1
|
Dünnebacke T, Niemeyer N, Baumert S, Hochstädt S, Borsdorf L, Hansen MR, Neugebauer J, Fernández G. Molecular and supramolecular adaptation by coupled stimuli. Nat Commun 2024; 15:5695. [PMID: 38972878 PMCID: PMC11228013 DOI: 10.1038/s41467-024-50029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/26/2024] [Indexed: 07/09/2024] Open
Abstract
Adaptation transcends scale in both natural and artificial systems, but delineating the causative factors of this phenomenon requires urgent clarification. Herein, we unravel the molecular requirements for adaptation and establish a link to rationalize adaptive behavior on a self-assembled level. These concepts are established by analyzing a model compound exhibiting both light- and pH-responsive units, which enable the combined or independent application of different stimuli. On a molecular level, adaptation arises from coupled stimuli, as the final outcome of the system depends on their sequence of application. However, in a self-assembled state, a single stimulus suffices to induce adaptation as a result of collective molecular behavior and the reversibility of non-covalent interactions. Our findings go beyond state-of-the-art (multi)stimuli-responsive systems and allow us to draw up design guidelines for adaptive behavior both at the molecular and supramolecular levels, which are fundamental criteria for the realization of intelligent matter.
Collapse
Affiliation(s)
- Torsten Dünnebacke
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Niklas Niemeyer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
- Universität Münster, Center for Multiscale Theory and Computation, Corrensstraße 36, 48149, Münster, Germany
| | - Sebastian Baumert
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Sebastian Hochstädt
- Universität Münster, Institut für Physikalische Chemie, Corrensstraße 28/30, 48149, Münster, Germany
| | - Lorenz Borsdorf
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Michael Ryan Hansen
- Universität Münster, Institut für Physikalische Chemie, Corrensstraße 28/30, 48149, Münster, Germany.
| | - Johannes Neugebauer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany.
- Universität Münster, Center for Multiscale Theory and Computation, Corrensstraße 36, 48149, Münster, Germany.
| | - Gustavo Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany.
| |
Collapse
|
2
|
Rai R, Khazeber R, Sureshan KM. Single-Crystal-to-Single-Crystal Topochemical Synthesis of a Collagen-inspired Covalent Helical Polymer. Angew Chem Int Ed Engl 2023; 62:e202315742. [PMID: 37861464 DOI: 10.1002/anie.202315742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/21/2023]
Abstract
There is much demand for crystalline covalent helical polymers. Inspired by the helical structure of collagen, we synthesized a covalent helical polymer wherein the repeating dipeptide Gly-Pro units are connected by triazole linkages. We synthesized an azide and alkyne-modified dipeptide monomer made up of the repeating amino acid sequence of collagen. In its crystals, the monomer molecules aligned in head-to-tail fashion with proximally placed azide and alkyne forming supramolecular helices. At 60 °C, the monomer underwent single-crystal-to-single-crystal (SCSC) topochemical azide-alkyne cycloaddition polymerization, yielding a covalent helical polymer as confirmed by single-crystal X-ray diffraction (SCXRD) analysis. Compared to the monomer crystals, the polymer single-crystals were very strong and showed three-fold increase in Young's modulus, which is higher than collagen, many synthetic polymers and other materials. The crystals of this covalent helical polymer could bear loads as high as 1.5 million times of their own weight without deformation. These crystals could also withstand high compression force and did not disintegrate even at an applied force of 98 kN. Such light-weight strong materials are in demand for various technological applications.
Collapse
Affiliation(s)
- Rishika Rai
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram, Kerala, 695551, India
| | - Ravichandran Khazeber
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram, Kerala, 695551, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
3
|
Isobe A, Kajitani T, Yagai S. A Coformer Approach for Supramolecular Polymerization at High Concentrations. Angew Chem Int Ed Engl 2023; 62:e202312516. [PMID: 37737030 DOI: 10.1002/anie.202312516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
Insolubility of functional molecules caused by polymorphism sometimes poses limitations for their solution-based processing. Such a situation can also occur in the preparation processes of supramolecular polymers formed in a solution. An effective strategy to address this issue is to prepare amorphous solid states by introducing a "coformer" molecule capable of inhibiting the formation of an insoluble polymorph through co-aggregation. Herein, inspired by the coformer approach, we demonstrated a solubility enhancement of a barbiturate π-conjugated compound that can supramolecularly polymerize through six-membered hydrogen-bonded rosettes. Our newly synthesized supramolecular coformer molecule features a sterically demanding methyl group in the π-conjugated unit of the parent molecule. Although the parent molecule exhibits low solubility in nonpolar solvents due to the formation of a crystalline polymorph comprising a tape-like hydrogen-bonded array prior to the supramolecular polymerization, mixing with the coformer compound enhanced the solubility by inhibiting mesoscopic organization of the tapes. The two monomers were then co-polymerized into desired helicoidal supramolecular polymers through the formation of heteromeric rosettes.
Collapse
Affiliation(s)
- Atsushi Isobe
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, 263-8522, Chiba, Japan
| | - Takashi Kajitani
- TC College Promotion Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, 226-8503, Yokohama, Japan
| | - Shiki Yagai
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, 263-8522, Chiba, Japan
| |
Collapse
|
4
|
Otsuka C, Takahashi S, Isobe A, Saito T, Aizawa T, Tsuchida R, Yamashita S, Harano K, Hanayama H, Shimizu N, Takagi H, Haruki R, Liu L, Hollamby MJ, Ohkubo T, Yagai S. Supramolecular Polymer Polymorphism: Spontaneous Helix-Helicoid Transition through Dislocation of Hydrogen-Bonded π-Rosettes. J Am Chem Soc 2023; 145:22563-22576. [PMID: 37796243 DOI: 10.1021/jacs.3c07556] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Polymorphism, a phenomenon whereby disparate self-assembled products can be formed from identical molecules, has incited interest in the field of supramolecular polymers. Conventionally, the monomers that constitute supramolecular polymers are engineered to facilitate one-dimensional aggregation and, consequently, their polymorphism surfaces primarily when the states of assembly differ significantly. This engenders polymorphs of divergent dimensionalities such as one- and two-dimensional aggregates. Notwithstanding, realizing supramolecular polymer polymorphism, wherein polymorphs maintain one-dimensional aggregation, persists as a daunting challenge. In this work, we expound upon the manifestation of two supramolecular polymer polymorphs formed from a large discotic supramolecular monomer (rosette), which consists of six hydrogen-bonded molecules with an extended π-conjugated core. These polymorphs are generated in mixtures of chloroform and methylcyclohexane, attributable to distinctly different disc stacking arrangements. The face-to-face (minimal displacement) and offset (large displacement) stacking arrangements can be predicated on their distinctive photophysical properties. The face-to-face stacking results in a twisted helix structure. Conversely, the offset stacking induces inherent curvature in the supramolecular fiber, thereby culminating in a hollow helical coil (helicoid). While both polymorphs exhibit bistability in nonpolar solvent compositions, the face-to-face stacking attains stability purely in a kinetic sense within a polar solvent composition and undergoes conversion into offset stacking through a dislocation of stacked rosettes. This occurs without the dissociation and nucleation of monomers, leading to unprecedented helicoidal folding of supramolecular polymers. Our findings augment our understanding of supramolecular polymer polymorphism, but they also highlight a distinctive method for achieving helicoidal folding in supramolecular polymers.
Collapse
Affiliation(s)
- Chie Otsuka
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Sho Takahashi
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Atsushi Isobe
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Takuho Saito
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Takumi Aizawa
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Ryoma Tsuchida
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Shuhei Yamashita
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Koji Harano
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Hiroki Hanayama
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Hideaki Takagi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Rie Haruki
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Luzhi Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Martin J Hollamby
- Department of Chemistry, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST55BG, U.K
| | - Takahiro Ohkubo
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| | - Shiki Yagai
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
5
|
González-Sánchez M, Mayoral MJ, Vázquez-González V, Paloncýová M, Sancho-Casado I, Aparicio F, de Juan A, Longhi G, Norman P, Linares M, González-Rodríguez D. Stacked or Folded? Impact of Chelate Cooperativity on the Self-Assembly Pathway to Helical Nanotubes from Dinucleobase Monomers. J Am Chem Soc 2023; 145:17805-17818. [PMID: 37531225 PMCID: PMC10436278 DOI: 10.1021/jacs.3c04773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/04/2023]
Abstract
Self-assembled nanotubes exhibit impressive biological functions that have always inspired supramolecular scientists in their efforts to develop strategies to build such structures from small molecules through a bottom-up approach. One of these strategies employs molecules endowed with self-recognizing motifs at the edges, which can undergo either cyclization-stacking or folding-polymerization processes that lead to tubular architectures. Which of these self-assembly pathways is ultimately selected by these molecules is, however, often difficult to predict and even to evaluate experimentally. We show here a unique example of two structurally related molecules substituted with complementary nucleobases at the edges (i.e., G:C and A:U) for which the supramolecular pathway taken is determined by chelate cooperativity, that is, by their propensity to assemble in specific cyclic structures through Watson-Crick pairing. Because of chelate cooperativities that differ in several orders of magnitude, these molecules exhibit distinct supramolecular scenarios prior to their polymerization that generate self-assembled nanotubes with different internal monomer arrangements, either stacked or coiled, which lead at the same time to opposite helicities and chiroptical properties.
Collapse
Affiliation(s)
- Marina González-Sánchez
- Nanostructured
Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María J. Mayoral
- Department
of Inorganic Chemistry, Universidad Complutense
de Madrid, 28040 Madrid, Spain
| | - Violeta Vázquez-González
- Nanostructured
Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Markéta Paloncýová
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, 779 00 Olomouc, Czech Republic
| | - Irene Sancho-Casado
- Nanostructured
Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fátima Aparicio
- Nanostructured
Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alberto de Juan
- Nanostructured
Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Giovanna Longhi
- Department
of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Patrick Norman
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mathieu Linares
- Laboratory
of Organic Electronics and Scientific Visualization Group, ITN, Campus
Norrköping; Swedish e-Science Research Centre (SeRC), Linköping University, 58183 Linköping, Sweden
| | - David González-Rodríguez
- Nanostructured
Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
6
|
Sasaki N, Kikkawa J, Ishii Y, Uchihashi T, Imamura H, Takeuchi M, Sugiyasu K. Multistep, site-selective noncovalent synthesis of two-dimensional block supramolecular polymers. Nat Chem 2023; 15:922-929. [PMID: 37264101 DOI: 10.1038/s41557-023-01216-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/24/2023] [Indexed: 06/03/2023]
Abstract
Although the principles of noncovalent bonding are well understood and form the basis for the syntheses of many intricate supramolecular structures, supramolecular noncovalent synthesis cannot yet achieve the levels of precision and complexity that are attainable in organic and/or macromolecular covalent synthesis. Here we show the stepwise synthesis of block supramolecular polymers from metal-porphyrin derivatives (in which the metal centre is Zn, Cu or Ni) functionalized with fluorinated alkyl chains. These monomers first undergo a one-dimensional supramolecular polymerization and cyclization process to form a toroidal structure. Subsequently, successive secondary nucleation, elongation and cyclization steps result in two-dimensional assemblies with concentric toroidal morphologies. The site selectivity endowed by the fluorinated chains, reminiscent of regioselectivity in covalent synthesis, enables the precise control of the compositions and sequences of the supramolecular structures, as demonstrated by the synthesis of several triblock supramolecular terpolymers.
Collapse
Grants
- JP22H02134 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H04682 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19K05592 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H04669 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05868 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Norihiko Sasaki
- Molecular Design and Function Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Jun Kikkawa
- Electron Microscopy Group, Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Yoshiki Ishii
- Department of Physics, Nagoya University, Nagoya, Japan
| | | | - Hitomi Imamura
- Molecular Design and Function Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazunori Sugiyasu
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Khanra P, Singh AK, Roy L, Das A. Pathway Complexity in Supramolecular Copolymerization and Blocky Star Copolymers by a Hetero-Seeding Effect. J Am Chem Soc 2023; 145:5270-5284. [PMID: 36797682 DOI: 10.1021/jacs.2c12894] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This study unravels the intricate kinetic and thermodynamic pathways involved in the supramolecular copolymerization of the two chiral dipolar naphthalene monoimide (NMI) building blocks (O-NMI and S-NMI), differing merely by a single heteroatom (oxygen vs sulfur). O-NMI exhibits distinct supramolecular polymerization features as compared to S-NMI in terms of its pathway complexity, hierarchical organization, and chiroptical properties. Two distinct self-assembly pathways in O-NMI occur due to the interplay between the competing dipolar interactions among the NMI chromophores and amide-amide hydrogen (H)-bonding that engenders distinct nanotapes and helical fibers, from its antiparallel and parallel stacking modes, respectively. In contrast, the propensity of S-NMI to form only a stable spherical assembly is ascribed to its much stronger amide-amide H-bonding, which outperforms other competing interactions. Under the thermodynamic route, an equimolar mixture of the two monomers generates a temporally controlled chiral statistical supramolecular copolymer that autocatalytically evolves from an initially formed metastable spherical heterostructure. In contrast, the sequence-controlled addition of the two monomers leads to the kinetically driven hetero-seeded block copolymerization. The ability to trap O-NMI in a metastable state allows its secondary nucleation from the surface of the thermodynamically stable S-NMI spherical "seed", which leads to the core-multiarmed "star" copolymer with reversibly and temporally controllable length of the growing O-NMI "arms" from the S-NMI "core". Unlike the one-dimensional self-assembly of O-NMI and its random co-assembly with S-NMI, which are both chiral, unprecedentedly, the preferred helical bias of the nucleating O-NMI fibers is completely inhibited by the absence of stereoregularity of the S-NMI "seed" in the "star" topology.
Collapse
Affiliation(s)
- Payel Khanra
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
8
|
Supramolecular Polymers: Recent Advances Based on the Types of Underlying Interactions. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Khazeber R, Sureshan KM. Single-crystal-to-single-crystal translation of a helical supramolecular polymer to a helical covalent polymer. Proc Natl Acad Sci U S A 2022; 119:e2205320119. [PMID: 35858342 PMCID: PMC9303982 DOI: 10.1073/pnas.2205320119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 01/16/2023] Open
Abstract
Polymers possessing helical conformation in the solid state are in high demand. We report a helical peptide-polymer via the topochemical ene-azide cycloaddition (TEAC) polymerization. The molecules of the designed Gly-Phe-based dipeptide, decorated with ene and azide, assemble in its crystals as β-sheets and as supramolecular helices in two mutually perpendicular directions. While the NH…O H-bonding facilitates β-sheet-like stacking along one direction, weak CH…N H-bonding between the azide-nitrogen and vinylic-hydrogen of molecules belonging to the adjacent stacks arranges them in a head-to-tail manner as supramolecular helices. In the crystal lattice, the azide and alkene of adjacent molecules in the supramolecular helix are suitably preorganized for their TEAC reaction. The dipeptide underwent regio- and stereospecific polymerization upon mild heating in a single-crystal-to-single-crystal fashion, yielding a triazoline-linked helical covalent polymer that could be characterized by single-crystal X-ray diffraction studies. Upon heating, the triazoline-linked polymer undergoes denitrogenation to aziridine-linked polymer, as evidenced by differential scanning calorimetry, thermogravimetric analysis, and solid-state NMR analyses.
Collapse
Affiliation(s)
- Ravichandran Khazeber
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala-695551, India
| | - Kana M. Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala-695551, India
| |
Collapse
|
10
|
Takahashi S, Yagai S. Harmonizing Topological Features of Self-Assembled Fibers by Rosette-Mediated Random Supramolecular Copolymerization and Self-Sorting of Monomers by Photo-Cross-Linking. J Am Chem Soc 2022; 144:13374-13383. [PMID: 35833747 DOI: 10.1021/jacs.2c05484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Random copolymerization is an effective approach to synthesize the desired polymers by harmonizing distinct properties of different monomers. For supramolecular polymers in which monomer binding is inherently dynamic, it is difficult to achieve random copolymerization of monomers with distinct molecular structures and properties due to an enthalpic advantage upon self-recognition (self-sorting). Herein, we demonstrate an example of thermodynamically controlled random supramolecular copolymerization of two monomers functionalized with barbituric acid via the formation of six-membered hydrogen-bonded rosette intermediates to exhibit structural harmonization of the two main-chain motifs, i.e., intrinsically curved and linear motifs. One monomer based on naphthalene chromophore exclusively forms toroidal fibers, whereas another one bearing additional photoreactive diacetylene moiety affords linearly elongated fibers. Supramolecular copolymerization of the two monomers is achieved by cooling hot monomer mixtures in a nonpolar solvent, which results in the formation of thermodynamically stable spirally folded yet elongated fibers. Atomic force microscopic observations and theoretical simulations of the experimental data obtained by absorption spectroscopy reveal the homopolymerization of the diacetylene-functionalized monomer in the high-temperature region, followed by the incorporation of the naphthalene monomer in the medium-temperature region to form supramolecular copolymers with random monomer sequence. Finally, we demonstrate that the random copolymerization process can be switched to a narcissistically self-sorting one by deactivating monomer exchange through the photo-cross-linking of the diacetylene-functionalized monomers.
Collapse
Affiliation(s)
- Sho Takahashi
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shiki Yagai
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.,Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
11
|
Helmers I, Hossain MS, Bäumer N, Wesarg P, Soberats B, Shimizu LS, Fernández G. Anti-cooperative Self-Assembly with Maintained Emission Regulated by Conformational and Steric Effects. Angew Chem Int Ed Engl 2022; 61:e202200390. [PMID: 35112463 PMCID: PMC9311066 DOI: 10.1002/anie.202200390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 12/28/2022]
Abstract
Herein, we present a strategy to enable a maintained emissive behavior in the self-assembled state by enforcing an anti-cooperative self-assembly involving weak intermolecular dye interactions. To achieve this goal, we designed a conformationally flexible monomer unit 1 with a central 1,3-substituted (diphenyl)urea hydrogen bonding synthon that is tethered to two BODIPY dyes featuring sterically bulky trialkoxybenzene substituents at the meso-position. The competition between attractive forces (H-bonding and aromatic interactions) and destabilizing effects (steric and competing conformational effects) limits the assembly, halting the supramolecular growth at the stage of small oligomers. Given the presence of weak dye-dye interactions, the emission properties of molecularly dissolved 1 are negligibly affected upon aggregation. Our findings contribute to broadening the scope of emissive supramolecular assemblies and controlled supramolecular polymerization.
Collapse
Affiliation(s)
- Ingo Helmers
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | | | - Nils Bäumer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Paul Wesarg
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Bartolome Soberats
- Department of ChemistryUniversity of the Balearic IslandsCra. Valldemossa, Km. 7.507122Palma de MallorcaSpain
| | - Linda S. Shimizu
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaSC 29208USA
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
12
|
Tan M, Takeuchi M, Takai A. Spatiotemporal dynamics of supramolecular polymers by in situ quantitative catalyst-free hydroamination. Chem Sci 2022; 13:4413-4423. [PMID: 35509456 PMCID: PMC9006958 DOI: 10.1039/d2sc00035k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/22/2022] [Indexed: 01/07/2023] Open
Abstract
Implementing chemical reactivity into synthetic supramolecular polymers based on π-conjugated molecules has been of great interest to create functional materials with spatiotemporal dynamic properties. However, the development of an in situ chemical reaction within supramolecular polymers is still in its infancy, because one needs to design optimal π-conjugated monomers having excellent reactivity under mild conditions possibly without byproducts or a catalyst. Herein we report the synthesis of a supramolecular polymer based on ethynyl core-substituted naphthalenediimide (S-NDI2) molecules that react with various amines quantitatively in a nonpolar solvent, without a catalyst, at 298 K. Most interestingly, the in situ reaction of the S-NDI2 supramolecular polymer with a linear aliphatic diamine proceeded much faster than the homogeneous reaction of a monomeric naphthalenediimide with the same diamine, affording diamine-linked S-NDI2 oligomers and polymers. The acceleration of in situ hydroamination was presumably due to rapid intra-supramolecular cross-linking between ethynyl and amino groups fixed in close proximity within the supramolecular polymer. Such intra-supramolecular cross-linking did not occur efficiently with an incompatible diamine. The systematic kinetic studies of in situ catalyst-free hydroamination within supramolecular polymers provide us with a useful, facile and versatile tool kit for designing dynamic supramolecular polymeric materials based on electron-deficient π-conjugated monomers.
Collapse
Affiliation(s)
- Minghan Tan
- Molecular Design and Function Group, National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan .,Department of Materials Science and Engineering, Faculty of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group, National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan .,Department of Materials Science and Engineering, Faculty of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Atsuro Takai
- Molecular Design and Function Group, National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| |
Collapse
|
13
|
Rajak A, Das A. Crystallization-Driven Controlled Two-Dimensional (2D) Assemblies from Chromophore-Appended Poly(L-lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angew Chem Int Ed Engl 2022; 61:e202116572. [PMID: 35137517 DOI: 10.1002/anie.202116572] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 12/12/2022]
Abstract
A rational approach towards precision two-dimensional (2D) assemblies by crystallization-driven self-assembly (CDSA) of poly(L-lactides) (PLLAs), end-capped with dipolar dyes like merocyanine (MC) or naphthalene monoimide (NMI) and hydrophobic pyrene (PY) or benzene (Bn) is described. PLLA chains crystallize into diamond-shaped platelets in isopropanol, which forces the terminal dyes to assemble into a 2D array on the platelet surface by either dipolar interactions or π-stacking and exhibit tunable emission. Dipolar dyes play a critical role in imparting colloidal stability and structural uniformity to the 2D crystals, which is partly compromised for hydrophobic ones. Co-crystallization between NMI- and PY-labeled PLLAs yields similar diamond-shaped co-platelets with highly efficient (≈80 %) Förster Resonance Energy Transfer on the 2D surface. Further, the "living" CDSA method confers enlarged, segmented block co-platelets using one of the homopolymers as "seed" and the other as "unimer".
Collapse
Affiliation(s)
- Aritra Rajak
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
14
|
Rajak A, Das A. Crystallization‐Driven Controlled Two‐Dimensional (2D) Assemblies from Chromophore‐Appended Poly(L‐lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aritra Rajak
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science (IACS) 2A & 2B Raja S. C. Mullick Road Jadavpur Kolkata-700032 India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science (IACS) 2A & 2B Raja S. C. Mullick Road Jadavpur Kolkata-700032 India
| |
Collapse
|
15
|
Helmers I, Hossain MS, Bäumer N, Wesarg P, Soberats B, Shimizu LS, Fernandez G. Anti‐cooperative Self‐Assembly with Maintained Emission Regulated by Conformational and Steric Effects. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ingo Helmers
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | | | - Nils Bäumer
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Paul Wesarg
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Bartolome Soberats
- Universitat de les Illes Balears Facultat de Ciencies Quimica Organica SPAIN
| | - Linda S. Shimizu
- University of South Carolina Chemistry and Biochemistry UNITED STATES
| | - Gustavo Fernandez
- WWU Münster Organisch-Chemisches Institut Correnstraße, 4ß 48149 Münster GERMANY
| |
Collapse
|
16
|
Tashiro K, Katayama K, Tamaki K, Pesce L, Shimizu N, Takagi H, Haruki R, Hollamby MJ, Pavan GM, Yagai S. Non-uniform Photoinduced Unfolding of Supramolecular Polymers Leading to Topological Block Nanofibers. Angew Chem Int Ed Engl 2021; 60:26986-26993. [PMID: 34623014 PMCID: PMC9298767 DOI: 10.1002/anie.202110224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Indexed: 01/01/2023]
Abstract
Synthesis of one-dimensional nanofibers with distinct topological (higher-order structural) domains in the same main chain is one of the challenging topics in modern supramolecular polymer chemistry. Non-uniform structural transformation of supramolecular polymer chains by external stimuli may enable preparation of such nanofibers. To demonstrate feasibility of this post-polymerization strategy, we prepared a photoresponsive helically folded supramolecular polymers from a barbiturate monomer containing an azobenzene-embedded rigid π-conjugated scaffold. In contrast to previous helically folded supramolecular polymers composed of a more flexible azobenzene monomer, UV-light induced unfolding of the newly prepared helically folded supramolecular polymers occurred nonuniformly, affording topological block copolymers consisting of folded and unfolded domains. The formation of such blocky copolymers indicates that the photoinduced unfolding of the helically folded structures initiates from relatively flexible parts such as termini or defects. Spontaneous refolding of the unfolded domains was observed after visible-light irradiation followed by aging to restore fully folded structures.
Collapse
Affiliation(s)
- Keigo Tashiro
- Institute for Global Prominent Research (IGPR)Chiba University1–33 Yayoi-choInage-kuChiba263–8522Japan
| | - Kosuke Katayama
- Division of Advanced Science and EngineeringGraduate School of Science and EngineeringChiba University1–33 Yayoi-choInage-kuChiba263–8522Japan
| | - Kenta Tamaki
- Division of Advanced Science and EngineeringGraduate School of Science and EngineeringChiba University1–33 Yayoi-choInage-kuChiba263–8522Japan
| | - Luca Pesce
- Department of Innovative TechnologiesUniversity of Applied Sciences and Arts of Southern SwitzerlandVia La Santa 16962Lugano-ViganelloSwitzerland
| | - Nobutaka Shimizu
- Photon FactoryInstitute of Materials Structure ScienceHigh Energy Accelerator Research OrganizationTsukuba305–0801Japan
| | - Hideaki Takagi
- Photon FactoryInstitute of Materials Structure ScienceHigh Energy Accelerator Research OrganizationTsukuba305–0801Japan
| | - Rie Haruki
- Photon FactoryInstitute of Materials Structure ScienceHigh Energy Accelerator Research OrganizationTsukuba305–0801Japan
| | - Martin J. Hollamby
- School of Physical and Geographical SciencesKeele UniversityKeeleStaffordshireST55BGUK
| | - Giovanni M. Pavan
- Department of Innovative TechnologiesUniversity of Applied Sciences and Arts of Southern SwitzerlandVia La Santa 16962Lugano-ViganelloSwitzerland
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 2410129TorinoItaly
| | - Shiki Yagai
- Institute for Global Prominent Research (IGPR)Chiba University1–33 Yayoi-choInage-kuChiba263–8522Japan
- Department of Applied Chemistry and BiotechnologyGraduate School of EngineeringChiba University1–33 Yayoi-choInage-kuChiba263–8522Japan
| |
Collapse
|
17
|
Tashiro K, Katayama K, Tamaki K, Pesce L, Shimizu N, Takagi H, Haruki R, Hollamby MJ, Pavan GM, Yagai S. Non‐uniform Photoinduced Unfolding of Supramolecular Polymers Leading to Topological Block Nanofibers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Keigo Tashiro
- Institute for Global Prominent Research (IGPR) Chiba University 1–33 Yayoi-cho Inage-ku Chiba 263–8522 Japan
| | - Kosuke Katayama
- Division of Advanced Science and Engineering Graduate School of Science and Engineering Chiba University 1–33 Yayoi-cho Inage-ku Chiba 263–8522 Japan
| | - Kenta Tamaki
- Division of Advanced Science and Engineering Graduate School of Science and Engineering Chiba University 1–33 Yayoi-cho Inage-ku Chiba 263–8522 Japan
| | - Luca Pesce
- Department of Innovative Technologies University of Applied Sciences and Arts of Southern Switzerland Via La Santa 1 6962 Lugano-Viganello Switzerland
| | - Nobutaka Shimizu
- Photon Factory Institute of Materials Structure Science High Energy Accelerator Research Organization Tsukuba 305–0801 Japan
| | - Hideaki Takagi
- Photon Factory Institute of Materials Structure Science High Energy Accelerator Research Organization Tsukuba 305–0801 Japan
| | - Rie Haruki
- Photon Factory Institute of Materials Structure Science High Energy Accelerator Research Organization Tsukuba 305–0801 Japan
| | - Martin J. Hollamby
- School of Physical and Geographical Sciences Keele University Keele Staffordshire ST55BG UK
| | - Giovanni M. Pavan
- Department of Innovative Technologies University of Applied Sciences and Arts of Southern Switzerland Via La Santa 1 6962 Lugano-Viganello Switzerland
- Department of Applied Science and Technology Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino Italy
| | - Shiki Yagai
- Institute for Global Prominent Research (IGPR) Chiba University 1–33 Yayoi-cho Inage-ku Chiba 263–8522 Japan
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University 1–33 Yayoi-cho Inage-ku Chiba 263–8522 Japan
| |
Collapse
|
18
|
Bäumer N, Matern J, Fernández G. Recent progress and future challenges in the supramolecular polymerization of metal-containing monomers. Chem Sci 2021; 12:12248-12265. [PMID: 34603655 PMCID: PMC8480320 DOI: 10.1039/d1sc03388c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of discrete molecular entities into functional nanomaterials has become a major research area in the past decades. The library of investigated compounds has diversified significantly, while the field as a whole has matured. The incorporation of metal ions in the molecular design of the (supra-)molecular building blocks greatly expands the potential applications, while also offering a promising approach to control molecular recognition and attractive and/or repulsive intermolecular binding events. Hence, supramolecular polymerization of metal-containing monomers has emerged as a major research focus in the field. In this perspective article, we highlight recent significant advances in supramolecular polymerization of metal-containing monomers and discuss their implications for future research. Additionally, we also outline some major challenges that metallosupramolecular chemists (will) have to face to produce metallosupramolecular polymers (MSPs) with advanced applications and functionalities.
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Jonas Matern
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
19
|
Shyshov O, Haridas SV, Pesce L, Qi H, Gardin A, Bochicchio D, Kaiser U, Pavan GM, von Delius M. Living supramolecular polymerization of fluorinated cyclohexanes. Nat Commun 2021; 12:3134. [PMID: 34035277 PMCID: PMC8149861 DOI: 10.1038/s41467-021-23370-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
The development of powerful methods for living covalent polymerization has been a key driver of progress in organic materials science. While there have been remarkable reports on living supramolecular polymerization recently, the scope of monomers is still narrow and a simple solution to the problem is elusive. Here we report a minimalistic molecular platform for living supramolecular polymerization that is based on the unique structure of all-cis 1,2,3,4,5,6-hexafluorocyclohexane, the most polar aliphatic compound reported to date. We use this large dipole moment (6.2 Debye) not only to thermodynamically drive the self-assembly of supramolecular polymers, but also to generate kinetically trapped monomeric states. Upon addition of well-defined seeds, we observed that the dormant monomers engage in a kinetically controlled supramolecular polymerization. The obtained nanofibers have an unusual double helical structure and their length can be controlled by the ratio between seeds and monomers. The successful preparation of supramolecular block copolymers demonstrates the versatility of the approach.
Collapse
Affiliation(s)
| | | | - Luca Pesce
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland
| | - Haoyuan Qi
- Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, University of Ulm, Ulm, Germany
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technical University of Dresden, Dresden, Germany
| | - Andrea Gardin
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Davide Bochicchio
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland
- Department of Physics, Università degli studi di Genova, Genova, Italy
| | - Ute Kaiser
- Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, University of Ulm, Ulm, Germany
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland.
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy.
| | - Max von Delius
- Institute of Organic Chemistry, University of Ulm, Ulm, Germany.
| |
Collapse
|
20
|
Xu XF, Zhu RM, Pan CY, You YZ, Zhang WJ, Hong CY. Polymerization-Induced Self-Assembly Driven by the Synergistic Effects of Aromatic and Solvophobic Interactions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiao-Fei Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ren-Man Zhu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
21
|
Abstract
Different from molecular level topology, the development of supramolecular topology has been limited due to a lack of reliable synthetic methods. Here we describe a supramolecular strategy of accessing Möbius strip, a fascinating topological object featured with only a single edge and single side. Through bending and cyclization of twisted nanofibers self-assembled from chiral glutamate amphiphiles, supramolecular nano-toroids with various twist numbers were obtained. Electron microscopic techniques could clearly identify the formation of Möbius strips when twist numbers on the toroidal fibers are odd ones. Spectroscopic and morphological analysis indicates that the helicity of the Möbius strips and nano-toroids stems from the molecular chirality of glutamate molecules. Therefore, M- and P-helical Möbius strips could be formed from L- and D-amphiphiles, respectively. Our experimental results and theoretical simulations may advance the prospect of creating chiral topologically complex structures via supramolecular approach.
Collapse
|
22
|
Aizawa T, Takahashi S, Isobe A, Datta S, Sotome H, Miyasaka H, Kajitani T, Yagai S. Fluorescent Supramolecular Polymorphism Driven by Distinct Hydrogen Bonding Lattice. CHEM LETT 2020. [DOI: 10.1246/cl.200329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takumi Aizawa
- Division of Advanced Science and Engineering, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Sho Takahashi
- Division of Advanced Science and Engineering, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Atsushi Isobe
- Division of Advanced Science and Engineering, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Sougata Datta
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Takashi Kajitani
- Materials Analysis Division, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Shiki Yagai
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Institute for Global Prominent Research (IGPR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
23
|
Fukui T, Garcia-Hernandez JD, MacFarlane LR, Lei S, Whittell GR, Manners I. Seeded Self-Assembly of Charge-Terminated Poly(3-hexylthiophene) Amphiphiles Based on the Energy Landscape. J Am Chem Soc 2020; 142:15038-15048. [PMID: 32786794 DOI: 10.1021/jacs.0c06185] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The creation of 1D π-conjugated nanofibers with precise control and optimized optoelectronic properties is of widespread interest for applications as nanowires. "Living" crystallization-driven self-assembly (CDSA) is a seeded growth method of growing importance for the preparation of uniform 1D fiber-like micelles from a range of crystallizable polymeric amphiphiles. However, in the case of polythiophenes, one of the most important classes of conjugated polymer, only limited success has been achieved to date using block copolymers as precursors. Herein, we describe studies of the living CDSA of phosphonium-terminated amphiphilic poly(3-hexylthiophene)s to prepare colloidally stable nanofibers. In depth studies of the relationship between the degree of polymerization and the self-assembly behavior permitted the unveiling of the energy landscape of the living CDSA process. On the basis of the kinetic and thermodynamic insight provided, we have been able to achieve an unprecedented level of control over the length of low dispersity fiber-like micelles from 40 nm to 2.8 μm.
Collapse
Affiliation(s)
- Tomoya Fukui
- Department of Chemistry, University of Victoria, Victoria, Bristish Columbia V8P 5C2, Canada
| | | | - Liam R MacFarlane
- Department of Chemistry, University of Victoria, Victoria, Bristish Columbia V8P 5C2, Canada
| | - Shixing Lei
- Department of Chemistry, University of Victoria, Victoria, Bristish Columbia V8P 5C2, Canada
| | - George R Whittell
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, Bristish Columbia V8P 5C2, Canada
| |
Collapse
|
24
|
Isobe A, Prabhu DD, Datta S, Aizawa T, Yagai S. Effect of an Aromatic Solvent on Hydrogen‐Bond‐Directed Supramolecular Polymerization Leading to Distinct Topologies. Chemistry 2020; 26:8997-9004. [DOI: 10.1002/chem.202001344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/28/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Atsushi Isobe
- Division of Advanced Science and EngineeringGraduate School of EngineeringChiba University 1-33 Yayoi-cho Inage-ku Chiba 263-8522 Japan
| | - Deepak D. Prabhu
- Graduate School of EngineeringChiba University 1-33 Yayoi-cho Inage-ku Chiba 263-8522 Japan
| | - Sougata Datta
- Graduate School of EngineeringChiba University 1-33 Yayoi-cho Inage-ku Chiba 263-8522 Japan
| | - Takumi Aizawa
- Division of Advanced Science and EngineeringGraduate School of EngineeringChiba University 1-33 Yayoi-cho Inage-ku Chiba 263-8522 Japan
| | - Shiki Yagai
- Graduate School of EngineeringChiba University 1-33 Yayoi-cho Inage-ku Chiba 263-8522 Japan
- Institute for Global Prominent Research (IGPR) 1-33 Yayoi-cho Inage-ku Chiba 263-8522 Japan
| |
Collapse
|
25
|
Sarkar A, Behera T, Sasmal R, Capelli R, Empereur-Mot C, Mahato J, Agasti SS, Pavan GM, Chowdhury A, George SJ. Cooperative Supramolecular Block Copolymerization for the Synthesis of Functional Axial Organic Heterostructures. J Am Chem Soc 2020; 142:11528-11539. [PMID: 32501694 DOI: 10.1021/jacs.0c04404] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Supramolecular block copolymerzation with optically or electronically complementary monomers provides an attractive bottom-up approach for the non-covalent synthesis of nascent axial organic heterostructures, which promises to deliver useful applications in energy conversion, optoelectronics, and catalysis. However, the synthesis of supramolecular block copolymers (BCPs) constitutes a significant challenge due to the exchange dynamics of non-covalently bound monomers and hence requires fine microstructure control. Furthermore, temporal stability of the segmented microstructure is a prerequisite to explore the applications of functional supramolecular BCPs. Herein, we report the cooperative supramolecular block copolymerization of fluorescent monomers in solution under thermodynamic control for the synthesis of axial organic heterostructures with light-harvesting properties. The fluorescent nature of the core-substituted naphthalene diimide (cNDI) monomers enables a detailed spectroscopic probing during the supramolecular block copolymerization process to unravel a nucleation-growth mechanism, similar to that of chain copolymerization for covalent block copolymers. Structured illumination microscopy (SIM) imaging of BCP chains characterizes the segmented microstructure and also allows size distribution analysis to reveal the narrow polydispersity (polydispersity index (PDI) ≈ 1.1) for the individual block segments. Spectrally resolved fluorescence microscopy on single block copolymerized organic heterostructures shows energy migration and light-harvesting across the interfaces of linearly connected segments. Molecular dynamics and metadynamics simulations provide useful mechanistic insights into the free energy of interaction between the monomers as well as into monomer exchange mechanisms and dynamics, which have a crucial impact on determining the copolymer microstructure. Our comprehensive spectroscopic, microscopic, and computational analyses provide an unambiguous structural, dynamic, and functional characterization of the supramolecular BCPs. The strategy presented here is expected to pave the way for the synthesis of multi-component organic heterostructures for various functions.
Collapse
Affiliation(s)
- Aritra Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Tejmani Behera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ranjan Sasmal
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Riccardo Capelli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi24, 10129 Torino, Italy
| | - Charly Empereur-Mot
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Jaladhar Mahato
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sarit S Agasti
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi24, 10129 Torino, Italy.,Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
26
|
Sarkar A, Sasmal R, Empereur-mot C, Bochicchio D, Kompella SVK, Sharma K, Dhiman S, Sundaram B, Agasti SS, Pavan GM, George SJ. Self-Sorted, Random, and Block Supramolecular Copolymers via Sequence Controlled, Multicomponent Self-Assembly. J Am Chem Soc 2020; 142:7606-7617. [DOI: 10.1021/jacs.0c01822] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Aritra Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMAt), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Ranjan Sasmal
- New Chemistry Unit and School of Advanced Materials (SAMAt), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Charly Empereur-mot
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Davide Bochicchio
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Srinath V. K. Kompella
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Kamna Sharma
- New Chemistry Unit and School of Advanced Materials (SAMAt), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Shikha Dhiman
- New Chemistry Unit and School of Advanced Materials (SAMAt), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Balasubramanian Sundaram
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Sarit S. Agasti
- New Chemistry Unit and School of Advanced Materials (SAMAt), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Giovanni M. Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi24, 10129 Torino, Italy
| | - Subi J. George
- New Chemistry Unit and School of Advanced Materials (SAMAt), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
27
|
Aizawa T, Aratsu K, Datta S, Mashimo T, Seki T, Kajitani T, Silly F, Yagai S. Hydrogen bond-directed supramolecular polymorphism leading to soft and hard molecular ordering. Chem Commun (Camb) 2020; 56:4280-4283. [DOI: 10.1039/d0cc01636e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformation of metastable supramolecular stacks of hydrogen-bonded rosettes composed of an ester-containing barbiturated naphthalene into crystalline nanosheets occurs through the rearrangement of hydrogen-bonding patterns.
Collapse
Affiliation(s)
- Takumi Aizawa
- Division of Advanced Science and Engineering
- Graduate School of Science and Engineering
- Chiba University
- Chiba 263-85223
- Japan
| | - Keisuke Aratsu
- Division of Advanced Science and Engineering
- Graduate School of Science and Engineering
- Chiba University
- Chiba 263-85223
- Japan
| | - Sougata Datta
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Takaki Mashimo
- Division of Applied Chemistry and Frontier Chemistry Center (FCC) Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| | - Tomohiro Seki
- Division of Applied Chemistry and Frontier Chemistry Center (FCC) Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| | - Takashi Kajitani
- Suzukakedai Materials Analysis Division
- Technical Department
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | | | - Shiki Yagai
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
- Institute for Global Prominent Research (IGPR)
| |
Collapse
|