1
|
Li C, Guan M, Hong H, Chen K, Wang X, Ma H, Wang A, Li Z, Hu H, Xiao J, Dai J, Wan X, Liu K, Meng S, Dai Q. Coherent ultrafast photoemission from a single quantized state of a one-dimensional emitter. SCIENCE ADVANCES 2023; 9:eadf4170. [PMID: 37824625 PMCID: PMC10569710 DOI: 10.1126/sciadv.adf4170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Femtosecond laser-driven photoemission source provides an unprecedented femtosecond-resolved electron probe not only for atomic-scale ultrafast characterization but also for free-electron radiation sources. However, for conventional metallic electron source, intense lasers may induce a considerable broadening of emitting energy level, which results in large energy spread (>600 milli-electron volts) and thus limits the spatiotemporal resolution of electron probe. Here, we demonstrate the coherent ultrafast photoemission from a single quantized energy level of a carbon nanotube. Its one-dimensional body can provide a sharp quantized electronic excited state, while its zero-dimensional tip can provide a quantized energy level act as a narrow photoemission channel. Coherent resonant tunneling electron emission is evidenced by a negative differential resistance effect and a field-driven Stark splitting effect. The estimated energy spread is ~57 milli-electron volts, which suggests that the proposed carbon nanotube electron source may promote electron probe simultaneously with subangstrom spatial resolution and femtosecond temporal resolution.
Collapse
Affiliation(s)
- Chi Li
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Mengxue Guan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing 100190, China
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Hao Hong
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Ke Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaowei Wang
- Department of Physics, Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China
| | - He Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Aiwei Wang
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhenjun Li
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hai Hu
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jianfeng Xiao
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jiayu Dai
- Department of Physics, Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China
| | - Xiangang Wan
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing 100190, China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
2
|
Jiang P, Zheng W, Li X, Zhang L, Liu Y, Wang Y, Li Y, Gao Y, Yang H, Liu Y, Gong Q, Wu C. Imaging and Controlling Ultrafast Electron Pulses Emitted from Plasmonic Nanostructures. NANO LETTERS 2023; 23:7327-7333. [PMID: 37535438 DOI: 10.1021/acs.nanolett.3c01644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We experimentally study photoemission from gold nanodisk arrays using space-, time-, and energy-resolved photoemission electron microscopy. When excited by a plasmonic resonant infrared (IR) laser pulse, plasmonic hotspots are generated owing to local surface plasmon resonance. Photoelectrons emitted from each plasmonic hotspot form a nanoscale and ultrashort electron pulse. When the system is excited by an extreme ultraviolet (EUV) laser pulse, a uniformly distributed photoelectron cloud is formed across the sample surface. When excited by the IR and EUV laser pulses together, both the photoemission image and kinetic energy vary significantly for the IR laser-generated electrons depending on the time delay between the two laser pulses. These observations are well explained by the Coulomb interaction with the EUV laser-generated electron cloud. Our study offers a feasible approach to manipulate the energy of electron pulse emitted from a plasmonic nanostructure on an ultrafast time scale.
Collapse
Affiliation(s)
- Pengzuo Jiang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Wei Zheng
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Xiaofang Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Linfeng Zhang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Yu Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Yang Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Yaolong Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Yunan Gao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Hong Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Chengyin Wu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| |
Collapse
|
3
|
Kim HY, Garg M, Mandal S, Seiffert L, Fennel T, Goulielmakis E. Attosecond field emission. Nature 2023; 613:662-666. [PMID: 36697865 PMCID: PMC9876796 DOI: 10.1038/s41586-022-05577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/18/2022] [Indexed: 01/26/2023]
Abstract
Field emission of electrons underlies great advances in science and technology, ranging from signal processing at ever higher frequencies1 to imaging of the atomic-scale structure of matter2 with picometre resolution. The advancing of electron microscopy techniques to enable the complete visualization of matter on the native spatial (picometre) and temporal (attosecond) scales of electron dynamics calls for techniques that can confine and examine the field emission on sub-femtosecond time intervals. Intense laser pulses have paved the way to this end3,4 by demonstrating femtosecond confinement5,6 and sub-optical cycle control7,8 of the optical field emission9 from nanostructured metals. Yet the measurement of attosecond electron pulses has remained elusive. We used intense, sub-cycle light transients to induce optical field emission of electron pulses from tungsten nanotips and a weak replica of the same transient to directly investigate the emission dynamics in real time. Access to the temporal properties of the electron pulses rescattering off the tip surface, including the duration τ = (53 as ± 5 as) and chirp, and the direct exploration of nanoscale near fields open new prospects for research and applications at the interface of attosecond physics and nano-optics.
Collapse
Affiliation(s)
- H Y Kim
- Institut für Physik, Universität Rostock, Rostock, Germany
| | - M Garg
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - S Mandal
- Institut für Physik, Universität Rostock, Rostock, Germany
| | - L Seiffert
- Institut für Physik, Universität Rostock, Rostock, Germany
| | - T Fennel
- Institut für Physik, Universität Rostock, Rostock, Germany
| | - E Goulielmakis
- Institut für Physik, Universität Rostock, Rostock, Germany.
| |
Collapse
|
4
|
Zhang L, Wang X, Chen H, Liu C, Deng S. A planar plasmonic nano-gap and its array for enhancing light-matter interactions at the nanoscale. NANOSCALE 2022; 14:12257-12264. [PMID: 35968906 DOI: 10.1039/d2nr01282k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gap surface plasmon (GSP) modes, the localized electromagnetic modes existing between two metal structures separated by a nano-gap, are able to support subwavelength confinement and enhancement of a light field upon resonance excitation. Such features can greatly facilitate various light-matter interactions at the nanoscale. Here, we demonstrate a planar nano-gap architecture existing between a pair of tip-shaped gold pads. The nano-gap gives rise to plasmon resonances with strong light confinement close to the tip surfaces in the visible to near-infrared spectral region. Accordingly, we showed that the plasmonic gold nano-gap can exhibit strong intrinsic second-harmonic generation (SHG) and significantly enhance the Raman scattering signal from small molecules. Furthermore, by arranging the nano-gap into arrays, a stronger SHG signal can be obtained. In addition, the surface enhanced Raman scattering (SERS) activity is also improved by two orders of magnitude compared to that of a single nano-gap. Overall, the findings in our study have demonstrated the potential applications of a plasmonic nano-gap and its arrays for signal generation and sensitive chemical sensing at the nanoscale.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ximiao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
5
|
Gerasimenko AY, Kuksin AV, Shaman YP, Kitsyuk EP, Fedorova YO, Murashko DT, Shamanaev AA, Eganova EM, Sysa AV, Savelyev MS, Telyshev DV, Pavlov AA, Glukhova OE. Hybrid Carbon Nanotubes-Graphene Nanostructures: Modeling, Formation, Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2812. [PMID: 36014677 PMCID: PMC9412346 DOI: 10.3390/nano12162812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 06/06/2023]
Abstract
A technology for the formation and bonding with a substrate of hybrid carbon nanostructures from single-walled carbon nanotubes (SWCNT) and reduced graphene oxide (rGO) by laser radiation is proposed. Molecular dynamics modeling by the real-time time-dependent density functional tight-binding (TD-DFTB) method made it possible to reveal the mechanism of field emission centers formation in carbon nanostructures layers. Laser radiation stimulates the formation of graphene-nanotube covalent contacts and also induces a dipole moment of hybrid nanostructures, which ensures their orientation along the force lines of the radiation field. The main mechanical and emission characteristics of the formed hybrid nanostructures were determined. By Raman spectroscopy, the effect of laser radiation energy on the defectiveness of all types of layers formed from nanostructures was determined. Laser exposure increased the hardness of all samples more than twice. Maximum hardness was obtained for hybrid nanostructure with a buffer layer (bl) of rGO and the main layer of SWCNT-rGO(bl)-SWCNT and was 54.4 GPa. In addition, the adhesion of rGO to the substrate and electron transport between the substrate and rGO(bl)-SWCNT increased. The rGO(bl)-SWCNT cathode with an area of ~1 mm2 showed a field emission current density of 562 mA/cm2 and stability for 9 h at a current of 1 mA. The developed technology for the formation of hybrid nanostructures can be used both to create high-performance and stable field emission cathodes and in other applications where nanomaterials coating with good adhesion, strength, and electrical conductivity is required.
Collapse
Affiliation(s)
- Alexander Yu. Gerasimenko
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, 124498 Moscow, Russia
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Artem V. Kuksin
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, 124498 Moscow, Russia
| | - Yury P. Shaman
- Scientific-Manufacturing Complex “Technological Centre”, Shokin Square 1, bld. 7 off. 7237, 124498 Moscow, Russia
- Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Leninsky Prospekt 32A, 119991 Moscow, Russia
| | - Evgeny P. Kitsyuk
- Scientific-Manufacturing Complex “Technological Centre”, Shokin Square 1, bld. 7 off. 7237, 124498 Moscow, Russia
| | - Yulia O. Fedorova
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, 124498 Moscow, Russia
- Scientific-Manufacturing Complex “Technological Centre”, Shokin Square 1, bld. 7 off. 7237, 124498 Moscow, Russia
| | - Denis T. Murashko
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, 124498 Moscow, Russia
| | - Artemiy A. Shamanaev
- Scientific-Manufacturing Complex “Technological Centre”, Shokin Square 1, bld. 7 off. 7237, 124498 Moscow, Russia
| | - Elena M. Eganova
- Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Leninsky Prospekt 32A, 119991 Moscow, Russia
| | - Artem V. Sysa
- Scientific-Manufacturing Complex “Technological Centre”, Shokin Square 1, bld. 7 off. 7237, 124498 Moscow, Russia
| | - Mikhail S. Savelyev
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, 124498 Moscow, Russia
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Dmitry V. Telyshev
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, 124498 Moscow, Russia
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Alexander A. Pavlov
- Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Leninsky Prospekt 32A, 119991 Moscow, Russia
| | - Olga E. Glukhova
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
- Department of Physics, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia
| |
Collapse
|
6
|
Zhao J, Li Z, Cole MT, Wang A, Guo X, Liu X, Lyu W, Teng H, Qv Y, Liu G, Chen K, Zhou S, Xiao J, Li Y, Li C, Dai Q. Nanocone-Shaped Carbon Nanotubes Field-Emitter Array Fabricated by Laser Ablation. NANOMATERIALS 2021; 11:nano11123244. [PMID: 34947593 PMCID: PMC8707308 DOI: 10.3390/nano11123244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022]
Abstract
The nanocone-shaped carbon nanotubes field-emitter array (NCNA) is a near-ideal field-emitter array that combines the advantages of geometry and material. In contrast to previous methods of field-emitter array, laser ablation is a low-cost and clean method that does not require any photolithography or wet chemistry. However, nanocone shapes are hard to achieve through laser ablation due to the micrometer-scale focusing spot. Here, we develop an ultraviolet (UV) laser beam patterning technique that is capable of reliably realizing NCNA with a cone-tip radius of ≈300 nm, utilizing optimized beam focusing and unique carbon nanotube–light interaction properties. The patterned array provided smaller turn-on fields (reduced from 2.6 to 1.6 V/μm) in emitters and supported a higher (increased from 10 to 140 mA/cm2) and more stable emission than their unpatterned counterparts. The present technique may be widely applied in the fabrication of high-performance CNTs field-emitter arrays.
Collapse
Affiliation(s)
- Jiuzhou Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China; (J.Z.); (W.L.)
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.L.); (A.W.); (X.G.); (X.L.); (H.T.); (Y.Q.); (G.L.); (K.C.); (S.Z.); (J.X.)
| | - Zhenjun Li
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.L.); (A.W.); (X.G.); (X.L.); (H.T.); (Y.Q.); (G.L.); (K.C.); (S.Z.); (J.X.)
- GBA Research Innovation Institute for Nanotechnology, Guangzhou 510700, China
| | - Matthew Thomas Cole
- Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, UK;
| | - Aiwei Wang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.L.); (A.W.); (X.G.); (X.L.); (H.T.); (Y.Q.); (G.L.); (K.C.); (S.Z.); (J.X.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangdong Guo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.L.); (A.W.); (X.G.); (X.L.); (H.T.); (Y.Q.); (G.L.); (K.C.); (S.Z.); (J.X.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinchuan Liu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.L.); (A.W.); (X.G.); (X.L.); (H.T.); (Y.Q.); (G.L.); (K.C.); (S.Z.); (J.X.)
| | - Wei Lyu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China; (J.Z.); (W.L.)
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.L.); (A.W.); (X.G.); (X.L.); (H.T.); (Y.Q.); (G.L.); (K.C.); (S.Z.); (J.X.)
| | - Hanchao Teng
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.L.); (A.W.); (X.G.); (X.L.); (H.T.); (Y.Q.); (G.L.); (K.C.); (S.Z.); (J.X.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunpeng Qv
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.L.); (A.W.); (X.G.); (X.L.); (H.T.); (Y.Q.); (G.L.); (K.C.); (S.Z.); (J.X.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanjiang Liu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.L.); (A.W.); (X.G.); (X.L.); (H.T.); (Y.Q.); (G.L.); (K.C.); (S.Z.); (J.X.)
| | - Ke Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.L.); (A.W.); (X.G.); (X.L.); (H.T.); (Y.Q.); (G.L.); (K.C.); (S.Z.); (J.X.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenghan Zhou
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.L.); (A.W.); (X.G.); (X.L.); (H.T.); (Y.Q.); (G.L.); (K.C.); (S.Z.); (J.X.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianfeng Xiao
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.L.); (A.W.); (X.G.); (X.L.); (H.T.); (Y.Q.); (G.L.); (K.C.); (S.Z.); (J.X.)
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China; (J.Z.); (W.L.)
- Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou 350207, China
- Correspondence: (Y.L.); (C.L.); (Q.D.)
| | - Chi Li
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.L.); (A.W.); (X.G.); (X.L.); (H.T.); (Y.Q.); (G.L.); (K.C.); (S.Z.); (J.X.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.L.); (C.L.); (Q.D.)
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.L.); (A.W.); (X.G.); (X.L.); (H.T.); (Y.Q.); (G.L.); (K.C.); (S.Z.); (J.X.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.L.); (C.L.); (Q.D.)
| |
Collapse
|
7
|
Zhou S, Chen K, Cole MT, Li Z, Li M, Chen J, Lienau C, Li C, Dai Q. Ultrafast Electron Tunneling Devices-From Electric-Field Driven to Optical-Field Driven. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101449. [PMID: 34240495 DOI: 10.1002/adma.202101449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/05/2021] [Indexed: 06/13/2023]
Abstract
The search for ever higher frequency information processing has become an area of intense research activity within the micro, nano, and optoelectronics communities. Compared to conventional semiconductor-based diffusive transport electron devices, electron tunneling devices provide significantly faster response times due to near-instantaneous tunneling that occurs at sub-femtosecond timescales. As a result, the enhanced performance of electron tunneling devices is demonstrated, time and again, to reimagine a wide variety of traditional electronic devices with a variety of new "lightwave electronics" emerging, each capable of reducing the electron transport channel transit time down to attosecond timescales. In response to unprecedented rapid progress within this field, here the current state-of-the-art in electron tunneling devices is reviewed, current challenges and opportunities are highlighted, and possible future research directions are identified.
Collapse
Affiliation(s)
- Shenghan Zhou
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Matthew Thomas Cole
- Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Zhenjun Li
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mo Li
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Christoph Lienau
- Institut für Physik, Center of Interface Science, Carl von Ossietzky Universität, 26129, Oldenburg, Germany
| | - Chi Li
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Lloyd-Hughes J, Oppeneer PM, Pereira Dos Santos T, Schleife A, Meng S, Sentef MA, Ruggenthaler M, Rubio A, Radu I, Murnane M, Shi X, Kapteyn H, Stadtmüller B, Dani KM, da Jornada FH, Prinz E, Aeschlimann M, Milot RL, Burdanova M, Boland J, Cocker T, Hegmann F. The 2021 ultrafast spectroscopic probes of condensed matter roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:353001. [PMID: 33951618 DOI: 10.1088/1361-648x/abfe21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
In the 60 years since the invention of the laser, the scientific community has developed numerous fields of research based on these bright, coherent light sources, including the areas of imaging, spectroscopy, materials processing and communications. Ultrafast spectroscopy and imaging techniques are at the forefront of research into the light-matter interaction at the shortest times accessible to experiments, ranging from a few attoseconds to nanoseconds. Light pulses provide a crucial probe of the dynamical motion of charges, spins, and atoms on picosecond, femtosecond, and down to attosecond timescales, none of which are accessible even with the fastest electronic devices. Furthermore, strong light pulses can drive materials into unusual phases, with exotic properties. In this roadmap we describe the current state-of-the-art in experimental and theoretical studies of condensed matter using ultrafast probes. In each contribution, the authors also use their extensive knowledge to highlight challenges and predict future trends.
Collapse
Affiliation(s)
- J Lloyd-Hughes
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - P M Oppeneer
- Department of Physics and Astronomy, Uppsala University, PO Box 516, S-75120 Uppsala, Sweden
| | - T Pereira Dos Santos
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - A Schleife
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - S Meng
- Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - M A Sentef
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science (CFEL), 22761 Hamburg, Germany
| | - M Ruggenthaler
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science (CFEL), 22761 Hamburg, Germany
| | - A Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science (CFEL), 22761 Hamburg, Germany
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco UPV/EHU 20018 San Sebastián, Spain
- Center for Computational Quantum Physics (CCQ), The Flatiron Institute, 162 Fifth Avenue, New York, NY, 10010, United States of America
| | - I Radu
- Department of Physics, Freie Universität Berlin, Germany
- Max Born Institute, Berlin, Germany
| | - M Murnane
- JILA, University of Colorado and NIST, Boulder, CO, United States of America
| | - X Shi
- JILA, University of Colorado and NIST, Boulder, CO, United States of America
| | - H Kapteyn
- JILA, University of Colorado and NIST, Boulder, CO, United States of America
| | - B Stadtmüller
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - K M Dani
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - F H da Jornada
- Department of Materials Science and Engineering, Stanford University, Stanford, 94305, CA, United States of America
| | - E Prinz
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - M Aeschlimann
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - R L Milot
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - M Burdanova
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - J Boland
- Photon Science Institute, Department of Electrical and Electronic Engineering, University of Manchester, United Kingdom
| | - T Cocker
- Michigan State University, United States of America
| | | |
Collapse
|
9
|
Abstract
Near-infrared (NIR) luminescent materials have emerged as a growing field of interest, particularly for imaging and optics applications in biology, chemistry, and physics. However, the development of materials for this and other use cases has been hindered by a range of issues that prevents their widespread use beyond benchtop research. This review explores emerging trends in some of the most promising NIR materials and their applications. In particular, we focus on how a more comprehensive understanding of intrinsic NIR material properties might allow researchers to better leverage these traits for innovative and robust applications in biological and physical sciences.
Collapse
Affiliation(s)
- Christopher T. Jackson
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Sanghwa Jeong
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | | | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
- Innovative Genomics Institute (IGI), Berkeley, CA, USA
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|