1
|
Zhang S, Hu Y, Li M, Xie Y. Reductive Amination of Aldehyde and Ketone with Ammonia and H 2 by an In Situ-Generated Cobalt Catalyst under Mild Conditions. Org Lett 2024; 26:7122-7127. [PMID: 39166977 DOI: 10.1021/acs.orglett.4c02365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Herein, we present the simplest approach for the synthesis of primary amines via reductive amination using H2 as a reductant and aqueous ammonia as a nitrogen source, catalyzed by amorphous Co particles. The highly active Co particles were prepared in situ by simply mixing commercially available CoCl2 and NaBH4/NaHBEt3 without any ligand or support. This reaction system features mild conditions (80 °C, 1-10 bar), high selectivity (99%), a wide substrate scope, simple operation, and easy separation of the catalyst. The successful large-scale application of this reaction in the production of primary amines suggests its potential industrial interest.
Collapse
Affiliation(s)
- Shiyun Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yue Hu
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Meichao Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yinjun Xie
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
2
|
Ji J, Huo Y, Dai Z, Chen Z, Tu T. Manganese-Catalyzed Mono-N-Methylation of Aliphatic Primary Amines without the Requirement of External High-Hydrogen Pressure. Angew Chem Int Ed Engl 2024; 63:e202318763. [PMID: 38300154 DOI: 10.1002/anie.202318763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
The synthesis of mono-N-methylated aliphatic primary amines has traditionally been challenging, requiring noble metal catalysts and high-pressure H2 for achieving satisfactory yields and selectivity. Herein, we developed an approach for the selective coupling of methanol and aliphatic primary amines, without high-pressure hydrogen, using a manganese-based catalyst. Remarkably, up to 98 % yields with broad substrate scope were achieved at low catalyst loadings. Notably, due to the weak base-catalyzed alcoholysis of formamide intermediates, our novel protocol not only obviates the addition of high-pressure H2 but also prevents side secondary N-methylation, supported by control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Jiale Ji
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yinghao Huo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Zhaowen Dai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Zhening Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
3
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
4
|
Chowdhury D, Mukherjee A. Easy Access to Tertiary Amines from Carbonyl Compounds with Substituted Amine-Boranes: A Substrate, Catalyst, and Additive-Free Approach Under Mild Conditions. Chem Asian J 2023; 18:e202300661. [PMID: 37671911 DOI: 10.1002/asia.202300661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
Tertiary amines are ubiquitous and play an essential role in organocatalysis, pharmaceuticals, and fine chemicals. Amongst various synthetic procedures known for their synthesis, the reductive amination of carbonyl compounds has been found to be a proficient method. Over the past few decades, different synthetic strategies for reductive amination have been developed. Most of them suffer from the use of transition metals and/or harsh reaction conditions. Herein, we present an efficient, operationally simple protocol for the chemoselective transformation of carbonyl compounds to tertiary amines under benign conditions. The strategy encompasses a broad substrate scope under the metal-free condition at room temperature and does not require any solvent. A detailed mechanistic investigation was performed with the aid of control experiments and computational study to shed light on the reaction pathway.
Collapse
Affiliation(s)
- Deep Chowdhury
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur-492015, Chhattisgarh, India
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur-492015, Chhattisgarh, India
| |
Collapse
|
5
|
Luque-Gómez A, García-Orduña P, Lahoz FJ, Iglesias M. Synthesis and catalytic activity of well-defined Co(I) complexes based on NHC-phosphane pincer ligands. Dalton Trans 2023; 52:12779-12788. [PMID: 37615585 DOI: 10.1039/d3dt00463e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A new methodology for the preparation of Co(I)-NHC (NHC = N-heterocyclic carbene) complexes, namely, [Co(PCNHCP)(CO)2][Co(CO)4] (1) and [Co(PCNHCP)(CO)2]BF4 (2), has been developed (PCNHCP = 1,3-bis(2-(diphenylphosphanyl)ethyl)-imidazol-2-ylidene). Both complexes can be straightforwardly prepared by direct reaction of their parent imidazolium salts with the Co(0) complex Co2(CO)8. Complex 1 efficiently catalyses the reductive amination of furfural and levulinic acid employing silanes as reducing agents under mild conditions. Furfural has been converted into a variety of secondary and tertiary amines employing dimethyl carbonate as the solvent, while levulinic acid has been converted into pyrrolidines under solventless conditions. Dehydrocoupling of the silane to give polysilanes has been observed to occur as a side reaction of the hydrosilylation process.
Collapse
Affiliation(s)
- Ana Luque-Gómez
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| | - Pilar García-Orduña
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| | - Fernando J Lahoz
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| | - Manuel Iglesias
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| |
Collapse
|
6
|
Kuehn MA, Fernandez W, Zall CM. Structure and Thermodynamic Hydricity in Cobalt(triphosphine)(monophosphine) Hydrides. Inorg Chem 2023. [PMID: 37216471 DOI: 10.1021/acs.inorgchem.2c04124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mononuclear cobalt hydride complex [HCo(triphos)(PMe3)], in which triphos = PhP(CH2CH2PPh2)2, was synthesized and characterized by X-ray crystallography and by 1H and 31P NMR spectroscopy. The geometry of the compound is a distorted trigonal bipyramid in which the axial positions are occupied by the hydride and the central phosphorus atom of the triphos ligand, while the PMe3 and terminal triphos donor atoms occupy the equatorial positions. Protonation of [HCo(triphos)(PMe3)] generates H2 and the Co(I) cation, [Co(triphos)(PMe3)]+, and this reaction is reversible under an atmosphere of H2 when the proton source is weakly acidic. The thermodynamic hydricity of HCo(triphos)(PMe3) was determined to be 40.3 kcal/mol in MeCN from measurements of these equilibria. The reactivity of the hydride is, therefore, well suited to CO2 hydrogenation catalysis. Density functional theory (DFT) calculations were performed to evaluate the structures and hydricities of a series of analogous cobalt(triphosphine)(monophosphine) hydrides where the phosphine substituents are systematically changed from Ph to Me. The calculated hydricities range from 38.5 to 47.7 kcal/mol. Surprisingly, the hydricities of the complexes are generally insensitive to substitution at the triphosphine ligand, as a result of competing structural and electronic trends. The DFT-calculated geometries of the [Co(triphos)(PMe3)]+ cations are more square planar when the triphosphine ligand possesses bulkier phenyl groups and more tetrahedrally distorted when the triphosphine ligand has smaller methyl substituents, reversing the trend observed for [M(diphosphine)2]+ cations. More distorted structures are associated with an increase in ΔGH-°, and this structural trend counteracts the electronic effect in which methyl substitution at the triphosphine is expected to yield smaller ΔGH-° values. However, the steric influence of the monophosphine follows the normal trend that phenyl substituents give more distorted structures and increased ΔGH-° values.
Collapse
Affiliation(s)
- Makenzie A Kuehn
- Department of Chemistry, Sam Houston State University, 1003 Bowers Boulevard, Huntsville, Texas 77341, United States
| | - William Fernandez
- Department of Chemistry, Sam Houston State University, 1003 Bowers Boulevard, Huntsville, Texas 77341, United States
| | - Christopher M Zall
- Department of Chemistry, Sam Houston State University, 1003 Bowers Boulevard, Huntsville, Texas 77341, United States
| |
Collapse
|
7
|
Facchetti G, Neva F, Coffetti G, Rimoldi I. Chiral 8-Amino-5,6,7,8-tetrahydroquinoline Derivatives in Metal Catalysts for the Asymmetric Transfer Hydrogenation of 1-Aryl Substituted-3,4-dihydroisoquinolines as Alkaloids Precursors. Molecules 2023; 28:molecules28041907. [PMID: 36838894 PMCID: PMC9962878 DOI: 10.3390/molecules28041907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Chiral diamines based on an 8-amino-5,6,7,8-tetrahydroquinoline backbone, known as CAMPY (L1), or the 2-methyl substituted analogue Me-CAMPY (L2) were employed as novel ligands in Cp* metal complexes for the ATH of a series of substituted dihydroisoquinolines (DHIQs), known for being key intermediates in the synthesis of biologically active alkaloids. Different metal-based complexes were evaluated in this kind of reaction, rhodium catalysts, C3 and C4, proving most effective both in terms of reactivity and enantioselectivity. Although modest enantiomeric excess values were obtained (up to 69% ee in the case of substrate I), a satisfactory quantitative conversion was successfully fulfilled even in the case of the most demanding hindered substrates when La(OTf)3 was used as beneficial additive, opening up the possibility for a rational design of novel chiral catalysts alternatives to the Noyori-Ikariya (arene)Ru(II)/TsDPEN catalyst.
Collapse
|
8
|
Wang J, Wang W, Yang X, Liu J, Huang H, Chang M. Practical N-alkylation via homogeneous iridium-catalyzed direct reductive amination. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Strohmann M, Vorholt AJ, Leitner W. Branched Tertiary Amines from Aldehydes and α-Olefins by Combined Multiphase Tandem Reactions. Chemistry 2022; 28:e202202081. [PMID: 35916208 PMCID: PMC9804909 DOI: 10.1002/chem.202202081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 01/09/2023]
Abstract
This study presents the transformation of olefins to branched amines by combining a hydroformylation/aldol condensation tandem reaction with the reductive amination in a combined multiphase system that can be recycled 9 times. The products are branched amines that are precursors for surfactants. Since the multiphase hydrofomylation/aldol condensation system has already been studied, the first step was to develop the partial hydrogenation of unsaturated aldehydes together with a subsequent reductive amination. The rhodium/phosphine catalyst is immobilized in a polar polyethylene phase which separates from the product phase after the reaction. Reaction and catalyst recycling are demonstrated by the conversion of the C14 -aldehyde 2-pentylnonenal with the dimethylamine surrogate dimethylammonium dimethylcarbamate to the corresponding tertiary amine with yields up to 88 % and an average rhodium leaching of less than 0.1 % per recycling run. Furthermore, the positive influence of a Bronsted acid and carbon monoxide on the selectivity are discussed. Finally, the two PEG based systems have been merged in one recycling approach, by using the product phase of the hydroformylation aldol condensation reaction for the reductive amination reaction. The yields are stable during a nine recycling runs and the leaching low with 0.09 % over the two recycling stages.
Collapse
Affiliation(s)
- Marc Strohmann
- Multiphase CatalysisMax-Planck-Institut für Chemische EnergiekonversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Andreas J. Vorholt
- Multiphase CatalysisMax-Planck-Institut für Chemische EnergiekonversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Walter Leitner
- Multiphase CatalysisMax-Planck-Institut für Chemische EnergiekonversionStiftstraße 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 152074AachenGermany
| |
Collapse
|
10
|
Zhang X, Zhao J, Che C, Qin J, Wan T, Sun F, Ma J, Long Y. Uniformly microporous diatomite supported Ni0/2+ catalyzed controllable selective reductive amination of benzaldehydes to primary amines, secondary imines and secondary amines. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Oliphant S, Morris RH. Density Functional Theory Study on the Selective Reductive Amination of Aldehydes and Ketones over Their Reductions to Alcohols Using Sodium Triacetoxyborohydride. ACS OMEGA 2022; 7:30554-30564. [PMID: 36061668 PMCID: PMC9434773 DOI: 10.1021/acsomega.2c04056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Reductive amination is one of the most important methods to synthesize amines, having a wide application in the pharmaceutical, fine chemicals, and materials industries. In general, the reaction begins with dehydration between a carbonyl compound and an amine compound, forming an imine, which is then reduced to an alkylated amine product. Sodium triacetoxyborohydride (STAB) is a popular choice for the reducing agent as it shows selectivity for imines over aldehydes and ketones, which is particularly important in direct reductive amination where the imine and carbonyl compounds are present concurrently. Here, we analyze the reaction pathways of acid-catalyzed direct reductive amination in 1,2-dichloroethane (DCE) with acetaldehyde and methylamine. We find that the transition states for the formation and subsequent reduction of Z-methylethylideneimine (resultant aldimine from acetaldehyde and methylamine) have lower energies than the reduction of acetaldehyde. Transition state structures for the hydride transfers are organized by the Lewis-acidic sodium ion. Additionally, reduction reactions with formaldehyde and acetone and their imine derivatives (with methylamine) are investigated, and again, the hydride transfer to the resultant aldimine or ketimine is lower in energy than that of their parent carbonyl compound.
Collapse
|
12
|
Liu Y, Wang L, Li Y, Ma B, Chen GQ, Zhang X. Highly efficient synthesis of chiral β-amino phosphine derivatives via direct asymmetric reductive amination with ammonium salts and H2. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Verma R, Jing Y, Liu H, Aggarwal V, Goswami HK, Bala E, Ke Z, Verma PK. Employing Ammonia for Diverse Amination Reactions: Recent Developments of Abundantly Available and Challenging Nitrogen Sources. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rahul Verma
- Shoolini University School of Advanced Chemical Sciences INDIA
| | - Yaru Jing
- Sun Yat-sen University School of Chemistry and Chemical Engineering: Sun Yat-sen University School of Chemistry School of Materials Science & Engineering, PCFM Lab INDIA
| | - Honghu Liu
- Sun Yat-sen University School of Chemistry and Chemical Engineering: Sun Yat-sen University School of Chemistry School of Materials Science & Engineering, PCFM Lab INDIA
| | - Varun Aggarwal
- Shoolini University School of Advanced Chemical Sciences INDIA
| | | | - Ekta Bala
- Shoolini University School of Advanced Chemical Sciences 173229 Solan INDIA
| | - Zhuofeng Ke
- Sun Yat-sen University School of Chemistry and Chemical Engineering: Sun Yat-sen University School of Chemistry chool of Materials Science & Engineering, PCFM Lab INDIA
| | - Praveen Kumar Verma
- Shoolini University School of Advanced Chemical Sciences Solan 173229 Solan INDIA
| |
Collapse
|
14
|
Bhunia MK, Chandra D, Abe H, Niwa Y, Hara M. Synergistic Effects of Earth-Abundant Metal-Metal Oxide Enable Reductive Amination of Carbonyls at 50 °C. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4144-4154. [PMID: 35014256 DOI: 10.1021/acsami.1c21157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reductive amination of carbonyls to primary amines is of importance to the synthesis of fine chemicals; however, this reaction with heterogeneous catalysts containing earth-abundant metals under mild conditions remains scarce. Here, we show that the nickel catalyst with mixed oxidation states enables such synthesis of primary amines under low temperature (50 °C) and H2 pressure (0.9 MPa). The catalyst shows activity in both water and toluene. The high activity likely results from the formation of small (ca. 4.6 nm) partially oxidized nickel nanoparticles (NPs) homogeneously anchored onto the silica and their synergistic effect. Detailed characterizations indicate stabilization of NPs through strong metal support interaction via electron donation from the metal to support. We identify that the support endowed with an amphoteric nature shows better performance. This strategy of making small metal-metal oxide NPs will open an avenue toward the rational development of efficient catalysts that would allow for other organic transformations under mild reaction conditions.
Collapse
Affiliation(s)
- Manas K Bhunia
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Debraj Chandra
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Hitoshi Abe
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI (the Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Graduate School of Science and Technology, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Yasuhiro Niwa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
- Advanced Low Carbon Technology Research and Development Program (ALCA), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
15
|
Yang J, Delolo FG, Spannenberg A, Jackstell R, Beller M. A Selective and General Cobalt‐Catalyzed Hydroaminomethylation of Olefins to Amines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ji Yang
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Fábio G. Delolo
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Departamento de Química Universidade Federal de Minas Gerais Av. Antônio Carlos 6627 31270-901 Belo Horizonte MG Brazil
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
16
|
Borthakur I, Sau A, Kundu S. Cobalt-catalyzed dehydrogenative functionalization of alcohols: Progress and future prospect. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214257] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
|
18
|
Saranya PV, Neetha M, Philip RM, Anilkumar G. Recent advances and prospects in the cobalt-catalyzed amination reactions. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Paul B, Maji M, Panja D, Kundu S. Cobalt Catalyzed N‐Methylation of Amides using Methanol. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bhaskar Paul
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 Uttar Pradesh (U.P. India
- Department of Chemistry University of California at Riverside Riverside California 92521 United States
| | - Milan Maji
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 Uttar Pradesh (U.P. India
| | - Dibyajyoti Panja
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 Uttar Pradesh (U.P. India
| | - Sabuj Kundu
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 Uttar Pradesh (U.P. India
| |
Collapse
|
20
|
Yang J, Delolo FG, Spannenberg A, Jackstell R, Beller M. A Selective and General Cobalt-Catalyzed Hydroaminomethylation of Olefins to Amines. Angew Chem Int Ed Engl 2021; 61:e202112597. [PMID: 34738697 PMCID: PMC9299624 DOI: 10.1002/anie.202112597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 11/10/2022]
Abstract
A new cobalt catalyst is presented for the domino hydroformylation-reductive amination reaction of olefins. The optimal Co-tert-BuPy-Xantphos catalyst shows good to excellent linear-to-branched (n/iso) regioselectivity for the reactions of aliphatic alkenes with aromatic amines under mild conditions. This system is far more selective than traditional cobalt(I) catalysts and even better than most known rhodium catalysts.
Collapse
Affiliation(s)
- Ji Yang
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Fábio G Delolo
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany.,Departamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
21
|
Dai Z, Pan YM, Wang SG, Zhang X, Yin Q. Direct reductive amination of ketones with ammonium salt catalysed by Cp*Ir(III) complexes bearing an amidato ligand. Org Biomol Chem 2021; 19:8934-8939. [PMID: 34636833 DOI: 10.1039/d1ob01710a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of half-sandwich Ir(III) complexes 1-6 bearing an amidato bidentate ligand were conveniently synthesized and applied to the catalytic Leuckart-Wallach reaction to produce racemic α-chiral primary amines. With 0.1 mol% of complex 1, a broad range of ketones, including aryl ketones, dialkyl ketones, cyclic ketones, α-keto acids, α-keto esters and diketones, could be transformed to their corresponding primary amines with moderate to excellent yields (40%-95%). Asymmetric transformation was also attempted with chiral Ir complexes 3-6, and 16% ee of the desired primary amine was obtained. Despite the unsatisfactory enantio-control achieved so far, the current exploration might stimulate more efforts towards the discovery of better chiral catalysts for this challenging but important transformation.
Collapse
Affiliation(s)
- Zengjin Dai
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Ying-Min Pan
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China. .,Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
22
|
Liu J, Song Y, Ma L. Earth-abundant Metal-catalyzed Reductive Amination: Recent Advances and Prospect for Future Catalysis. Chem Asian J 2021; 16:2371-2391. [PMID: 34235866 DOI: 10.1002/asia.202100473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/27/2021] [Indexed: 12/29/2022]
Abstract
Nitrogen-containing compounds, as an important class of chemicals, have been used widely in pharmaceuticals, materials synthesis. Transition metal-catalyzed reductive amination of an aldehyde or a ketone with ammonia or an amine has been proved to be an efficient and practical method for the preparation of nitrogen-containing compounds in academia and industry for a century. Given the above, several effective methods using transition metals have been developed in recent years. Noble transition metals like Pd, Pt, and Au-based catalysts have been predominately used in reductive amination. Because of their high prices, strict official regulations of residues in pharmaceuticals, and deleterious effects on the biological system, their industrial applications are severely hampered. With the increasing sustainable and environmental problems, the Earth-abundant transition metals including Ti, Fe, Co, Ni, and Zr have also been investigated for the reductive amination reaction and showed great potential to the advancement of sustainable and cost-effective reductive amination processes. This critical review will mainly summarize the work using Earth-abundant metals. The effects of different transition metals used in catalytic reduction amination were discussed and compared, and some suggestions were given. The last section highlights the catalytic activities of bi- and tri-metallic catalysts. Indeed, this latter family is very promising and simultaneously benefits from increased stability, and selectivity, compared to monometallic NPs, due to synergistic substrate activation. Few comprehensive reviews focusing on Earth-abundant transition metals catalyst has been published since 1948, although several authors reported some summaries dealing with one or the other part of this aspect. It is hoped that this critical review will inspire researchers to develop new efficient and selective earth-abundant metal catalysts for highly, environmentally sustainable reductive amination methods, as well as improve the pharmaceutical industry and related chemical synthesis company traditional method with the utilization of the green method widely.
Collapse
Affiliation(s)
- Jianguo Liu
- Key Laboratory of Renewable Energy Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China.,Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Yanpei Song
- Key Laboratory of Renewable Energy Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| | - Longlong Ma
- Key Laboratory of Renewable Energy Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| |
Collapse
|
23
|
Hydricity of 3d Transition Metal Complexes from Density Functional Theory: A Benchmarking Study. Molecules 2021; 26:molecules26134072. [PMID: 34279412 PMCID: PMC8271472 DOI: 10.3390/molecules26134072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
A range of modern density functional theory (DFT) functionals have been benchmarked against experimentally determined metal hydride bond strengths for three first-row TM hydride complexes. Geometries were found to be produced sufficiently accurately with RI-BP86-D3(PCM)/def2-SVP and further single-point calculations with PBE0-D3(PCM)/def2-TZVP were found to reproduce the experimental hydricity accurately, with a mean absolute deviation of 1.4 kcal/mol for the complexes studied.
Collapse
|
24
|
Elfinger M, Schönauer T, Thomä SLJ, Stäglich R, Drechsler M, Zobel M, Senker J, Kempe R. Co-Catalyzed Synthesis of Primary Amines via Reductive Amination employing Hydrogen under very mild Conditions. CHEMSUSCHEM 2021; 14:2360-2366. [PMID: 33826246 PMCID: PMC8251741 DOI: 10.1002/cssc.202100553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Nanostructured and reusable 3d-metal catalysts that operate with high activity and selectivity in important chemical reactions are highly desirable. Here, a cobalt catalyst was developed for the synthesis of primary amines via reductive amination employing hydrogen as the reducing agent and easy-to-handle ammonia, dissolved in water, as the nitrogen source. The catalyst operates under very mild conditions (1.5 mol% catalyst loading, 50 °C and 10 bar H2 pressure) and outperforms commercially available noble metal catalysts (Pd, Pt, Ru, Rh, Ir). A broad scope and a very good functional group tolerance were observed. The key for the high activity seemed to be the used support: an N-doped amorphous carbon material with small and turbostratically disordered graphitic domains, which is microporous with a bimodal size distribution and with basic NH functionalities in the pores.
Collapse
Affiliation(s)
- Matthias Elfinger
- Inorganic Chemistry II – Catalyst designSustainable Chemistry CentreUniversity of Bayreuth95440BayreuthGermany
| | - Timon Schönauer
- Inorganic Chemistry II – Catalyst designSustainable Chemistry CentreUniversity of Bayreuth95440BayreuthGermany
| | - Sabrina L. J. Thomä
- Solid State Chemistry – Mesostructured MaterialsUniversity of Bayreuth95440BayreuthGermany
| | - Robert Stäglich
- Inorganic Chemistry III and North Bavarian NMR centerUniversity of Bayreuth95440BayreuthGermany
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI)Keylab “Electron and Optical Microscopy”University of Bayreuth95440BayreuthGermany
| | - Mirijam Zobel
- Solid State Chemistry – Mesostructured MaterialsUniversity of Bayreuth95440BayreuthGermany
| | - Jürgen Senker
- Inorganic Chemistry III and North Bavarian NMR centerUniversity of Bayreuth95440BayreuthGermany
| | - Rhett Kempe
- Inorganic Chemistry II – Catalyst designSustainable Chemistry CentreUniversity of Bayreuth95440BayreuthGermany
| |
Collapse
|
25
|
Wei Z, Tian X, Bender M, Beller M, Jiao H. Mechanisms of Co II and Acid Jointly Catalyzed Domino Conversion of CO 2, H 2, and CH 3OH to Dialkoxymethane: A DFT Study. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhihong Wei
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, P. R. China
| | - Xinxin Tian
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, P. R. China
| | - Michael Bender
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
26
|
Polishchuk I, Sklyaruk J, Lebedev Y, Rueping M. Air Stable Iridium Catalysts for Direct Reductive Amination of Ketones. Chemistry 2021; 27:5919-5922. [PMID: 33508154 DOI: 10.1002/chem.202005508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 11/08/2022]
Abstract
Half-sandwich iridium complexes bearing bidentate urea-phosphorus ligands were found to catalyze the direct reductive amination of aromatic and aliphatic ketones under mild conditions at 0.5 mol % loading with high selectivity towards primary amines. One of the complexes was found to be active in both the Leuckart-Wallach (NH4 CO2 H) type reaction as well as in the hydrogenative (H2 /NH4 AcO) reductive amination. The protocol with ammonium formate does not require an inert atmosphere, dry solvents, as well as additives and in contrast to previous reports takes place in hexafluoroisopropanol (HFIP) instead of methanol. Applying NH4 CO2 D or D2 resulted in a high degree of deuterium incorporation into the primary amine α-position.
Collapse
Affiliation(s)
- Iuliia Polishchuk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen, Germany
| | - Jan Sklyaruk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen, Germany
| | - Yury Lebedev
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Magnus Rueping
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen, Germany.,KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
27
|
Liu J, Wei Z, Jiao H. Catalytic Activity of Aliphatic PNP Ligated Co III/I Amine and Amido Complexes in Hydrogenation Reaction—Structure, Stability, and Substrate Dependence. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jiali Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Company, Limited, Huairou District, Beijing 101400, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Zhihong Wei
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, P. R. China
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
28
|
Intrinsic mechanism of active metal dependent primary amine selectivity in the reductive amination of carbonyl compounds. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Brewer AC, Ruble JC, Vandeveer HG, Frank SA, Nevill CR. Development and Scale-Up of a Direct Asymmetric Reductive Amination with Ammonia. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alison Campbell Brewer
- Synthetic Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - J. Craig Ruble
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | | | - Scott A. Frank
- Synthetic Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - C. Richard Nevill
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
30
|
Abstract
Metal organic frameworks (MOFs) are porous crystalline solids whose frameworks are constituted by metal ions/nodes with rigid organic linkers leading to the formation of materials having high surface area and pore volume. One of the unique features of MOFs is the presence of coordinatively unsaturated metal sites in their crystalline lattice that can act as Lewis acid sites promoting organic transformations, including aerobic oxidation reactions of various substrates such as hydrocarbons, alcohols, and sulfides. This review article summarizes the existing Co-based MOFs for oxidation reactions organized according to the nature of substrates like hydrocarbon, alcohol, olefin, and water. Both aerobic conditions and peroxide oxidants are discussed. Emphasis is placed on comparing the advantages of using MOFs as solid catalysts with respect to homogeneous salts in terms of product selectivity and long-term stability. The final section provides our view on future developments in this field.
Collapse
|
31
|
|
32
|
Montes-Andrés H, Leo P, Muñoz A, Rodríguez-Diéguez A, Orcajo G, Choquesillo-Lazarte D, Martos C, Martínez F, Botas JA, Calleja G. Two Isostructural URJC-4 Materials: From Hydrogen Physisorption to Heterogeneous Reductive Amination through Hydrogen Molecule Activation at Low Pressure. Inorg Chem 2020; 59:15733-15740. [PMID: 33035421 DOI: 10.1021/acs.inorgchem.0c02127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, two novel isostructural metal-organic frameworks (MOFs) M-URJC-4 (M = Co, Ni; URJC = "Universidad Rey Juan Carlos") with open metal sites, permanent microposity, and large surface areas and pore volumes have been developed. These novel MOFs, with polyhedral morphology, crystallize in the monoclinic P21/c space group, exhibiting a three-dimensional structure with microporous channels along the c axis. Initially, they were fully characterized and tested in hydrogen (H2) adsorption at different conditions of temperature and pressure. The physisorption capacities of both materials surpassed the gravimetric H2 uptake shown by most MOF materials under the same conditions. On the basis of the outstanding adsorption properties, the Ni-URJC-4 material was used as a catalyst in a one-pot reductive amination reaction using various carbonyl compounds and primary amines. A possible chemical pathway to obtain secondary amines was proposed via imine formation, and remarkable performances were accomplished. This work evidences the dual ability of M-URJC-4 materials to be used as a H2 adsorbent and a catalyst in reductive amination reactions, activating molecular H2 at low pressures for the reduction of C═N double bonds and providing reference structural features for the design of new versatile heterogeneous materials for industrial application.
Collapse
Affiliation(s)
- Helena Montes-Andrés
- Department of Chemical, Energy and Mechanical Technology, Rey Juan Carlos University, C/Tulipán s/n, 28933 Mostoles, Spain
| | - Pedro Leo
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, C/Tulipán s/n, 28933 Mostoles, Spain
| | - Antonio Muñoz
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, C/Tulipán s/n, 28933 Mostoles, Spain
| | | | - Gisela Orcajo
- Department of Chemical, Energy and Mechanical Technology, Rey Juan Carlos University, C/Tulipán s/n, 28933 Mostoles, Spain
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT, CSIC, Universidad de Granada, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Carmen Martos
- Department of Chemical, Energy and Mechanical Technology, Rey Juan Carlos University, C/Tulipán s/n, 28933 Mostoles, Spain
| | - Fernando Martínez
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, C/Tulipán s/n, 28933 Mostoles, Spain
| | - Juan A Botas
- Department of Chemical, Energy and Mechanical Technology, Rey Juan Carlos University, C/Tulipán s/n, 28933 Mostoles, Spain
| | - Guillermo Calleja
- Department of Chemical, Energy and Mechanical Technology, Rey Juan Carlos University, C/Tulipán s/n, 28933 Mostoles, Spain
| |
Collapse
|
33
|
Pan J, Zhang R, Ma S, Han L, Xu B. Easily Synthesized Ru Catalyst Efficiently Converts Carbonyl Compounds and Ammonia into Primary Amines. ChemistrySelect 2020. [DOI: 10.1002/slct.202002795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jia‐Sheng Pan
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Beijing Key Laboratory of Ionic Liquids Clean Process Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems Institution of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Rui Zhang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Shuang‐Shuang Ma
- Beijing Key Laboratory of Ionic Liquids Clean Process Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems Institution of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Li‐Jun Han
- Beijing Key Laboratory of Ionic Liquids Clean Process Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems Institution of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Bao‐Hua Xu
- Beijing Key Laboratory of Ionic Liquids Clean Process Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems Institution of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
34
|
Abstract
The reductive amination, the reaction of an aldehyde or a ketone with ammonia or an amine in the presence of a reducing agent and often a catalyst, is an important amine synthesis and has been intensively investigated in academia and industry for a century. Besides aldehydes, ketones, or amines, starting materials have been used that can be converted into an aldehyde or ketone (for instance, carboxylic acids or organic carbonate or nitriles) or into an amine (for instance, a nitro compound) in the presence of the same reducing agent and catalyst. Mechanistically, the reaction starts with a condensation step during which the carbonyl compound reacts with ammonia or an amine, forming the corresponding imine followed by the reduction of the imine to the alkyl amine product. Many of these reduction steps require the presence of a catalyst to activate the reducing agent. The reductive amination is impressive with regard to the product scope since primary, secondary, and tertiary alkyl amines are accessible and hydrogen is the most attractive reducing agent, especially if large-scale product formation is an issue, since hydrogen is inexpensive and abundantly available. Alkyl amines are intensively produced and use fine and bulk chemicals. They are key functional groups in many pharmaceuticals, agro chemicals, or materials. In this review, we summarize the work published on reductive amination employing hydrogen as the reducing agent. No comprehensive review focusing on this subject has been published since 1948, albeit many interesting summaries dealing with one or the other aspect of reductive amination have appeared. Impressive progress in using catalysts based on earth-abundant metals, especially nanostructured heterogeneous catalysts, has been made during the early development of the field and in recent years.
Collapse
Affiliation(s)
- Torsten Irrgang
- Inorganic Chemistry II - Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| | - Rhett Kempe
- Inorganic Chemistry II - Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
35
|
Zhang Y, Liu YQ, Hu L, Zhang X, Yin Q. Asymmetric Reductive Amination/Ring-Closing Cascade: Direct Synthesis of Enantioenriched Biaryl-Bridged NH Lactams. Org Lett 2020; 22:6479-6483. [PMID: 32806148 DOI: 10.1021/acs.orglett.0c02282] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here a Ru-catalyzed enantioselective synthesis of biaryl-bridged NH lactams through asymmetric reductive amination and a spontaneous ring-closing cascade from keto esters and NH4OAc with H2 as reductant. The reaction features broad substrate generality and high enantioselectivities (up to >99% ee). To showcase the practical utility, a highly enantioselective synthesis of 5-ethylindolobenzazepinone C, a promising antimitotic agent, has been rapidly completed. Furthermore, the amide group in the products enables versatile elaborations through directed C-H functionalization.
Collapse
Affiliation(s)
- Yao Zhang
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun-Qi Liu
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Le'an Hu
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xumu Zhang
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qin Yin
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518000, China
| |
Collapse
|
36
|
Murugesan K, Wei Z, Chandrashekhar VG, Jiao H, Beller M, Jagadeesh RV. General and selective synthesis of primary amines using Ni-based homogeneous catalysts. Chem Sci 2020; 11:4332-4339. [PMID: 34122891 PMCID: PMC8152594 DOI: 10.1039/d0sc01084g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The development of base metal catalysts for industrially relevant amination and hydrogenation reactions by applying abundant and atom economical reagents continues to be important for the cost-effective and sustainable synthesis of amines which represent highly essential chemicals. In particular, the synthesis of primary amines is of central importance because these compounds serve as key precursors and central intermediates to produce value-added fine and bulk chemicals as well as pharmaceuticals, agrochemicals and materials. Here we report a Ni-triphos complex as the first Ni-based homogeneous catalyst for both reductive amination of carbonyl compounds with ammonia and hydrogenation of nitroarenes to prepare all kinds of primary amines. Remarkably, this Ni-complex enabled the synthesis of functionalized and structurally diverse benzylic, heterocyclic and aliphatic linear and branched primary amines as well as aromatic primary amines starting from inexpensive and easily accessible carbonyl compounds (aldehydes and ketones) and nitroarenes using ammonia and molecular hydrogen. This Ni-catalyzed reductive amination methodology has been applied for the amination of more complex pharmaceuticals and steroid derivatives. Detailed DFT computations have been performed for the Ni-triphos based reductive amination reaction, and they revealed that the overall reaction has an inner-sphere mechanism with H2 metathesis as the rate-determining step. A Ni-triphos based homogeneous catalyst enabled the synthesis of all kinds of primary amines by reductive amination of carbonyl compounds with ammonia and hydrogenation of nitroarenes.![]()
Collapse
Affiliation(s)
- Kathiravan Murugesan
- Leibniz-Institut für Katalyse e. V. Albert Einstein-Str. 29a 18059 Rostock Germany
| | - Zhihong Wei
- Leibniz-Institut für Katalyse e. V. Albert Einstein-Str. 29a 18059 Rostock Germany
| | | | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V. Albert Einstein-Str. 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. Albert Einstein-Str. 29a 18059 Rostock Germany
| | | |
Collapse
|
37
|
Murugesan K, Senthamarai T, Chandrashekhar VG, Natte K, Kamer PCJ, Beller M, Jagadeesh RV. Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines. Chem Soc Rev 2020; 49:6273-6328. [DOI: 10.1039/c9cs00286c] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Catalytic reductive aminations using molecular hydrogen represent an essential and widely used methodology for the synthesis of different kinds of amines.
Collapse
Affiliation(s)
| | | | | | - Kishore Natte
- Chemical and Material and Sciences Division
- CSIR-Indian Institute of Petroleum
- Dehradun-248005
- India
| | | | | | | |
Collapse
|
38
|
Nori V, Dasgupta A, Babaahmadi R, Carlone A, Ariafard A, Melen RL. Triarylborane catalysed N-alkylation of amines with aryl esters. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01339k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
B(C6F5)3 is demonstrated to be an active catalyst for N-alkylation reactions of amine substrates with aryl esters.
Collapse
Affiliation(s)
- Valeria Nori
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | - Ayan Dasgupta
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | - Rasool Babaahmadi
- School of Natural Sciences-Chemistry
- University of Tasmania Private Bag 75
- Hobart
- Australia
| | - Armando Carlone
- Department of Physical and Chemical Sciences
- Università degli Studi dell'Aquila
- 67100 L'Aquila
- Italy
| | - Alireza Ariafard
- School of Natural Sciences-Chemistry
- University of Tasmania Private Bag 75
- Hobart
- Australia
| | - Rebecca L. Melen
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| |
Collapse
|