1
|
Lapp Z, Freedman E, Huang K, Markwalter CF, Obala AA, Prudhomme-O’Meara W, Taylor SM. Analytic optimization of Plasmodium falciparum marker gene haplotype recovery from amplicon deep sequencing of complex mixtures. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002361. [PMID: 38814915 PMCID: PMC11139333 DOI: 10.1371/journal.pgph.0002361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/29/2024] [Indexed: 06/01/2024]
Abstract
Molecular epidemiologic studies of malaria parasites and other pathogens commonly employ amplicon deep sequencing (AmpSeq) of marker genes derived from dried blood spots (DBS) to answer public health questions related to topics such as transmission and drug resistance. As these methods are increasingly employed to inform direct public health action, it is important to rigorously evaluate the risk of false positive and false negative haplotypes derived from clinically-relevant sample types. We performed a control experiment evaluating haplotype recovery from AmpSeq of 5 marker genes (ama1, csp, msp7, sera2, and trap) from DBS containing mixtures of DNA from 1 to 10 known P. falciparum reference strains across 3 parasite densities in triplicate (n = 270 samples). While false positive haplotypes were present across all parasite densities and mixtures, we optimized censoring criteria to remove 83% (148/179) of false positives while removing only 8% (67/859) of true positives. Post-censoring, the median pairwise Jaccard distance between replicates was 0.83. We failed to recover 35% (477/1365) of haplotypes expected to be present in the sample. Haplotypes were more likely to be missed in low-density samples with <1.5 genomes/μL (OR: 3.88, CI: 1.82-8.27, vs. high-density samples with ≥75 genomes/μL) and in samples with lower read depth (OR per 10,000 reads: 0.61, CI: 0.54-0.69). Furthermore, minority haplotypes within a sample were more likely to be missed than dominant haplotypes (OR per 0.01 increase in proportion: 0.96, CI: 0.96-0.97). Finally, in clinical samples the percent concordance across markers for multiplicity of infection ranged from 40%-80%. Taken together, our observations indicate that, with sufficient read depth, the majority of haplotypes can be successfully recovered from DBS while limiting the false positive rate.
Collapse
Affiliation(s)
- Zena Lapp
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| | - Elizabeth Freedman
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Kathie Huang
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Christine F. Markwalter
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| | - Andrew A. Obala
- School of Medicine, College of Health Sciences, Moi University, Eldoret, Kenya
| | - Wendy Prudhomme-O’Meara
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Steve M. Taylor
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
2
|
Brokhattingen N, Matambisso G, da Silva C, Neubauer Vickers E, Pujol A, Mbeve H, Cisteró P, Maculuve S, Cuna B, Melembe C, Ndimande N, Palmer B, García-Ulloa M, Munguambe H, Montaña-Lopez J, Nhamussua L, Simone W, Chidimatembue A, Galatas B, Guinovart C, Rovira-Vallbona E, Saúte F, Aide P, Aranda-Díaz A, Greenhouse B, Macete E, Mayor A. Genomic malaria surveillance of antenatal care users detects reduced transmission following elimination interventions in Mozambique. Nat Commun 2024; 15:2402. [PMID: 38493162 PMCID: PMC10944499 DOI: 10.1038/s41467-024-46535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Routine sampling of pregnant women at first antenatal care (ANC) visits could make Plasmodium falciparum genomic surveillance more cost-efficient and convenient in sub-Saharan Africa. We compare the genetic structure of parasite populations sampled from 289 first ANC users and 93 children from the community in Mozambique between 2015 and 2019. Samples are amplicon sequenced targeting 165 microhaplotypes and 15 drug resistance genes. Metrics of genetic diversity and relatedness, as well as the prevalence of drug resistance markers, are consistent between the two populations. In an area targeted for elimination, intra-host genetic diversity declines in both populations (p = 0.002-0.007), while for the ANC population, population genetic diversity is also lower (p = 0.0004), and genetic relatedness between infections is higher (p = 0.002) than control areas, indicating a recent reduction in the parasite population size. These results highlight the added value of genomic surveillance at ANC clinics to inform about changes in transmission beyond epidemiological data.
Collapse
Affiliation(s)
| | - Glória Matambisso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Clemente da Silva
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Eric Neubauer Vickers
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Arnau Pujol
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Henriques Mbeve
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pau Cisteró
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Sónia Maculuve
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Boaventura Cuna
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Cardoso Melembe
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Nelo Ndimande
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Brian Palmer
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | | | | | | | - Lidia Nhamussua
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Wilson Simone
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Beatriz Galatas
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | | | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Andrés Aranda-Díaz
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Bryan Greenhouse
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Eusébio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- National Directorate for Public Health, Ministry of Health, Maputo, Mozambique
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain.
- Department of Physiological Sciences, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique.
| |
Collapse
|
3
|
Ruybal-Pesántez S, McCann K, Vibin J, Siegel S, Auburn S, Barry AE. Molecular markers for malaria genetic epidemiology: progress and pitfalls. Trends Parasitol 2024; 40:147-163. [PMID: 38129280 DOI: 10.1016/j.pt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Over recent years, progress in molecular markers for genotyping malaria parasites has enabled informative studies of epidemiology and transmission dynamics. Results have highlighted the value of these tools for surveillance to support malaria control and elimination strategies. There are many different types and panels of markers available for malaria parasite genotyping, and for end users, the nuances of these markers with respect to 'use case', resolution, and accuracy, are not well defined. This review clarifies issues surrounding different molecular markers and their application to malaria control and elimination. We describe available marker panels, use cases, implications for different transmission settings, limitations, access, cost, and data accuracy. The information provided can be used as a guide for molecular epidemiology and surveillance of malaria.
Collapse
Affiliation(s)
- Shazia Ruybal-Pesántez
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Institute of Microbiology, Universidad San Francisco de Quito, Quito, Ecuador
| | - Kirsty McCann
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Jessy Vibin
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | | | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Alyssa E Barry
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
4
|
Mayor A, Brokhattingen N, Matambisso G, da Silva C, Vickers EN, Pujol A, Mbeve H, Cistero P, Maculuve S, Cuna B, Melembe C, Ndimande N, Palmer B, García M, Munguambe H, Lopez JM, Nhamussa L, Simone W, Chidimatembue A, Galatas B, Guinovart C, Rovira-Vallbona E, Saute F, Aide P, Aranda-Díaz A, Greenhouse B, Macete E. Genomic malaria surveillance of antenatal care users detects reduced transmission following elimination interventions in Mozambique. RESEARCH SQUARE 2023:rs.3.rs-3545903. [PMID: 38014035 PMCID: PMC10680916 DOI: 10.21203/rs.3.rs-3545903/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Routine sampling of pregnant women at first antenatal care (ANC) visits could make Plasmodium falciparum genomic surveillance more cost-efficient and convenient in sub-Saharan Africa. We compared the genetic structure of parasite populations sampled from 289 first ANC attendees and 93 children from the community in Mozambique between 2015 and 2019. Samples were amplicon sequenced targeting 165 microhaplotypes and 15 drug resistance genes. Metrics of genetic diversity and relatedness, as well as the prevalence of drug resistance markers, were consistent between the two populations. In an area targeted for elimination, intra-host genetic diversity declined in both populations (p=0.002-0.007), while for the ANC population, population genetic diversity was also lower (p=0.0004), and genetic relatedness between infections were higher (p=0.002) than control areas, indicating a recent reduction in the parasite population size. These results highlight the added value of genomic surveillance at ANC clinics to inform about changes in transmission beyond epidemiological data.
Collapse
Affiliation(s)
- Alfredo Mayor
- Barcelona Institute for Global Health / Manhiça Health Research Centre
| | | | | | | | | | - Arnau Pujol
- ISGlobal, Barcelona Center for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona / Centro de Investigação em Saúde da Manhiça
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Beatriz Galatas
- ISGlobal, Barcelona Center for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona / Centro de Investigação em Saúde da Manhiça
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Mayor A, Ishengoma DS, Proctor JL, Verity R. Sampling for malaria molecular surveillance. Trends Parasitol 2023; 39:954-968. [PMID: 37730525 PMCID: PMC10580323 DOI: 10.1016/j.pt.2023.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
Strategic use of Plasmodium falciparum genetic variation has great potential to inform public health actions for malaria control and elimination. Malaria molecular surveillance (MMS) begins with a strategy to identify and collect parasite samples, guided by public-health priorities. In this review we discuss sampling design practices for MMS and point out epidemiological, biological, and statistical factors that need to be considered. We present examples for different use cases, including detecting emergence and spread of rare variants, establishing transmission sources and inferring changes in malaria transmission intensity. This review will potentially guide the collection of samples and data, serve as a starting point for further methodological innovation, and enhance utilization of MMS to support malaria elimination.
Collapse
Affiliation(s)
- Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; Department of Physiologic Sciences, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique.
| | - Deus S Ishengoma
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania; Faculty of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia; Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Joshua L Proctor
- Institute for Disease Modeling in Global Health, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Robert Verity
- MRC Centre for Global Infectious Disease Analysis, Imperial College, London, UK
| |
Collapse
|
6
|
Lapp Z, Freedman E, Huang K, Markwalter CF, Obala AA, Prudhomme-O'Meara W, Taylor SM. Analytic optimization of Plasmodium falciparum marker gene haplotype recovery from amplicon deep sequencing of complex mixtures. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.17.23294237. [PMID: 37662206 PMCID: PMC10473802 DOI: 10.1101/2023.08.17.23294237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Molecular epidemiologic studies of malaria parasites commonly employ amplicon deep sequencing (AmpSeq) of marker genes derived from dried blood spots (DBS) to answer public health questions related to topics such as transmission and drug resistance. As these methods are increasingly employed to inform direct public health action, it is important to rigorously evaluate the risk of false positive and false negative haplotypes derived from clinically-relevant sample types. We performed a control experiment evaluating haplotype recovery from AmpSeq of 5 marker genes (ama1, csp, msp7, sera2, and trap) from DBS containing mixtures of DNA from 1 to 10 known P. falciparum reference strains across 3 parasite densities in triplicate (n=270 samples). While false positive haplotypes were present across all parasite densities and mixtures, we optimized censoring criteria to remove 83% (148/179) of false positives while removing only 8% (67/859) of true positives. Post-censoring, the median pairwise Jaccard distance between replicates was 0.83. We failed to recover 35% (477/1365) of haplotypes expected to be present in the sample. Haplotypes were more likely to be missed in low-density samples with <1.5 genomes/μL (OR: 3.88, CI: 1.82-8.27, vs. high-density samples with ≥75 genomes/μL) and in samples with lower read depth (OR per 10,000 reads: 0.61, CI: 0.54-0.69). Furthermore, minority haplotypes within a sample were more likely to be missed than dominant haplotypes (OR per 0.01 increase in proportion: 0.96, CI: 0.96-0.97). Finally, in clinical samples the percent concordance across markers for multiplicity of infection ranged from 40%-80%. Taken together, our observations indicate that, with sufficient read depth, haplotypes can be successfully recovered from DBS while limiting the false positive rate.
Collapse
Affiliation(s)
- Zena Lapp
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Elizabeth Freedman
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, NC, USA
| | - Kathie Huang
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, NC, USA
| | | | - Andrew A Obala
- School of Medicine, College of Health Sciences, Moi University, Eldoret, Kenya
| | - Wendy Prudhomme-O'Meara
- Duke Global Health Institute, Duke University, Durham, NC, USA
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, NC, USA
| | - Steve M Taylor
- Duke Global Health Institute, Duke University, Durham, NC, USA
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
7
|
Castañeda-Mogollón D, Toppings NB, Kamaliddin C, Lang R, Kuhn S, Pillai DR. Amplicon Deep Sequencing Reveals Multiple Genetic Events Lead to Treatment Failure with Atovaquone-Proguanil in Plasmodium falciparum. Antimicrob Agents Chemother 2023; 67:e0170922. [PMID: 37154745 PMCID: PMC10269153 DOI: 10.1128/aac.01709-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/05/2023] [Indexed: 05/10/2023] Open
Abstract
Atovaquone-proguanil (AP) is used as treatment for uncomplicated malaria, and as a chemoprophylactic agent against Plasmodium falciparum. Imported malaria remains one of the top causes of fever in Canadian returning travelers. Twelve sequential whole-blood samples before and after AP treatment failure were obtained from a patient diagnosed with P. falciparum malaria upon their return from Uganda and Sudan. Ultradeep sequencing was performed on the cytb, dhfr, and dhps markers of treatment resistance before and during the episode of recrudescence. Haplotyping profiles were generated using three different approaches: msp2-3D7 agarose and capillary electrophoresis, and cpmp using amplicon deep sequencing (ADS). A complexity of infection (COI) analysis was conducted. De novo cytb Y268C mutants strains were observed during an episode of recrudescence 17 days and 16 h after the initial malaria diagnosis and AP treatment initiation. No Y268C mutant reads were observed in any of the samples prior to the recrudescence. SNPs in the dhfr and dhps genes were observed upon initial presentation. The haplotyping profiles suggest multiple clones mutating under AP selection pressure (COI > 3). Significant differences in COI were observed by capillary electrophoresis and ADS compared to the agarose gel results. ADS using cpmp revealed the lowest haplotype variation across the longitudinal analysis. Our findings highlight the value of ultra-deep sequencing methods in the understanding of P. falciparum haplotype infection dynamics. Longitudinal samples should be analyzed in genotyping studies to increase the analytical sensitivity.
Collapse
Affiliation(s)
- Daniel Castañeda-Mogollón
- Cumming School of Medicine, Department of Pathology & Laboratory Medicine, the University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Microbiology, Immunology, and Infectious Diseases, the University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, the University of Calgary, Calgary, Alberta, Canada
| | - Noah B. Toppings
- Cumming School of Medicine, Department of Pathology & Laboratory Medicine, the University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Microbiology, Immunology, and Infectious Diseases, the University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, the University of Calgary, Calgary, Alberta, Canada
| | - Claire Kamaliddin
- Cumming School of Medicine, Department of Pathology & Laboratory Medicine, the University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Microbiology, Immunology, and Infectious Diseases, the University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, the University of Calgary, Calgary, Alberta, Canada
| | - Raynell Lang
- Cumming School of Medicine, Department of Medicine, the University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Community Health Sciences, the University of Calgary, Calgary, Alberta, Canada
| | - Susan Kuhn
- Cumming School of Medicine, Department of Pediatrics, the University of Calgary, Calgary, Alberta, Canada
| | - Dylan R. Pillai
- Cumming School of Medicine, Department of Pathology & Laboratory Medicine, the University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Microbiology, Immunology, and Infectious Diseases, the University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, the University of Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Diagnostic & Scientific Centre, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Khan N, Awasthi G, Das A. How can the complex epidemiology of malaria in India impact its elimination? Trends Parasitol 2023; 39:432-444. [PMID: 37031071 PMCID: PMC10175201 DOI: 10.1016/j.pt.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 04/10/2023]
Abstract
Malaria is a human health hazard in the tropical and subtropical zones of the globe and is poised to be eliminated by the year 2030. Despite a decrease in incidence in the past two decades, many endemic countries, including India, report cases regularly. The epidemiology of malaria in India is unique owing to several features of the Plasmodium parasites, Anopheles vectors, ecoepidemiological situations conducive to disease transmission, and susceptible humans living in rural and forested areas. Limitations in public health reach, and poor health-seeking behaviour of vulnerable populations living in hard-to-reach areas, add to the problem. We bring all of these factors together in a comprehensive framework and opine that, in spite of complexities, targeted elimination of malaria in India is achievable with planned programmatic approaches.
Collapse
Affiliation(s)
- Nikhat Khan
- Molecular Epidemiology Laboratory, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | | | - Aparup Das
- Molecular Epidemiology Laboratory, ICMR-National Institute of Research in Tribal Health, Jabalpur, India.
| |
Collapse
|
9
|
Argyropoulos DC, Tan MH, Adobor C, Mensah B, Labbé F, Tiedje KE, Koram KA, Ghansah A, Day KP. Performance of SNP barcodes to determine genetic diversity and population structure of Plasmodium falciparum in Africa. Front Genet 2023; 14:1071896. [PMID: 37323661 PMCID: PMC10267394 DOI: 10.3389/fgene.2023.1071896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Panels of informative biallelic single nucleotide polymorphisms (SNPs) have been proposed to be an economical method to fast-track the population genetic analysis of Plasmodium falciparum in malaria-endemic areas. Whilst used successfully in low-transmission areas where infections are monoclonal and highly related, we present the first study to evaluate the performance of these 24- and 96-SNP molecular barcodes in African countries, characterised by moderate-to-high transmission, where multiclonal infections are prevalent. For SNP barcodes it is generally recommended that the SNPs chosen i) are biallelic, ii) have a minor allele frequency greater than 0.10, and iii) are independently segregating, to minimise bias in the analysis of genetic diversity and population structure. Further, to be standardised and used in many population genetic studies, these barcodes should maintain characteristics i) to iii) across various iv) geographies and v) time points. Using haplotypes generated from the MalariaGEN P. falciparum Community Project version six database, we investigated the ability of these two barcodes to fulfil these criteria in moderate-to-high transmission African populations in 25 sites across 10 countries. Predominantly clinical infections were analysed, with 52.3% found to be multiclonal, generating high proportions of mixed-allele calls (MACs) per isolate thereby impeding haplotype construction. Of the 24- and 96-SNPs, loci were removed if they were not biallelic and had low minor allele frequencies in all study populations, resulting in 20- and 75-SNP barcodes respectively for downstream population genetics analysis. Both SNP barcodes had low expected heterozygosity estimates in these African settings and consequently biased analyses of similarity. Both minor and major allele frequencies were temporally unstable. These SNP barcodes were also shown to identify weak genetic differentiation across large geographic distances based on Mantel Test and DAPC. These results demonstrate that these SNP barcodes are vulnerable to ascertainment bias and as such cannot be used as a standardised approach for malaria surveillance in moderate-to-high transmission areas in Africa, where the greatest genomic diversity of P. falciparum exists at local, regional and country levels.
Collapse
Affiliation(s)
- Dionne C. Argyropoulos
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Mun Hua Tan
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Courage Adobor
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Benedicta Mensah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Frédéric Labbé
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, United States
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Wong W, Volkman S, Daniels R, Schaffner S, Sy M, Ndiaye YD, Badiane AS, Deme AB, Diallo MA, Gomis J, Sy N, Ndiaye D, Wirth DF, Hartl DL. R H: a genetic metric for measuring intrahost Plasmodium falciparum relatedness and distinguishing cotransmission from superinfection. PNAS NEXUS 2022; 1:pgac187. [PMID: 36246152 PMCID: PMC9552330 DOI: 10.1093/pnasnexus/pgac187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/08/2022] [Indexed: 01/29/2023]
Abstract
Multiple-strain (polygenomic) infections are a ubiquitous feature of Plasmodium falciparum parasite population genetics. Under simple assumptions of superinfection, polygenomic infections are hypothesized to be the result of multiple infectious bites. As a result, polygenomic infections have been used as evidence of repeat exposure and used to derive genetic metrics associated with high transmission intensity. However, not all polygenomic infections are the result of multiple infectious bites. Some result from the transmission of multiple, genetically related strains during a single infectious bite (cotransmission). Superinfection and cotransmission represent two distinct transmission processes, and distinguishing between the two could improve inferences regarding parasite transmission intensity. Here, we describe a new metric, R H, that utilizes the correlation in allelic state (heterozygosity) within polygenomic infections to estimate the likelihood that the observed complexity resulted from either superinfection or cotransmission. R H is flexible and can be applied to any type of genetic data. As a proof of concept, we used R H to quantify polygenomic relatedness and estimate cotransmission and superinfection rates from a set of 1,758 malaria infections genotyped with a 24 single nucleotide polymorphism (SNP) molecular barcode. Contrary to expectation, we found that cotransmission was responsible for a significant fraction of 43% to 53% of the polygenomic infections collected in three distinct epidemiological regions in Senegal. The prediction that polygenomic infections frequently result from cotransmission stresses the need to incorporate estimates of relatedness within polygenomic infections to ensure the accuracy of genomic epidemiology surveillance data for informing public health activities.
Collapse
Affiliation(s)
- Wesley Wong
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
| | - Sarah Volkman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
- College of Natural, Behavioral, and Health Sciences, Simmons University, Boston, MA 02115, USA
| | - Rachel Daniels
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Stephen Schaffner
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Mouhamad Sy
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar 10200, Senegal
| | - Yaye Die Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar 10200, Senegal
| | - Aida S Badiane
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar 10200, Senegal
| | - Awa B Deme
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar 10200, Senegal
| | - Mamadou Alpha Diallo
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar 10200, Senegal
| | - Jules Gomis
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar 10200, Senegal
| | - Ngayo Sy
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar 10200, Senegal
| | - Daouda Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar 10200, Senegal
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
11
|
Sedda L, McCann RS, Kabaghe AN, Gowelo S, Mburu MM, Tizifa TA, Chipeta MG, van den Berg H, Takken W, van Vugt M, Phiri KS, Cain R, Tangena JAA, Jones CM. Hotspots and super-spreaders: Modelling fine-scale malaria parasite transmission using mosquito flight behaviour. PLoS Pathog 2022; 18:e1010622. [PMID: 35793345 PMCID: PMC9292116 DOI: 10.1371/journal.ppat.1010622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 07/18/2022] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Malaria hotspots have been the focus of public health managers for several years due to the potential elimination gains that can be obtained from targeting them. The identification of hotspots must be accompanied by the description of the overall network of stable and unstable hotspots of malaria, especially in medium and low transmission settings where malaria elimination is targeted. Targeting hotspots with malaria control interventions has, so far, not produced expected benefits. In this work we have employed a mechanistic-stochastic algorithm to identify clusters of super-spreader houses and their related stable hotspots by accounting for mosquito flight capabilities and the spatial configuration of malaria infections at the house level. Our results show that the number of super-spreading houses and hotspots is dependent on the spatial configuration of the villages. In addition, super-spreaders are also associated to house characteristics such as livestock and family composition. We found that most of the transmission is associated with winds between 6pm and 10pm although later hours are also important. Mixed mosquito flight (downwind and upwind both with random components) were the most likely movements causing the spread of malaria in two out of the three study areas. Finally, our algorithm (named MALSWOTS) provided an estimate of the speed of malaria infection progression from house to house which was around 200-400 meters per day, a figure coherent with mark-release-recapture studies of Anopheles dispersion. Cross validation using an out-of-sample procedure showed accurate identification of hotspots. Our findings provide a significant contribution towards the identification and development of optimal tools for efficient and effective spatio-temporal targeted malaria interventions over potential hotspot areas.
Collapse
Affiliation(s)
- Luigi Sedda
- Lancaster Ecology and Epidemiology Group, Lancaster Medical School, Lancaster University, United Kingdom
| | - Robert S. McCann
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alinune N. Kabaghe
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Steven Gowelo
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- MAC Communicable Diseases Action Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Monicah M. Mburu
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Tinashe A. Tizifa
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- Center for Tropical Medicine and Travel Medicine, University of Amsterdam, The Netherlands
| | - Michael G. Chipeta
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Henk van den Berg
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Michèle van Vugt
- Center for Tropical Medicine and Travel Medicine, University of Amsterdam, The Netherlands
| | - Kamija S. Phiri
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Russell Cain
- Lancaster Ecology and Epidemiology Group, Lancaster Medical School, Lancaster University, United Kingdom
| | - Julie-Anne A. Tangena
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Christopher M. Jones
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
12
|
Markwalter CF, Menya D, Wesolowski A, Esimit D, Lokoel G, Kipkoech J, Freedman E, Sumner KM, Abel L, Ambani G, Meredith HR, Taylor SM, Obala AA, O'Meara WP. Plasmodium falciparum importation does not sustain malaria transmission in a semi-arid region of Kenya. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000807. [PMID: 36962553 PMCID: PMC10021402 DOI: 10.1371/journal.pgph.0000807] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/17/2022] [Indexed: 11/19/2022]
Abstract
Human movement impacts the spread and transmission of infectious diseases. Recently, a large reservoir of Plasmodium falciparum malaria was identified in a semi-arid region of northwestern Kenya historically considered unsuitable for malaria transmission. Understanding the sources and patterns of transmission attributable to human movement would aid in designing and targeting interventions to decrease the unexpectedly high malaria burden in the region. Toward this goal, polymorphic parasite genes (ama1, csp) in residents and passengers traveling to Central Turkana were genotyped by amplicon deep sequencing. Genotyping and epidemiological data were combined to assess parasite importation. The contribution of travel to malaria transmission was estimated by modelling case reproductive numbers inclusive and exclusive of travelers. P. falciparum was detected in 6.7% (127/1891) of inbound passengers, including new haplotypes which were later detected in locally-transmitted infections. Case reproductive numbers approximated 1 and did not change when travelers were removed from transmission networks, suggesting that transmission is not fueled by travel to the region but locally endemic. Thus, malaria is not only prevalent in Central Turkana but also sustained by local transmission. As such, interrupting importation is unlikely to be an effective malaria control strategy on its own, but targeting interventions locally has the potential to drive down transmission.
Collapse
Affiliation(s)
| | - Diana Menya
- School of Public Health, Moi University College of Health Sciences, Eldoret, Kenya
| | - Amy Wesolowski
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Daniel Esimit
- Department of Health Services and Sanitation, Turkana County, Kenya
| | - Gilchrist Lokoel
- Department of Health Services and Sanitation, Turkana County, Kenya
| | - Joseph Kipkoech
- Academic Model Providing Access to Healthcare, Eldoret, Kenya
| | - Elizabeth Freedman
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kelsey M Sumner
- Duke University School of Medicine, Durham, North Carolina, United States of America
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lucy Abel
- Academic Model Providing Access to Healthcare, Eldoret, Kenya
| | - George Ambani
- Academic Model Providing Access to Healthcare, Eldoret, Kenya
| | - Hannah R Meredith
- Duke Global Health Institute, Durham, North Carolina, United States of America
| | - Steve M Taylor
- Duke Global Health Institute, Durham, North Carolina, United States of America
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Andrew A Obala
- School of Medicine, Moi University College of Health Sciences, Eldoret, Kenya
| | - Wendy P O'Meara
- Duke Global Health Institute, Durham, North Carolina, United States of America
- Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
13
|
Sumner KM, Freedman E, Mangeni JN, Obala AA, Abel L, Edwards JK, Emch M, Meshnick SR, Pence BW, Prudhomme-O'Meara W, Taylor SM. Exposure to diverse Plasmodium falciparum genotypes shapes the risk of symptomatic malaria in incident and persistent infections: A longitudinal molecular epidemiologic study in Kenya. Clin Infect Dis 2021; 73:1176-1184. [PMID: 33904907 DOI: 10.1093/cid/ciab357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Repeated exposure to malaria infections could protect against symptomatic progression, as people develop adaptive immunity to infections acquired over time. METHODS We investigated how new, recurrent, and persistent Plasmodium falciparum infections were associated with the odds of developing symptomatic compared to asymptomatic malaria. Using a 14-month longitudinal cohort in Western Kenya, we used amplicon deep sequencing of two polymorphic genes (pfama1 and pfcsp) to assess overlap of parasite genotypes (represented by haplotypes) acquired within an individual's successive infections. We hypothesized infections with novel haplotypes would increase the odds of symptomatic malaria. RESULTS After excluding initial infections, we observed 534 asymptomatic and 88 symptomatic infections across 186 people. We detected 109 pfcsp haplotypes, and each infection was classified as harboring novel, recurrent or persistent haplotypes. Incident infections with only new haplotypes had higher odds of symptomatic malaria when compared to infections with only recurrent haplotypes [odds ratio (OR): 3.24, 95% confidence interval (CI): 1.20 to 8.78], but infections with both new and recurrent haplotypes [OR: 0.64, 95% CI: 0.15 to 2.65] did not. Assessing persistent infections, those with mixed (persistent with new or recurrent) haplotypes [OR: 0.77, 95% CI: 0.21 to 2.75] had no association with symptomatic malaria compared to infections with only persistent haplotypes. Results were similar for pfama1. CONCLUSIONS These results confirm that incident infections with only novel haplotypes were associated with increased odds of symptomatic malaria compared to infections with only recurrent haplotypes but this relationship was not seen when haplotypes persisted over time in consecutive infections.
Collapse
Affiliation(s)
- Kelsey M Sumner
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill NC, USA.,Division of Infectious Diseases, School of Medicine, Duke University, Durham NC, USA
| | - Elizabeth Freedman
- Division of Infectious Diseases, School of Medicine, Duke University, Durham NC, USA
| | - Judith N Mangeni
- School of Public Health, College of Health Sciences, Moi University, Eldoret, Kenya
| | - Andrew A Obala
- School of Medicine, College of Health Sciences, Moi University, Eldoret, Kenya
| | - Lucy Abel
- Academic Model Providing Access to Healthcare, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Jessie K Edwards
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill NC, USA
| | - Michael Emch
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill NC, USA.,Department of Geography, University of North Carolina, Chapel Hill NC, USA
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill NC, USA
| | - Brian W Pence
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill NC, USA
| | - Wendy Prudhomme-O'Meara
- Division of Infectious Diseases, School of Medicine, Duke University, Durham NC, USA.,School of Public Health, College of Health Sciences, Moi University, Eldoret, Kenya.,Duke Global Health Institute, Duke University, Durham NC, USA
| | - Steve M Taylor
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill NC, USA.,Division of Infectious Diseases, School of Medicine, Duke University, Durham NC, USA.,Duke Global Health Institute, Duke University, Durham NC, USA
| |
Collapse
|
14
|
Genotyping cognate Plasmodium falciparum in humans and mosquitoes to estimate onward transmission of asymptomatic infections. Nat Commun 2021; 12:909. [PMID: 33568678 PMCID: PMC7875998 DOI: 10.1038/s41467-021-21269-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/15/2021] [Indexed: 01/30/2023] Open
Abstract
Malaria control may be enhanced by targeting reservoirs of Plasmodium falciparum transmission. One putative reservoir is asymptomatic malaria infections and the scale of their contribution to transmission in natural settings is not known. We assess the contribution of asymptomatic malaria to onward transmission using a 14-month longitudinal cohort of 239 participants in a high transmission site in Western Kenya. We identify P. falciparum in asymptomatically- and symptomatically-infected participants and naturally-fed mosquitoes from their households, genotype all parasites using deep sequencing of the parasite genes pfama1 and pfcsp, and use haplotypes to infer participant-to-mosquito transmission through a probabilistic model. In 1,242 infections (1,039 in people and 203 in mosquitoes), we observe 229 (pfcsp) and 348 (pfama1) unique parasite haplotypes. Using these to link human and mosquito infections, compared with symptomatic infections, asymptomatic infections more than double the odds of transmission to a mosquito among people with both infection types (Odds Ratio: 2.56; 95% Confidence Interval (CI): 1.36-4.81) and among all participants (OR 2.66; 95% CI: 2.05-3.47). Overall, 94.6% (95% CI: 93.1-95.8%) of mosquito infections likely resulted from asymptomatic infections. In high transmission areas, asymptomatic infections are the major contributor to mosquito infections and may be targeted as a component of transmission reduction.
Collapse
|
15
|
Briggs J, Kuchta A, Murphy M, Tessema S, Arinaitwe E, Rek J, Chen A, Nankabirwa JI, Drakeley C, Smith D, Bousema T, Kamya M, Rodriguez-Barraquer I, Staedke S, Dorsey G, Rosenthal PJ, Greenhouse B. Within-household clustering of genetically related Plasmodium falciparum infections in a moderate transmission area of Uganda. Malar J 2021; 20:68. [PMID: 33531029 PMCID: PMC8042884 DOI: 10.1186/s12936-021-03603-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/22/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Evaluation of genetic relatedness of malaria parasites is a useful tool for understanding transmission patterns, but patterns are not easily detectable in areas with moderate to high malaria transmission. To evaluate the feasibility of detecting genetic relatedness in a moderate malaria transmission setting, relatedness of Plasmodium falciparum infections was measured in cohort participants from randomly selected households in the Kihihi sub-county of Uganda (annual entomological inoculation rate of 27 infectious bites per person). METHODS All infections detected via microscopy or Plasmodium-specific loop mediated isothermal amplification from passive and active case detection during August 2011-March 2012 were genotyped at 26 microsatellite loci, providing data for 349 samples from 230 participants living in 80 households. Pairwise genetic relatedness was calculated using identity by state (IBS). RESULTS As expected, genetic diversity was high (mean heterozygosity [He] = 0.73), and the majority (76.5 %) of samples were polyclonal. Despite the high genetic diversity, fine-scale population structure was detectable, with significant spatiotemporal clustering of highly related infections. Although the difference in malaria incidence between households at higher (mean 1127 metres) versus lower elevation (mean 1015 metres) was modest (1.4 malaria cases per person-year vs. 1.9 per person-year, respectively), there was a significant difference in multiplicity of infection (2.2 vs. 2.6, p = 0.008) and, more strikingly, a higher proportion of highly related infections within households (6.3 % vs. 0.9 %, p = 0.0005) at higher elevation compared to lower elevation. CONCLUSIONS Genetic data from a relatively small number of diverse, multiallelic loci reflected fine scale patterns of malaria transmission. Given the increasing interest in applying genetic data to augment malaria surveillance, this study provides evidence that genetic data can be used to inform transmission patterns at local spatial scales even in moderate transmission areas.
Collapse
Affiliation(s)
- Jessica Briggs
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Alison Kuchta
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Max Murphy
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sofonias Tessema
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Anna Chen
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - David Smith
- Institute for Health Metrics & Evaluation, University of Washington, Seattle, WA, USA
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Sarah Staedke
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Mitchell CL, Topazian HM, Brazeau NF, Deutsch-Feldman M, Muwonga J, Sompwe E, Tshefu AK, Mwandagalirwa MK, Parr JB, Juliano JJ. Household prevalence of P. falciparum, P. vivax, and P. ovale in the Democratic Republic of the Congo, 2013-2014. Clin Infect Dis 2020; 73:e3966-e3969. [PMID: 33238298 DOI: 10.1093/cid/ciaa1772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/20/2020] [Indexed: 11/15/2022] Open
Abstract
In a cross-sectional molecular study in the Democratic Republic of Congo, 78% of households had at least one member infected with Plasmodium falciparum, vivax, and/or ovale spp. 47% of children and 33% of adults tested positive for at least one species. Risk factors varied by species and age group.
Collapse
Affiliation(s)
- Cedar L Mitchell
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Hillary M Topazian
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Nicholas F Brazeau
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.,Medical Scientist Training Program, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Molly Deutsch-Feldman
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Jeremie Muwonga
- Programme National de la Lutte contre le SIDA, Kinshasa, Democratic Republic of Congo
| | - Eric Sompwe
- Programme National de la Lutte contre le Paludisme, Kinshasa, Democratic Republic of Congo
| | - Antoinette K Tshefu
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Melchior K Mwandagalirwa
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Jonathan B Parr
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jonathan J Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.,Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Venditto VJ, Hudspeth B, Freeman PR, Kebodeaux C, Guy RK. University–pharmacy partnerships for COVID-19. Science 2020; 369:1441. [DOI: 10.1126/science.abe3339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - Brooke Hudspeth
- College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Patricia R. Freeman
- Center for the Advancement of Pharmacy Practice, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Clark Kebodeaux
- College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - R. Kiplin Guy
- College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|