1
|
Szokoli D, Mutschler H. Protein-free catalysis of DNA hydrolysis and self-integration by a ribozyme. Nucleic Acids Res 2024:gkae1224. [PMID: 39698822 DOI: 10.1093/nar/gkae1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Group II introns are ancient self-splicing ribozymes and retrotransposons. Though long speculated to have originated before translation, their dependence on intron-encoded proteins for splicing and mobility has cast doubt on this hypothesis. While some group II introns are known to retain part of their catalytic repertoire in the absence of protein cofactors, protein-free complete reverse splicing of a group II intron into a DNA target has never been demonstrated. Here, we demonstrate the complete independence of a group II intron from protein cofactors in all intron-catalyzed reactions. The ribozyme is capable of fully reverse splicing into single-stranded DNA targets in vitro, readily hydrolyzes DNA substrates and is even able to unwind and react with stably duplexed DNA. Our findings make a protein-free origin for group II introns plausible by expanding their known catalytic capabilities beyond what would be needed to survive the transition from RNA to DNA genomes. Furthermore, the intron's capacity to react with both single and double-stranded DNA in conjunction with its expanded sequence recognition may represent a promising starting point for the development of protein-free genomic editing tools.
Collapse
Affiliation(s)
- Deni Szokoli
- Biomimetic Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, Dortmund 44227, Germany
| | - Hannes Mutschler
- Biomimetic Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, Dortmund 44227, Germany
| |
Collapse
|
2
|
Mittal S, Nisler C, Szostak JW. Simulations predict preferred Mg 2+ coordination in a nonenzymatic primer-extension reaction center. Biophys J 2024; 123:1579-1591. [PMID: 38702884 PMCID: PMC11214020 DOI: 10.1016/j.bpj.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
The mechanism by which genetic information was copied prior to the evolution of ribozymes is of great interest because of its importance to the origin of life. The most effective known process for the nonenzymatic copying of an RNA template is primer extension by a two-step pathway in which 2-aminoimidazole-activated nucleotides first react with each other to form an imidazolium-bridged intermediate that subsequently reacts with the primer. Reaction kinetics, structure-activity relationships, and X-ray crystallography have provided insight into the overall reaction mechanism, but many puzzles remain. In particular, high concentrations of Mg2+ are required for efficient primer extension, but the mechanism by which Mg2+ accelerates primer extension remains unknown. By analogy with the mechanism of DNA and RNA polymerases, a role for Mg2+ in facilitating the deprotonation of the primer 3'-hydroxyl is often assumed, but no catalytic metal ion is seen in crystal structures of the primer-extension complex. To explore the potential effects of Mg2+ binding in the reaction center, we performed atomistic molecular dynamics simulations of a series of modeled complexes in which a Mg2+ ion was placed in the reaction center with inner-sphere coordination with different sets of functional groups. Our simulations suggest that coordination of a Mg2+ ion with both O3' of the terminal primer nucleotide and the pro-Sp nonbridging oxygen of the reactive phosphate of an imidazolium-bridged dinucleotide would help to pre-organize the structure of the primer/template substrate complex to favor the primer-extension reaction. Our results suggest that the catalytic metal ion may play an important role in overcoming electrostatic repulsion between a deprotonated O3' and the reactive phosphate of the bridged dinucleotide and lead to testable predictions of the mode of Mg2+ binding that is most relevant to catalysis of primer extension.
Collapse
Affiliation(s)
- Shriyaa Mittal
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts; Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Collin Nisler
- Howard Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago, Illinois
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts; Department of Genetics, Harvard Medical School, Boston, Massachusetts; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts; Howard Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago, Illinois.
| |
Collapse
|
3
|
Tipo J, Gottipati K, Choi KH. High-resolution RNA tertiary structures in Zika virus stem-loop A for the development of inhibitory small molecules. RNA (NEW YORK, N.Y.) 2024; 30:609-623. [PMID: 38383158 PMCID: PMC11098461 DOI: 10.1261/rna.079796.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Flaviviruses such as Zika (ZIKV) and dengue virus (DENV) are positive-sense RNA viruses belonging to Flaviviridae The flavivirus genome contains a 5' end stem-loop promoter sequence known as stem-loop A (SLA) that is recognized by the flavivirus polymerase NS5 during viral RNA synthesis and 5' guanosine cap methylation. The crystal structures of ZIKV and DENV SLAs show a well-defined fold, consisting of a bottom stem, side loop, and top stem-loop, providing unique interaction sites for small molecule inhibitors to disrupt the promoter function. To facilitate the identification of small molecule binding sites in flavivirus SLA, we determined high-resolution structures of the bottom and top stems of ZIKV SLA, which contain a single U- or G-bulge, respectively. Both bulge nucleotides exhibit multiple orientations, from folded back on the adjacent nucleotide to flipped out of the helix, and are stabilized by stacking or base triple interactions. These structures suggest that even a single unpaired nucleotide can provide flexibility to RNA structures, and its conformation is mainly determined by the stabilizing chemical environment. To facilitate discovery of small molecule inhibitors that interfere with the functions of ZIKV SLA, we screened and identified compounds that bind to the bottom and top stems of ZIKV SLA.
Collapse
Affiliation(s)
- Jerricho Tipo
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Keerthi Gottipati
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Kyung H Choi
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
4
|
Lee Y, Buchheim J, Hellenkamp B, Lynall D, Yang K, Young EF, Penkov B, Sia S, Stojanovic MN, Shepard KL. Carbon-nanotube field-effect transistors for resolving single-molecule aptamer-ligand binding kinetics. NATURE NANOTECHNOLOGY 2024; 19:660-667. [PMID: 38233588 PMCID: PMC11229667 DOI: 10.1038/s41565-023-01591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Small molecules such as neurotransmitters are critical for biochemical functions in living systems. While conventional ultraviolet-visible spectroscopy and mass spectrometry lack portability and are unsuitable for time-resolved measurements in situ, techniques such as amperometry and traditional field-effect detection require a large ensemble of molecules to reach detectable signal levels. Here we demonstrate the potential of carbon-nanotube-based single-molecule field-effect transistors (smFETs), which can detect the charge on a single molecule, as a new platform for recognizing and assaying small molecules. smFETs are formed by the covalent attachment of a probe molecule, in our case a DNA aptamer, to a carbon nanotube. Conformation changes on binding are manifest as discrete changes in the nanotube electrical conductance. By monitoring the kinetics of conformational changes in a binding aptamer, we show that smFETs can detect and quantify serotonin at the single-molecule level, providing unique insights into the dynamics of the aptamer-ligand system. In particular, we show the involvement of G-quadruplex formation and the disruption of the native hairpin structure in the conformational changes of the serotonin-aptamer complex. The smFET is a label-free approach to analysing molecular interactions at the single-molecule level with high temporal resolution, providing additional insights into complex biological processes.
Collapse
Affiliation(s)
- Yoonhee Lee
- Department of Electrical Engineering, Columbia University, New York, NY, USA
- Division of Electronics & Information System, ICT Research Institute, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jakob Buchheim
- Department of Electrical Engineering, Columbia University, New York, NY, USA
- Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institute of Quantum Technologies, Ulm, Germany
| | - Björn Hellenkamp
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - David Lynall
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Kyungae Yang
- Department of Medicine, Columbia University, New York, NY, USA
| | - Erik F Young
- Quicksilver Biosciences, Inc., New York, NY, USA
| | - Boyan Penkov
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Samuel Sia
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Kenneth L Shepard
- Department of Electrical Engineering, Columbia University, New York, NY, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Vollmar L, Schimpf J, Hermann B, Hugel T. Cochaperones convey the energy of ATP hydrolysis for directional action of Hsp90. Nat Commun 2024; 15:569. [PMID: 38233436 PMCID: PMC10794413 DOI: 10.1038/s41467-024-44847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024] Open
Abstract
The molecular chaperone and heat shock protein Hsp90 is part of many protein complexes in eukaryotic cells. Together with its cochaperones, Hsp90 is responsible for the maturation of hundreds of clients. Although having been investigated for decades, it still is largely unknown which components are necessary for a functional complex and how the energy of ATP hydrolysis is used to enable cyclic operation. Here we use single-molecule FRET to show how cochaperones introduce directionality into Hsp90's conformational changes during its interaction with the client kinase Ste11. Three cochaperones are needed to couple ATP turnover to these conformational changes. All three are therefore essential for a functional cyclic operation, which requires coupling to an energy source. Finally, our findings show how the formation of sub-complexes in equilibrium followed by a directed selection of the functional complex can be the most energy efficient pathway for kinase maturation.
Collapse
Affiliation(s)
- Leonie Vollmar
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Julia Schimpf
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Bianca Hermann
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany.
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Ploetz E, Ambrose B, Barth A, Börner R, Erichson F, Kapanidis AN, Kim HD, Levitus M, Lohman TM, Mazumder A, Rueda DS, Steffen FD, Cordes T, Magennis SW, Lerner E. A new twist on PIFE: photoisomerisation-related fluorescence enhancement. Methods Appl Fluoresc 2023; 12:012001. [PMID: 37726007 PMCID: PMC10570931 DOI: 10.1088/2050-6120/acfb58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/24/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate ofcis/transphotoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule. In this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turning PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.
Collapse
Affiliation(s)
- Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Benjamin Ambrose
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, United Kingdom
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, W12 0HS, United Kingdom
| | - Anders Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Richard Börner
- Laserinstitut Hochschule Mittweida, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Felix Erichson
- Laserinstitut Hochschule Mittweida, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Department of Physics, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, United Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332, United States of America
| | - Marcia Levitus
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, AZ,85287, United States of America
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States of America
| | - Abhishek Mazumder
- CSIR-Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, United Kingdom
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, W12 0HS, United Kingdom
| | - Fabio D Steffen
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Großhadernerstr. 2-4, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Steven W Magennis
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - Eitan Lerner
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, Edmond J. Safra Campus, Hebrew University of Jerusalem; Jerusalem 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem; Jerusalem 9190401, Israel
| |
Collapse
|
7
|
Ma X, Zhang Y, Huang K, Zhu L, Xu W. Multifunctional rolling circle transcription-based nanomaterials for advanced drug delivery. Biomaterials 2023; 301:122241. [PMID: 37451000 DOI: 10.1016/j.biomaterials.2023.122241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
As the up-and-comer in the development of RNA nanotechnology, RNA nanomaterials based on functionalized rolling circle transcription (RCT) have become promising carriers for drug production and delivery. This is due to RCT technology can self-produce polyvalent tandem nucleic acid prodrugs for intervention in intracellular gene expression and protein production. RNA component strands participating in de novo assembly enable RCT-based nanomaterials to exhibit good mechanical properties, biostability, and biocompatibility as delivery carriers. The biostability makes it to suitable for thermodynamically/kinetically favorable assembly, enzyme resistance and efficient expression in vivo. Controllable RCT system combined with polymers enables customizable and adjustable size, shape, structure, and stoichiometry of RNA building materials, which provide groundwork for the delivery of advanced drugs. Here, we review the assembly strategies and the dynamic regulation of RCT-based nanomaterials, summarize its functional properties referring to the bottom-up design philosophy, and describe its advancements in tumor gene therapy, synergistic chemotherapy, and immunotherapy. Last, we elaborate on the unique and practical value of RCT-based nanomaterials, namely "self-production and self-sale", and their potential challenges in nanotechnology, material science and biomedicine.
Collapse
Affiliation(s)
- Xuan Ma
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
8
|
Hentschel J, Badstübner M, Choi J, Bagshaw CR, Lapointe CP, Wang J, Jansson LI, Puglisi JD, Stone MD. Real-time detection of human telomerase DNA synthesis by multiplexed single-molecule FRET. Biophys J 2023; 122:3447-3457. [PMID: 37515327 PMCID: PMC10502476 DOI: 10.1016/j.bpj.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 02/28/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Genomic stability in proliferating cells critically depends on telomere maintenance by telomerase reverse transcriptase. Here we report the development and proof-of-concept results of a single-molecule approach to monitor the catalytic activity of human telomerase in real time and with single-nucleotide resolution. Using zero-mode waveguides and multicolor FRET, we recorded the processive addition of multiple telomeric repeats to individual DNA primers. Unlike existing biophysical and biochemical tools, the novel approach enables the quantification of nucleotide-binding kinetics before nucleotide incorporation. Moreover, it provides a means to dissect the unique translocation dynamics that telomerase must undergo after synthesis of each hexameric DNA repeat. We observed an unexpectedly prolonged binding dwell time of dGTP in the enzyme active site at the start of each repeat synthesis cycle, suggesting that telomerase translocation is composed of multiple rate-contributing sub-steps that evade classical biochemical analysis.
Collapse
Affiliation(s)
- Jendrik Hentschel
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California; Department of Structural Biology, Stanford University School of Medicine, Stanford, California
| | - Mareike Badstübner
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California
| | - Clive R Bagshaw
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California
| | - Linnea I Jansson
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California.
| |
Collapse
|
9
|
Liang Y, Zhang J, Xu C, Wang J, Han W, Yang J, Wu S, An J, Liu J, Zhang Z, Shi J, Zhang K. Biomimetic Mineralized CRISPR/Cas RNA Nanoparticles for Efficient Tumor-Specific Multiplex Gene Editing. ACS NANO 2023; 17:15025-15043. [PMID: 37481734 DOI: 10.1021/acsnano.3c04116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
CRISPR/Cas9 systems have great potential to achieve sophisticated gene therapy and cell engineering by editing multiple genomic loci. However, to achieve efficient multiplex gene editing, the delivery system needs adequate capacity to transfect all CRISPR/Cas9 RNA species at the required stoichiometry into the cytosol of each individual cell. Herein, inspired by biomineralization in nature, we develop an all-in-one biomimetic mineralized CRISPR/Cas9 RNA delivery system. This system allows for precise control over the coencapsulation ratio between Cas9 mRNA and multiple sgRNAs, while also exhibiting a high RNA loading capacity. In addition, it enhances the storage stability of RNA at 4 °C for up to one month, and the surface of the nanoparticles can be easily functionalized for precise targeting of RNA nanoparticles in vivo at nonliver sites. Based on the above characteristics, as a proof-of-concept, our system was able to achieve significant gene-editing at each target gene (Survivin: 31.9%, PLK1: 24.41%, HPV: 23.2%) and promote apoptosis of HeLa cells in the mouse model, inhibiting tumor growth without obvious off-target effects in liver tissue. This system addresses various challenges associated with multicomponent RNA delivery in vivo, providing an innovative strategy for the RNA-based CRISPR/Cas9 gene editing.
Collapse
Affiliation(s)
- Yan Liang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jingge Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chenlu Xu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jinjin Wang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wenshuai Han
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jiali Yang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Sixuan Wu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jingyi An
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
10
|
Yang A, Lein FN, Weiler J, Drechsel J, Schumann V, Erichson F, Streek A, Börner R. Pressure-controlled microfluidics for automated single-molecule sample preparation. HARDWAREX 2023; 14:e00425. [PMID: 37424928 PMCID: PMC10329172 DOI: 10.1016/j.ohx.2023.e00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 07/11/2023]
Abstract
Sample preparation is a crucial step in single-molecule experiments and involves passivating the microfluidic sample chamber, immobilizing the molecules, and setting experimental buffer conditions. The efficiency of the experiment depends on the quality and speed of sample preparation, which is often performed manually and relies on the experience of the experimenter. This can result in inefficient use of single-molecule samples and time, especially for high-throughput applications. To address this, a pressure-controlled microfluidic system is proposed to automate single-molecule sample preparation. The hardware is based on microfluidic components from ElveFlow and is designed to be cost-effective and adaptable to various microscopy applications. The system includes a reservoir pressure adapter and a reservoir holder designed for additive manufacturing. Two flow chamber designs Ibidi µ-slide and Grace Bio-Labs HybriWell chamber are characterized, and the flow characteristics of the liquid at different volume flow rates V˙ are simulated using CFD-simulations and compared to experimental and theoretical values. The goal of this work is to establish a straightforward and robust system for single-molecule sample preparation that can increase the efficiency of experiments and reduce the bottleneck of manual sample preparation, particularly for high-throughput applications.
Collapse
|
11
|
Li J, Zhang X, Hong L, Liu Y. Entropy Driving the Mg 2+-Induced Folding of TPP Riboswitch RNA. J Phys Chem B 2022; 126:9457-9464. [PMID: 36379020 DOI: 10.1021/acs.jpcb.2c03688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mg2+ is well known to facilitate the structural folding of RNA. However, the thermodynamic and dynamic roles of Mg2+ in RNA folding remain elusive. Here, we exploit single-molecule fluorescence resonance energy transfer (smFRET) and isothermal titration calorimetry (ITC) to study the mechanism of Mg2+ in facilitating the folding of thiamine pyrophosphate (TPP) riboswitch RNA. The results of smFRET identify that the presence of Mg2+ compacts the RNA and enlarges the conformational dispersity among individual RNA molecules, resulting in a large gain of entropy. The compact yet flexible conformations triggered by Mg2+ may help the riboswitch recognize its specific ligand and further fold. This is supported by the ITC experiments, in which the Mg2+-induced RNA folding is driven by entropy (ΔS) instead of enthalpy (ΔH). Our results complement the understanding of the Mg2+-induced RNA folding. The strategy developed in this work can be used to model other RNAs' folding under different conditions.
Collapse
Affiliation(s)
- Jun Li
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Taghavi A, Riveros I, Wales DJ, Yildirim I. Evaluating Geometric Definitions of Stacking for RNA Dinucleoside Monophosphates Using Molecular Mechanics Calculations. J Chem Theory Comput 2022; 18:3637-3653. [PMID: 35652685 DOI: 10.1021/acs.jctc.2c00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA modulation via small molecules is a novel approach in pharmacotherapies, where the determination of the structural properties of RNA motifs is considered a promising way to develop drugs capable of targeting RNA structures to control diseases. However, due to the complexity and dynamic nature of RNA molecules, the determination of RNA structures using experimental approaches is not always feasible, and computational models employing force fields can provide important insight. The quality of the force field will determine how well the predictions are compared to experimental observables. Stacking in nucleic acids is one such structural property, originating mainly from London dispersion forces, which are quantum mechanical and are included in molecular mechanics force fields through nonbonded interactions. Geometric descriptions are utilized to decide if two residues are stacked and hence to calculate the stacking free energies for RNA dinucleoside monophosphates (DNMPs) through statistical mechanics for comparison with experimental thermodynamics data. Here, we benchmark four different stacking definitions using molecular dynamics (MD) trajectories for 16 RNA DNMPs produced by two different force fields (RNA-IL and ff99OL3) and show that our stacking definition better correlates with the experimental thermodynamics data. While predictions within an accuracy of 0.2 kcal/mol at 300 K were observed in RNA CC, CU, UC, AG, GA, and GG, stacked states of purine-pyrimidine and pyrimidine-purine DNMPs, respectively, were typically underpredicted and overpredicted. Additionally, population distributions of RNA UU DNMPs were poorly predicted by both force fields, implying a requirement for further force field revisions. We further discuss the differences predicted by each RNA force field. Finally, we show that discrete path sampling (DPS) calculations can provide valuable information and complement the MD simulations. We propose the use of experimental thermodynamics data for RNA DNMPs as benchmarks for testing RNA force fields.
Collapse
Affiliation(s)
- Amirhossein Taghavi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States.,Department of Chemistry, Scripps Research Institute Florida, Jupiter, Florida 33458, United States
| | - Ivan Riveros
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - David J Wales
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|
13
|
Hadzic MCAS, Sigel RKO, Börner R. Single-Molecule Kinetic Studies of Nucleic Acids by Förster Resonance Energy Transfer. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2439:173-190. [PMID: 35226322 DOI: 10.1007/978-1-0716-2047-2_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Single-molecule microscopy is often used to observe and characterize the conformational dynamics of nucleic acids (NA). Due to the large variety of NA structures and the challenges specific to single-molecule observation techniques, the data recorded in such experiments must be processed via multiple statistical treatments to finally yield a reliable mechanistic view of the NA dynamics. In this chapter, we propose a comprehensive protocol to analyze single-molecule trajectories in the scope of single-molecule Förster resonance energy transfer (FRET) microscopy. The suggested protocol yields the conformational states common to all molecules in the investigated sample, together with the associated conformational transition kinetics. The given model resolves states that are indistinguishable by their observed FRET signals and is estimated with 95% confidence using error calculations on FRET states and transition rate constants. In the end, a step-by-step user guide is given to reproduce the protocol with the Multifunctional Analysis Software to Handle single-molecule FRET data (MASH-FRET).
Collapse
Affiliation(s)
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Richard Börner
- Laserinstitut Hochschule Mittweida, University of Applied Sciences Mittweida, Mittweida, Germany.
| |
Collapse
|
14
|
Manigrasso J, Marcia M, De Vivo M. Computer-aided design of RNA-targeted small molecules: A growing need in drug discovery. Chem 2021. [DOI: 10.1016/j.chempr.2021.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Kaur A, Ellison M, Dhakal S. MASH-FRET: A Simplified Approach for Single-Molecule Multiplexing Using FRET. Anal Chem 2021; 93:8856-8863. [PMID: 34124890 DOI: 10.1021/acs.analchem.1c00848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiplexed detection has been a big motivation in biomarker analysis as it not only saves cost and labor but also improves the reliability of diagnosis. Among the many approaches for multiplexed detection, fluorescence resonance energy transfer (FRET)-based multiplexing is gaining popularity particularly due to its low background and quantitative nature. Although several FRET-based approaches have been developed for multiplexing, they require either multiple FRET pairs in combination with multiple excitation sources or complicated algorithms to accurately assign signals for individual FRET pairs. Therefore, the need for multiple FRET pairs and multiple excitation sources not only complicates the experimental design but also increases the cost and labor. In this regard, multiplexed sensing by tuning the interdye distance of a single FRET pair could be an ideal solution if identification of multiple FRET efficiencies in a single imaging is possible. Here, implementing a program called MASH-FRET, we evaluated the rigor and capability of this program in identifying seemingly overlapped FRET populations obtained from a multiplexed detection experiment using a single FRET pair. Through MASH-FRET-enabled bootstrap-based analysis of FRET data (also called BOBA-FRET), we demonstrated that the resolution and statistical confidence of the poorly resolved or even unresolved FRET populations can be readily determined. Using simulated FRET data, we further demonstrated that the program can easily identify FRET populations separated by ∼0.1 in mean FRET values, indicating an upper limit of ∼9-fold multiplexing without the need for complicated labeling schemes and multiexcitation sources. Therefore, this paper presents a data analysis approach on an existing platform that has a great potential to simplify the technological needs for multiplexing and to broaden the scope of FRET-based single-molecule analyses.
Collapse
Affiliation(s)
- Anisa Kaur
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Mischa Ellison
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
16
|
Geronimo I, Vidossich P, Donati E, Vivo M. Computational investigations of polymerase enzymes: Structure, function, inhibition, and biotechnology. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Inacrist Geronimo
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| | - Elisa Donati
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| | - Marco Vivo
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| |
Collapse
|
17
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
18
|
Abstract
Labeling of nucleic acids is required for many studies aiming to elucidate their functions and dynamics in vitro and in cells. Out of the numerous labeling concepts that have been devised, covalent labeling provides the most stable linkage, an unrivaled choice of small and highly fluorescent labels and - thanks to recent advances in click chemistry - an incredible versatility. Depending on the approach, site-, sequence- and cell-specificity can be achieved. DNA and RNA labeling are rapidly developing fields that bring together multiple areas of research: on the one hand, synthetic and biophysical chemists develop new fluorescent labels and isomorphic nucleobases as well as faster and more selective bioorthogonal reactions. On the other hand, the number of enzymes that can be harnessed for post-synthetic and site-specific labeling of nucleic acids has increased significantly. Together with protein engineering and genetic manipulation of cells, intracellular and cell-specific labeling has become possible. In this review, we provide a structured overview of covalent labeling approaches for nucleic acids and highlight notable developments, in particular recent examples. The majority of this review will focus on fluorescent labeling; however, the principles can often be readily applied to other labels. We will start with entirely chemical approaches, followed by chemo-enzymatic strategies and ribozymes, and finish with metabolic labeling of nucleic acids. Each section is subdivided into direct (or one-step) and two-step labeling approaches and will start with DNA before treating RNA.
Collapse
Affiliation(s)
- Nils Klöcker
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, D-48149 Münster, Germany.
| | | | | |
Collapse
|