1
|
Li R, Mu R, Li K, Fan Y, Liu C, Ning Y, Li M, Fu Q, Bao X. Dynamically Confined Active Silver Nanoclusters with Ultrawide Operating Temperature Window in CO oxidation. Angew Chem Int Ed Engl 2025; 64:e202416852. [PMID: 39420665 DOI: 10.1002/anie.202416852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Supported metal nanoclusters are often highly active in many catalytic reactions but less stable particularly under harsh reaction conditions. Here, we demonstrate that this activity-stability trade-off can be efficiently broken through rational design of surrounding microenvironment of the supported nanocatalyst including gas adsorbate overlayer and underneath support surface chemistry. Our studies reveal that chemisorbed oxygen species on Ag surface and surface hydroxyl groups on oxide support, which are dynamically consumed during reaction but sustained by reaction environment (O2 and H2O vapor), drive spontaneous redispersion of Ag particles and stabilization of highly active Ag nanoclusters. Such a dynamic confinement effect from gas-catalyst-support interaction enables the Ag nanoclusters to exhibit complete catalytic oxidation of CO over a wide temperature window of 25-500 °C under dry conditions and 200-800 °C under wet conditions as well as remarkable stability at 300 °C over 1000 h.
Collapse
Affiliation(s)
- Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian 116023, China
| | - Kun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian 116023, China
| | - Yamei Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian 116023, China
| | - Conghui Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanxiao Ning
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
2
|
Röhrens D, Abouserie A, Dalfollo G, Kahlert J, Wang B, Schönberger AA, Pischinger S, Chen P, Mueller DN, Simon U. Surface Speciation in Microwave-Assisted CO Oxidation over Perovskites─The Role of Water and Activation Pretreatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67662-67673. [PMID: 39592123 DOI: 10.1021/acsami.4c13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
As a model for the energy-efficient aftertreatment of exhaust gas components, we studied microwave-assisted (MW) CO oxidation over a (La,Sr)CoO3-δ (LSC) perovskite oxide catalyst under dry and humidified conditions. We found that the use of a MW-based process can offer multiple advantages over traditional thermocatalysis in this scenario, as the nature of the MW-solid interaction offers quick, adaptive, and energy-efficient heating as well as improved yield and lower light-off temperatures. As found by combined CO and water MW-desorption experiments, the presence of technically relevant amounts of water leads to a competition for surface active sites and thus slows the reaction rate without indications for a fundamental change in the mechanism. Remarkably, the performance loss related to the presence of water was less pronounced in the MW-assisted process. Additionally, while we recorded a temperature-dependent degradation of the reaction rate in extended MW-catalysis experiments both in dry and humidified conditions, it quickly recovered after a short reactivation MW-treatment. Our study confirms that surface reaction can be driven by the use of MW-radiation in a similar magnitude that can be achieved by thermal activation at significantly higher temperatures. The nature of the effect of the MW-treatment on the structural and electronic surface properties of the LSC material was investigated by X-ray absorption (XAS) and X-ray photoelectron spectroscopy (XPS). We found evidence of a significant structural, chemical, and electronic reorganization of the oxide surface, possibly consistent with the occurrence of overheated surfaces or "hotspots" during MW-exposure, which may explain the increased catalytic and heating properties of the LSC after the MW-pretreatment. The good catalytic performance, quick response to MW-heating, and long-term stability of the catalyst all indicate the promising potential of a MW-based process for the energy-efficient exhaust aftertreatment using noble-metal-free oxide catalysts.
Collapse
Affiliation(s)
- Daniel Röhrens
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, Aachen, 52074, Germany
| | - Ahed Abouserie
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, Aachen, 52074, Germany
| | - Gianluca Dalfollo
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, Aachen, 52074, Germany
| | - Jannis Kahlert
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, Aachen, 52074, Germany
| | - Bangfen Wang
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, Aachen, 52074, Germany
| | - Ariel Augusto Schönberger
- Chair of Thermodynamics of Mobile Energy Conversion Systems, RWTH Aachen University, Forckenbeckstraße 4, Aachen 52074, Germany
| | - Stefan Pischinger
- Chair of Thermodynamics of Mobile Energy Conversion Systems, RWTH Aachen University, Forckenbeckstraße 4, Aachen 52074, Germany
| | - Peirong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - David N Mueller
- Peter Grünberg Institut, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, Aachen, 52074, Germany
| |
Collapse
|
3
|
Wang S, Li X, Lai C, Zhang Y, Lin X, Ding S. Recent advances in noble metal-based catalysts for CO oxidation. RSC Adv 2024; 14:30566-30581. [PMID: 39324044 PMCID: PMC11421417 DOI: 10.1039/d4ra05102e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
Carbon monoxide, one of the major pollutants in the air, is mainly produced due to the incomplete combustion of fossil fuels such as coal and oil. Among all the techniques developed for removing CO, catalytic oxidation has been considered one of the most effective approaches, and the commonly used catalysts include metal oxides and noble metals. Noble metal attracted extensive attention due to its good catalytic performance at low temperatures and high resistance to poisoning. The review summarizes the recent advances of noble metals including Pt, Pd, Au, Ru, Rh, and Ir in CO oxidation. The effect of support, metal doping, the particle size of noble metals, and the hydroxyl groups on CO oxidation is discussed. Besides, the metal-support interaction on the stability and activity is also involved in this review. Finally, the challenges and opportunities of supported noble metal catalysts in practical CO oxidation are proposed.
Collapse
Affiliation(s)
- Sheng Wang
- National Energy Group Science and Technology Research Institute Nanjing 210031 Jiangsu China
| | - Xiaoman Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University Nanjing 210096 Jiangsu China
| | - Chengyue Lai
- Chengdu Academy of Environmental Sciences Chengdu 610072 China
| | - Yaping Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University Nanjing 210096 Jiangsu China
| | - Xiao Lin
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University Nanjing 210096 Jiangsu China
| | - Shipeng Ding
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University Nanjing 210096 Jiangsu China
| |
Collapse
|
4
|
Park S, Oh D, Jang MG, Seo H, Kim U, Ahn J, Choi Y, Shin D, Han JW, Jung W, Kim ID. Unmatched Redox Activity of the Palladium-Doped Indium Oxide Oxygen Carrier for Low-Temperature CO 2 Splitting. ACS NANO 2024; 18:25577-25590. [PMID: 39189916 DOI: 10.1021/acsnano.4c06244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The chemical conversion of CO2 into value-added products is the key technology to realize a carbon-neutral society. One representative example of such conversion is the reverse water-gas shift reaction, which produces CO from CO2. However, the activity is insufficient at ambient pressure and lower temperatures (<600 °C), making it a highly energy-intensive and impractical process. Herein, we report indium oxide nanofibers modified with palladium catalysts that exhibit significantly potent redox activities toward the reduction of CO2 splitting via chemical looping. In particular, we uncover that the doped palladium cations are selectively reduced and precipitated onto the host oxide surface as metallic nanoparticles. These catalytic gems formed operando make In2O3 lattice oxygen more redox-active in H2 and CO2 environments. As a result, the composite nanofiber catalysts demonstrate the reverse water-gas shift reaction via chemical looping at record-low temperatures (≤350 °C), while also imparting high activities (CO2 conversion: 45%). Altogether, our findings expand the viability of CO2 splitting at lower temperatures and provide design principles for indium oxide-based catalysts for CO2 conversion.
Collapse
Affiliation(s)
- Seyeon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - DongHwan Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Myeong Gon Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwakyoung Seo
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Uisik Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Korea Electric Power Research Institute (KEPRI), Daejeon 34056, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yoonseok Choi
- Hydrogen Convergence Materials Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea
| | - Dongjae Shin
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Woo Han
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
An D, Yang S, Cheng Q, Yan W, Sun J, Zou W, Sun C, Tang C, Dong L. Water-Driven Surface Lattice Oxygen Activation in MnO 2 for Promoted Low-Temperature NH 3-SCR. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39250812 DOI: 10.1021/acs.est.4c06313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Water is ubiquitous in various heterogeneous catalytic reactions, where it can be easily adsorbed, chemically dissociated, and diffused on catalyst surfaces, inevitably influencing the catalytic process. However, the specific role of water in these reactions remains unclear. In this study, we innovatively propose that H2O-driven surface lattice oxygen activation in γ-MnO2 significantly enhances low-temperature NH3-SCR. The proton from water dissociation activates the surface lattice oxygen in γ-MnO2, giving rise to a doubling of catalytic activity (achieving 90% NO conversion at 100 °C) and remarkable stability. Comprehensive in situ characterizations and calculations reveal that spontaneous proton diffusion to the surface lattice oxygen reduces the orbital overlap between the protonated oxygen atom and its neighboring Mn atom. Consequently, the Mn-O bond is weakened and the surface lattice oxygen is effectively activated to provide excess oxygen vacancies available for converting O2 into O2-. Therefore, the redox property of Mn-H is improved, leading to enhanced NH3 oxidation-dehydrogenation and NO oxidation processes, which are crucial for low-temperature NH3-SCR. This work provides a deeper understanding and fresh perspectives on the water promotion mechanism in low-temperature NOx elimination.
Collapse
Affiliation(s)
- Dongqi An
- Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
- Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, P. R. China
| | - Shan Yang
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Qianni Cheng
- Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Wanting Yan
- Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Jingfang Sun
- Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Weixin Zou
- Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Chuanzhi Sun
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Changjin Tang
- Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Lin Dong
- Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
6
|
Chen JJ, Wang SD, Ding XL, He SG. Role of H 2O Adsorption in CO Oxidation over Cerium-Oxide Cluster Anions (CeO 2) nO - ( n = 1-4). J Phys Chem Lett 2024; 15:9078-9083. [PMID: 39196996 DOI: 10.1021/acs.jpclett.4c02045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Water (H2O) is ubiquitous in the environment and inevitably participates in many surface reactions, including CO oxidation. Acquiring a fundamental understanding of the roles of H2O molecules in CO oxidation poses a challenging but pivotal task in real-life catalysis. Herein, benefiting from state-of-the-art mass-spectrometric experiments and quantum chemical calculations, we identified that the dissociation of a H2O molecule on each of the cerium oxide cluster anions (CeO2)nO- (n = 1-4) at room temperature can create a new atomic oxygen radical (O•-) that then oxidizes a CO molecule. The size-dependent reactivity of H2O-mediated CO oxidation on (CeO2)nO- clusters was rationalized by the orbital compositions (O2p) and energies of the lowest unoccupied molecular orbitals of active O•- radicals modified by H2O dissociation. Our findings not only provide new insights into H2O-mediated CO oxidation but also demonstrate the importance of H2O in modulating the reactivity of the O•- radicals.
Collapse
Affiliation(s)
- Jiao-Jiao Chen
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing 102206, China
- Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing 102206, China
- Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding 071003, China
| | - Si-Dun Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xun-Lei Ding
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing 102206, China
- Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing 102206, China
- Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding 071003, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Chen J, Li Z, Tan W, Xie Y, Cao J, Zhang Q, Ning P, Hao J. Facilely Fabricated Single-Site Pt δ+-O(OH) x- Species Associated with Alkali on Zirconia Exhibiting Superior Catalytic Oxidation Reactivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12685-12696. [PMID: 38959026 DOI: 10.1021/acs.est.4c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Fabrication of robust isolated atom catalysts has been a research hotspot in the environment catalysis field for the removal of various contaminants, but there are still challenges in improving the reactivity and stability. Herein, through facile doping alkali metals in Pt catalyst on zirconia (Pt-Na/ZrO2), the atomically dispersed Ptδ+-O(OH)x- associated with alkali metal via oxygen bridge was successfully fabricated. This novel catalyst presented remarkably higher CO and hydrocarbon (HCs: C3H8, C7H8, C3H6, and CH4) oxidation activity than its counterpart (Pt/ZrO2). Systematically direct and solid evidence from experiments and density functional theory calculations demonstrated that the fabricated electron-rich Ptδ+-O(OH)x- related to Na species rather than the original Ptδ+-O(OH)x-, serving as the catalytically active species, can readily react with CO adsorbed on Ptδ+ to produce CO2 with significantly decreasing energy barrier in the rate-determining step from 1.97 to 0.93 eV. Additionally, owing to the strongly adsorbed and activated water by Na species, those fabricated single-site Ptδ+-O(OH)x- linked by Na species could be easily regenerated during the oxidation reaction, thus considerably boosting its oxidation reactivity and durability. Such facile construction of the alkali ion-linked active hydroxyl group was also realized by Li and K modification which could guide to the design of efficient catalysts for the removal of CO and HCs from industrial exhaust.
Collapse
Affiliation(s)
- Jianjun Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhiyu Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Tan
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinyan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Qiulin Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiming Hao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Zheng XQ, Zhang K, Wang Y, Liu Y, Peng SS, Shao XB, Kou J, Sun LB. Construction of Nickel Single Atoms by Using the Inherent Confined Space in Template-Occupied Mesoporous Silica. Inorg Chem 2024; 63:8312-8319. [PMID: 38651966 DOI: 10.1021/acs.inorgchem.4c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Due to their maximum atomic use of metal sites, single-atom catalysts (SACs) exhibit excellent catalytic activity in a variety of reactions. Although many techniques have been reported for the production of SACs, the construction of single atoms through a convenient strategy is still challenging. Here, we provide a facile method to prepare nickel SACs by utilizing the inherent confined space between the template and silica walls in template-occupied mesoporous silica KIT-6 (TOK). After the introduction of nickel-containing precursors into the inherent confined space of the TOK by solid-phase grinding, Ni SACs can be produced promptly during calcination. Single Ni atoms create a covalent Ni-O-Si structure in the TOK, as indicated by density functional theory (DFT) calculations and experimental data. This synthetic approach is easy to scale up, and 10 g of sample can be effortlessly synthesized using ball milling. The resultant Ni SACs were applied to the oxygen evolution reaction and exhibited higher catalytic activity and stability than the comparative sample synthesized in the absence of confined space.
Collapse
Affiliation(s)
- Xiao-Qin Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Kai Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Song-Song Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiang-Bin Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jiahui Kou
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
9
|
Jiang L, Li K, Porter WN, Wang H, Li G, Chen JG. Role of H 2O in Catalytic Conversion of C 1 Molecules. J Am Chem Soc 2024; 146:2857-2875. [PMID: 38266172 DOI: 10.1021/jacs.3c13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Due to their role in controlling global climate change, the selective conversion of C1 molecules such as CH4, CO, and CO2 has attracted widespread attention. Typically, H2O competes with the reactant molecules to adsorb on the active sites and therefore inhibits the reaction or causes catalyst deactivation. However, H2O can also participate in the catalytic conversion of C1 molecules as a reactant or a promoter. Herein, we provide a perspective on recent progress in the mechanistic studies of H2O-mediated conversion of C1 molecules. We aim to provide an in-depth and systematic understanding of H2O as a promoter, a proton-transfer agent, an oxidant, a direct source of hydrogen or oxygen, and its influence on the catalytic activity, selectivity, and stability. We also summarize strategies for modifying catalysts or catalytic microenvironments by chemical or physical means to optimize the positive effects and minimize the negative effects of H2O on the reactions of C1 molecules. Finally, we discuss challenges and opportunities in catalyst design, characterization techniques, and theoretical modeling of the H2O-mediated catalytic conversion of C1 molecules.
Collapse
Affiliation(s)
- Lei Jiang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Kongzhai Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Southwest United Graduate School, Kunming 650000, Yunnan, China
| | - William N Porter
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Hua Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Gengnan Li
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
10
|
Tan W, Xie S, Zhang X, Ye K, Almousawi M, Kim D, Yu H, Cai Y, Xi H, Ma L, Ehrlich SN, Gao F, Dong L, Liu F. Fine-Tuning of Pt Dispersion on Al 2O 3 and Understanding the Nature of Active Pt Sites for Efficient CO and NH 3 Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:454-466. [PMID: 38147632 DOI: 10.1021/acsami.3c11897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Fine-tuning the dispersion of active metal species on widely used supports is a research hotspot in the catalysis community, which is vital for achieving a balance between the atomic utilization efficiency and the intrinsic activity of active sites. In this work, using bayerite Al(OH)3 as support directly or after precalcination at 200 or 550 °C, Pt/Al2O3 catalysts with distinct Pt dispersions from single atoms to clusters (ca. 2 nm) were prepared and evaluated for CO and NH3 removal. Richer surface hydroxyl groups on AlOx(OH)y support were proved to better facilitate the dispersion of Pt. However, Pt/Al2O3 with relatively lower Pt dispersion could exhibit better activity in CO/NH3 oxidation reactions. Further reaction mechanism study revealed that the Pt sites on Pt/Al2O3 with lower Pt dispersion could be activated to Pt0 species much easier under the CO oxidation condition, on which a higher CO adsorption capacity and more efficient O2 activation were achieved simultaneously. Compared to Pt single atoms, PtOx clusters could also better activate NH3 into -NH2 and -HNO species. The higher CO adsorption capacity and the more efficient NH3/O2 activation ability on Pt/Al2O3 with relatively lower Pt dispersion well explained its higher CO/NH3 oxidation activity. This study emphasizes the importance of avoiding a singular pursuit of single-atom catalyst synthesis and instead focusing on achieving the most effective Pt species on Al2O3 support for targeted reactions. This approach avoids unnecessary limitations and enables a more practical and efficient strategy for Pt catalyst fabrication in emission control applications.
Collapse
Affiliation(s)
- Wei Tan
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Xing Zhang
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Kailong Ye
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Murtadha Almousawi
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Daekun Kim
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Haowei Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yandi Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hanchen Xi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lu Ma
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Steven N Ehrlich
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
11
|
Zhang L, Li T, Dai X, Zhao J, Liu C, He D, Zhao K, Zhao P, Cui X. Water Activation Triggered by Cu-Co Double-Atom Catalyst for Silane Oxidation. Angew Chem Int Ed Engl 2023; 62:e202313343. [PMID: 37798814 DOI: 10.1002/anie.202313343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
High-performance catalysts sufficient to significantly reduce the energy barrier of water activation are crucial in facilitating reactions that are restricted by water dissociation. Herein we present a Cu-Co double-atom catalyst (CuCo-DAC), which possesses a uniform and well-defined CuCoN6 (OH) structure, and works together to promote water activation in silane oxidation. The catalyst achieves superior catalytic performance far exceeding that of single-atom catalysts (SACs). Various functional silanes are converted into silanols with up to 98 % yield and 99 % selectivity. Kinetic studies show that the activation energy of silane oxidation by CuCo-DAC is significantly lower than that of Cu single-atom catalyst (Cu-SAC) and Co single-atom catalyst (Co-SAC). Theoretical calculations demonstrate two different reaction pathways where water splitting is the rate-determining step and it is accelerated by CuCo-DAC, whereas H2 formation is key for its single-atom counterpart.
Collapse
Affiliation(s)
- Liping Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Teng Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Xingchao Dai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Jian Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Ce Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Dongcheng He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Kang Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Peiqing Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| |
Collapse
|
12
|
Guo Z, Zhang J, Luo Y, Li D, Zhao R, Huang Y, Ren H, Yao X. Atomically dispersed Au anchored on CeO 2to enhancing the antioxidant activity. NANOTECHNOLOGY 2023; 34:285101. [PMID: 37114843 DOI: 10.1088/1361-6528/acc9ca] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
The modification of Au nanoparticles can improve the antioxidant activity of CeO2, however, nano Au/CeO2has also met some problems such as low atomic utilization, the limit of reaction conditions, and high cost. Au single atom catalysts can well solve the above-mentioned problems, but there are some contradictory results about the activity of single atom Au1/CeO2and nano Au/CeO2. Here, we synthesized rod-like Au single atom Au/CeO2(0.4% Au1/CeO2) and nano Au/CeO2(1% Au/CeO2, 2% Au/CeO2and 4% Au/CeO2), and their antioxidant activity from strong to weak is 0.4% Au1/CeO2, 1% Au/CeO2, 2% Au/CeO2and 4% Au/CeO2, respectively. The higher antioxidant activity of 0.4% Au1/CeO2is mainly due to the high Au atomic utilization ratio and the stronger charge transfer between Au single atoms and CeO2, resulting in the higher content of Ce3+. Due to the coexistence of Au single atoms and Au NPs in 2% Au/CeO2, the antioxidant activity 2% Au/CeO2is higher than that of 4% Au/CeO2. And the enhancement effect of Au single atoms was not affected by the concentration of ·OH and material concentration. These results can promote the understanding of the antioxidant activity of 0.4% Au1/CeO2and promote its application.
Collapse
Affiliation(s)
- Zhimin Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jie Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yangkai Luo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dongxiao Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruihuan Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yubiao Huang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hao Ren
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xin Yao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
13
|
Wang Y, Fu Q, Shen X. Promotion Effect of Well-Defined Deposited Water Layer on Carbon Monoxide Oxidation Catalyzed by Single-Atom Alloys. J Phys Chem Lett 2023; 14:3498-3505. [PMID: 37014142 DOI: 10.1021/acs.jpclett.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Single-atom alloys (SAAs) exhibit excellent catalytic performance and unique electronic structures, emerging as promising catalysts for potential industrial reactions. While most of them have been widely employed under reducing conditions, few are applied in oxidation reactions. Herein, using density functional theory calculations and microkinetic simulations, we demonstrate that a well-defined one water layer can improve CO oxidation on model SAAs, with reaction rates increased by orders of magnitude. It is found that the formation of hydrogen bonds and the transfer of charges effectively enhance the adsorption and activation of oxygen molecules at the H2O/SAA interfaces, which not only increases the surface coverage of O2 species but also reduces the energy barrier of CO oxidation. The proposed strategy in this work would extend the application range of SAA catalysts to oxidation reactions.
Collapse
Affiliation(s)
- Yan Wang
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Future Technology, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Fu
- School of Future Technology, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Xiangjian Shen
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
14
|
Comparison of the Engine Performance of Soybean Oil Biodiesel Emulsions Prepared by Phase Inversion Temperature and Mechanical Homogenization Methods. Processes (Basel) 2023. [DOI: 10.3390/pr11030907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
The engine performance and emission characteristics of burning emulsions of soybean oil biodiesel in a compression-ignition diesel engine prepared through the phase inversion temperature method were compared with those of neat soybean oil biodiesel and the emulsion prepared by the mechanical homogenization method. The engine torque was set constantly at 98 N·m with varying engine speeds. The experimental results show that the emulsion prepared by the method of phase inversion temperature had higher O2 and NOx emissions, a higher excess air ratio, a higher exhaust gas temperature, and a higher brake fuel conversion efficiency than the emulsion prepared by the mechanical homogenization method, which had lower CO and CO2 emissions, a lower equivalence ratio, and lower brake-specific fuel consumption. While the neat soybean oil biodiesel was found to have the lowest fuel consumption rate, brake-specific fuel consumption, and CO and CO2 emissions, it had the highest exhaust gas temperature and brake fuel conversion efficiency, NOx and O2 emissions, and excess air ratio among those three fuels. Therefore, the phase inversion temperature method is considered promising for preparing fuel emulsions as an alternative to petro-derived diesel for compression-ignition engines.
Collapse
|
15
|
Gu MX, Gao LP, Peng SS, Qi SC, Shao XB, Liu XQ, Sun LB. Transition Metal Single Atoms Constructed by Using Inherent Confined Space. ACS NANO 2023; 17:5025-5032. [PMID: 36825801 DOI: 10.1021/acsnano.2c12817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single-atom catalysts (SACs) show expressively enhanced activity toward diverse reactions due to maximized atomic utilization of metal sites, while their facile, universal, and massive preparation remains a pronounced challenge. Here we report a facile strategy for the preparation of SACs by use of the inherent confined space between the template and silica walls in template-occupied mesoporous silica SBA-15 (TOS). Different transition metal precursors can be introduced into the confined space readily by grinding, and during succeeding calcination single atoms are constructed in the form of M-O-Si (M = Cu, Co, Ni, and Zn). In addition to the generality, the present strategy is easy to scale up and can allow the synthesis of 10 g of SACs in one pot through ball milling. The Cu SAC has been applied for CO2 cycloaddition of epichlorohydrin, and the activity is obviously higher than the counterpart prepared without confined space and various reported Cu-containing catalysts.
Collapse
Affiliation(s)
- Meng-Xuan Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Le-Ping Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Song-Song Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Shi-Chao Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiang-Bin Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
16
|
Chang J, Hülsey MJ, Wang S, Li M, Ma X, Yan N. Electrothermal Water-Gas Shift Reaction at Room Temperature with a Silicomolybdate-Based Palladium Single-Atom Catalyst. Angew Chem Int Ed Engl 2023; 62:e202218265. [PMID: 36700387 DOI: 10.1002/anie.202218265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The water-gas shift (WGS) reaction is often conducted at elevated temperature and requires energy-intensive separation of hydrogen (H2 ) from methane (CH4 ), carbon dioxide (CO2 ), and residual carbon monoxide (CO). Designing processes to decouple CO oxidation and H2 production provides an alternative strategy to obtain high-purity H2 streams. We report an electrothermal WGS process combining thermal oxidation of CO on a silicomolybdic acid (SMA)-supported Pd single-atom catalyst (Pd1 /CsSMA) and electrocatalytic H2 evolution. The two half-reactions are coupled through phosphomolybdic acid (PMA) as a redox mediator at a moderate anodic potential of 0.6 V (versus Ag/AgCl). Under optimized conditions, our catalyst exhibited a TOF of 1.2 s-1 with turnover numbers above 40 000 mol CO 2 ${{_{{\rm CO}{_{2}}}}}$ molPd -1 achieving stable H2 production with a purity consistently exceeding 99.99 %.
Collapse
Affiliation(s)
- Jinquan Chang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai, New City, Fuzhou, 350207, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Max J Hülsey
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Sikai Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai, New City, Fuzhou, 350207, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Maoshuai Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xinbin Ma
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai, New City, Fuzhou, 350207, China.,Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ning Yan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai, New City, Fuzhou, 350207, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
17
|
Iemhoff A, Vennewald M, Palkovits R. Single-Atom Catalysts on Covalent Triazine Frameworks: at the Crossroad between Homogeneous and Heterogeneous Catalysis. Angew Chem Int Ed Engl 2023; 62:e202212015. [PMID: 36108176 PMCID: PMC10108136 DOI: 10.1002/anie.202212015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
Heterogeneous single-site and single-atom catalysts potentially enable combining the high catalytic activity and selectivity of molecular catalysts with the easy continuous operation and recycling of solid catalysts. In recent years, covalent triazine frameworks (CTFs) found increasing attention as support materials for particulate and isolated metal species. Bearing a high fraction of nitrogen sites, they allow coordinating molecular metal species and stabilizing particulate metal species, respectively. Dependent on synthesis method and pretreatment of CTFs, materials resembling well-defined highly crosslinked polymers or materials comparable to structurally ill-defined nitrogen-containing carbons result. Accordingly, CTFs serve as model systems elucidating the interaction of single-site, single-atom and particulate metal species with such supports. Factors influencing the transition between molecular and particulate systems are discussed to allow deriving tailored catalyst systems.
Collapse
Affiliation(s)
- Andree Iemhoff
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Maurice Vennewald
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Regina Palkovits
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
18
|
An X, Wei T, Ding P, Liu LM, Xiong L, Tang J, Ma J, Wang F, Liu H, Qu J. Sodium-Directed Photon-Induced Assembly Strategy for Preparing Multisite Catalysts with High Atomic Utilization Efficiency. J Am Chem Soc 2023; 145:1759-1768. [PMID: 36607337 DOI: 10.1021/jacs.2c10690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Integrating different reaction sites offers new prospects to address the difficulties in single-atom catalysis, but the precise regulation of active sites at the atomic level remains challenging. Here, we demonstrate a sodium-directed photon-induced assembly (SPA) strategy for boosting the atomic utilization efficiency of single-atom catalysts (SACs) by constructing multifarious Au sites on TiO2 substrate. Na+ was employed as the crucial cement to direct Au single atoms onto TiO2, while the light-induced electron transfer from excited TiO2 to Au(Na+) ensembles contributed to the self-assembly formation of Au nanoclusters. The synergism between plasmonic near-field and Schottky junction enabled the cascade electron transfer for charge separation, which was further enhanced by oxygen vacancies in TiO2. Our dual-site photocatalysts exhibited a nearly 2 orders of magnitude improvement in the hydrogen evolution activity under simulated solar light, with a striking turnover frequency (TOF) value of 1533 h-1 that exceeded other Au/TiO2-based photocatalysts reported. Our SPA strategy can be easily extended to prepare a wide range of metal-coupled nanostructures with enhanced performance for diverse catalytic reactions. Thus, this study provides a well-defined platform to extend the boundaries of SACs for multisite catalysis through harnessing metal-support interactions.
Collapse
Affiliation(s)
- Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tingcha Wei
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.,MIIT Key Laboratory of Aerospace Information Materials and Physics, College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Peijia Ding
- School of Physics, Beihang University, Beijing 100191, China
| | - Li-Min Liu
- School of Physics, Beihang University, Beijing 100191, China
| | - Lunqiao Xiong
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Jiani Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shanxi Normal University, Xi'an 710119, China
| | - Feng Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 581 83, Sweden
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Insight into the Effect of Oxygen Vacancy Prepared by Different Methods on CuO/Anatase Catalyst for CO Catalytic Oxidation. Catalysts 2022. [DOI: 10.3390/catal13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, CuO loaded on anatase TiO2 catalysts (CuO/anatase) with oxygen vacancies was synthesized via reduction treatments by NaHB4 and H2 (CuO/anatase-B, CuO/anatase-H), respectively. The characterizations suggest that different reduction treatments bring different concentration of oxygen vacancies in the CuO/anatase catalysts, which finally affect the CO catalytic performance. The CuO/anatase-B and CuO/anatase-H exhibit CO conversion of 90% at 182 and 198 °C, respectively, which is lower than what occurred for CuO/anatase (300 °C). The XRD, Raman, and EPR results show that the amount of the oxygen vacancies of the CuO/anatase-H is the largest, indicating a stronger reduction effect of H2 than NaHB4 on the anatase surface. The in situ DRIFTS results exhibit that the Cu sites are the adsorption sites of CO, and the oxygen vacancies on the anatase can active the O2 molecules into reactive oxygen species. According to the in situ DRIFTS results, it can be concluded that in the CO oxidation reaction, only the CuO/anatase-H catalyst can be carried out by the Mvk mechanism, which greatly improves its catalytic efficiency. This study explained the reaction mechanisms of CO oxidation on various anatase surfaces, which offers detailed insights into how to prepare suitable catalysts for low-temperature oxidation reactions.
Collapse
|
20
|
Jing W, Shen H, Qin R, Wu Q, Liu K, Zheng N. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chem Rev 2022; 123:5948-6002. [PMID: 36574336 DOI: 10.1021/acs.chemrev.2c00569] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The surface and interface coordination structures of heterogeneous metal catalysts are crucial to their catalytic performance. However, the complicated surface and interface structures of heterogeneous catalysts make it challenging to identify the molecular-level structure of their active sites and thus precisely control their performance. To address this challenge, atomically dispersed metal catalysts (ADMCs) and ligand-protected atomically precise metal clusters (APMCs) have been emerging as two important classes of model heterogeneous catalysts in recent years, helping to build bridge between homogeneous and heterogeneous catalysis. This review illustrates how the surface and interface coordination chemistry of these two types of model catalysts determines the catalytic performance from multiple dimensions. The section of ADMCs starts with the local coordination structure of metal sites at the metal-support interface, and then focuses on the effects of coordinating atoms, including their basicity and hardness/softness. Studies are also summarized to discuss the cooperativity achieved by dual metal sites and remote effects. In the section of APMCs, the roles of surface ligands and supports in determining the catalytic activity, selectivity, and stability of APMCs are illustrated. Finally, some personal perspectives on the further development of surface coordination and interface chemistry for model heterogeneous metal catalysts are presented.
Collapse
Affiliation(s)
- Wentong Jing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
21
|
Wang B, Luo Y, Chu G, Zhao Y, Duan X, Chen J. Optimizing the Pt‐FeO
x
Interaction over Atomic Pt/FeO
x
/CeO
2
Catalysts for Improved CO Oxidation Activity. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Bao‐Ju Wang
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites 100029 Beijing China
- Beijing University of Chemical Technology Research Center of the Ministry of Education for High Gravity Engineering and Technology 100029 Beijing China
| | - Yong Luo
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites 100029 Beijing China
- Beijing University of Chemical Technology Research Center of the Ministry of Education for High Gravity Engineering and Technology 100029 Beijing China
| | - Guang‐Wen Chu
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites 100029 Beijing China
- Beijing University of Chemical Technology Research Center of the Ministry of Education for High Gravity Engineering and Technology 100029 Beijing China
| | - Yufei Zhao
- Beijing University of Chemical Technology State Key Laboratory of Chemical Resource Engineering 100029 Beijing China
| | - Xue Duan
- Beijing University of Chemical Technology State Key Laboratory of Chemical Resource Engineering 100029 Beijing China
| | - Jian‐Feng Chen
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites 100029 Beijing China
- Beijing University of Chemical Technology Research Center of the Ministry of Education for High Gravity Engineering and Technology 100029 Beijing China
| |
Collapse
|
22
|
Deng Y, Liu S, Fu L, Yuan Y, Zhao A, Wang D, Zheng H, Ouyang L, Yuan S. Crystal plane induced metal-support interaction in Pd/Pr-CeO2 catalyst boosts H2O-assisted CO oxidation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Hu Y, Liu X, Zou Y, Xie H, Zhu T. Nature of support plays vital roles in H2O promoted CO oxidation over Pt catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Wang Y, Wang M. Recent progresses on single-atom catalysts for the removal of air pollutants. Front Chem 2022; 10:1039874. [DOI: 10.3389/fchem.2022.1039874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
The booming industrialization has aggravated emission of air pollutants, inflicting serious harm on environment and human health. Supported noble-metals are one of the most popular catalysts for the oxidation removal of air pollutants. Unfortunately, the high price and large consumption restrict their development and practical application. Single-atom catalysts (SACs) emerge and offer an optimizing approach to address this issue. Due to maximal atom utilization, tunable coordination and electron environment and strong metal-support interaction, SACs have shown remarkable catalytic performance on many reactions. Over the last decade, great potential of SACs has been witnessed in the elimination of air pollutants. In this review, we first briefly summarize the synthesis methods and modulation strategies together with the characterization techniques of SACs. Next, we highlight the application of SACs in the abatement of air pollutants including CO, volatile organic compounds (VOCs) and NOx, unveiling the related catalytic mechanism of SACs. Finally, we propose the remaining challenges and future perspectives of SACs in fundamental research and practical application in the field of air pollutant removal.
Collapse
|
25
|
Cai T, Teng Z, Wen Y, Zhang H, Wang S, Fu X, Song L, Li M, Lv J, Zeng Q. Single-atom site catalysts for environmental remediation: Recent advances. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129772. [PMID: 35988491 DOI: 10.1016/j.jhazmat.2022.129772] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Single-atom site catalysts (SACs) can maximize the utilization of active metal species and provide an attractive way to regulate the activity and selectivity of catalytic reactions. The adjustable coordination configuration and atomic structure of SACs enable them to be an ideal candidate for revealing reaction mechanisms in various catalytic processes. The minimum use of metals and relatively tight anchoring of the metal atoms significantly reduce leaching and environmental risks. Additionally, the unique physicochemical properties of single atom sites endow SACs with superior activity in various catalytic processes for environmental remediation (ER). Generally, SACs are burgeoning and promising materials in the application of ER. However, a systematic and critical review on the mechanism and broad application of SACs-based ER is lacking. Herein, we review emerging studies applying SACs for different ERs, such as eliminating organic pollutants in water, removing volatile organic compounds, purifying automobile exhaust, and others (hydrodefluorination and disinfection). We have summarized the synthesis, characterization, reaction mechanism and structural-function relationship of SACs in ER. In addition, the perspectives and challenges of SACs for ER are also analyzed. We expect that this review can provide constructive inspiration for discoveries and applications of SACs in environmental catalysis in the future.
Collapse
Affiliation(s)
- Tao Cai
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Zhenzhen Teng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanjun Wen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xijun Fu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Lu Song
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Mi Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Junwen Lv
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
26
|
Jin J, Mao J, Wu W, Jiang Y, Ma W, Yu P, Mao L. Highly Efficient Electrosynthesis of Nitric Oxide for Biomedical Applications. Angew Chem Int Ed Engl 2022; 61:e202210980. [DOI: 10.1002/anie.202210980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Jin
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids Ministry of Education College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Wenjie Wu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Jiang
- College of Chemistry Beijing Normal University Xinjiekouwai Street 19 Beijing 100875 China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 China
- College of Chemistry Beijing Normal University Xinjiekouwai Street 19 Beijing 100875 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
27
|
Chen Y, Lin J, Jia B, Wang X, Jiang S, Ma T. Isolating Single and Few Atoms for Enhanced Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201796. [PMID: 35577552 DOI: 10.1002/adma.202201796] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/16/2022] [Indexed: 05/27/2023]
Abstract
Atomically dispersed metal catalysts have triggered great interest in the field of catalysis owing to their unique features. Isolated single or few metal atoms can be anchored on substrates via chemical bonding or space confinement to maximize atom utilization efficiency. The key challenge lies in precisely regulating the geometric and electronic structure of the active metal centers, thus significantly influencing the catalytic properties. Although several reviews have been published on the preparation, characterization, and application of single-atom catalysts (SACs), the comprehensive understanding of SACs, dual-atom catalysts (DACs), and atomic clusters has never been systematically summarized. Here, recent advances in the engineering of local environments of state-of-the-art SACs, DACs, and atomic clusters for enhanced catalytic performance are highlighted. Firstly, various synthesis approaches for SACs, DACs, and atomic clusters are presented. Then, special attention is focused on the elucidation of local environments in terms of electronic state and coordination structure. Furthermore, a comprehensive summary of isolated single and few atoms for the applications of thermocatalysis, electrocatalysis, and photocatalysis is provided. Finally, the potential challenges and future opportunities in this emerging field are presented. This review will pave the way to regulate the microenvironment of the active site for boosting catalytic processes.
Collapse
Affiliation(s)
- Yang Chen
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shuaiyu Jiang
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
28
|
Jin J, Mao J, Wu W, Jiang Y, Ma W, Yu P, Mao L. Highly efficient electrosynthesis of nitric oxide for biomedical applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jing Jin
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical 100190 CHINA
| | - Junjie Mao
- Anhui Normal University College of Chemistry and Materials Science Key Laboratory of Functional Molecular Solids, Ministry of Education, College of 241002 CHINA
| | - Wenjie Wu
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry Chinese Academy of Sciences CHINA
| | - Ying Jiang
- Beijing Normal University College of Chemistry Beijing Normal University 100875 Beijing CHINA
| | - Wenjie Ma
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry Chinese Academy of Sciences CHINA
| | - Ping Yu
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry Chinese Academy of Sciences CHINA
| | - Lanqun Mao
- Beijing Normal University College of Chemistry No.19, Xinjiekouwai St, Haidian District 100875 Beijing CHINA
| |
Collapse
|
29
|
Single-atom catalysts for thermochemical gas-phase reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Wang D, Lin L, Zhang R, Mu R, Fu Q. Stabilizing Oxide Nanolayer via Interface Confinement and Surface Hydroxylation. J Phys Chem Lett 2022; 13:6566-6570. [PMID: 35833718 DOI: 10.1021/acs.jpclett.2c01732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface hydroxylation over oxide catalysts often occurs in many catalytic processes involving H2 and H2O, which is considered to play an important role in elementary steps of the reactions. Here, monolayer CoO and CoOHx nanoislands on Pt(111) are used as inverse model catalysts to study the effect of surface hydroxylation on the stability of Co oxide overlayers in O2. Surface science experiments indicate that hydroxyl groups formed on CoO nanoislands produced by deuterium-spillover can enhance oxidation resistance of the Co oxide nanostructures. Theoretical calculation shows that the interfacial adhesion between CoO and Pt is linearly strengthened with the increasing hydroxylation degree of CoO surface. Thus, the interface confinement effect between CoO and Pt can be enhanced by the surface hydroxylation due to the more reduced Co ions and stronger Co-Pt bonding at the CoOHx/Pt interface.
Collapse
Affiliation(s)
- Dongqing Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Rankun Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
31
|
Liu Z, Yang J, Wen Y, Lan Y, Guo L, Chen X, Cao K, Chen R, Shan B. Promotional Effect of H 2 Pretreatment on the CO PROX Performance of Pt 1/Co 3O 4: A First-Principles-Based Microkinetic Analysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27762-27774. [PMID: 35674013 DOI: 10.1021/acsami.2c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomic Pt studded on cobalt oxide is a promising catalyst for CO preferential oxidation (PROX) dependent on its surface treatment. In this work, the CO PROX reaction mechanism on Co3O4 supported single Pt atom is investigated by a comprehensive first-principles based microkinetic analysis. It is found that as synthesized Pt1/Co3O4 interface is poisoned by CO in a wide low temperature window, leading to its low reactivity. The CO poisoning effect can be effectively mitigated by a H2 prereduction treatment, that exposes Co ∼ Co dimer sites for a noncompetitive Langmuir-Hinshelhood mechanism. In addition, surface H atoms assist O2 dissociation via "twisting" mechanism, avoiding the high barriers associated with direct O2 dissociation path. Microkinetic analysis reveals that the promotion of H-assisted pathway on H2 treated sample helps improve the activity and selectivity at low temperatures.
Collapse
Affiliation(s)
- Zhang Liu
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- School of Environmental Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Jiaqiang Yang
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Yanwei Wen
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Yuxiao Lan
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Limin Guo
- School of Environmental Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Xi Chen
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Kun Cao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Rong Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Bin Shan
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| |
Collapse
|
32
|
Mochizuki C, Inomata Y, Yasumura S, Lin M, Taketoshi A, Honma T, Sakaguchi N, Haruta M, Shimizu KI, Ishida T, Murayama T. Defective NiO as a Stabilizer for Au Single-Atom Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chihiro Mochizuki
- Department of Organ Anatomy & Nanomedicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Yusuke Inomata
- Division of Materials Science, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Mingyue Lin
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology, Shanghai 200237, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Ayako Taketoshi
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
- Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Norihito Sakaguchi
- Laboratory of Integrated Function Materials, Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Masatake Haruta
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Tamao Ishida
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Toru Murayama
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
33
|
Li Y, Chen T, Zhao S, Wu P, Chong Y, Li A, Zhao Y, Chen G, Jin X, Qiu Y, Ye D. Engineering Cobalt Oxide with Coexisting Cobalt Defects and Oxygen Vacancies for Enhanced Catalytic Oxidation of Toluene. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00296] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yifei Li
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tingyu Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shuaiqi Zhao
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peng Wu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yanan Chong
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Anqi Li
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yun Zhao
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Guangxu Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510006, China
| | - Xiaojing Jin
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yongcai Qiu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510006, China
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
34
|
Liu H, Wang P, Jiang J, Cheng G, Wu T, Zhang Y. Construction of stable Mo xS y/CeO 2 heterostructures for the electrocatalytic hydrogen evolution reaction. Phys Chem Chem Phys 2022; 24:4891-4898. [PMID: 35137755 DOI: 10.1039/d1cp05466j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unique structures of polynuclear MoxSy clusters make it possible to maximize the number of their active sites and for them to be good candidates for HER catalysts. An appropriate support is highly necessary not only to avoid the desorption of MoxSy clusters in a working environment, but also to improve their HER activity. Our work here shows that the CeO2 support could provide strong support for interaction with various MoxSy clusters and the formed MoxSy/CeO2 hetero-structures also have modest ΔGH* for the HER. The electronic features of MoxSy clusters are regulated by the CeO2 support, which leads to charge redistribution on edge atoms and plays a key role in H adsorption. Our studies provide instructive predictions on efficient candidates of molybdenum-sulfur based catalysts for the HER.
Collapse
Affiliation(s)
- Hongxian Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Pai Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Jinxiu Jiang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Gang Cheng
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, P. R. China
| | - Tongwei Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Yanning Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| |
Collapse
|
35
|
Woźniak P, Kraszkiewicz P, Małecka MA. Hierarchical Au/CeO 2 systems – influence of Ln 3+ dopants on the catalytic activity in the propane oxidation process. CrystEngComm 2022. [DOI: 10.1039/d2ce00827k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The catalytic activity of the hierarchical tube-like Au/Ce1−xLnxO2−x/2 in the propane oxidation process depends not only on the presence of Au nanoparticles on the support surface but also on the type of deformation in the CeO2 network.
Collapse
Affiliation(s)
- Piotr Woźniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, Okólna 2, 50-422 Wrocław, Poland
| | - Piotr Kraszkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, Okólna 2, 50-422 Wrocław, Poland
| | - Małgorzata A. Małecka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, Okólna 2, 50-422 Wrocław, Poland
| |
Collapse
|
36
|
Lin L, Ge Y, Zhang H, Wang M, Xiao D, Ma D. Heterogeneous Catalysis in Water. JACS AU 2021; 1:1834-1848. [PMID: 34841403 PMCID: PMC8611672 DOI: 10.1021/jacsau.1c00319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Heterogeneous catalytic processes produce the majority of the fuels and chemicals in the chemical industry and have kept improving the welfare of human beings for centuries. Although most of the heterogeneous catalytic reactions occur at the gas-solid interface, numerous cases have demonstrated that the condensed water near the active site and/or the aqueous phase merging the catalysts play positive roles in enhancing the performance of heterogeneous catalysts and creating novel catalytic conversion routes. We enumerate the traditional heterogeneous catalytic reactions that enable significant rate/selectivity promotion in the aqueous phase or adsorbed micro water environment and discuss the role of water in specific systems. Some of the novel heterogeneous reactions achieved with only the assistance of the aqueous phase have been summarized. The development of reactions with the participation of the aqueous phase/water and the investigation of the role of water in the heterogeneous catalytic reactions will open new horizons for catalysts with better activity, improved selectivity, and novel processes.
Collapse
Affiliation(s)
- Lili Lin
- Institute
of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis
Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s
Republic of China
| | - Yuzhen Ge
- Beijing
National Laboratory for Molecular Sciences, College of Chemistry and
Molecular Engineering, and BIC-ESAT, Peking
University, Beijing 100871, People’s Republic
of China
| | - Hongbo Zhang
- School
of Materials Science and Engineering & National Institute for
Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials
and Applications, Nankai University, Tianjin 300350, People’s Republic of China
| | - Meng Wang
- Beijing
National Laboratory for Molecular Sciences, College of Chemistry and
Molecular Engineering, and BIC-ESAT, Peking
University, Beijing 100871, People’s Republic
of China
| | - Dequan Xiao
- Center
for Integrative Materials Discovery, Department of Chemistry and Chemical
Engieering, University of New Haven, West Haven, Connecticut 06525, United States
| | - Ding Ma
- Beijing
National Laboratory for Molecular Sciences, College of Chemistry and
Molecular Engineering, and BIC-ESAT, Peking
University, Beijing 100871, People’s Republic
of China
| |
Collapse
|
37
|
Zhao S, Lin J, Wu P, Ye C, Li Y, Li A, Jin X, Zhao Y, Chen G, Qiu Y, Ye D. A Hydrothermally Stable Single-Atom Catalyst of Pt Supported on High-Entropy Oxide/Al 2O 3: Structural Optimization and Enhanced Catalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48764-48773. [PMID: 34633806 DOI: 10.1021/acsami.1c14456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A catalyst with high-entropy oxide (HEO)-stabilized single-atom Pt can afford low-temperature activity for catalytic oxidation and remarkable durability even under harsh conditions. However, HEO is easy to harden during sintering, which results in a few defective sites for anchoring single-atom metals. Herein, we present a sol-gel-assisted mechanical milling strategy to achieve a single-atom catalyst of Pt-HEO/Al2O3. The strong interaction between HEO and Al2O3 effectively inhibits the growth of HEO microparticles, which leads to generation of more surface defects because of the nanoscale effect. Meanwhile, another strong interaction between Pt and HEO stabilizes single-atom Pt on HEO. Temperature-programmed techniques further verify that the reactivity of surface lattice oxygen species is enhanced because of the Pt-O-M bonds on the surface of HEO. Unlike conventional single-atom Pt catalysts, Pt-HEO/Al2O3 as a heterogeneous catalyst not only exhibits superior stability against hydrothermal aging but also presents long-term reaction stability for CO catalytic oxidation, which exceeds 540 h. The present work opens a new door for rational design of hydrothermally stable single-atom Pt catalysts, which are highly promising in practical applications.
Collapse
Affiliation(s)
- Shuaiqi Zhao
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiajin Lin
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peng Wu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Changchun Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yifei Li
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Anqi Li
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaojing Jin
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yun Zhao
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Guangxu Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yongcai Qiu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510006, China
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
38
|
Mu Y, Wang T, Zhang J, Meng C, Zhang Y, Kou Z. Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00124-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Jiang M, Wu Q, Yan J, Pan J, Dai Q, Zhan W. Si-doped Al 2O 3 nanosheet supported Pd for catalytic combustion of propane: effects of Si doping on morphology, thermal stability, and water resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56480-56490. [PMID: 34057630 DOI: 10.1007/s11356-021-14646-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Catalytic combustion of propane as typical light alkanes was important for the purification of industrial VOCs and automobile hydrocarbon emissions. Si-doped Al2O3 nanosheet was synthesized by a hydrothermal method, and effects of Si content on the morphology and thermal stability of Al2O3 were investigated. The doping of SiO2 could tune the thickness of Al2O3 nanosheets and significantly improve its thermal stability, the θ phase was still maintained, and the specific surface area was as high as 56.3 m2 g-1 after calcination at 1200 °C. And then the Si-doped Al2O3 nanosheets were used as support of Pd catalysts (Pd/Si-Al2O3 nanosheets) for catalytic combustion of propane, especially Pd/3.6Si-Al2O3 nanosheets, which presented high activity, stability, and resistance to sintering and H2O due to the promotion of Si on the thermal stability of Al2O3 and the stabilization (dispersion, isolation, and strong interaction) of PdOx species.
Collapse
Affiliation(s)
- Mingxiang Jiang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Qingqing Wu
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jiaorong Yan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jun Pan
- Nanjing Engineering Institute of Aircraft Systems, AVIC, Nanjing, 211106, People's Republic of China
| | - Qiguang Dai
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Wangcheng Zhan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
40
|
Venugopalan AT, Kandasamy P, Gogoi P, Ratneshkumar J, Thirumalaiswamy R. Utilizing the Oxygen Carrier Property of Cerium Iron Oxide for the Low-Temperature Synthesis of 1,3-butadiene from 1-butene. Catal Letters 2021. [DOI: 10.1007/s10562-020-03512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Wang Y, Ma J, Wang X, Zhang Z, Zhao J, Yan J, Du Y, Zhang H, Ma D. Complete CO Oxidation by O 2 and H 2O over Pt–CeO 2−δ/MgO Following Langmuir–Hinshelwood and Mars–van Krevelen Mechanisms, Respectively. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02507] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanru Wang
- School of Materials Science and Engineering & National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, PR China
| | - Jiamin Ma
- School of Materials Science and Engineering & National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, PR China
| | - Xiuyi Wang
- School of Materials Science and Engineering & National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, PR China
| | - Zheshan Zhang
- School of Materials Science and Engineering & National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, PR China
| | - Jiahan Zhao
- School of Materials Science and Engineering & National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, PR China
| | - Jie Yan
- College of Chemistry and Molecular Engineering and College of Engineering, BIC-ESAT, Peking University, Beijing 100871, PR China
| | - Yaping Du
- School of Materials Science and Engineering & National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, PR China
| | - Hongbo Zhang
- School of Materials Science and Engineering & National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, PR China
| | - Ding Ma
- College of Chemistry and Molecular Engineering and College of Engineering, BIC-ESAT, Peking University, Beijing 100871, PR China
| |
Collapse
|
42
|
Ziemba M, Schilling C, Ganduglia-Pirovano MV, Hess C. Toward an Atomic-Level Understanding of Ceria-Based Catalysts: When Experiment and Theory Go Hand in Hand. Acc Chem Res 2021; 54:2884-2893. [PMID: 34137246 PMCID: PMC8264949 DOI: 10.1021/acs.accounts.1c00226] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ConspectusBecause ceria (CeO2) is a key ingredient in the formulation of many catalysts, its catalytic roles have received a great amount of attention from experiment and theory. Its primary function is to enhance the oxidation activity of catalysts, which is largely governed by the low activation barrier for creating lattice O vacancies. Such an important characteristic of ceria has been exploited in CO oxidation, methane partial oxidation, volatile organic compound oxidation, and the water-gas shift (WGS) reaction and in the context of automotive applications. A great challenge of such heterogeneously catalyzed processes remains the unambiguous identification of active sites.In oxidation reactions, closing the catalytic cycle requires ceria reoxidation by gas-phase oxygen, which includes oxygen adsorption and activation. While the general mechanistic framework of such processes is accepted, only very recently has an atomic-level understanding of oxygen activation on ceria powders been achieved by combined experimental and theoretical studies using in situ multiwavelength Raman spectroscopy and DFT.Recent studies have revealed that the adsorption and activation of gas-phase oxygen on ceria is strongly facet-dependent and involves different superoxide/peroxide species, which can now be unambiguously assigned to ceria surface sites using the combined Raman and DFT approach. Our results demonstrate that, as a result of oxygen dissociation, vacant ceria lattice sites are healed, highlighting the close relationship of surface processes with lattice oxygen dynamics, which is also of technical relevance in the context of oxygen storage-release applications.A recent DFT interpretation of Raman spectra of polycrystalline ceria enables us to take account of all (sub)surface and bulk vibrational features observed in the experimental spectra and has revealed new findings of great relevance for a mechanistic understanding of ceria-based catalysts. These include the identification of surface oxygen (Ce-O) modes and the quantification of subsurface oxygen defects. Combining these theoretical insights with operando Raman experiments now allows the (sub)surface oxygen dynamics of ceria and noble metal/ceria catalysts to be monitored under the reaction conditions.Applying these findings to Au/ceria catalysts provides univocal evidence for ceria support participation in heterogeneous catalysis. For room-temperature CO oxidation, operando Raman monitoring the (sub)surface defect dynamics clearly demonstrates the dependence of catalytic activity on the ceria reduction state. Extending the combined experimental/DFT approach to operando IR spectroscopy allows the elucidation of the nature of the active gold as (pseudo)single Au+ sites and enables us to develop a detailed mechanistic picture of the catalytic cycle. Temperature-dependent studies highlight the importance of facet-dependent defect formation energies and adsorbate stabilities (e.g., carbonates). While the latter aspects are also evidenced to play a role in the WGS reaction, the facet-dependent catalytic performance shows a correlation with the extent of gold agglomeration. Our findings are fully consistent with a redox mechanism, thus adding a new perspective to the ongoing discussion of the WGS reaction.As outlined above for ceria-based catalysts, closely combining state-of-the-art in situ/operando spectroscopy and theory constitutes a powerful approach to rational catalyst design by providing essential mechanistic information based on an atomic-level understanding of reactions.
Collapse
Affiliation(s)
- Marc Ziemba
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Christian Schilling
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - M. Verónica Ganduglia-Pirovano
- Instituto de Catálisis y Petroleoquímica - Consejo Superior de Investigaciones Científicas, Marie Curie 2, 28049 Madrid, Spain
| | - Christian Hess
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| |
Collapse
|
43
|
Yuan H, Yang H, Hu P, Wang H. Origin of Water-Induced Deactivation of MnO 2-Based Catalyst for Room-Temperature NO Oxidation: A First-Principles Microkinetic Study. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haiyang Yuan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huagui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - P. Hu
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, East China University of Science and Technology, Shanghai 200237, China
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Haifeng Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
44
|
Feng C, Liu X, Zhu T, Tian M. Catalytic oxidation of CO on noble metal-based catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24847-24871. [PMID: 33763831 DOI: 10.1007/s11356-021-13008-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Carbon monoxide (CO) catalytic oxidation has gained increasing interest in recent years due to its application prospects. The noble metal catalysts commonly exhibit outstanding CO catalytic oxidation activity. Therefore, this article reviewed the recent research on the application of noble metal catalysts in the catalytic oxidation of CO. The effects of catalyst support, dopant, and physicochemical properties on the catalytic activity for CO oxidation are summarized. The influence of the presence of water vapor and sulfur dioxide in the reaction atmosphere on the catalytic activity in CO oxidation is emphatically discussed. Moreover, this paper discussed several reaction mechanisms of CO catalytic oxidation on noble metal catalysts. Finally, the challenges of removing CO by catalytic oxidation in practical industrial flue gas are proposed.
Collapse
Affiliation(s)
- Chenglin Feng
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaolong Liu
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tingyu Zhu
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China.
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Mengkui Tian
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| |
Collapse
|
45
|
Wei Q, Yu C, Song X, Zhong Y, Ni L, Ren Y, Guo W, Yu J, Qiu J. Recognition of Water-Induced Effects toward Enhanced Interaction between Catalyst and Reactant in Alcohol Oxidation. J Am Chem Soc 2021; 143:6071-6078. [PMID: 33829778 DOI: 10.1021/jacs.0c10618] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pickering emulsion stabilized by solid nanoparticles provides a diverse solvent microenvironment and enables to promote the phase transfer of reaction substrates/products in catalytic reactions, but the intrinsic role of solvent is still not clear. Herein, using benzyl alcohol (BA) as a model reactant, we demonstrate the nature of the water-promoted activity for alcohol oxidation over the Pd/MgAl-LDO catalyst. Depending on the water in the solvent, we observe different reactivities regarding the proportion of the water in the system. Kinetic isotope effects confirm the participation and positive effects of water for oxidation of BA. The water promotion effects are recognized and identified by the water vapor pulse adsorption coupled with temperature program desorption. Moreover, the adsorption behavior of BA or benzaldehyde at the interface of water and Pd/MgAl-LDO is also investigated by quasi-in-situ Raman spectroscopy. In addition, the mechanism of water-promoted alcohol oxidation is rationally proposed based on the Langmuir-Hinshelwood mechanism. The general applicability of the water promotion effects is further demonstrated over different supports and substrates, which well achieves excellent catalytic activity and selectivity in Pickering emulsion compared to that in the pure toluene system.
Collapse
Affiliation(s)
- Qianbing Wei
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Chang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Xuedan Song
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yiping Zhong
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Lin Ni
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yongwen Ren
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Wei Guo
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Jinhe Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
46
|
Guo Y, Xia M, Zhang M, Zou J, You Y, Cheng W, Dou J. A strategy for enhancing the photoactivity of g-C 3N 4-based single-atom catalysts via sulphur doping: a theoretical study. Phys Chem Chem Phys 2021; 23:6632-6640. [PMID: 33709091 DOI: 10.1039/d1cp00192b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Single-atom catalysts (SACs) have received intense attention owing to their maximum utilization efficiency of metal atoms and high catalytic activity. Although SACs possess many merits, such as high activity, selectivity and stability in photocatalysis, the difficulty of fabricating atomically dispersed atom catalysts with a high level of metal loading limits their practical applications. Here, a sulphur-doping strategy was proposed to enhance the incorporation of single Pt atoms in monolayer graphitic carbon nitride (g-C3N4), and the structural, electronic and optical properties were investigated through density functional theory (DFT) calculations. This work verified that SACs based on sulphur-doped monolayer g-C3N4 (S-g-C3N4) exhibit a lower band gap energy, higher photocatalytic oxidation ability, easier charge separation, lower oxidation state of Pt atoms and wider light absorption range. This work provides a promising path for fabricating efficient g-C3N4-based photocatalytic SACs.
Collapse
Affiliation(s)
- Yanqing Guo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Choi H, Lee J, Kim D, Kumar A, Jeong B, Kim KJ, Lee H, Park JY. Influence of lattice oxygen on the catalytic activity of blue titania supported Pt catalyst for CO oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02166k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of oxygen defect sites in the reaction mechanism for CO oxidation using blue TiO2 with a higher concentration of oxygen vacancies deposited by Pt nanoparticles is investigated.
Collapse
Affiliation(s)
- Hanseul Choi
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- Center for Nanomaterials and Chemical Reactions
| | - Jinsun Lee
- Department of Chemistry
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
- Center for Integrated Nanostructure Physics
| | - Daeho Kim
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- Center for Nanomaterials and Chemical Reactions
| | - Ashwani Kumar
- Department of Chemistry
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
- Center for Integrated Nanostructure Physics
| | - Beomgyun Jeong
- Advanced Nano Surface Research Group
- Korea Basic Science Institute (KBSI)
- Daejeon 34133
- Republic of Korea
| | - Ki-Jeong Kim
- Beamline Research Division
- Pohang Accelerator Laboratory (PAL)
- Pohang 37673
- Republic of Korea
| | - Hyoyoung Lee
- Department of Chemistry
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
- Center for Integrated Nanostructure Physics
| | - Jeong Young Park
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- Center for Nanomaterials and Chemical Reactions
| |
Collapse
|
48
|
Chang MW, Zhang L, Davids M, Filot IA, Hensen EJ. Dynamics of gold clusters on ceria during CO oxidation. J Catal 2020. [DOI: 10.1016/j.jcat.2020.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Lang R, Du X, Huang Y, Jiang X, Zhang Q, Guo Y, Liu K, Qiao B, Wang A, Zhang T. Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chem Rev 2020; 120:11986-12043. [DOI: 10.1021/acs.chemrev.0c00797] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rui Lang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiaorui Du
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yike Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xunzhu Jiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaipeng Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
50
|
Nian Y, Dong Z, Wang S, Wang Y, Han Y, Wang C, Luo L. Atomic-Scale Dynamic Interaction of H_{2}O Molecules with Cu Surface. PHYSICAL REVIEW LETTERS 2020; 125:156101. [PMID: 33095595 DOI: 10.1103/physrevlett.125.156101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Atomic-scale interaction of water vapor with metal surfaces beyond surface adsorption under technologically relevant conditions remains mostly unexplored. Using aberration-corrected environmental transmission electron microscopy, we reveal the dynamic surface activation of Cu by H_{2}O at elevated temperature and pressure. We find a structural transition from flat to corrugated surface for the Cu(011) under low water-vapor pressure. Increasing the water-vapor pressure leads to the surface reaction of Cu with dissociated H_{2}O, resulting in the formation of a metastable "bilayer" Cu─O─H phase. Corroborated by density functional theory and ab initio molecular dynamics calculations, the cooperative O and OH interaction with Cu is responsible for the formation and subsurface propagation of this phase.
Collapse
Affiliation(s)
- Yao Nian
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Zejian Dong
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | - Shuangbao Wang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Yan Wang
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - You Han
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, USA
| | - Langli Luo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| |
Collapse
|