTTLTN-CONH2). It is demonstrated that the Pt-Au NWs showed much-improved performance in the methanol oxidation reaction (MOR), exhibiting 5.3 times higher specific activity and 2.5 times higher mass activity than the current state-of-the-art commercial Pt/C catalyst. In addition, the periodic heterostructure also improves the stability of Pt-Au NWs in the MOR, where the Pt-Au NWs retained 93.9% of their initial mass activity much higher than commercial Pt/C (30.6%).
Collapse
Affiliation(s)
| | | | | | | | | | - Qingying Jia
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mingjie Xu
- Irvine Materials Research Institute and Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Ershuai Liu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Qiang Sun
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | | | | |
Collapse
|
27
|
Shin D, Choi G, Hong C, Han JW. Surface segregation machine-learned with inexpensive numerical fingerprint for the design of alloy catalysts. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
28
|
Gu Q, Zhu J, Weng GJ, Li JJ, Zhao JW. Au nanorod core in an AgPt cage: Synthesis of Au@AgPt core/cage nanoframes with rough surface and controllable geometry by galvanic replacement. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
29
|
Engineering low platinum loaded defects enriched PtxCo wrapped by carbon layers for efficient methanol electrooxidation with CO-free dominant. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Wang H, Ren H, Liu S, Deng K, Yu H, Wang X, Xu Y, Wang Z, Wang L. Rare earth Y doping induced lattice strain of mesoporous PtPd nanospheres for alkaline oxygen reduction electrocatalysis. NANOTECHNOLOGY 2022; 34:055401. [PMID: 36240698 DOI: 10.1088/1361-6528/ac9a53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The synthesis of catalysts with controllable morphology and composition is important to enhance the catalytic performance for oxygen reduction reaction (ORR). Herein, trimetallic PtPdY mesoporous nanospheres (PtPdY MNs) are produced via a one-step chemical reduction method applying F127 as soft temple under acidic condition. The mesoporous structure provides a large contact area and also stimulates the diffusion and mass transfer of reactants and products. Besides, synergistic effect among Pt, Pd and Y elements effectively alters their electronic structure, enhancing the catalytic activity. Therefore, the PtPdY MNs show excellent ORR permanence to Pt/C under the alkaline solution. This study offers an effective channel for the preparation of mesoporous metals with rare earth metal doping towards promising electrocatalytic applications.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Hang Ren
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Songliang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xin Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
31
|
Li Y, Li H, Li G, Wang D, Wang S, Zhao X. Low-temperature N-anchored ordered Pt 3Co intermetallic nanoparticles as electrocatalysts for methanol oxidation reaction. NANOSCALE 2022; 14:14199-14211. [PMID: 36125088 DOI: 10.1039/d2nr04316e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To enhance nanocatalyst performance and durability for the methanol oxidation reaction (MOR) in a direct methanol fuel cell, small-sized (2.1 nm) and structurally ordered Pt3Co intermetallic nanoparticles are uniformly anchored onto nitrogen-doped carbon nanotubes (N-CNTs) via a low-temperature N-anchoring method, and the N-doping abilities of different N-containing reagents are compared. After investigating the microstructure of Pt3Co/N-CNTs and evaluating their catalytic activity for the MOR, the results show that N-doping facilitates the uniform loading of Pt3Co NPs and plays a crucial role in improving the electrocatalytic activity of Pt3Co NPs supported on CNTs. Pt3Co/N-CNT-M with melamine as the N dopant exhibits the highest MOR activity and stability among all N-CNT-supported Pt3Co NPs and Pt/N-CNT-M. Density functional theory calculations suggest that the doping of N enhances the binding energy of CNTs to Pt3Co NPs, and the MOR mechanism shows that the introduction of Co is the reason for the enhancement of MOR reaction kinetics. The excellent electrochemical performance of Pt3Co/N-CNT-M is mainly attributed to the synergistic effect of N and Pt3Co intermetallic nanoparticles. The combination of ordered alloy nanoparticles and high-performance carrier N-CNT-M described herein exhibits great potential for fuel cells and may provide an unequivocal direction for the optimization of catalyst performance.
Collapse
Affiliation(s)
- Yanru Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Hongwei Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Guixian Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Dongliang Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Shoudeng Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Xinhong Zhao
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| |
Collapse
|
32
|
Kong F, Liu X, Song Y, Qian Z, Li J, Zhang L, Yin G, Wang J, Su D, Sun X. Selectively Coupling Ru Single Atoms to PtNi Concavities for High‐Performance Methanol Oxidation via
d
‐Band Center Regulation. Angew Chem Int Ed Engl 2022; 61:e202207524. [DOI: 10.1002/anie.202207524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Fanpeng Kong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin China
- Department of Mechanical and Materials Engineering University of Western Ontario London Canada
| | - Xiaozhi Liu
- Institute of Physics Chinese Academy of Sciences Beijing China
| | - Yajie Song
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin China
| | - Zhengyi Qian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin China
| | - Junjie Li
- Department of Mechanical and Materials Engineering University of Western Ontario London Canada
| | - Lei Zhang
- Department of Mechanical and Materials Engineering University of Western Ontario London Canada
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin China
| | - Jiajun Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin China
- Chongqing Research Institute Harbin Institute of Technology Chongqing China
| | - Dong Su
- Institute of Physics Chinese Academy of Sciences Beijing China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering University of Western Ontario London Canada
| |
Collapse
|
33
|
Kong F, Liu X, Song Y, Qian Z, Li J, Zhang L, Yin G, Su D, Wang J, Sun X. Selectively Coupling Ru Single Atoms to PtNi Concavities for High Performance Methanol Oxidation via d‐Band Center Regulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fanpeng Kong
- Harbin Institute of Technology MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage No. 92, Xidazhi street 150000 Harbin CHINA
| | - Xiaozhi Liu
- Chinese Academy of Sciences Institute of Physics CHINA
| | - Yajie Song
- Harbin Institute of Technology MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage CHINA
| | - Zhengyi Qian
- Harbin Institute of Technology MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage CHINA
| | - Junjie Li
- Western University Department of Mechanical and Materials Engineering CANADA
| | - Lei Zhang
- Western University Department of Mechanical and Materials Engineering CANADA
| | - Geping Yin
- Harbin Institute of Technology MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage CHINA
| | - Dong Su
- Chinese Academy of Sciences Institute of Physics CANADA
| | - Jiajun Wang
- Harbin Institute of Technology MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage CHINA
| | - Xueliang Sun
- Western University 1151 Richmond Street N6A 3K7 London CANADA
| |
Collapse
|
34
|
Zhu J, Xia L, Yu R, Lu R, Li J, He R, Wu Y, Zhang W, Hong X, Chen W, Zhao Y, Zhou L, Mai L, Wang Z. Ultrahigh Stable Methanol Oxidation Enabled by a High Hydroxyl Concentration on Pt Clusters/MXene Interfaces. J Am Chem Soc 2022; 144:15529-15538. [PMID: 35943197 DOI: 10.1021/jacs.2c03982] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Anchoring platinum catalysts on appropriate supports, e.g., MXenes, is a feasible pathway to achieve a desirable anode for direct methanol fuel cells. The authentic performance of Pt is often hindered by the occupancy and poisoning of active sites, weak interaction between Pt and supports, and the dissolution of Pt. Herein, we construct three-dimensional (3D) crumpled Ti3C2Tx MXene balls with abundant Ti vacancies for Pt confinement via a spray-drying process. The as-prepared Pt clusters/Ti3C2Tx (Ptc/Ti3C2Tx) show enhanced electrocatalytic methanol oxidation reaction (MOR) activity, including a relatively low overpotential, high tolerance to CO poisoning, and ultrahigh stability. Specifically, it achieves a high mass activity of up to 7.32 A mgPt-1, which is the highest value reported to date in Pt-based electrocatalysts, and 42% of the current density is retained on Ptc/Ti3C2Tx even after the 3000 min operative time. In situ spectroscopy and theoretical calculations reveal that an electric field-induced repulsion on the Ptc/Ti3C2Tx interface accelerates the combination of OH- and CO adsorption intermediates (COads) in kinetics and thermodynamics. Besides, this Ptc/Ti3C2Tx also efficiently electrocatalyze ethanol, ethylene glycol, and glycerol oxidation reactions with comparable activity and stability to commercial Pt/C.
Collapse
Affiliation(s)
- Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Lixue Xia
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Ruihu Lu
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand.,International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Jiantao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Ruhan He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Yucai Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Wei Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Xufeng Hong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Wei Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China.,Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Yan Zhao
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China.,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan 528200, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China.,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan 528200, P. R. China
| | - Ziyun Wang
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
35
|
Yoo S, Lee J, Hilal H, Jung I, Park W, Lee JW, Choi S, Park S. Nesting of multiple polyhedral plasmonic nanoframes into a single entity. Nat Commun 2022; 13:4544. [PMID: 35927265 PMCID: PMC9352762 DOI: 10.1038/s41467-022-32261-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
The development of plasmonic nanostructures with intricate nanoframe morphologies has attracted considerable interest for improving catalytic and optical properties. However, arranging multiple nanoframes in one nanostructure especially, in a solution phase remains a great challenge. Herein, we show complex nanoparticles by embedding various shapes of three-dimensional polyhedral nanoframes within a single entity through rationally designed synthetic pathways. This synthetic strategy is based on the selective deposition of platinum atoms on high surface energy facets and subsequent growth into solid platonic nanoparticles, followed by the etching of inner Au domains, leaving complex nanoframes. Our synthetic routes are rationally designed and executable on-demand with a high structural controllability. Diverse Au solid nanostructures (octahedra, truncated octahedra, cuboctahedra, and cubes) evolved into complex multi-layered nanoframes with different numbers/shapes/sizes of internal nanoframes. After coating the surface of the nanoframes with plasmonically active metal (like Ag), the materials exhibited highly enhanced electromagnetic near-field focusing embedded within the internal complicated rim architecture. The spatial configuration of nanostructure building blocks determines the physical and optical properties of their superstructures. Here, the authors report on complex nanoparticles in which different geometric forms of nanoframes are nested into a single entity by multistep chemical reactions.
Collapse
Affiliation(s)
- Sungjae Yoo
- Research Institute for Nano Bio Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.,Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaewon Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hajir Hilal
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.,Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Woongkyu Park
- Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju, 61007, Republic of Korea
| | - Joong Wook Lee
- Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Soobong Choi
- Department of Physics, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
36
|
Cheng F, Gu W, Zhang H, Song C, Zhu Y, Ge F, Qu K, Xu H, Wu XJ, Wang L. Direct synthesis of Au-Ag nanoframes by galvanic replacement via a continuous concaving process. NANOSCALE 2022; 14:8825-8832. [PMID: 35686613 DOI: 10.1039/d2nr01600a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Controlled synthesis of noble-metal nanoframes is of great interest due to their promising applications in plasmonics and catalysis. However, the synthesis is largely limited to a multiple-step approach involving selective deposition followed by selective etching. Here we report a facile and general strategy to synthesize Au-Ag nanoframes based on a direct galvanic replacement reaction between Ag nanoparticles and a gold(I) complex, sodium aurothiosulfate, without an extra etching process. The formation of Au-Ag nanoframes in our approach undergoes a continuous concaving and hollowing-out process from Ag templates, which is related to selective Au deposition and the Kirkendall effect. As a proof-of-concept, it was shown that Au-Ag nanoframes with different dimensions can be prepared from the corresponding Ag nanocolloids using our strategy. The prepared wire-like Au-Ag nanoframes show superior single-particle surface-enhanced Raman scattering due to the linear narrow nanogaps within the nanoframes. We believe this study signifies a new approach by mediating galvanic replacement to prepare noble-metal nanoframes with precise controllability, which may enable a variety of applications in plasmonics and catalysis.
Collapse
Affiliation(s)
- Fang Cheng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Wenjie Gu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Han Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Yunfeng Zhu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Feiyue Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Kuiming Qu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Hai Xu
- Changchun Institute of Optics Fine Mechanics and Physics Chinese Academy of Science, Changchun 130033, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100040, P. R. China
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| |
Collapse
|
37
|
Dai Z, Wang W, Wang Z, Wang S, Yu H, Xu Y, Li X, Wang L, Wang H. Phosphorus incorporation accelerates ammonia electrosynthesis over a mesoporous Au film. Chem Commun (Camb) 2022; 58:6088-6091. [PMID: 35502857 DOI: 10.1039/d2cc00274d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, a phosphorus-doped mesoporous Au alloy film is grown on Ni foam (mAuP/NF) via a replacement reaction using diblock copolymers and NaH2PO2 as pore-forming agents and a phosphorus dopant, respectively. Due to the phosphorus doping and well-developed mesoporous structure, the obtained mAuP/NF possesses superior NH3 yield (36.52 µg h-1 mg-1cat.) and faradaic efficiency (20.32%) for ammonia electrosynthesis in neutral conditions, superior to mAu/NF.
Collapse
Affiliation(s)
- Zechuan Dai
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Wenxin Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shengqi Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
38
|
Chen MX, Luo X, Song TW, Jiang B, Liang HW. Ordering Degree-Dependent Activity of Pt 3M (M = Fe, Mn) Intermetallic Nanoparticles for Electrocatalytic Methanol Oxidation. J Phys Chem Lett 2022; 13:3549-3555. [PMID: 35420438 DOI: 10.1021/acs.jpclett.2c00433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atomically ordered intermetallic alloys with unique electronic and geometrical structures are highly attractive for heterogeneous catalysis and electrocatalysis. However, the formation of intermetallic phases generally requires high-temperature annealing to overcome the kinetic energy barrier of atom ordering, which unfortunately causes high material heterogeneity and thus makes it challenging to identify the exact contribution of ordered structures to the improved performance. Here, we prepared a family of small-sized intermetallic core/shell Pt3M@Pt (M = Mn or Fe) catalysts with varied ordering degree by a high-temperature sulfur-confined method. We identified a strong correlation between the ordering degree of the intermetallic Pt3M core of the catalysts and their electrocatalytic activity for the methanol oxidation reaction. Density functional theory calculations show that the intermetallic Pt3M core induces a compressive strain on the Pt-skin, which weakens the CO* binding, lowers the free energy change from CO* to COOH*, and therefore promotes electrocatalytic methanol oxidation.
Collapse
Affiliation(s)
- Ming-Xi Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xuan Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tian-Wei Song
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hai-Wei Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
39
|
Silva Olaya AR, Kühling F, Mahr C, Zandersons B, Rosenauer A, Weissmüller J, Wittstock G. Promoting Effect of the Residual Silver on the Electrocatalytic Oxidation of Methanol and Its Intermediates on Nanoporous Gold. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alex Ricardo Silva Olaya
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, 26111 Oldenburg, Germany
| | - Franziska Kühling
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, 26111 Oldenburg, Germany
| | - Christoph Mahr
- Institute for Solid State Physics, University of Bremen, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Birthe Zandersons
- Institute of Materials Physics and Technology, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Andreas Rosenauer
- Institute for Solid State Physics, University of Bremen, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Jörg Weissmüller
- Institute of Materials Physics and Technology, Hamburg University of Technology, 21073 Hamburg, Germany
- Helmholtz-Zentrum Hereon, Institute of Materials Mechanics, 21502 Geesthacht, Germany
| | - Gunther Wittstock
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, 26111 Oldenburg, Germany
| |
Collapse
|
40
|
Litak NP, Mawby LM, Lear BJ. Surface Chemistry Controls the Density of States in Metallic Nanoparticles. ACS NANO 2022; 16:4479-4486. [PMID: 35274922 DOI: 10.1021/acsnano.1c10877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ligand-stabilized colloidal metallic nanoparticles are prized in science and technology for their electronic properties and tunable surface chemistry. However, little is known about the interplay between these two aspects of the particles. A particularly glaring absence concerns the density of electronic states, which is fundamental in explaining the electronic properties of solid-state materials. In part, this absence owes to the difficulty in the experimental determination of the parameter for colloidal systems. Herein, we demonstrate the density of electronic states for metallic colloidal particles can be determined from their magnetic susceptibility, measured using nuclear magnetic resonance spectroscopy. For this study, we use small alkanethiolate protected gold nanoparticles and demonstrate that changes in the surface chemistry, as subtle as changes in alkane chain length, can result inasmuch as a 3-fold change in the density of states at the Fermi level for these particles. This suggests that surface chemistry can be a powerful tool for controlling the electronic behavior of the materials to which they are attached, and suggests a paradigm that could be applied to other metallic systems, such as other metal nanoparticles, doped semiconductor systems, and even 2D metals. For all of these metallic systems, the Evans method can serve as a simple means to probe the density of states near the Fermi level.
Collapse
Affiliation(s)
- Nicholas P Litak
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States of America
| | - Lillian M Mawby
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States of America
| | - Benjamin J Lear
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States of America
| |
Collapse
|
41
|
Li Y, Deng D, Wang H, Huan K, Yan X, Luo L. Controlled synthesis of Cu-Sn alloy nanosheet arrays on carbon fiber paper for self-supported nonenzymatic glucose sensing. Anal Chim Acta 2022; 1190:339249. [PMID: 34857143 DOI: 10.1016/j.aca.2021.339249] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023]
Abstract
Nanoalloy shows significant advantages and broad application prospects in chemical catalysis, due to the possessed high specific surface energy and abundant active sites can greatly promote their catalytic performance. In this work, morphology-controlled Cu-Sn alloy nanosheet arrays supported on carbon fiber paper (CP) substrate (Cu-Sn/CP) have been developed by a facile one-step electrodeposition technique at room temperature for the first time. Benefiting from the large active surface area, considerable ion transport channels and strong synergistic catalytic effect between Cu and Sn, the as-prepared Cu-Sn/CP served as a self-supported electrode for efficient nonenzymatic glucose sensing. Under optimized conditions, Cu-Sn/CP electrode offers wide linear ranges of 0.0005-2.0 mM and 2.0-10.0 mM, respectively. The detection limit is as low as 0.061 μM (S/N = 3). Cu-Sn/CP electrode also exhibited excellent selectivity and stability. Additionally, the proposed sensor is proven to be suitable for the detection of glucose in human serum samples.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai, 200444, PR China; Department of Chemistry, Shanghai University, Shanghai, 200444, PR China
| | - Dongmei Deng
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai, 200444, PR China.
| | - Huan Wang
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai, 200444, PR China
| | - Ke Huan
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai, 200444, PR China
| | - Xiaoxia Yan
- Department of Chemistry, Shanghai University, Shanghai, 200444, PR China
| | - Liqiang Luo
- Department of Chemistry, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
42
|
Yang A, Huang Q, Wei Z, Yu Z, Cui M, Lei W, Tang Y, Qiu X. l-Lysine derived fabrication of Cu@Ni core–satellite nanoassemblies as efficient non-Pt catalysts for the methanol oxidation reaction. CrystEngComm 2022. [DOI: 10.1039/d2ce00963c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With assistance of l-lysine, Cu@Ni core–satellite nanoassemblies were fabricated, which could serve as efficient non-Pt electrocatalysts for the methanol oxidation reaction due to both the component effects and structural features.
Collapse
Affiliation(s)
- Anzhou Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Qiuzi Huang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ziqi Wei
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zehan Yu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Meifeng Cui
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wu Lei
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiaoyu Qiu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
43
|
Shi H, Ding J, Chen C, Yao Q, Zhang W, Fu Y, Wang X, Ruan J. Antimicrobial Action of Biocompatible Silver Microspheres and Their Role in the Potential Treatment of Fungal Keratitis. ACS Biomater Sci Eng 2021; 7:5090-5098. [PMID: 34634199 DOI: 10.1021/acsbiomaterials.1c00815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Silver nanoparticles have drawn considerable attention as excellent antimicrobial agents because of their characteristics, including broad antimicrobial spectrum, durable antimicrobial property, and large specific surface area. However, the toxicity of silver nanoparticles limits the in vivo application in the antimicrobial therapy field. Here, we developed a novel silver-based biomaterial to achieve favorable biocompatibility as well as enhanced antimicrobial activity. Silver microspheres (AgMPs) were synthesized using bovine serum albumin as a template and H2O2 as an activator. Electron microscopy results showed that AgMPs had a honeycombed inner structure with an approximate diameter of 800 nm. The minimum inhibitory concentration results exhibited that AgMPs had effective antimicrobial action against bacteria and fungi when the concentration was greater than 32 and 16 μg/mL, respectively. The cell proliferation results suggested that AgMPs have no influence on corneal epithelial cell growth when the concentration was under 25 μg/mL. The in vivo antifungal therapy experiments demonstrated that 25 μg/mL AgMPs could effectively combat Candida smooth wound infections. Overall, AgMPs exhibited substantial antimicrobial action on fungi in addition to biosafety on corneal epithelial cells at a concentration within 16-25 μg/mL. Our study shows that AgMPs can be used as an ocular surface drop candidate to treat fungal keratitis.
Collapse
Affiliation(s)
- Hanhan Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 20025, P.R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 20025, People's Republic of China
| | - Jieying Ding
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Cancan Chen
- School of Life Science, Wuchang University of Technology, Wuhan 430223, China
| | - Qinke Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 20025, P.R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 20025, People's Republic of China
| | - Weijie Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 20025, P.R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 20025, People's Republic of China
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 20025, P.R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 20025, People's Republic of China
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jing Ruan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 20025, P.R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 20025, People's Republic of China
| |
Collapse
|
44
|
Cu(OH)2-Ni(OH)2 engulfed by zeolite-Y hydroxyl nest and multiwalled carbon nanotube for effective methanol oxidation reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
45
|
Sharma RK, Yadav S, Dutta S, Kale HB, Warkad IR, Zbořil R, Varma RS, Gawande MB. Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chem Soc Rev 2021; 50:11293-11380. [PMID: 34661205 PMCID: PMC8942099 DOI: 10.1039/d0cs00912a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In view of their unique characteristics and properties, silver nanomaterials (Ag NMs) have been used not only in the field of nanomedicine but also for diverse advanced catalytic technologies. In this comprehensive review, light is shed on general synthetic approaches encompassing chemical reduction, sonochemical, microwave, and thermal treatment among the preparative methods for the syntheses of Ag-based NMs and their catalytic applications. Additionally, some of the latest innovative approaches such as continuous flow integrated with MW and other benign approaches have been emphasized that ultimately pave the way for sustainability. Moreover, the potential applications of emerging Ag NMs, including sub nanomaterials and single atoms, in the field of liquid-phase catalysis, photocatalysis, and electrocatalysis as well as a positive role of Ag NMs in catalytic reactions are meticulously summarized. The scientific interest in the synthesis and applications of Ag NMs lies in the integrated benefits of their catalytic activity, selectivity, stability, and recovery. Therefore, the rise and journey of Ag NM-based catalysts will inspire a new generation of chemists to tailor and design robust catalysts that can effectively tackle major environmental challenges and help to replace noble metals in advanced catalytic applications. This overview concludes by providing future perspectives on the research into Ag NMs in the arena of electrocatalysis and photocatalysis.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sneha Yadav
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sriparna Dutta
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Hanumant B Kale
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Indrajeet R Warkad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- Nanotechnology Centre, CEET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- U. S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response Water Infrastructure Division/Chemical Methods and Treatment Branch, 26 West Martin Luther King Drive, MS 483 Cincinnati, Ohio 45268, USA.
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| |
Collapse
|
46
|
Li M, Zhao Z, Zhang W, Luo M, Tao L, Sun Y, Xia Z, Chao Y, Yin K, Zhang Q, Gu L, Yang W, Yu Y, Lu G, Guo S. Sub-Monolayer YO x /MoO x on Ultrathin Pt Nanowires Boosts Alcohol Oxidation Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103762. [PMID: 34423488 DOI: 10.1002/adma.202103762] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/28/2021] [Indexed: 06/13/2023]
Abstract
A crucial issue restricting the application of direct alcohol fuel cells (DAFCs) is the low activity of Pt-based electrocatalysts for alcohol oxidation reaction caused by the reaction intermediate (CO*) poisoning. Herein, a new strategy is demonstrated for making a class of sub-monolayer YOx /MoOx -surface co-decorated ultrathin platinum nanowires (YOx /MoOx -Pt NWs) to effectively eliminate the CO poisoning for enhancing methanol oxidation electrocatalysis. By adjusting the amounts of YOx and MoOx decorated on the surface of ultrathin Pt NWs, the optimized 22% YOx /MoOx -Pt NWs achieve a high specific activity of 3.35 mA cm-2 and a mass activity of 2.10 A mgPt -1 , as well as the enhanced stability. In situ Fourier transform infrared (FTIR) spectroscopy and CO stripping studies confirm the contribution of YOx and MoOx to anti-CO poisoning ability of the NWs. Density functional theory (DFT) calculations further reveal that the surface Y and Mo atoms with oxidation states allow COOH* to bind the surface through both the carbon and oxygen atoms, which can lower the free energy barriers for the oxidation of CO* into COOH*. The optimal NWs also show the superior activities toward the electro-oxidation of ethanol, ethylene glycol, and glycerol.
Collapse
Affiliation(s)
- Menggang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zhonglong Zhao
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA, 91330, USA
| | - Weiyu Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Lu Tao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yingjun Sun
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zhonghong Xia
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yuguang Chao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Kun Yin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA, 91330, USA
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
47
|
Yuan X, Min Y, Wu J, Xu L, Yue W. Optimized electrocatalytic performance of PtZn intermetallic nanoparticles for methanol oxidation by designing catalyst support and fine-tuning surface composition. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Zhao C, Shu C, Zheng R, Du D, Ren L, He M, Li R, Xu H, Wen X, Long J. Adjusting the d-band center of metallic sites in NiFe-based Bimetal-organic frameworks via tensile strain to achieve High-performance oxygen electrode catalysts for Lithium-oxygen batteries. J Colloid Interface Sci 2021; 607:1215-1225. [PMID: 34571308 DOI: 10.1016/j.jcis.2021.09.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/01/2022]
Abstract
Developing effective electrocatalyst and fundamentally understanding the corresponding working mechanism are both urgently desired to overcome the current challenges facing lithium-oxygen batteries (LOBs). Herein, a series of NiFe-based bimetal-organic frameworks (NiFe-MOFs) with certain internal tensile strain are fabricated via a simple organic linker scission strategy, and served as cathode catalysts for LOBs. The introduced tensile strain broadens the inherent interatomic distances, leading to an upshifted d-band center of metallic sites and thus the enhancement of the adsorption strength of catalysts surface towards intermediates, which is contributed to rationally regulate the crystallinity of discharge product Li2O2. As a result, the uniformly distributed amorphous film-like Li2O2 tightly deposits on the surface of strain-regulated MOF, resulting in excellent electrochemical performance of LOBs, including a large discharge capacity of 12317.4 mAh g-1 at 100 mA g-1 and extended long-term cyclability of 357 cycles. This work presents a novel insight in adjusting the adsorption strength of cathode catalysts towards intermediates via introducing tensile strain in catalysts, which is a pragmatic strategy for improving the performance of LOBs.
Collapse
Affiliation(s)
- Chuan Zhao
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China
| | - Chaozhu Shu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China.
| | - Ruixing Zheng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China
| | - Dayue Du
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China
| | - Longfei Ren
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China
| | - Miao He
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China
| | - Runjing Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China
| | - Haoyang Xu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China
| | - Xiaojuan Wen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China
| | - Jianping Long
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China.
| |
Collapse
|
49
|
Surface lattice engineering for fine-tuned spatial configuration of nanocrystals. Nat Commun 2021; 12:5661. [PMID: 34580299 PMCID: PMC8476615 DOI: 10.1038/s41467-021-25969-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 09/02/2021] [Indexed: 11/09/2022] Open
Abstract
Hybrid nanocrystals combining different properties together are important multifunctional materials that underpin further development in catalysis, energy storage, et al., and they are often constructed using heterogeneous seeded growth. Their spatial configuration (shape, composition, and dimension) is primarily determined by the heterogeneous deposition process which depends on the lattice mismatch between deposited material and seed. Precise control of nanocrystals spatial configuration is crucial to applications, but suffers from the limited tunability of lattice mismatch. Here, we demonstrate that surface lattice engineering can be used to break this bottleneck. Surface lattices of various Au nanocrystal seeds are fine-tuned using this strategy regardless of their shape, size, and crystalline structure, creating adjustable lattice mismatch for subsequent growth of other metals; hence, diverse hybrid nanocrystals with fine-tuned spatial configuration can be synthesized. This study may pave a general approach for rationally designing and constructing target nanocrystals including metal, semiconductor, and oxide.
Collapse
|
50
|
Self-Supported Defect-Rich Au-Based Nanostructures as Robust Bifunctional Catalysts for the Methanol Oxidation Reaction and Oxygen Reduction Reaction in an Alkaline Medium. NANOMATERIALS 2021; 11:nano11092193. [PMID: 34578509 PMCID: PMC8467196 DOI: 10.3390/nano11092193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
Recently, alkaline direct methanol fuel cells have made great progress with the development of alkaline electrocatalysis, and a wide variety of catalysts have been explored for methanol oxidation reaction (MOR)and oxygen reduction reaction (ORR). However, the slow kinetics of the MOR and ORR remain a great challenge. In this paper, self-supported defect-rich AuCu was obtained by a convenient one-pot strategy. Self-supported AuCu presented a branched, porous nanostructure. The nanobranch consisted of several 13 nm skeletons, which connected in the kink of the structure. Different growth directions co-existed at the kink, and the twin boundaries and dislocations as defects were observed. When the Au-based nanostructure functioned as an electrocatalyst, it showed robust MOR and ORR performance. For the MOR, the forward peak current was 2.68 times greater than that of Au/C; for the ORR, the activity was close to that of Pt/C and significantly better than that of Au/C. In addition, it possessed superior electrochemical stability for MOR and ORR. Finally, an in-depth exploration of the impact of surface defects and electrochemical Cu removal on MOR and ORR activity was carried out to explain the MOR and ORR’s catalytic performance.
Collapse
|