1
|
Chen YJC, Bhaskara GB, Lu Y, Lin K, Dent SYR. The SAGA acetyltransferase module is required for the maintenance of MAF and MYC oncogenic gene expression programs in multiple myeloma. Genes Dev 2024; 38:738-754. [PMID: 39168636 PMCID: PMC11444170 DOI: 10.1101/gad.351789.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Despite recent advances in therapeutic treatments, multiple myeloma (MM) remains an incurable malignancy. Epigenetic factors contribute to the initiation, progression, relapse, and clonal heterogeneity in MM, but our knowledge on epigenetic mechanisms underlying MM development is far from complete. The SAGA complex serves as a coactivator in transcription and catalyzes acetylation and deubiquitylation. Analyses of data sets in the Cancer Dependency Map Project revealed that many SAGA components are selective dependencies in MM. To define SAGA-specific functions, we focused on ADA2B, the only subunit in the lysine acetyltransferase (KAT) module that specifically functions in SAGA. Integration of RNA sequencing (RNA-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), and cleavage under targets and release using nuclease assay (CUT&RUN) results identified pathways directly regulated by ADA2B including MTORC1 signaling and oncogenic programs driven by MYC, E2F, and MM-specific MAF. We discovered that ADA2B is recruited to MAF and MYC gene targets, and that MAF shares a majority of its targets with MYC in MM cells. Furthermore, we found that the SANT domain of ADA2B is required for interaction with both GCN5 and PCAF acetyltransferases, incorporation into SAGA, and ADA2B protein stability. Our findings uncover previously unknown SAGA KAT module-dependent mechanisms controlling MM cell growth, revealing a vulnerability that might be exploited for future development of MM therapy.
Collapse
Affiliation(s)
- Ying-Jiun C Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA;
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Govinal Badiger Bhaskara
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA;
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| |
Collapse
|
2
|
Paul T, Zhang P, Zhang Z, Fargason T, De Silva NIU, Powell E, Ekpenyong E, Jamal S, Yu Y, Prevelige P, Lu R, Zhang J. The U1-70K and SRSF1 interaction is modulated by phosphorylation during the early stages of spliceosome assembly. Protein Sci 2024; 33:e5117. [PMID: 39023093 PMCID: PMC11255866 DOI: 10.1002/pro.5117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
In eukaryotes, pre-mRNA splicing is vital for RNA processing and orchestrated by the spliceosome, whose assembly starts with the interaction between U1-70K and SR proteins. Despite the significance of the U1-70K/SR interaction, the dynamic nature of the complex and the challenges in obtaining soluble U1-70K have impeded a comprehensive understanding of the interaction at the structural level for decades. We overcome the U1-70K solubility issues, enabling us to characterize the interaction between U1-70K and SRSF1, a representative SR protein. We unveil specific interactions: phosphorylated SRSF1 RS with U1-70K BAD1, and SRSF1 RRM1 with U1-70K RRM. The RS/BAD1 interaction plays a dominant role, whereas the interaction between the RRM domains further enhances the stability of the U1-70K/SRSF1 complex. The RRM interaction involves the C-terminal extension of U1-70K RRM and the conserved acid patches on SRSF1 RRM1 that is involved in SRSF1 phase separation. Our circular dichroism spectra reveal that BAD1 adapts an α-helical conformation and RS is intrinsically disordered. Intriguingly, BAD1 undergoes a conformation switch from α-helix to β-strand and random coil upon RS binding. In addition to the regulatory mechanism via SRSF1 phosphorylation, the U1-70K/SRSF1 interaction is also regulated by U1-70K BAD1 phosphorylation. We find that U1-70K phosphorylation inhibits the U1-70K and SRSF1 interaction. Our structural findings are validated through in vitro splicing assays and in-cell saturated domain scanning using the CRISPR method, providing new insights into the intricate regulatory mechanisms of pre-mRNA splicing.
Collapse
Affiliation(s)
- Trent Paul
- Department of ChemistryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Pengcheng Zhang
- Department of Medicine, Division of Hematology/OncologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Zihan Zhang
- Department of ChemistryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Talia Fargason
- Department of ChemistryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | - Erin Powell
- Department of ChemistryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Ethan Ekpenyong
- Department of ChemistryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Shariq Jamal
- Department of ChemistryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Yanbao Yu
- Department of Chemistry and BiochemistryUniversity of DelawareNewarkDelawareUSA
| | - Peter Prevelige
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Rui Lu
- Department of Medicine, Division of Hematology/OncologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jun Zhang
- Department of ChemistryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
3
|
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther 2024; 9:112. [PMID: 38670977 PMCID: PMC11053163 DOI: 10.1038/s41392-024-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongxia Cai
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
4
|
Chen YJC, Bhaskara GB, Lu Y, Lin K, Dent SYR. The SAGA acetyltransferase module is required for the maintenance of MAF and MYC oncogenic gene expression programs in multiple myeloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586811. [PMID: 38585845 PMCID: PMC10996596 DOI: 10.1101/2024.03.26.586811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Despite recent advances in therapeutic treatments, multiple myeloma (MM) remains an incurable malignancy. Epigenetic factors contribute to the initiation, progression, relapse, and clonal heterogeneity in MM, but our knowledge on epigenetic mechanisms underlying MM development is far from complete. The SAGA complex serves as a coactivator in transcription and catalyzes acetylation and deubiquitylation. Analyses of datasets in the Cancer Dependency Map Project revealed many SAGA components are selective dependencies in MM. To define SAGA-specific functions, we focused on ADA2B, the only subunit in the lysine acetyltransferase (KAT) module that specifically functions in SAGA. Integration of RNA-seq, ATAC-seq, and CUT&RUN results identified pathways directly regulated by ADA2B include MTORC1 signaling, MYC, E2F, and MM-specific MAF oncogenic programs. We discovered that ADA2B is recruited to MAF and MYC gene targets, and that MAF shares a majority of its targets with MYC in MM cells. Furthermore, we found the SANT domain of ADA2B is required for interaction with both GCN5 and PCAF acetyltransferases, incorporation into SAGA, and ADA2B protein stability. Our findings uncover previously unknown SAGA KAT module-dependent mechanisms controlling MM cell growth, revealing a vulnerability that might be exploited for future development of MM therapy.
Collapse
Affiliation(s)
- Ying-Jiun C. Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Govinal Badiger Bhaskara
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharon Y. R. Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Xuan F, Xuan H, Huang M, He W, Xu H, Shi X, Wen H. The Tudor-knot Domain of KAT5 Regulates Nucleosomal Substrate Acetylation. J Mol Biol 2024; 436:168414. [PMID: 38141874 PMCID: PMC10957329 DOI: 10.1016/j.jmb.2023.168414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The lysine acetyltransferase KAT5 is a pivotal enzyme responsible for catalyzing histone H4 acetylation in cells. In addition to its indispensable HAT domain, KAT5 also encompasses a conserved Tudor-knot domain at its N-terminus. However, the function of this domain remains elusive, with conflicting findings regarding its role as a histone reader. In our study, we have employed a CRISPR tiling array approach and unveiled the Tudor-knot motif as an essential domain for cell survival. The Tudor-knot domain does not bind to histone tails and is not required for KAT5's chromatin occupancy. However, its absence leads to a global reduction in histone acetylation, accompanied with genome-wide alterations in gene expression that consequently result in diminished cell viability. Mechanistically, we find that the Tudor-knot domain regulates KAT5's HAT activity on nucleosomes by fine-tuning substrate accessibility. In summary, our study uncovers the Tudor-knot motif as an essential domain for cell survival and reveals its critical role in modulating KAT5's catalytic efficiency on nucleosome and KAT5-dependent transcriptional programs critical for cell viability.
Collapse
Affiliation(s)
- Fan Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hongwen Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Mengying Huang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Han Xu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hong Wen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
6
|
Mattson NM, Chan AKN, Miyashita K, Mukhaleva E, Chang WH, Yang L, Ma N, Wang Y, Pokharel SP, Li M, Liu Q, Xu X, Chen R, Singh P, Zhang L, Elsayed Z, Chen B, Keen D, Pirrotte P, Rosen ST, Chen J, LaBarge MA, Shively JE, Vaidehi N, Rockne RC, Feng M, Chen CW. A novel class of inhibitors that disrupts the stability of integrin heterodimers identified by CRISPR-tiling-instructed genetic screens. Nat Struct Mol Biol 2024; 31:465-475. [PMID: 38316881 PMCID: PMC10948361 DOI: 10.1038/s41594-024-01211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024]
Abstract
The plasma membrane is enriched for receptors and signaling proteins that are accessible from the extracellular space for pharmacological intervention. Here we conducted a series of CRISPR screens using human cell surface proteome and integrin family libraries in multiple cancer models. Our results identified ITGAV (integrin αV) and its heterodimer partner ITGB5 (integrin β5) as the essential integrin α/β pair for cancer cell expansion. High-density CRISPR gene tiling further pinpointed the integral pocket within the β-propeller domain of ITGAV for integrin αVβ5 dimerization. Combined with in silico compound docking, we developed a CRISPR-Tiling-Instructed Computer-Aided (CRISPR-TICA) pipeline for drug discovery and identified Cpd_AV2 as a lead inhibitor targeting the β-propeller central pocket of ITGAV. Cpd_AV2 treatment led to rapid uncoupling of integrin αVβ5 and cellular apoptosis, providing a unique class of therapeutic action that eliminates the integrin signaling via heterodimer dissociation. We also foresee the CRISPR-TICA approach to be an accessible method for future drug discovery studies.
Collapse
Affiliation(s)
- Nicole M Mattson
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Anthony K N Chan
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Division of Epigenetic and Transcriptional Engineering, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Kazuya Miyashita
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Elizaveta Mukhaleva
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Wen-Han Chang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Division of Epigenetic and Transcriptional Engineering, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yingyu Wang
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sheela Pangeni Pokharel
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Division of Epigenetic and Transcriptional Engineering, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Mingli Li
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Qiao Liu
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Xiaobao Xu
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Renee Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Priyanka Singh
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Leisi Zhang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Zeinab Elsayed
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Bryan Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Denise Keen
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Steven T Rosen
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Mark A LaBarge
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - John E Shively
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Mingye Feng
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
- Division of Epigenetic and Transcriptional Engineering, Beckman Research Institute, City of Hope, Duarte, CA, USA.
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
7
|
Chan AK, Han L, Delaney CD, Wang X, Mukhaleva E, Li M, Yang L, Pokharel SP, Mattson N, Garcia M, Wang B, Xu X, Zhang L, Singh P, Elsayed Z, Chen R, Kuang B, Wang J, Yuan YC, Chen B, Chan LN, Rosen ST, Horne D, Müschen M, Chen J, Vaidehi N, Armstrong SA, Su R, Chen CW. Therapeutic targeting Tudor domains in leukemia via CRISPR-Scan Assisted Drug Discovery. SCIENCE ADVANCES 2024; 10:eadk3127. [PMID: 38394203 PMCID: PMC10889360 DOI: 10.1126/sciadv.adk3127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Epigenetic dysregulation has been reported in multiple cancers including leukemias. Nonetheless, the roles of the epigenetic reader Tudor domains in leukemia progression and therapy remain unexplored. Here, we conducted a Tudor domain-focused CRISPR screen and identified SGF29, a component of SAGA/ATAC acetyltransferase complexes, as a crucial factor for H3K9 acetylation, ribosomal gene expression, and leukemogenesis. To facilitate drug development, we integrated the CRISPR tiling scan with compound docking and molecular dynamics simulation, presenting a generally applicable strategy called CRISPR-Scan Assisted Drug Discovery (CRISPR-SADD). Using this approach, we identified a lead inhibitor that selectively targets SGF29's Tudor domain and demonstrates efficacy against leukemia. Furthermore, we propose that the structural genetics approach used in our study can be widely applied to diverse fields for de novo drug discovery.
Collapse
Affiliation(s)
- Anthony K.N. Chan
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Division of Epigenetic and Transcriptional Engineering, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Li Han
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Christopher D. Delaney
- Duke University School of Medicine, Durham, NC, USA
- Department of Pediatrics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Xueer Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Elizaveta Mukhaleva
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Mingli Li
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Division of Epigenetic and Transcriptional Engineering, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sheela Pangeni Pokharel
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Division of Epigenetic and Transcriptional Engineering, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Nicole Mattson
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Michelle Garcia
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
| | - Bintao Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Xiaobao Xu
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Leisi Zhang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Priyanka Singh
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Zeinab Elsayed
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Renee Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Benjamin Kuang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jinhui Wang
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Yate-Ching Yuan
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Bryan Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Lai N. Chan
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - David Horne
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Scott A. Armstrong
- Department of Pediatrics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Division of Epigenetic and Transcriptional Engineering, Beckman Research Institute, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
8
|
Radzisheuskaya A, Peña‐Rømer I, Lorenzini E, Koche R, Zhan Y, Shliaha PV, Cooper AJ, Fan Z, Shlyueva D, Johansen JV, Hendrickson RC, Helin K. An alternative NURF complex sustains acute myeloid leukemia by regulating the accessibility of insulator regions. EMBO J 2023; 42:e114221. [PMID: 37987160 PMCID: PMC10711654 DOI: 10.15252/embj.2023114221] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Efficient treatment of acute myeloid leukemia (AML) patients remains a challenge despite recent therapeutic advances. Here, using a CRISPRi screen targeting chromatin factors, we identified the nucleosome-remodeling factor (NURF) subunit BPTF as an essential regulator of AML cell survival. We demonstrate that BPTF forms an alternative NURF chromatin remodeling complex with SMARCA5 and BAP18, which regulates the accessibility of a large set of insulator regions in leukemic cells. This ensures efficient CTCF binding and boundary formation between topologically associated domains that is essential for maintaining the leukemic transcriptional programs. We also demonstrate that the well-studied PHD2-BROMO chromatin reader domains of BPTF, while contributing to complex recruitment to chromatin, are dispensable for leukemic cell growth. Taken together, our results uncover how the alternative NURF complex contributes to leukemia and provide a rationale for its targeting in AML.
Collapse
Affiliation(s)
- Aliaksandra Radzisheuskaya
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Cell Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Isabel Peña‐Rømer
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
| | - Eugenia Lorenzini
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
| | - Richard Koche
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Yingqian Zhan
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Pavel V Shliaha
- Microchemistry & Proteomics CoreMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | | | - Zheng Fan
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
| | - Daria Shlyueva
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Cell Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Jens V Johansen
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
| | - Ronald C Hendrickson
- Microchemistry & Proteomics CoreMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Kristian Helin
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Cell Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| |
Collapse
|
9
|
Benabdallah NS, Dalal V, Scott RW, Marcous F, Sotiriou A, Kommoss FKF, Pejkovska A, Gaspar L, Wagner L, Sánchez-Rivera FJ, Ta M, Thornton S, Nielsen TO, Underhill TM, Banito A. Aberrant gene activation in synovial sarcoma relies on SSX specificity and increased PRC1.1 stability. Nat Struct Mol Biol 2023; 30:1640-1652. [PMID: 37735617 PMCID: PMC10643139 DOI: 10.1038/s41594-023-01096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
The SS18-SSX fusion drives oncogenic transformation in synovial sarcoma by bridging SS18, a member of the mSWI/SNF (BAF) complex, to Polycomb repressive complex 1 (PRC1) target genes. Here we show that the ability of SS18-SSX to occupy H2AK119ub1-rich regions is an intrinsic property of its SSX C terminus, which can be exploited by fusion to transcriptional regulators beyond SS18. Accordingly, SS18-SSX recruitment occurs in a manner that is independent of the core components and catalytic activity of BAF. Alternative SSX fusions are also recruited to H2AK119ub1-rich chromatin and reproduce the expression signatures of SS18-SSX by engaging with transcriptional activators. Variant Polycomb repressive complex 1.1 (PRC1.1) acts as the main depositor of H2AK119ub1 and is therefore required for SS18-SSX occupancy. Importantly, the SSX C terminus not only depends on H2AK119ub1 for localization, but also further increases it by promoting PRC1.1 complex stability. Consequently, high H2AK119ub1 levels are a feature of murine and human synovial sarcomas. These results uncover a critical role for SSX-C in mediating gene deregulation in synovial sarcoma by providing specificity to chromatin and further enabling oncofusion binding by enhancing PRC1.1 stability and H2AK119ub1 deposition.
Collapse
Affiliation(s)
- Nezha S Benabdallah
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vineet Dalal
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - R Wilder Scott
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Fady Marcous
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Afroditi Sotiriou
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix K F Kommoss
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Anastasija Pejkovska
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ludmila Gaspar
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Wagner
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Francisco J Sánchez-Rivera
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, USA
| | - Monica Ta
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shelby Thornton
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ana Banito
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
10
|
Perlee S, Kikuchi S, Nakadai T, Masuda T, Ohtsuki S, Matsumoto M, Rahmutulla B, Fukuyo M, Cifani P, Kentsis A, Roeder RG, Kaneda A, Hoshii T. SETD1A function in leukemia is mediated through interaction with mitotic regulators BuGZ/BUB3. EMBO Rep 2023; 24:e57108. [PMID: 37535603 PMCID: PMC10561176 DOI: 10.15252/embr.202357108] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
The H3K4 methyltransferase SETD1A plays a crucial role in leukemia cell survival through its noncatalytic FLOS domain-mediated recruitment of cyclin K and regulation of DNA damage response genes. In this study, we identify a functional nuclear localization signal in and interaction partners of the FLOS domain. Our screen for FLOS domain-binding partners reveals that the SETD1A FLOS domain binds mitosis-associated proteins BuGZ/BUB3. Inhibition of both cyclin K and BuGZ/BUB3-binding motifs in SETD1A shows synergistic antileukemic effects. BuGZ/BUB3 localize to SETD1A-bound promoter-TSS regions and SETD1A-negative H3K4me1-positive enhancer regions adjacent to SETD1A target genes. The GLEBS motif and intrinsically disordered region of BuGZ are required for both SETD1A-binding and leukemia cell proliferation. Cell-cycle-specific SETD1A restoration assays indicate that SETD1A expression at the G1/S phase of the cell cycle promotes both the expression of DNA damage response genes and cell cycle progression in leukemia cells.
Collapse
Affiliation(s)
- Sarah Perlee
- Department of Cancer Biology and GeneticsMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Gerstner Graduate School of Biomedical SciencesMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Sota Kikuchi
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular BiologyThe Rockefeller UniversityNew YorkNYUSA
| | - Takeshi Masuda
- Laboratory of Pharmaceutical Microbiology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
| | - Sumio Ohtsuki
- Laboratory of Pharmaceutical Microbiology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Makoto Matsumoto
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Paolo Cifani
- Molecular Pharmacology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Alex Kentsis
- Molecular Pharmacology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular BiologyThe Rockefeller UniversityNew YorkNYUSA
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Takayuki Hoshii
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| |
Collapse
|
11
|
Xu L, Xuan H, He W, Zhang L, Huang M, Li K, Wen H, Xu H, Shi X. TAZ2 truncation confers overactivation of p300 and cellular vulnerability to HDAC inhibition. Nat Commun 2023; 14:5362. [PMID: 37660055 PMCID: PMC10475075 DOI: 10.1038/s41467-023-41245-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
The histone acetyltransferase p300/CBP is composed of several conserved domains, among which, the TAZ2 domain is known as a protein-protein interaction domain that binds to E1A and various transcription factors. Here we show that TAZ2 has a HAT autoinhibitory function. Truncating p300/CBP at TAZ2 leads to hyperactive HAT and elevated histone H3K27 and H3K18 acetylation in cells. Mechanistically, TAZ2 cooperates with other HAT neighboring domains to maintain the HAT active site in a 'closed' state. Truncating TAZ2 or binding of transcription factors to TAZ2 induces a conformational change that 'opens' the active site for substrate acetylation. Importantly, genetic mutations that lead to p300/CBP TAZ2 truncations are found in human cancers, and cells with TAZ2 truncations are vulnerable to histone deacetylase inhibitors. Our study reveals a function of the TAZ2 domain in HAT autoinhibitory regulation and provides a potential therapeutic strategy for the treatment of cancers harboring p300/CBP TAZ2 truncations.
Collapse
Affiliation(s)
- Longxia Xu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hongwen Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liang Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mengying Huang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kuai Li
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hong Wen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Han Xu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
12
|
Li M, Yang L, Chan AKN, Pokharel SP, Liu Q, Mattson N, Xu X, Chang W, Miyashita K, Singh P, Zhang L, Li M, Wu J, Wang J, Chen B, Chan LN, Lee J, Zhang XH, Rosen ST, Müschen M, Qi J, Chen J, Hiom K, Bishop AJR, Chen C. Epigenetic Control of Translation Checkpoint and Tumor Progression via RUVBL1-EEF1A1 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206584. [PMID: 37075745 PMCID: PMC10265057 DOI: 10.1002/advs.202206584] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/23/2023] [Indexed: 05/03/2023]
Abstract
Epigenetic dysregulation is reported in multiple cancers including Ewing sarcoma (EwS). However, the epigenetic networks underlying the maintenance of oncogenic signaling and therapeutic response remain unclear. Using a series of epigenetics- and complex-focused CRISPR screens, RUVBL1, the ATPase component of NuA4 histone acetyltransferase complex, is identified to be essential for EwS tumor progression. Suppression of RUVBL1 leads to attenuated tumor growth, loss of histone H4 acetylation, and ablated MYC signaling. Mechanistically, RUVBL1 controls MYC chromatin binding and modulates the MYC-driven EEF1A1 expression and thus protein synthesis. High-density CRISPR gene body scan pinpoints the critical MYC interacting residue in RUVBL1. Finally, this study reveals the synergism between RUVBL1 suppression and pharmacological inhibition of MYC in EwS xenografts and patient-derived samples. These results indicate that the dynamic interplay between chromatin remodelers, oncogenic transcription factors, and protein translation machinery can provide novel opportunities for combination cancer therapy.
Collapse
Affiliation(s)
- Mingli Li
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Lu Yang
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Anthony K. N. Chan
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Sheela Pangeni Pokharel
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Qiao Liu
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Nicole Mattson
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Xiaobao Xu
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Wen‐Han Chang
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Kazuya Miyashita
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Priyanka Singh
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Leisi Zhang
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Maggie Li
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Jun Wu
- City of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Jinhui Wang
- City of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Bryan Chen
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Lai N. Chan
- Center of Molecular and Cellular OncologyYale Cancer CenterYale School of MedicineNew HavenCT06510USA
- Department of Cancer BiologyLerner Research InstituteCleveland ClinicClevelandOH44195USA
| | - Jaewoong Lee
- Center of Molecular and Cellular OncologyYale Cancer CenterYale School of MedicineNew HavenCT06510USA
- School of Biosystems and Biomedical SciencesCollege of Health ScienceKorea UniversitySeoul02841South Korea
- Interdisciplinary Program in Precision Public HealthKorea UniversitySeoul02841South Korea
| | | | | | - Markus Müschen
- Center of Molecular and Cellular OncologyYale Cancer CenterYale School of MedicineNew HavenCT06510USA
| | - Jun Qi
- Department of Cancer BiologyDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMA02215USA
| | - Jianjun Chen
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
- City of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Kevin Hiom
- Division of Cellular MedicineSchool of MedicineUniversity of DundeeNethergateDundeeDD1 4HNUK
| | - Alexander J. R. Bishop
- Department of Cellular Systems and AnatomyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Greehey Children's Cancer Research InstituteUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Chun‐Wei Chen
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
- City of Hope Comprehensive Cancer CenterDuarteCA91010USA
| |
Collapse
|
13
|
Ryan CJ, Mehta I, Kebabci N, Adams DJ. Targeting synthetic lethal paralogs in cancer. Trends Cancer 2023; 9:397-409. [PMID: 36890003 DOI: 10.1016/j.trecan.2023.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 03/08/2023]
Abstract
Synthetic lethal interactions, where mutation of one gene renders cells sensitive to inhibition of another gene, can be exploited for the development of targeted therapeutics in cancer. Pairs of duplicate genes (paralogs) often share common functionality and hence are a potentially rich source of synthetic lethal interactions. Because the majority of human genes have paralogs, exploiting such interactions could be a widely applicable approach for targeting gene loss in cancer. Moreover, existing small-molecule drugs may exploit synthetic lethal interactions by inhibiting multiple paralogs simultaneously. Consequently, the identification of synthetic lethal interactions between paralogs could be extremely informative for drug development. Here we review approaches to identify such interactions and discuss some of the challenges of exploiting them.
Collapse
Affiliation(s)
- Colm J Ryan
- Conway Institute and School of Computer Science, University College Dublin, Dublin, Ireland; Systems Biology Ireland, University College Dublin, Dublin, Ireland.
| | - Ishan Mehta
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Narod Kebabci
- Conway Institute and School of Computer Science, University College Dublin, Dublin, Ireland; Science Foundation Ireland (SFI) Centre for Research Training in Genomics Data Science, University College Dublin, Dublin, Ireland
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| |
Collapse
|
14
|
Park BS, Jeon H, Chi SG, Kim T. Efficient prioritization of CRISPR screen hits by accounting for targeting efficiency of guide RNA. BMC Biol 2023; 21:45. [PMID: 36829149 PMCID: PMC9960226 DOI: 10.1186/s12915-023-01536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/03/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND CRISPR-based screens are revolutionizing drug discovery as tools to identify genes whose ablation induces a phenotype of interest. For instance, CRISPR-Cas9 screening has been successfully used to identify novel therapeutic targets in cancer where disruption of genes leads to decreased viability of malignant cells. However, low-activity guide RNAs may give rise to variable changes in phenotype, preventing easy identification of hits and leading to false negative results. Therefore, correcting the effects of bias due to differences in guide RNA efficiency in CRISPR screening data can improve the efficiency of prioritizing hits for further validation. Here, we developed an approach to identify hits from negative CRISPR screens by correcting the fold changes (FC) in gRNA frequency by the actual, observed frequency of indel mutations generated by gRNA. RESULTS Each gRNA was coupled with the "reporter sequence" that can be targeted by the same gRNA so that the frequency of mutations in the reporter sequence can be used as a proxy for the endogenous target gene. The measured gRNA activity was used to correct the FC. We identified indel generation efficiency as the dominant factor contributing significant bias to screening results, and our method significantly removed such bias and was better at identifying essential genes when compared to conventional fold change analysis. We successfully applied our gRNA activity data to previously published gRNA screening data, and identified novel genes whose ablation could synergize with vemurafenib in the A375 melanoma cell line. Our method identified nicotinamide N-methyltransferase, lactate dehydrogenase B, and polypyrimidine tract-binding protein 1 as synergistic targets whose ablation sensitized A375 cells to vemurafenib. CONCLUSIONS We identified the variations in target cleavage efficiency, even in optimized sgRNA libraries, that pose a strong bias in phenotype and developed an analysis method that corrects phenotype score by the measured differences in the targeting efficiency among sgRNAs. Collectively, we expect that our new analysis method will more accurately identify genes that confer the phenotype of interest.
Collapse
Affiliation(s)
- Byung-Sun Park
- grid.35541.360000000121053345Medicinal Materials Research Center, Korea Institute of Science and Technology, 5 Hwarangro-14-Gil, SeongbukGu, Seoul, 02792 Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841 Republic of Korea
| | - Heeju Jeon
- grid.35541.360000000121053345Medicinal Materials Research Center, Korea Institute of Science and Technology, 5 Hwarangro-14-Gil, SeongbukGu, Seoul, 02792 Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841 Republic of Korea
| | - Sung-Gil Chi
- grid.222754.40000 0001 0840 2678Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841 Republic of Korea
| | - Tackhoon Kim
- Medicinal Materials Research Center, Korea Institute of Science and Technology, 5 Hwarangro-14-Gil, SeongbukGu, Seoul, 02792, Republic of Korea. .,Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841, Republic of Korea. .,Division of Bio-Medical Science and Technology, Korea University of Science and Technology, 217 GajeongRo YuseongGu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
15
|
Hyle J, Djekidel MN, Williams J, Wright S, Shao Y, Xu B, Li C. Auxin-inducible degron 2 system deciphers functions of CTCF domains in transcriptional regulation. Genome Biol 2023; 24:14. [PMID: 36698211 PMCID: PMC9878928 DOI: 10.1186/s13059-022-02843-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/29/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND CTCF is a well-established chromatin architectural protein that also plays various roles in transcriptional regulation. While CTCF biology has been extensively studied, how the domains of CTCF function to regulate transcription remains unknown. Additionally, the original auxin-inducible degron 1 (AID1) system has limitations in investigating the function of CTCF. RESULTS We employ an improved auxin-inducible degron technology, AID2, to facilitate the study of acute depletion of CTCF while overcoming the limitations of the previous AID system. As previously observed through the AID1 system and steady-state RNA analysis, the new AID2 system combined with SLAM-seq confirms that CTCF depletion leads to modest nascent and steady-state transcript changes. A CTCF domain sgRNA library screening identifies the zinc finger (ZF) domain as the region within CTCF with the most functional relevance, including ZFs 1 and 10. Removal of ZFs 1 and 10 reveals genomic regions that independently require these ZFs for DNA binding and transcriptional regulation. Notably, loci regulated by either ZF1 or ZF10 exhibit unique CTCF binding motifs specific to each ZF. CONCLUSIONS By extensively comparing the AID1 and AID2 systems for CTCF degradation in SEM cells, we confirm that AID2 degradation is superior for achieving miniAID-tagged protein degradation without the limitations of the AID1 system. The model we create that combines AID2 depletion of CTCF with exogenous overexpression of CTCF mutants allows us to demonstrate how peripheral ZFs intricately orchestrate transcriptional regulation in a cellular context for the first time.
Collapse
Affiliation(s)
- Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Mohamed Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Justin Williams
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
16
|
Zhou X, Zhang P, Aryal S, Zhang L, Lu R. UTX loss alters therapeutic responses in KMT2A-rearranged acute myeloid leukemia. Leukemia 2023; 37:226-230. [PMID: 36309561 DOI: 10.1038/s41375-022-01741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Xinyue Zhou
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, 35294, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, 35294, USA
| | - Pengcheng Zhang
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, 35294, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, 35294, USA
| | - Sajesan Aryal
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, 35294, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, 35294, USA
| | - Lixia Zhang
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, 35294, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, 35294, USA
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, 35294, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, 35294, USA.
| |
Collapse
|
17
|
The methyltransferase domain of DNMT1 is an essential domain in acute myeloid leukemia independent of DNMT3A mutation. Commun Biol 2022; 5:1174. [PMID: 36329185 PMCID: PMC9633652 DOI: 10.1038/s42003-022-04139-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Aberrant DNA methylation patterns are a prominent feature of cancer. Methylation of DNA is mediated by the DNA methyltransferase (DNMT) protein family, which regulates de novo (DNMT3A and DNMT3B) and maintenance (DNMT1) methylation. Mutations in DNMT3A are observed in approximately 22% of acute myeloid leukemia (AML). We hypothesized that DNMT1 or DNMT3B could function as a synthetic lethal therapeutic strategy for DNMT3A-mutant AML. CRISPR-Cas9 tiling screens were performed to identify functional domains within DNMT1/DNMT3B that exhibited greater dependencies in DNMT3A mutant versus wild-type cell lines. Although increased sensitivity to DNMT1 mutation was observed in some DNMT3A mutant cellular models tested, the subtlety of these results prevents us from basing any conclusions on a synthetic lethal relationship between DNMT1 and DNMT3A. Our data suggests that a therapeutic window for DNMT1 methyltransferase inhibition in DNMT3A-driven AML may exist, but validation in more biologically relevant models is required.
Collapse
|
18
|
Hoberecht L, Perampalam P, Lun A, Fortin JP. A comprehensive Bioconductor ecosystem for the design of CRISPR guide RNAs across nucleases and technologies. Nat Commun 2022; 13:6568. [PMID: 36323688 PMCID: PMC9630310 DOI: 10.1038/s41467-022-34320-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The success of CRISPR-mediated gene perturbation studies is highly dependent on the quality of gRNAs, and several tools have been developed to enable optimal gRNA design. However, these tools are not all adaptable to the latest CRISPR modalities or nucleases, nor do they offer comprehensive annotation methods for advanced CRISPR applications. Here, we present a new ecosystem of R packages, called crisprVerse, that enables efficient gRNA design and annotation for a multitude of CRISPR technologies. This includes CRISPR knockout (CRISPRko), CRISPR activation (CRISPRa), CRISPR interference (CRISPRi), CRISPR base editing (CRISPRbe) and CRISPR knockdown (CRISPRkd). The core package, crisprDesign, offers a user-friendly and unified interface to add off-target annotations, rich gene and SNP annotations, and on- and off-target activity scores. These functionalities are enabled for any RNA- or DNA-targeting nucleases, including Cas9, Cas12, and Cas13. The crisprVerse ecosystem is open-source and deployed through the Bioconductor project ( https://github.com/crisprVerse ).
Collapse
Affiliation(s)
- Luke Hoberecht
- Genentech Research and Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Aaron Lun
- Genentech Research and Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jean-Philippe Fortin
- Genentech Research and Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
19
|
Yang L, He W, Yun Y, Gao Y, Zhu Z, Teng M, Liang Z, Niu L. Defining A Global Map of Functional Group-based 3D Ligand-binding Motifs. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:765-779. [PMID: 35288344 PMCID: PMC9881048 DOI: 10.1016/j.gpb.2021.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 06/30/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023]
Abstract
Uncovering conserved 3D protein-ligand binding patterns on the basis of functional groups (FGs) shared by a variety of small molecules can greatly expand our knowledge of protein-ligand interactions. Despite that conserved binding patterns for a few commonly used FGs have been reported in the literature, large-scale identification and evaluation of FG-based 3D binding motifs are still lacking. Here, we propose a computational method, Automatic FG-based Three-dimensional Motif Extractor (AFTME), for automatic mapping of 3D motifs to different FGs of a specific ligand. Applying our method to 233 naturally-occurring ligands, we define 481 FG-binding motifs that are highly conserved across different ligand-binding pockets. Systematic analysis further reveals four main classes of binding motifs corresponding to distinct sets of FGs. Combinations of FG-binding motifs facilitate the binding of proteins to a wide spectrum of ligands with various binding affinities. Finally, we show that our FG-motif map can be used to nominate FGs that potentially bind to specific drug targets, thus providing useful insights and guidance for rational design of small-molecule drugs.
Collapse
Affiliation(s)
- Liu Yang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China
| | - Wei He
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China.
| | - Yuehui Yun
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China
| | - Yongxiang Gao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China
| | - Zhongliang Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China
| | - Maikun Teng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China
| | - Zhi Liang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China.
| | - Liwen Niu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China.
| |
Collapse
|
20
|
The R2R3 MYB Transcription Factor MYB71 Regulates Abscisic Acid Response in Arabidopsis. PLANTS 2022; 11:plants11101369. [PMID: 35631794 PMCID: PMC9143609 DOI: 10.3390/plants11101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
Abscisic acid (ABA) regulates plant responses to abiotic stresses via regulating the expression of downstream genes, yet the functions of many ABA responsive genes remain unknown. We report here the characterization of MYB71, a R2R3 MYB transcription factor in regulating ABA responses in Arabidopsis. RT-PCR results show that the expression level of MYB71 was increased in response to ABA treatment. Arabidopsis protoplasts transfection results show that MYB71 was specifically localized in nucleus and it activated the Gal4:GUS reporter gene when recruited to the Gal4 promoter by a fused DNA binding domain GD. Roles of MYB71 in regulating plant response to ABA were analyzed by generating Arabidopsis transgenic plants overexpression MYB71 and gene edited mutants of MYB71. The results show that ABA sensitivity was increased in the transgenic plants overexpression MYB71, but decreased in the MYB71 mutants. By using a DEX inducible system, we further identified genes are likely regulated by MYB71, and found that they are enriched in biological process to environmental stimuli including abiotic stresses, suggesting that MYB71 may regulate plant response to abiotic stresses. Taken together, our results suggest that MYB71 is an ABA responsive gene, and MYB71 functions as a transcription activator and it positively regulates ABA response in Arabidopsis.
Collapse
|
21
|
Park H, Osman EA, Cromwell CR, St Laurent CD, Liu Y, Kitova EN, Klassen JS, Hubbard BP, Macauley MS, Gibbs JM. CRISPR-Click Enables Dual-Gene Editing with Modular Synthetic sgRNAs. Bioconjug Chem 2022; 33:858-868. [PMID: 35436106 DOI: 10.1021/acs.bioconjchem.2c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gene-editing systems such as CRISPR-Cas9 readily enable individual gene phenotypes to be studied through loss of function. However, in certain instances, gene compensation can obfuscate the results of these studies, necessitating the editing of multiple genes to properly identify biological pathways and protein function. Performing multiple genetic modifications in cells remains difficult due to the requirement for multiple rounds of gene editing. While fluorescently labeled guide RNAs (gRNAs) are routinely used in laboratories for targeting CRISPR-Cas9 to disrupt individual loci, technical limitations in single gRNA (sgRNA) synthesis hinder the expansion of this approach to multicolor cell sorting. Here, we describe a modular strategy for synthesizing sgRNAs where each target sequence is conjugated to a unique fluorescent label, which enables fluorescence-activated cell sorting (FACS) to isolate cells that incorporate the desired combination of gene-editing constructs. We demonstrate that three short strands of RNA functionalized with strategically placed 5'-azide and 3'-alkyne terminal deoxyribonucleotides can be assembled in a one-step, template-assisted, copper-catalyzed alkyne-azide cycloaddition to generate fully functional, fluorophore-modified sgRNAs. Using these synthetic sgRNAs in combination with FACS, we achieved selective cleavage of two targeted genes, either separately as a single-color experiment or in combination as a dual-color experiment. These data indicate that our strategy for generating double-clicked sgRNA allows for Cas9 activity in cells. By minimizing the size of each RNA fragment to 41 nucleotides or less, this strategy is well suited for custom, scalable synthesis of sgRNAs.
Collapse
Affiliation(s)
- Hansol Park
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Eiman A Osman
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | | - Chris D St Laurent
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yuning Liu
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Basil P Hubbard
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
22
|
Abstract
Over the past decade, CRISPR has become as much a verb as it is an acronym, transforming biomedical research and providing entirely new approaches for dissecting all facets of cell biology. In cancer research, CRISPR and related tools have offered a window into previously intractable problems in our understanding of cancer genetics, the noncoding genome and tumour heterogeneity, and provided new insights into therapeutic vulnerabilities. Here, we review the progress made in the development of CRISPR systems as a tool to study cancer, and the emerging adaptation of these technologies to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Alyna Katti
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Bianca J Diaz
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Christina M Caragine
- Department of Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Neville E Sanjana
- Department of Biology, New York University, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| | - Lukas E Dow
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
23
|
Herman JA, Arora S, Carter L, Zhu J, Biggins S, Paddison PJ. Functional dissection of human mitotic genes using CRISPR-Cas9 tiling screens. Genes Dev 2022; 36:495-510. [PMID: 35483740 PMCID: PMC9067404 DOI: 10.1101/gad.349319.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/12/2022] [Indexed: 12/03/2022]
Abstract
In this Resource/Methodology, Herman et al. developed a method that leverages CRISPR–Cas9-induced mutations across protein-coding genes for the a priori identification of functional regions at the sequence level. As a test case, they applied this method to 48 human mitotic genes, revealing hundreds of regions required for cell proliferation, including domains that were experimentally characterized, ones that were predicted based on homology, and novel ones. The identity of human protein-coding genes is well known, yet our in-depth knowledge of their molecular functions and domain architecture remains limited by shortcomings in homology-based predictions and experimental approaches focused on whole-gene depletion. To bridge this knowledge gap, we developed a method that leverages CRISPR–Cas9-induced mutations across protein-coding genes for the a priori identification of functional regions at the sequence level. As a test case, we applied this method to 48 human mitotic genes, revealing hundreds of regions required for cell proliferation, including domains that were experimentally characterized, ones that were predicted based on homology, and novel ones. We validated screen outcomes for 15 regions, including amino acids 387–402 of Mad1, which were previously uncharacterized but contribute to Mad1 kinetochore localization and chromosome segregation fidelity. Altogether, we demonstrate that CRISPR–Cas9-based tiling mutagenesis identifies key functional domains in protein-coding genes de novo, which elucidates separation of function mutants and allows functional annotation across the human proteome.
Collapse
Affiliation(s)
- Jacob A Herman
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Lucas Carter
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
24
|
Computational tools and resources for CRISPR/Cas genome editing. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022:S1672-0229(22)00027-4. [PMID: 35341983 PMCID: PMC10372911 DOI: 10.1016/j.gpb.2022.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022]
Abstract
The past decade has witnessed a rapid evolution in identifying more versatile clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) nucleases and their functional variants as well as in developing precise CRISPR/Cas-derived genome editors. The programmable and robust features of the genomic editors provide an effective RNA-guided platform for fundamental life science research and subsequent applications in diverse scenarios, including biomedical innovation and targeted crop improvement. One of the most essential principles is to guide alterations in genomic sequences or genes in the intended manner without undesired off-target impacts, which strongly depends on the efficiency and specificity of single guide RNA (sgRNA)-directed recognition of targeted DNA sequences. Recent advances in empirical scoring algorithms and machine learning models have facilitated sgRNA design and off-target prediction. In this review, we first briefly introduced the different features of CRISPR/Cas tools that should be taken into consideration to achieve specific purposes. Secondly, we focused on the computer-assisted tools and resources that are widely used in designing sgRNAs and analyzing CRISPR/Cas-induced on- and off-target mutations. Thirdly, we provide insights on the limitations of available computational tools that surely help researchers of this field for further optimization. Lastly, we suggested a simple but effective workflow for choosing and applying web-based resources and tools for CRISPR/Cas genome editing.
Collapse
|
25
|
Jiang T, Zhang XO, Weng Z, Xue W. Deletion and replacement of long genomic sequences using prime editing. Nat Biotechnol 2022; 40:227-234. [PMID: 34650270 PMCID: PMC8847310 DOI: 10.1038/s41587-021-01026-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022]
Abstract
Genomic insertions, duplications and insertion/deletions (indels), which account for ~14% of human pathogenic mutations, cannot be accurately or efficiently corrected by current gene-editing methods, especially those that involve larger alterations (>100 base pairs (bp)). Here, we optimize prime editing (PE) tools for creating precise genomic deletions and direct the replacement of a genomic fragment ranging from ~1 kilobases (kb) to ~10 kb with a desired sequence (up to 60 bp) in the absence of an exogenous DNA template. By conjugating Cas9 nuclease to reverse transcriptase (PE-Cas9) and combining it with two PE guide RNAs (pegRNAs) targeting complementary DNA strands, we achieve precise and specific deletion and repair of target sequences via using this PE-Cas9-based deletion and repair (PEDAR) method. PEDAR outperformed other genome-editing methods in a reporter system and at endogenous loci, efficiently creating large and precise genomic alterations. In a mouse model of tyrosinemia, PEDAR removed a 1.38-kb pathogenic insertion within the Fah gene and precisely repaired the deletion junction to restore FAH expression in liver.
Collapse
Affiliation(s)
- Tingting Jiang
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Xiao-Ou Zhang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
26
|
Baumgarten N, Schmidt F, Wegner M, Hebel M, Kaulich M, Schulz MH. Computational prediction of CRISPR-impaired non-coding regulatory regions. Biol Chem 2021; 402:973-982. [PMID: 33660495 DOI: 10.1515/hsz-2020-0392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022]
Abstract
Genome-wide CRISPR screens are becoming more widespread and allow the simultaneous interrogation of thousands of genomic regions. Although recent progress has been made in the analysis of CRISPR screens, it is still an open problem how to interpret CRISPR mutations in non-coding regions of the genome. Most of the tools concentrate on the interpretation of mutations introduced in gene coding regions. We introduce a computational pipeline that uses epigenomic information about regulatory elements for the interpretation of CRISPR mutations in non-coding regions. We illustrate our analysis protocol on the analysis of a genome-wide CRISPR screen in hTERT-RPE1 cells and reveal novel regulatory elements that mediate chemoresistance against doxorubicin in these cells. We infer links to established and to novel chemoresistance genes. Our analysis protocol is general and can be applied on any cell type and with different CRISPR enzymes.
Collapse
Affiliation(s)
- Nina Baumgarten
- Institute for Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
- Cluster of Excellence MMCI, Saarland University, and Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Cardiopulmonary Institute (CPI), Goethe University, 60590 Frankfurt am Main, Germany
| | - Florian Schmidt
- Institute for Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
- Cluster of Excellence MMCI, Saarland University, and Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore, Singapore
| | - Martin Wegner
- Institute of Biochemistry II, Goethe University - Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt am Main, Germany
| | - Marie Hebel
- Institute of Biochemistry II, Goethe University - Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt am Main, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University - Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt am Main, Germany
| | - Marcel H Schulz
- Institute for Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
- Cluster of Excellence MMCI, Saarland University, and Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Cardiopulmonary Institute (CPI), Goethe University, 60590 Frankfurt am Main, Germany
| |
Collapse
|
27
|
High-resolution characterization of gene function using single-cell CRISPR tiling screen. Nat Commun 2021; 12:4063. [PMID: 34210975 PMCID: PMC8249386 DOI: 10.1038/s41467-021-24324-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Identification of novel functional domains and characterization of detailed regulatory mechanisms in cancer-driving genes is critical for advanced cancer therapy. To date, CRISPR gene editing has primarily been applied to defining the role of individual genes. Recently, high-density mutagenesis via CRISPR tiling of gene-coding exons has been demonstrated to identify functional regions in genes. Furthermore, breakthroughs in combining CRISPR library screens with single-cell droplet RNA sequencing (sc-RNAseq) platforms have revealed the capacity to monitor gene expression changes upon genetic perturbations at single-cell resolution. Here, we present “sc-Tiling,” which integrates a CRISPR gene-tiling screen with single-cell transcriptomic and protein structural analyses. Distinct from other reported single-cell CRISPR screens focused on observing gene function and gene-to-gene/enhancer-to-gene regulation, sc-Tiling enables the capacity to identify regulatory mechanisms within a gene-coding region that dictate gene activity and therapeutic response. Identifying functional domains and genetic regulatory mechanisms is essential for developing new therapies. Here the authors present sc-Tiling, single-cell high-density CRISPR tiling screening for functional domain characterization.
Collapse
|
28
|
Froehlich JJ, Uyar B, Herzog M, Theil K, Glažar P, Akalin A, Rajewsky N. Parallel genetics of regulatory sequences using scalable genome editing in vivo. Cell Rep 2021; 35:108988. [PMID: 33852857 DOI: 10.1016/j.celrep.2021.108988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/13/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
How regulatory sequences control gene expression is fundamental for explaining phenotypes in health and disease. Regulatory elements must ultimately be understood within their genomic environment and development- or tissue-specific contexts. Because this is technically challenging, few regulatory elements have been characterized in vivo. Here, we use inducible Cas9 and multiplexed guide RNAs to create hundreds of mutations in enhancers/promoters and 3' UTRs of 16 genes in C. elegans. Our software crispr-DART analyzes indel mutations in targeted DNA sequencing. We quantify the impact of mutations on expression and fitness by targeted RNA sequencing and DNA sampling. When applying our approach to the lin-41 3' UTR, generating hundreds of mutants, we find that the two adjacent binding sites for the miRNA let-7 can regulate lin-41 expression independently of each other. Finally, we map regulatory genotypes to phenotypic traits for several genes. Our approach enables parallel analysis of regulatory sequences directly in animals.
Collapse
Affiliation(s)
- Jonathan J Froehlich
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Bora Uyar
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Margareta Herzog
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Kathrin Theil
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Petar Glažar
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany.
| |
Collapse
|
29
|
He W, Wang H, Wei Y, Jiang Z, Tang Y, Chen Y, Xu H. GuidePro: a multi-source ensemble predictor for prioritizing sgRNAs in CRISPR/Cas9 protein knockouts. Bioinformatics 2021; 37:134-136. [PMID: 33394026 PMCID: PMC11025339 DOI: 10.1093/bioinformatics/btaa1068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
MOTIVATION The efficiency of CRISPR/Cas9-mediated protein knockout is determined by three factors: sequence-specific sgRNA activity, frameshift probability and the characteristics of targeted amino acids. A number of computational methods have been developed for predicting sgRNA efficiency from different perspectives. However, an integrative method that combines all three factors for rational sgRNA selection is still lacking. RESULTS We developed GuidePro, a two-layer ensemble predictor that enables the integration of multiple factors for the prioritization of sgRNAs in protein knockouts. Tested on independent datasets, GuidePro outperforms existing methods and demonstrates consistent superior performance in predicting phenotypes caused by protein loss-of-function, suggesting its robustness for prioritizing sgRNAs in various applications of CRISPR/Cas9 knockouts. AVAILABILITY AND IMPLEMENTATION GuidePro is available at https://github.com/MDhewei/GuidePro. A web application for prioritizing sgRNAs that target protein-coding genes in human, monkey and mouse genomes is available at https://bioinformatics.mdanderson.org/apps/GuidePro. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wei He
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Helen Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yanjun Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhiyun Jiang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yitao Tang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Xu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
30
|
Dailey KM, Allgood JE, Johnson PR, Ostlie MA, Schaner KC, Brooks BD, Brooks AE. The next frontier of oncotherapy: accomplishing clinical translation of oncolytic bacteria through genetic engineering. Future Microbiol 2021; 16:341-368. [PMID: 33754804 DOI: 10.2217/fmb-2020-0245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of a 'smart' drug capable of distinguishing tumor from host cells has been sought for centuries, but the microenvironment of solid tumors continues to confound therapeutics. Solid tumors present several challenges for current oncotherapeutics, including aberrant vascularization, hypoxia, necrosis, abnormally high pH and local immune suppression. While traditional chemotherapeutics are limited by such an environment, oncolytic microbes are drawn to it - having an innate ability to selectively infect, colonize and eradicate solid tumors. Development of an oncolytic species would represent a shift in the cancer therapeutic paradigm, with ramifications reaching from the medical into the socio-economic. Modern genetic engineering techniques could be implemented to customize 'Frankenstein' bacteria with advantageous characteristics from several species.
Collapse
Affiliation(s)
- Kaitlin M Dailey
- Cellular & Molecular Biology Program, North Dakota State University, Fargo, ND 58103, USA.,Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA
| | - JuliAnne E Allgood
- Department of Neuroscience, University of Wyoming, Laramie, WY 82071, USA
| | - Paige R Johnson
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA
| | - Mackenzie A Ostlie
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA
| | - Kambri C Schaner
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA
| | | | - Amanda E Brooks
- Cellular & Molecular Biology Program, North Dakota State University, Fargo, ND 58103, USA.,Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA.,Office of Research & Scholarly Activity. Rocky Vista University, Ivins, UT 84738, USA
| |
Collapse
|
31
|
Chou HC, Bhalla K, Demerdesh OE, Klingbeil O, Hanington K, Aganezov S, Andrews P, Alsudani H, Chang K, Vakoc CR, Schatz MC, McCombie WR, Stillman B. The human origin recognition complex is essential for pre-RC assembly, mitosis, and maintenance of nuclear structure. eLife 2021; 10:61797. [PMID: 33522487 PMCID: PMC7877914 DOI: 10.7554/elife.61797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/30/2021] [Indexed: 12/23/2022] Open
Abstract
The origin recognition complex (ORC) cooperates with CDC6, MCM2-7, and CDT1 to form pre-RC complexes at origins of DNA replication. Here, using tiling-sgRNA CRISPR screens, we report that each subunit of ORC and CDC6 is essential in human cells. Using an auxin-inducible degradation system, we created stable cell lines capable of ablating ORC2 rapidly, revealing multiple cell division cycle phenotypes. The primary defects in the absence of ORC2 were cells encountering difficulty in initiating DNA replication or progressing through the cell division cycle due to reduced MCM2-7 loading onto chromatin in G1 phase. The nuclei of ORC2-deficient cells were also large, with decompacted heterochromatin. Some ORC2-deficient cells that completed DNA replication entered into, but never exited mitosis. ORC1 knockout cells also demonstrated extremely slow cell proliferation and abnormal cell and nuclear morphology. Thus, ORC proteins and CDC6 are indispensable for normal cellular proliferation and contribute to nuclear organization.
Collapse
Affiliation(s)
- Hsiang-Chen Chou
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, United States
| | - Kuhulika Bhalla
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Sergey Aganezov
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| | - Peter Andrews
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Habeeb Alsudani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Michael C Schatz
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| | | | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| |
Collapse
|
32
|
Hu Y, Comjean A, Rodiger J, Liu Y, Gao Y, Chung V, Zirin J, Perrimon N, Mohr SE. FlyRNAi.org-the database of the Drosophila RNAi screening center and transgenic RNAi project: 2021 update. Nucleic Acids Res 2021; 49:D908-D915. [PMID: 33104800 PMCID: PMC7778949 DOI: 10.1093/nar/gkaa936] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
The FlyRNAi database at the Drosophila RNAi Screening Center and Transgenic RNAi Project (DRSC/TRiP) provides a suite of online resources that facilitate functional genomics studies with a special emphasis on Drosophila melanogaster. Currently, the database provides: gene-centric resources that facilitate ortholog mapping and mining of information about orthologs in common genetic model species; reagent-centric resources that help researchers identify RNAi and CRISPR sgRNA reagents or designs; and data-centric resources that facilitate visualization and mining of transcriptomics data, protein modification data, protein interactions, and more. Here, we discuss updated and new features that help biological and biomedical researchers efficiently identify, visualize, analyze, and integrate information and data for Drosophila and other species. Together, these resources facilitate multiple steps in functional genomics workflows, from building gene and reagent lists to management, analysis, and integration of data.
Collapse
Affiliation(s)
- Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yue Gao
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Verena Chung
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Zirin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
33
|
Pramanik D, Shelake RM, Kim MJ, Kim JY. CRISPR-Mediated Engineering across the Central Dogma in Plant Biology for Basic Research and Crop Improvement. MOLECULAR PLANT 2021; 14:127-150. [PMID: 33152519 DOI: 10.1016/j.molp.2020.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 05/03/2023]
Abstract
The central dogma (CD) of molecular biology is the transfer of genetic information from DNA to RNA to protein. Major CD processes governing genetic flow include the cell cycle, DNA replication, chromosome packaging, epigenetic changes, transcription, posttranscriptional alterations, translation, and posttranslational modifications. The CD processes are tightly regulated in plants to maintain genetic integrity throughout the life cycle and to pass genetic materials to next generation. Engineering of various CD processes involved in gene regulation will accelerate crop improvement to feed the growing world population. CRISPR technology enables programmable editing of CD processes to alter DNA, RNA, or protein, which would have been impossible in the past. Here, an overview of recent advancements in CRISPR tool development and CRISPR-based CD modulations that expedite basic and applied plant research is provided. Furthermore, CRISPR applications in major thriving areas of research, such as gene discovery (allele mining and cryptic gene activation), introgression (de novo domestication and haploid induction), and application of desired traits beneficial to farmers or consumers (biotic/abiotic stress-resilient crops, plant cell factories, and delayed senescence), are described. Finally, the global regulatory policies, challenges, and prospects for CRISPR-mediated crop improvement are discussed.
Collapse
Affiliation(s)
- Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| | - Mi Jung Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
34
|
Veeneman B, Gao Y, Grant J, Fruhling D, Ahn J, Bosbach B, Bienkowska J, Follettie M, Arndt K, Myers J, Zhong W. PINCER: improved CRISPR/Cas9 screening by efficient cleavage at conserved residues. Nucleic Acids Res 2020; 48:9462-9477. [PMID: 32821942 PMCID: PMC7515706 DOI: 10.1093/nar/gkaa645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9 functional genomic screens have emerged as essential tools in drug target discovery. However, the sensitivity of available genome-wide CRISPR libraries is impaired by guides which inefficiently abrogate gene function. While Cas9 cleavage efficiency optimization and essential domain targeting have been developed as independent guide design rationales, no library has yet combined these into a single cohesive strategy to knock out gene function. Here, in a massive reanalysis of CRISPR tiling data using the most comprehensive feature database assembled, we determine which features of guides and their targets best predict activity and how to best combine them into a single guide design algorithm. We present the ProteIN ConsERvation (PINCER) genome-wide CRISPR library, which for the first time combines enzymatic efficiency optimization with conserved length protein region targeting, and also incorporates domains, coding sequence position, U6 termination (TTT), restriction sites, polymorphisms and specificity. Finally, we demonstrate superior performance of the PINCER library compared to alternative genome-wide CRISPR libraries in head-to-head validation. PINCER is available for individual gene knockout and genome-wide screening for both the human and mouse genomes.
Collapse
Affiliation(s)
- Brendan Veeneman
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, Pearl River, NY 10965, USA
| | - Ying Gao
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, Pearl River, NY 10965, USA
| | - Joy Grant
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, Pearl River, NY 10965, USA
| | - David Fruhling
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, Pearl River, NY 10965, USA
| | - James Ahn
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, Pearl River, NY 10965, USA
| | - Benedikt Bosbach
- Emerging Sciences & Innovation, Pfizer Worldwide Research, Development and Medical, New York, NY 10016, USA
| | - Jadwiga Bienkowska
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, San Diego, CA 92121, USA
| | - Maximillian Follettie
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, Pearl River, NY 10965, USA
| | - Kim Arndt
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, Pearl River, NY 10965, USA
| | - Jeremy Myers
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, Pearl River, NY 10965, USA
| | - Wenyan Zhong
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, Pearl River, NY 10965, USA
| |
Collapse
|
35
|
Naert T, Tulkens D, Edwards NA, Carron M, Shaidani NI, Wlizla M, Boel A, Demuynck S, Horb ME, Coucke P, Willaert A, Zorn AM, Vleminckx K. Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in Xenopus and zebrafish embryos. Sci Rep 2020; 10:14662. [PMID: 32887910 PMCID: PMC7473854 DOI: 10.1038/s41598-020-71412-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 genome editing has revolutionized functional genomics in vertebrates. However, CRISPR/Cas9 edited F0 animals too often demonstrate variable phenotypic penetrance due to the mosaic nature of editing outcomes after double strand break (DSB) repair. Even with high efficiency levels of genome editing, phenotypes may be obscured by proportional presence of in-frame mutations that still produce functional protein. Recently, studies in cell culture systems have shown that the nature of CRISPR/Cas9-mediated mutations can be dependent on local sequence context and can be predicted by computational methods. Here, we demonstrate that similar approaches can be used to forecast CRISPR/Cas9 gene editing outcomes in Xenopus tropicalis, Xenopus laevis, and zebrafish. We show that a publicly available neural network previously trained in mouse embryonic stem cell cultures (InDelphi-mESC) is able to accurately predict CRISPR/Cas9 gene editing outcomes in early vertebrate embryos. Our observations can have direct implications for experiment design, allowing the selection of guide RNAs with predicted repair outcome signatures enriched towards frameshift mutations, allowing maximization of CRISPR/Cas9 phenotype penetrance in the F0 generation.
Collapse
Affiliation(s)
- Thomas Naert
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent (Zwijnaarde), Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Dieter Tulkens
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent (Zwijnaarde), Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Nicole A Edwards
- Division of Developmental Biology, Perinatal Institute, and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital, Cincinnati, USA
| | - Marjolein Carron
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent (Zwijnaarde), Belgium
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Nikko-Ideen Shaidani
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Marcin Wlizla
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Annekatrien Boel
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Suzan Demuynck
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent (Zwijnaarde), Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Marko E Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Paul Coucke
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Andy Willaert
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Aaron M Zorn
- Division of Developmental Biology, Perinatal Institute, and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital, Cincinnati, USA
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent (Zwijnaarde), Belgium.
- Cancer Research Institute Ghent, Ghent, Belgium.
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
36
|
Clement K, Hsu JY, Canver MC, Joung JK, Pinello L. Technologies and Computational Analysis Strategies for CRISPR Applications. Mol Cell 2020; 79:11-29. [PMID: 32619467 PMCID: PMC7497852 DOI: 10.1016/j.molcel.2020.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 03/12/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
The CRISPR-Cas system offers a programmable platform for eukaryotic genome and epigenome editing. The ability to perform targeted genetic and epigenetic perturbations enables researchers to perform a variety of tasks, ranging from investigating questions in basic biology to potentially developing novel therapeutics for the treatment of disease. While CRISPR systems have been engineered to target DNA and RNA with increased precision, efficiency, and flexibility, assays to identify off-target editing are becoming more comprehensive and sensitive. Furthermore, techniques to perform high-throughput genome and epigenome editing can be paired with a variety of readouts and are uncovering important cellular functions and mechanisms. These technological advances drive and are driven by accompanying computational approaches. Here, we briefly present available CRISPR technologies and review key computational advances and considerations for various CRISPR applications. In particular, we focus on the analysis of on- and off-target editing and CRISPR pooled screen data.
Collapse
Affiliation(s)
- Kendell Clement
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan Y Hsu
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew C Canver
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - J Keith Joung
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Luca Pinello
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
37
|
Zhang X, Yue D, Wang Y, Zhou Y, Liu Y, Qiu Y, Tian F, Yu Y, Zhou Z, Wei W. PASTMUS: mapping functional elements at single amino acid resolution in human cells. Genome Biol 2019; 20:279. [PMID: 31842968 PMCID: PMC6913009 DOI: 10.1186/s13059-019-1897-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/22/2019] [Indexed: 11/10/2022] Open
Abstract
Identification of functional elements for a protein of interest is important for achieving a mechanistic understanding. However, it remains cumbersome to assess each and every amino acid of a given protein in relevance to its functional significance. Here, we report a strategy, PArsing fragmented DNA Sequences from CRISPR Tiling MUtagenesis Screening (PASTMUS), which provides a streamlined workflow and a bioinformatics pipeline to identify critical amino acids of proteins in their native biological contexts. Using this approach, we map six proteins-three bacterial toxin receptors and three cancer drug targets, and acquire their corresponding functional maps at amino acid resolution.
Collapse
Affiliation(s)
- Xinyi Zhang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Di Yue
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yinan Wang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yuexin Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ying Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yeting Qiu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Feng Tian
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|