1
|
Zhao H, Zhao H, Ji S. A Mesenchymal stem cell Aging Framework, from Mechanisms to Strategies. Stem Cell Rev Rep 2024; 20:1420-1440. [PMID: 38727878 DOI: 10.1007/s12015-024-10732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 08/13/2024]
Abstract
Mesenchymal stem cells (MSCs) are extensively researched for therapeutic applications in tissue engineering and show significant potential for clinical use. Intrinsic or extrinsic factors causing senescence may lead to reduced proliferation, aberrant differentiation, weakened immunoregulation, and increased inflammation, ultimately limiting the potential of MSCs. It is crucial to comprehend the molecular pathways and internal processes responsible for the decline in MSC function due to senescence in order to devise innovative approaches for rejuvenating senescent MSCs and enhancing MSC treatment. We investigate the main molecular processes involved in senescence, aiming to provide a thorough understanding of senescence-related issues in MSCs. Additionally, we analyze the most recent advancements in cutting-edge approaches to combat MSC senescence based on current research. We are curious whether the aging process of stem cells results in a permanent "memory" and if cellular reprogramming may potentially revert the aging epigenome to a more youthful state.
Collapse
Affiliation(s)
- Hongqing Zhao
- Nanbu County People's Hospital, Nanchong City, 637300, Sichuan Province, China
- Jinzhou Medical University, No.82 Songpo Road, Guta District, Jinzhou, 121001, Liaoning Province, China
| | - Houming Zhao
- Graduate School of PLA Medical College, Chinese PLA General Hospital, Beijing, 100083, China
| | - Shuaifei Ji
- Graduate School of PLA Medical College, Chinese PLA General Hospital, Beijing, 100083, China.
| |
Collapse
|
2
|
Agabekian IA, Abdulkina LR, Lushnenko AY, Young PG, Valeeva LR, Boskovic O, Lilly EG, Sharipova MR, Shippen DE, Juenger TE, Shakirov EV. Arabidopsis AN3 and OLIGOCELLULA genes link telomere maintenance mechanisms with cell division and expansion control. PLANT MOLECULAR BIOLOGY 2024; 114:65. [PMID: 38816532 PMCID: PMC11372841 DOI: 10.1007/s11103-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a -deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.
Collapse
Affiliation(s)
- Inna A Agabekian
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Liliia R Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Alina Y Lushnenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Pierce G Young
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas, 77843-2128, USA
| | - Lia R Valeeva
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA
| | - Olivia Boskovic
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA
| | - Ethan G Lilly
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA
| | - Margarita R Sharipova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas, 77843-2128, USA.
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712, USA.
| | - Eugene V Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA.
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, 25755, USA.
| |
Collapse
|
3
|
Abdulkina LR, Agabekian IA, Valeeva LR, Kozlova OS, Sharipova MR, Shakirov EV. Comparative Application of Terminal Restriction Fragment Analysis Tools to Large-Scale Genomic Assays. Int J Mol Sci 2023; 24:17194. [PMID: 38139024 PMCID: PMC10742804 DOI: 10.3390/ijms242417194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The analysis of telomere length is an important component of many studies aiming to characterize the role of telomere maintenance mechanisms in cellular lifespan, disease, or in general chromosome protection and DNA replication pathways. Several powerful methods to accurately measure the telomere length from Southern blots have been developed, but their utility for large-scale genomic studies has not been previously evaluated. Here, we performed a comparative analysis of two recently developed programs, TeloTool and WALTER, for the extraction of mean telomere length values from Southern blots. Using both software packages, we measured the telomere length in two extensive experimental datasets for the model plant Arabidopsis thaliana, consisting of 537 natural accessions and 65 T-DNA (transfer DNA for insertion mutagenesis) mutant lines in the reference Columbia (Col-0) genotype background. We report that TeloTool substantially overestimates the telomere length in comparison to WALTER, especially for values over 4500 bp. Importantly, the TeloTool- and WALTER-calculated telomere length values correlate the most in the 2100-3500 bp range, suggesting that telomeres in this size interval can be estimated by both programs equally well. We further show that genome-wide association studies using datasets from both telomere length analysis tools can detect the most significant SNP candidates equally well. However, GWAS analysis with the WALTER dataset consistently detects fewer significant SNPs than analysis with the TeloTool dataset, regardless of the GWAS method used. These results imply that the telomere length data generated by WALTER may represent a more stringent approach to GWAS and SNP selection for the downstream molecular screening of candidate genes. Overall, our work reveals the unanticipated impact of the telomere length analysis method on the outcomes of large-scale genomic screens.
Collapse
Affiliation(s)
- Liliia R. Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia; (L.R.A.); (I.A.A.); (L.R.V.); (O.S.K.); (M.R.S.)
| | - Inna A. Agabekian
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia; (L.R.A.); (I.A.A.); (L.R.V.); (O.S.K.); (M.R.S.)
| | - Liia R. Valeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia; (L.R.A.); (I.A.A.); (L.R.V.); (O.S.K.); (M.R.S.)
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
| | - Olga S. Kozlova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia; (L.R.A.); (I.A.A.); (L.R.V.); (O.S.K.); (M.R.S.)
| | - Margarita R. Sharipova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia; (L.R.A.); (I.A.A.); (L.R.V.); (O.S.K.); (M.R.S.)
| | - Eugene V. Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
4
|
Kumawat S, Choi JY. No end in sight: Mysteries of the telomeric variation in plants. AMERICAN JOURNAL OF BOTANY 2023; 110:e16244. [PMID: 37733763 PMCID: PMC10873042 DOI: 10.1002/ajb2.16244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Affiliation(s)
- Surbhi Kumawat
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Jae Young Choi
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
5
|
Agabekian IA, Abdulkina LR, Lushnenko AY, Young PG, Valeeva LR, Boskovic O, Lilly EG, Sharipova MR, Shippen DE, Juenger TE, Shakirov EV. Arabidopsis AN3 and OLIGOCELLULA genes link telomere maintenance mechanisms with cell division and expansion control. RESEARCH SQUARE 2023:rs.3.rs-3438810. [PMID: 37961382 PMCID: PMC10635316 DOI: 10.21203/rs.3.rs-3438810/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a - deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.
Collapse
Affiliation(s)
- Inna A Agabekian
- Kazan Federal University: Kazanskij Privolzskij federal'nyj universitet
| | | | - Alina Y Lushnenko
- Kazan Federal University: Kazanskij Privolzskij federal'nyj universitet
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Valeeva LR, Abdulkina LR, Agabekian IA, Shakirov EV. Telomere biology and ribosome biogenesis: structural and functional interconnections. Biochem Cell Biol 2023; 101:394-409. [PMID: 36989538 DOI: 10.1139/bcb-2022-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Telomeres are nucleoprotein structures that play a pivotal role in the protection and maintenance of eukaryotic chromosomes. Telomeres and the enzyme telomerase, which replenishes telomeric DNA lost during replication, are important factors necessary to ensure continued cell proliferation. Cell proliferation is also dependent on proper and efficient protein synthesis, which is carried out by ribosomes. Mutations in genes involved in either ribosome biogenesis or telomere biology result in cellular abnormalities and can cause human genetic diseases, defined as ribosomopathies and telomeropathies, respectively. Interestingly, recent discoveries indicate that many of the ribosome assembly and rRNA maturation factors have additional noncanonical functions in telomere biology. Similarly, several key proteins and enzymes involved in telomere biology, including telomerase, have unexpected roles in rRNA transcription and maturation. These observations point to an intriguing cross-talk mechanism potentially explaining the multiple pleiotropic symptoms of mutations in many causal genes identified in various telomeropathy and ribosomopathy diseases. In this review, we provide a brief summary of eukaryotic telomere and rDNA loci structures, highlight several universal features of rRNA and telomerase biogenesis, evaluate intriguing interconnections between telomere biology and ribosome assembly, and conclude with an assessment of overlapping features of human diseases of telomeropathies and ribosomopathies.
Collapse
Affiliation(s)
- Liia R Valeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
| | - Liliia R Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Inna A Agabekian
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Eugene V Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
7
|
Lovell JT, Sreedasyam A, Schranz ME, Wilson M, Carlson JW, Harkess A, Emms D, Goodstein DM, Schmutz J. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. eLife 2022; 11:78526. [PMID: 36083267 PMCID: PMC9462846 DOI: 10.7554/elife.78526] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The development of multiple chromosome-scale reference genome sequences in many taxonomic groups has yielded a high-resolution view of the patterns and processes of molecular evolution. Nonetheless, leveraging information across multiple genomes remains a significant challenge in nearly all eukaryotic systems. These challenges range from studying the evolution of chromosome structure, to finding candidate genes for quantitative trait loci, to testing hypotheses about speciation and adaptation. Here, we present GENESPACE, which addresses these challenges by integrating conserved gene order and orthology to define the expected physical position of all genes across multiple genomes. We demonstrate this utility by dissecting presence–absence, copy-number, and structural variation at three levels of biological organization: spanning 300 million years of vertebrate sex chromosome evolution, across the diversity of the Poaceae (grass) plant family, and among 26 maize cultivars. The methods to build and visualize syntenic orthology in the GENESPACE R package offer a significant addition to existing gene family and synteny programs, especially in polyploid, outbred, and other complex genomes. The genome is the complete DNA sequence of an individual. It is a crucial foundation for many studies in medicine, agriculture, and conservation biology. Advances in genetics have made it possible to rapidly sequence, or read out, the genome of many organisms. For closely related species, scientists can then do detailed comparisons, revealing similar genes with a shared past or a common role, but comparing more distantly related organisms remains difficult. One major challenge is that genes are often lost or duplicated over evolutionary time. One way to be more confident is to look at ‘synteny’, or how genes are organized or ordered within the genome. In some groups of species, synteny persists across millions of years of evolution. Combining sequence similarity with gene order could make comparisons between distantly related species more robust. To do this, Lovell et al. developed GENESPACE, a software that links similarities between DNA sequences to the order of genes in a genome. This allows researchers to visualize and explore related DNA sequences and determine whether genes have been lost or duplicated. To demonstrate the value of GENESPACE, Lovell et al. explored evolution in vertebrates and flowering plants. The software was able to highlight the shared sequences between unique sex chromosomes in birds and mammals, and it was able to track the positions of genes important in the evolution of grass crops including maize, wheat, and rice. Exploring the genetic code in this way could lead to a better understanding of the evolution of important sections of the genome. It might also allow scientists to find target genes for applications like crop improvement. Lovell et al. have designed the GENESPACE software to be easy for other scientists to use, allowing them to make graphics and perform analyses with few programming skills.
Collapse
Affiliation(s)
- John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, United States.,Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Melissa Wilson
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, United States
| | - Joseph W Carlson
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Alex Harkess
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, United States.,Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, United States
| | - David Emms
- Oxford University, Oxford, United Kingdom
| | - David M Goodstein
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, United States.,Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
8
|
Shakirov EV, Chen JJL, Shippen DE. Plant telomere biology: The green solution to the end-replication problem. THE PLANT CELL 2022; 34:2492-2504. [PMID: 35511166 PMCID: PMC9252485 DOI: 10.1093/plcell/koac122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/14/2022] [Indexed: 05/04/2023]
Abstract
Telomere maintenance is a fundamental cellular process conserved across all eukaryotic lineages. Although plants and animals diverged over 1.5 billion years ago, lessons learned from plants continue to push the boundaries of science, revealing detailed molecular mechanisms in telomere biology with broad implications for human health, aging biology, and stress responses. Recent studies of plant telomeres have unveiled unexpected divergence in telomere sequence and architecture, and the proteins that engage telomeric DNA and telomerase. The discovery of telomerase RNA components in the plant kingdom and some algae groups revealed new insight into the divergent evolution and the universal core of telomerase across major eukaryotic kingdoms. In addition, resources cataloging the abundant natural variation in Arabidopsis thaliana, maize (Zea mays), and other plants are providing unparalleled opportunities to understand the genetic networks that govern telomere length polymorphism and, as a result, are uncovering unanticipated crosstalk between telomeres, environmental factors, organismal fitness, and plant physiology. Here we recap current advances in plant telomere biology and put this field in perspective relative to telomere and telomerase research in other eukaryotic lineages.
Collapse
Affiliation(s)
- Eugene V Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia 25701, USA
| | - Julian J -L Chen
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | | |
Collapse
|
9
|
Andreu-Sánchez S, Aubert G, Ripoll-Cladellas A, Henkelman S, Zhernakova DV, Sinha T, Kurilshikov A, Cenit MC, Jan Bonder M, Franke L, Wijmenga C, Fu J, van der Wijst MGP, Melé M, Lansdorp P, Zhernakova A. Genetic, parental and lifestyle factors influence telomere length. Commun Biol 2022; 5:565. [PMID: 35681050 PMCID: PMC9184499 DOI: 10.1038/s42003-022-03521-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/22/2022] [Indexed: 11/09/2022] Open
Abstract
The average length of telomere repeats (TL) declines with age and is considered to be a marker of biological ageing. Here, we measured TL in six blood cell types from 1046 individuals using the clinically validated Flow-FISH method. We identified remarkable cell-type-specific variations in TL. Host genetics, environmental, parental and intrinsic factors such as sex, parental age, and smoking are associated to variations in TL. By analysing the genome-wide methylation patterns, we identified that the association of maternal, but not paternal, age to TL is mediated by epigenetics. Single-cell RNA-sequencing data for 62 participants revealed differential gene expression in T-cells. Genes negatively associated with TL were enriched for pathways related to translation and nonsense-mediated decay. Altogether, this study addresses cell-type-specific differences in telomere biology and its relation to cell-type-specific gene expression and highlights how perinatal factors play a role in determining TL, on top of genetics and lifestyle.
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada
- Repeat Diagnostics Inc, Vancouver, BC, Canada
| | - Aida Ripoll-Cladellas
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Sandra Henkelman
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, the Netherlands
| | - Daria V Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, 197101, Russia
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maria Carmen Cenit
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Microbial Ecology, Nutrition, and Health Research Unit, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980, Paterna-Valencia, Spain
| | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, 69117, Heidelberg, Germany
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Monique G P van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada.
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, the Netherlands.
- Departments of Hematology and Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
10
|
Castillo-González C, Barbero Barcenilla B, Young PG, Hall E, Shippen DE. Quantification of 8-oxoG in Plant Telomeres. Int J Mol Sci 2022; 23:ijms23094990. [PMID: 35563379 PMCID: PMC9102096 DOI: 10.3390/ijms23094990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Chemical modifications in DNA impact gene regulation and chromatin structure. DNA oxidation, for example, alters gene expression, DNA synthesis and cell cycle progression. Modification of telomeric DNA by oxidation is emerging as a marker of genotoxic damage and is associated with reduced genome integrity and changes in telomere length and telomerase activity. 8-oxoguanine (8-oxoG) is the most studied and common outcome of oxidative damage in DNA. The G-rich nature of telomeric DNA is proposed to make it a hotspot for oxidation, but because telomeres make up only a tiny fraction of the genome, it has been difficult to directly test this hypothesis by studying dynamic DNA modifications specific to this region in vivo. Here, we present a new, robust method to differentially enrich telomeric DNA in solution, coupled with downstream methods for determination of chemical modification. Specifically, we measure 8-oxoG in Arabidopsis thaliana telomeres under normal and oxidative stress conditions. We show that telomere length is unchanged in response to oxidative stress in three different wild-type accessions. Furthermore, we report that while telomeric DNA comprises only 0.02–0.07% of the total genome, telomeres contribute between 0.2 and 15% of the total 8-oxoG. That is, plant telomeres accumulate 8-oxoG at levels approximately 100-fold higher than the rest of the genome under standard growth conditions. Moreover, they are the primary targets of further damage upon oxidative stress. Interestingly, the accumulation of 8-oxoG in the chromosome body seems to be inversely proportional to telomere length. These findings support the hypothesis that telomeres are hotspots of 8-oxoG and may function as sentinels of oxidative stress in plants.
Collapse
|
11
|
Campitelli BE, Razzaque S, Barbero B, Abdulkina LR, Hall MH, Shippen DE, Juenger TE, Shakirov EV. Plasticity, pleiotropy and fitness trade-offs in Arabidopsis genotypes with different telomere lengths. THE NEW PHYTOLOGIST 2022; 233:1939-1952. [PMID: 34826163 PMCID: PMC9218941 DOI: 10.1111/nph.17880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/14/2021] [Indexed: 05/12/2023]
Abstract
Telomere length has been implicated in the organismal response to stress, but the underlying mechanisms are unknown. Here we examine the impact of telomere length changes on the responses to three contrasting abiotic environments in Arabidopsis, and measure 32 fitness, developmental, physiological and leaf-level anatomical traits. We report that telomere length in wild-type and short-telomere mutants is resistant to abiotic stress, while the elongated telomeres in ku70 mutants are more plastic. We detected significant pleiotropic effects of telomere length on flowering time and key leaf physiological and anatomical traits. Furthermore, our data reveal a significant genotype by environment (G × E) interaction for reproductive fitness, with the benefits and costs to performance depending on the growth conditions. These results imply that life-history trade-offs between flowering time and reproductive fitness are impacted by telomere length variation. We postulate that telomere length in plants is subject to natural selection imposed by different environments.
Collapse
Affiliation(s)
- Brandon E. Campitelli
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
- Texas Institute for Discovery Education in Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Samsad Razzaque
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Borja Barbero
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Liliia R. Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan 420008, Russia
| | - Mitchell H. Hall
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
| | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Thomas E. Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Eugene V. Shakirov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan 420008, Russia
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
12
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
13
|
Duan X, Wang H, Yang Y, Wang P, Zhang H, Liu B, Wei W, Yao W, Zhou X, Zhao J, Wang W. Genetic variants in telomerase-associated protein 1 are associated with telomere damage in PAH-exposed workers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112558. [PMID: 34333383 DOI: 10.1016/j.ecoenv.2021.112558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Telomeres are functional complexes at the ends of linear chromosomes, and telomerase aids in their maintenance and replication. Additionally, accumulating evidence suggests that telomerase-associated protein 1 (TEP1) is a component of the telomerase ribonucleoprotein complex and is responsible for catalyzing the addition of new synthetic telomere sequences to chromosome ends. In our previous study, we found that genetic variants of the TERT gene participated in the regulation of telomere length. Exposure to particulate matter, environmental pollutants, oxidative stress, and pesticides is associated with shortening of telomere length. However, it is unknown whether genetic variants in the TEP1 gene may affect telomere length (TL) in polycyclic aromatic hydrocarbon (PAH)-exposed workers. Therefore, we measured the peripheral leukocyte TL and genotyped the polymorphism loci in the TEP1 gene among 544 PAH-exposed workers and 238 healthy controls. Covariance analysis showed that the individuals carrying TEP1 rs1760903 CC and TEP1 rs1760904 TT had longer TL in the control group (P < 0.05). In the generalized linear model, we found that rs1760903 CC was a protective factor against TL shortening, and PAH exposure could promote telomere shortening (P < 0.05). Thus, this study reinforces the roles of environmental factors and genetic variations in telomere damage, and provides a theoretical foundation for the early detection of susceptible populations and the establishment of occupational standards.
Collapse
Affiliation(s)
- Xiaoran Duan
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hongmei Wang
- Department of nursing, Zhengzhou Health Vocational College, Zhengzhou 450100, Henan, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Pengpeng Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hui Zhang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Bin Liu
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wan Wei
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaoshan Zhou
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jie Zhao
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
14
|
Choi JY, Abdulkina LR, Yin J, Chastukhina IB, Lovell JT, Agabekian IA, Young PG, Razzaque S, Shippen DE, Juenger TE, Shakirov EV, Purugganan MD. Natural variation in plant telomere length is associated with flowering time. THE PLANT CELL 2021; 33:1118-1134. [PMID: 33580702 PMCID: PMC8599780 DOI: 10.1093/plcell/koab022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/14/2021] [Indexed: 05/05/2023]
Abstract
Telomeres are highly repetitive DNA sequences found at the ends of chromosomes that protect the chromosomes from deterioration duringcell division. Here, using whole-genome re-sequencing and terminal restriction fragment assays, we found substantial natural intraspecific variation in telomere length in Arabidopsis thaliana, rice (Oryza sativa), and maize (Zea mays). Genome-wide association study (GWAS) mapping in A. thaliana identified 13 regions with GWAS-significant associations underlying telomere length variation, including a region that harbors the telomerase reverse transcriptase (TERT) gene. Population genomic analysis provided evidence for a selective sweep at the TERT region associated with longer telomeres. We found that telomere length is negatively correlated with flowering time variation not only in A. thaliana, but also in maize and rice, indicating a link between life-history traits and chromosome integrity. Our results point to several possible reasons for this correlation, including the possibility that longer telomeres may be more adaptive in plants that have faster developmental rates (and therefore flower earlier). Our work suggests that chromosomal structure itself might be an adaptive trait associated with plant life-history strategies.
Collapse
Affiliation(s)
- Jae Young Choi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York 10003, NY, USA
- Author for correspondence: (J.Y.C), (E.V.S.) or (M.D.P.)
| | - Liliia R Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
| | - Jun Yin
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
| | - Inna B Chastukhina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
| | - John T Lovell
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Alabama 35806, USA
| | - Inna A Agabekian
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
| | - Pierce G Young
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA
| | - Samsad Razzaque
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
| | - Eugene V Shakirov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
- Department of Biological Sciences, College of Science, Marshall University, West Virginia 25701, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, West Virginia 25755, USA
- Author for correspondence: (J.Y.C), (E.V.S.) or (M.D.P.)
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York 10003, NY, USA
- Author for correspondence: (J.Y.C), (E.V.S.) or (M.D.P.)
| |
Collapse
|
15
|
Xiong W, Lan T, Mo B. Extraribosomal Functions of Cytosolic Ribosomal Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:607157. [PMID: 33968093 PMCID: PMC8096920 DOI: 10.3389/fpls.2021.607157] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/29/2021] [Indexed: 05/20/2023]
Abstract
Ribosomes are basic translational machines in all living cells. The plant cytosolic ribosome is composed of four rRNAs and approximately 81 ribosomal proteins (RPs). In addition to the fundamental functions of RPs in the messenger RNA decoding process as well as in polypeptide synthesis and ribosome assembly, extraribosomal functions of RPs that occur in the absence of the ribosome have been proposed and studied with respect to RPs' ability to interact with RNAs and non-ribosomal proteins. In a few cases, extraribosomal functions of several RPs have been demonstrated with solid evidences in plants, including microRNA biogenesis, anti-virus defenses, and plant immunity, which have fascinated biologists. We believe that the widespread duplication of RP genes in plants may increase the potential of extraribosomal functions of RPs and more extraribosomal functions of plant RPs will be discovered in the future. In this article we review the current knowledge concerning the extraribosomal functions of RPs in plants and described the prospects for future research in this fascinating area.
Collapse
Affiliation(s)
- Wei Xiong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Beixin Mo,
| |
Collapse
|
16
|
Bose S, Suescún AV, Song J, Castillo-González C, Aklilu BB, Branham E, Lynch R, Shippen DE. tRNA ADENOSINE DEAMINASE 3 is required for telomere maintenance in Arabidopsis thaliana. PLANT CELL REPORTS 2020; 39:1669-1685. [PMID: 32959123 PMCID: PMC7655638 DOI: 10.1007/s00299-020-02594-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/04/2020] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE: tRNA Adenosine Deaminase 3 helps to sustain telomere tracts in a telomerase-independent fashion, likely through regulating cellular metabolism. Telomere length maintenance is influenced by a complex web of chromatin and metabolism-related factors. We previously reported that a lncRNA termed AtTER2 regulates telomerase activity in Arabidopsis thaliana in response to DNA damage. AtTER2 was initially shown to partially overlap with the 5' UTR of the tRNA ADENOSINE DEAMINASE 3 (TAD3) gene. However, updated genome annotation showed that AtTER2 was completely embedded in TAD3, raising the possibility that phenotypes ascribed to AtTER2 could be derived from TAD3. Here we show through strand-specific RNA-Seq, strand-specific qRT-PCR and bioinformatic analyses that AtTER2 does not encode a stable lncRNA. Further examination of the original tad3 (ter2-1/tad3-1) mutant revealed expression of an antisense transcript driven by a cryptic promoter in the T-DNA. Hence, a new hypomorphic allele of TAD3 (tad3-2) was examined. tad3-2 mutants showed hypersensitivity to DNA damage, but no deregulation of telomerase, suggesting that the telomerase phenotype of tad3-1 mutants reflects an off-target effect. Unexpectedly, however, tad3-2 plants displayed progressive loss of telomeric DNA over successive generations that was not accompanied by alteration of terminal architecture or end protection. The phenotype was exacerbated in plants lacking the telomerase processivity factor POT1a, indicating that TAD3 promotes telomere maintenance through a non-canonical, telomerase-independent pathway. The transcriptome of tad3-2 mutants revealed significant dysregulation of genes involved in auxin signaling and glucosinolate biosynthesis, pathways that intersect the stress response, cell cycle regulation and DNA metabolism. These findings indicate that the TAD3 locus indirectly contributes to telomere length homeostasis by altering the metabolic profile in Arabidopsis.
Collapse
Affiliation(s)
- Sreyashree Bose
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Ana Victoria Suescún
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Facultad de Ciencias, Instituto de Ciencias Ambientales Y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Jiarui Song
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | | | - Behailu Birhanu Aklilu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- KWS Gateway Research Center, LLC, 1005 N Warson Rd, BRDG Park, St. Louis, MO, 63132, USA
| | - Erica Branham
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Ryan Lynch
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
- Department of Biochemistry and Biophysics, 300 Olsen Blvd, Room 413, College Station, TX, 77843-2128, USA.
| |
Collapse
|