1
|
Cabrera CI, Pérez-Álvarez R. Special-point approach for optical absorption coefficient calculations on two-dimensional self-assemblies of type-II perovskite quantum dots. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:025504. [PMID: 39406259 DOI: 10.1088/1361-648x/ad8716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
All-inorganic perovskite quantum dots with the usual cubic shape have emerged as a successful and low-cost alternative to electronically functional nanomaterials motivating various fields of applications, including high-efficiency photovoltaics. Here, we present an efficient and almost analytic approach for optical absorption coefficient calculation on self-assembled perovskite quantum dot films with type-II band alignment. The approach takes advantage of the special point technique for integration over the two-dimensional Brillouin zone, which minimizes the computational cost. The set of special wave-vector points is generated using the Monkhorst and Pack method. The optical absorption spectrum for phenyl-C60-butyric acid methyl ester (PCBM)/CsPbI3quantum dot films is computed, in good agreement with the experiment assuming a homogeneous linewidth of 50 meV and considering a ten special-point set. We show that light absorption in these systems is a cooperative optoelectronic property resulting from the quantum-mechanical coupling between perovskite nanocubes, leading to extended system states. The generality of this approach makes it suitable for calculating the optical absorption coefficient in a broad class of perovskite quantum dot systems.
Collapse
Affiliation(s)
- C I Cabrera
- Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, 98160 Zacatecas, Mexico
| | - R Pérez-Álvarez
- Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62209 Cuernavaca, Morelos, Mexico
| |
Collapse
|
2
|
Milloch A, Filippi U, Franceschini P, Mor S, Pagliara S, Ferrini G, Camargo FVA, Cerullo G, Baranov D, Manna L, Giannetti C. Fate of Optical Excitons in FAPbI 3 Nanocube Superlattices. ACS PHOTONICS 2024; 11:3511-3520. [PMID: 39310294 PMCID: PMC11414601 DOI: 10.1021/acsphotonics.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 09/25/2024]
Abstract
Understanding the nature of the photoexcitation and ultrafast charge dynamics pathways in organic halide perovskite nanocubes and their aggregation into superlattices is key for potential applications as tunable light emitters, photon-harvesting materials, and light-amplification systems. In this work, we apply two-dimensional coherent electronic spectroscopy (2DES) to track in real time the formation of near-infrared optical excitons and their ultrafast relaxation in CH(NH2)2PbI3 nanocube superlattices. Our results unveil that the coherent ultrafast dynamics is limited by the combination of the inherent short exciton decay time (≃40 fs) and the dephasing due to the coupling with selective optical phonon modes at higher temperatures. On the picosecond time scale, we observe the progressive formation of long-lived localized trap states. The analysis of the temperature dependence of the excitonic intrinsic line width, as extracted by the antidiagonal components of the 2D spectra, unveils a dramatic change of the excitonic coherence time across the cubic to tetragonal structural transition. Our results offer a new way to control and enhance the ultrafast coherent dynamics of photocarrier generation in hybrid halide perovskite synthetic solids.
Collapse
Affiliation(s)
- Alessandra Milloch
- Department
of Mathematics and Physics, Università
Cattolica del Sacro Cuore, Brescia I-25133, Italy
- ILAMP
(Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25133, Italy
- Department
of Physics and Astronomy, KU Leuven, B-3001 Leuven, Belgium
| | | | - Paolo Franceschini
- CNR-INO
(National Institute of Optics), via Branze 45, 25123 Brescia, Italy
- Department
of Information Engineering, University of
Brescia, Brescia I-25123, Italy
| | - Selene Mor
- Department
of Mathematics and Physics, Università
Cattolica del Sacro Cuore, Brescia I-25133, Italy
- ILAMP
(Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25133, Italy
| | - Stefania Pagliara
- Department
of Mathematics and Physics, Università
Cattolica del Sacro Cuore, Brescia I-25133, Italy
- ILAMP
(Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25133, Italy
| | - Gabriele Ferrini
- Department
of Mathematics and Physics, Università
Cattolica del Sacro Cuore, Brescia I-25133, Italy
- ILAMP
(Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25133, Italy
| | | | - Giulio Cerullo
- IFN-CNR, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Dmitry Baranov
- Italian
Institute of Technology (IIT), Genova 16163, Italy
- Division
of Chemical Physics, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Liberato Manna
- Italian
Institute of Technology (IIT), Genova 16163, Italy
| | - Claudio Giannetti
- Department
of Mathematics and Physics, Università
Cattolica del Sacro Cuore, Brescia I-25133, Italy
- ILAMP
(Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25133, Italy
- CNR-INO
(National Institute of Optics), via Branze 45, 25123 Brescia, Italy
| |
Collapse
|
3
|
Enomoto K, Miranti R, Liu J, Okano R, Inoue D, Kim D, Pu YJ. Anisotropic electronic coupling in three-dimensional assembly of CsPbBr 3 quantum dots. Chem Sci 2024; 15:13049-13057. [PMID: 39148765 PMCID: PMC11323341 DOI: 10.1039/d4sc01769b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/13/2024] [Indexed: 08/17/2024] Open
Abstract
Cesium lead halide (CsPbX3, X = Cl, Br, or I) perovskite quantum dots (PeQDs) show promise for next-generation optoelectronics. In this study, we controlled the electronic coupling between PeQD multilayers using a layer-by-layer method and dithiol linkers of varying structures. The energy shift of the first excitonic peak from monolayer to bilayer decreases exponentially with increasing interlayer spacer distance, indicating the resonant tunnelling effect. X-ray diffraction measurements revealed anisotropic inter-PeQD distances in multiple layers. Photoluminescence (PL) analysis showed lower energy emission in the in-plane direction due to the electronic coupling in the out-of-plane direction, supporting the anisotropic electronic state in the PeQD multilayers. Temperature-dependent PL and PL lifetimes indicated changes in exciton behaviour due to the delocalized electronic state in PeQD multilayers. Particularly, the electron-phonon coupling strength increased, and the exciton recombination rate decreased. This is the first study demonstrating controlled electronic coupling in a three-dimensional ordered structure, emphasizing the importance of the anisotropic electronic state for high-performance PeQDs devices.
Collapse
Affiliation(s)
- Kazushi Enomoto
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Retno Miranti
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Jianjun Liu
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Rinkei Okano
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Daishi Inoue
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - DaeGwi Kim
- Department of Physics and Electronics, Osaka Metropolitan University Osaka 558-8585 Japan
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| |
Collapse
|
4
|
Li X, Chen L, Mao D, Li J, Xie W, Dong H, Zhang L. Low-threshold cavity-enhanced superfluorescence in polyhedral quantum dot superparticles. NANOSCALE ADVANCES 2024; 6:3220-3228. [PMID: 38868834 PMCID: PMC11166106 DOI: 10.1039/d4na00188e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 06/14/2024]
Abstract
Due to the unique and excellent optical performance and promising prospect for various photonics applications, cavity-enhanced superfluorescence (CESF) in perovskite quantum dot assembled superstructures has garnered wide attention. However, the stringent requirements and high threshold for achieving CESF limit its further development and application. The high threshold of CESF in quantum dot superstructures is mainly attributed to the low radiation recombination rate of the quantum dot and the unsatisfactory light field limiting the ability of the assembled superstructures originating from low controllability of self-assembly. Herein, we propose a strategy to reduce the threshold of CESF in quantum dot superstructure microcavities from two aspects: facet engineering optimization of quantum dot blocks and controllability improvement of the assembly method. We introduce dodecahedral quantum dots with lower nonradiative recombination, substituting frequently used cubic quantum dots as assembly blocks. Besides, we adopt the micro-emulsion droplet assembly method to obtain spherical perovskite quantum dot superparticles with high packing factors and orderly internal arrangements, which are more controllable and efficient than the conventional solvent-drying methods. Based on the dodecahedral quantum dot superparticles, we realized low-threshold CESF (Pth = 15.6 μJ cm-2). Our work provides a practical and scalable avenue for realizing low threshold CESF in quantum dot assembled superstructure systems.
Collapse
Affiliation(s)
- Xinjie Li
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences Shanghai 201800 China
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Linqi Chen
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences Shanghai 201800 China
| | - Danqun Mao
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University Shanghai 200241 China
| | - Jingzhou Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences No. 1, Sub-Lane Xiangshan, Xihu District Hangzhou 310024 China
| | - Wei Xie
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University Shanghai 200241 China
| | - Hongxing Dong
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences Shanghai 201800 China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences No. 1, Sub-Lane Xiangshan, Xihu District Hangzhou 310024 China
| | - Long Zhang
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences Shanghai 201800 China
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences No. 1, Sub-Lane Xiangshan, Xihu District Hangzhou 310024 China
| |
Collapse
|
5
|
Mao D, Chen L, Sun Z, Zhang M, Shi ZY, Hu Y, Zhang L, Wu J, Dong H, Xie W, Xu H. Observation of transition from superfluorescence to polariton condensation in CsPbBr 3 quantum dots film. LIGHT, SCIENCE & APPLICATIONS 2024; 13:34. [PMID: 38291038 PMCID: PMC10828401 DOI: 10.1038/s41377-024-01378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
The superfluorescence effect has received extensive attention due to the many-body physics of quantum correlation in dipole gas and the optical applications of ultrafast bright radiation field based on the cooperative quantum state. Here, we demonstrate not only to observe the superfluorescence effect but also to control the cooperative state of the excitons ensemble by externally applying a regulatory dimension of coupling light fields. A new quasi-particle called cooperative exciton-polariton is revealed in a light-matter hybrid structure of a perovskite quantum dot thin film spin-coated on a Distributed Bragg Reflector. Above the nonlinear threshold, polaritonic condensation occurs at a nonzero momentum state on the lower polariton branch owning to the vital role of the synchronized excitons. The phase transition from superfluorescence to polariton condensation exhibits typical signatures of a decrease of the linewidth, an increase of the macroscopic coherence as well as an accelerated radiation decay rate. These findings are promising for opening new potential applications for super-brightness and unconventional coherent light sources and could enable the exploitation of cooperative effects for quantum optics.
Collapse
Affiliation(s)
- Danqun Mao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Linqi Chen
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800, Shanghai, China
| | - Zheng Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China.
| | - Min Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Zhe-Yu Shi
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Yongsheng Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Long Zhang
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800, Shanghai, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401121, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai, 201800, China
| | - Hongxing Dong
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800, Shanghai, China.
| | - Wei Xie
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China.
| | - Hongxing Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
6
|
Yamauchi M, Nakatsukasa K, Kubo N, Yamada H, Masuo S. One-Dimensionally Arranged Quantum-Dot Superstructures Guided by a Supramolecular Polymer Template. Angew Chem Int Ed Engl 2024; 63:e202314329. [PMID: 37985221 DOI: 10.1002/anie.202314329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Colloidal quantum dots (QDs) exhibit important photophysical properties, such as long-range energy diffusion, miniband formation, and collective photoluminescence, when aggregated into well-defined superstructures, such as three-dimensional (3D) and two-dimensional (2D) superlattices. However, the construction of one-dimensional (1D) QD superstructures, which have a simpler arrangement, is challenging; therefore, the photophysical properties of 1D-arranged QDs have not been studied previously. Herein, we report a versatile strategy to obtain 1D-arranged QDs using a supramolecular polymer (SP) template. The SP is composed of self-assembling cholesterol derivatives containing two amide groups for hydrogen bonding and a carboxyl group as an adhesion moiety on the QDs. Upon mixing the SP and dispersed QDs in low-polarity solvents, the QDs self-adhered to the SP and self-arranged into 1D superstructures through van der Waals interactions between the surface organic ligands of the QDs, as confirmed by transmission electron microscopy. Furthermore, we revealed efficient photoinduced fluorescence resonance energy transfer between the 1D-arranged QDs by an in-depth analysis of the emission spectra and decay curves.
Collapse
Affiliation(s)
- Mitsuaki Yamauchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Kanako Nakatsukasa
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen, Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Naoki Kubo
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen, Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Hiroko Yamada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Sadahiro Masuo
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen, Uegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
7
|
Nguyen TPT, Tan LZ, Baranov D. Tuning perovskite nanocrystal superlattices for superradiance in the presence of disorder. J Chem Phys 2023; 159:204703. [PMID: 37991161 DOI: 10.1063/5.0167542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/15/2023] [Indexed: 11/23/2023] Open
Abstract
The cooperative emission of interacting nanocrystals is an exciting topic fueled by recent reports of superfluorescence and superradiance in assemblies of perovskite nanocubes. Several studies estimated that coherent coupling is localized to a small fraction of nanocrystals (10-7-10-3) within the assembly, raising questions about the origins of localization and ways to overcome it. In this work, we examine single-excitation superradiance by calculating radiative decays and the distribution of superradiant wave function in two-dimensional CsPbBr3 nanocube superlattices. The calculations reveal that the energy disorder caused by size distribution and large interparticle separations reduces radiative coupling and leads to the excitation localization, with the energy disorder being the dominant factor. The single-excitation model clearly predicts that, in the pursuit of cooperative effects, having identical nanocubes in the superlattice is more important than achieving a perfect spatial order. The monolayers of large CsPbBr3 nanocubes (LNC = 10-20 nm) are proposed as model systems for experimental tests of superradiance under conditions of non-negligible size dispersion, while small nanocubes (LNC = 5-10 nm) are preferred for realizing the Dicke state under ideal conditions.
Collapse
Affiliation(s)
- T P Tan Nguyen
- University Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, Rennes, France
| | - Liang Z Tan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, P.O. Box, 124, SE-221 00 Lund, Sweden
| |
Collapse
|
8
|
Milloch A, Filippi U, Franceschini P, Galvani M, Mor S, Pagliara S, Ferrini G, Banfi F, Capone M, Baranov D, Manna L, Giannetti C. Halide Perovskite Artificial Solids as a New Platform to Simulate Collective Phenomena in Doped Mott Insulators. NANO LETTERS 2023; 23:10617-10624. [PMID: 37948635 PMCID: PMC10683068 DOI: 10.1021/acs.nanolett.3c03715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/06/2023] [Indexed: 11/12/2023]
Abstract
The development of quantum simulators, artificial platforms where the predictions of many-body theories of correlated quantum materials can be tested in a controllable and tunable way, is one of the main challenges of condensed matter physics. Here we introduce artificial lattices made of lead halide perovskite nanocubes as a new platform to simulate and investigate the physics of correlated quantum materials. We demonstrate that optical injection of quantum confined excitons in this system realizes the two main features that ubiquitously pervade the phase diagram of many quantum materials: collective phenomena, in which long-range orders emerge from incoherent fluctuations, and the excitonic Mott transition, which has one-to-one correspondence with the insulator-to-metal transition described by the repulsive Hubbard model in a magnetic field. Our results demonstrate that time-resolved experiments provide a quantum simulator that is able to span a parameter range relevant for a broad class of phenomena, such as superconductivity and charge-density waves.
Collapse
Affiliation(s)
- Alessandra Milloch
- Department
of Mathematics and Physics, Università
Cattolica del Sacro Cuore, Brescia I-25133, Italy
- ILAMP
(Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25133, Italy
- Department
of Physics and Astronomy, KU Leuven, B-3001 Leuven, Belgium
| | | | - Paolo Franceschini
- CNR-INO
(National Institute of Optics), via Branze 45, 25123 Brescia, Italy
- Department
of Information Engineering, University of
Brescia, Brescia I-25123, Italy
| | - Michele Galvani
- Department
of Mathematics and Physics, Università
Cattolica del Sacro Cuore, Brescia I-25133, Italy
| | - Selene Mor
- Department
of Mathematics and Physics, Università
Cattolica del Sacro Cuore, Brescia I-25133, Italy
- ILAMP
(Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25133, Italy
| | - Stefania Pagliara
- Department
of Mathematics and Physics, Università
Cattolica del Sacro Cuore, Brescia I-25133, Italy
- ILAMP
(Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25133, Italy
| | - Gabriele Ferrini
- Department
of Mathematics and Physics, Università
Cattolica del Sacro Cuore, Brescia I-25133, Italy
- ILAMP
(Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25133, Italy
| | - Francesco Banfi
- FemtoNanoOptics
group, Université de Lyon, CNRS, Université Claude Bernard
Lyon 1, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Massimo Capone
- International
School for Advanced Studies (SISSA), Trieste 34136, Italy
| | - Dmitry Baranov
- Italian
Institute of Technology (IIT), Genova 16163, Italy
- Division
of Chemical Physics, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Liberato Manna
- Italian
Institute of Technology (IIT), Genova 16163, Italy
| | - Claudio Giannetti
- Department
of Mathematics and Physics, Università
Cattolica del Sacro Cuore, Brescia I-25133, Italy
- ILAMP
(Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25133, Italy
- CNR-INO
(National Institute of Optics), via Branze 45, 25123 Brescia, Italy
| |
Collapse
|
9
|
Okamoto T, Biju V. Slipping-Free Halide Perovskite Supercrystals from Supramolecularly-Assembled Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303496. [PMID: 37170667 DOI: 10.1002/smll.202303496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Supramolecularly assembled high-order supercrystals (SCs) help control the dielectric, electronic, and excitonic properties of semiconductor nanocrystals (NCs) and quantum dots (QDs). Ligand-engineered perovskite NCs (PNCs) assemble into SCs showing shorter excitonic lifetimes than strongly dielectric PNC films showing long photoluminescence (PL) lifetimes and long-range carrier diffusion. Monodentate to bidentate ligand exchange on ≈ 8 nm halide perovskite (APbX3 ; A:Cs/MA, X:Br/I) PNCs generates mechanically stable SCs with close-packed lattices, overlapping electronic wave functions, and higher dielectric constant, providing distinct excitonic properties from single PNCs or PNC films. From Fast Fourier Transform (FFT) images, time-resolved PL, and small-angle X-ray scattering, structurally and excitonically ordered large SCs are identified. An Sc shows a smaller spectral shift (<35 meV) than a PNC film (>100 meV), a microcrystal (>100 meV), or a bulk crystal (>100 meV). Also, the exciton lifetime (<10 ns) of an SC is excitation power-independent in the single exciton regime 〈N〉<1, comparable to an isolated PNC. Therefore, bidentate-ligand-assisted SCs help overcome delayed exciton or carrier recombination in halide perovskite nanocrystal assemblies or films.
Collapse
Affiliation(s)
- Takuya Okamoto
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Vasudevanpillai Biju
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
10
|
Meng W, Li W, Zhou C, Cao J, Yang X. Vertical tubular zinc oxide microcavity enables efficient colloidal quantum dot lasing. OPTICS EXPRESS 2023; 31:22055-22060. [PMID: 37381288 DOI: 10.1364/oe.487723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 06/30/2023]
Abstract
Colloidal quantum dots (CQDs) can potentially enable new classes of highly flexible, spectrally tunable lasers processible from solutions. Despite a considerable progress over the past years, colloidal-QD lasing is still an important challenge. We report vertical tubular zinc oxide (VT-ZnO) and lasing based on VT-ZnO/CsPb(Br0.5Cl0.5)3 CQDs composite. Due to regular hexagonal structure and smooth surface of VT-ZnO, the light emitted at around 525 nm is effectively modulated under 325 nm continuous excitation. The VT-ZnO/ CQDs composite finally shows lasing with a threshold of ∼ 46.9 µJ.cm-2 and a Q factor of ∼ 2978 under 400 nm femtosecond (fs) excitation. This ZnO based cavity can be complexed with CQDs easily, which may pave a new way of colloidal-QD lasing.
Collapse
|
11
|
Behera RK, Bera S, Pradhan N. Hexahedron Symmetry and Multidirectional Facet Coupling of Orthorhombic CsPbBr 3 Nanocrystals. ACS NANO 2023; 17:7007-7016. [PMID: 36996308 DOI: 10.1021/acsnano.3c01617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The cube shape of orthorhombic phase CsPbBr3 nanocrystals possesses the ability of selective facet packing that leads to 1D, 2D, and 3D nanostructures. In solution, their transformation with linear one-dimensional packing to nanorods/nanowires is extensively studied. Here, multifacet coupling in two directions of the truncated cube nanocrystals to rod couples and then to single-crystalline rectangular rods is reported. With extensive high-resolution transmission electron microscopy image analysis, length and width directions of these nanorods are derived. For the seed cube structures, finding {110} and {002} facets has remained difficult as these possess the hexahedron symmetry and their size remains smaller; however, for nanorods, these planes and the ⟨110⟩ and ⟨001⟩ directions are clearly identified. From nanocrystal to nanorod formation, the alignment directions are observed as random (as shown in the abstract graphic), and this could vary from one to the other rods obtained in the same batch of samples. Moreover, seed nanocrystal connections are derived here as not random and are rather induced by addition of the calculated amount of additional Pb(II). The same has also been extended to nanocubes obtained from different literature methods. It is predicted that a Pb-bromide buffer octahedra layer was created to connect two cubes, and this can connect along one, two, or even more facets of cubes simultaneously to connect other cubes and form different nanostructures. Hence, these results here provide some basic fundamentals of seed cube connections, the driving force to connect those, trapping the intermediate to visualize their alignments for attachments, and identifying and establishing the orthorhombic ⟨110⟩ and ⟨001⟩ directions of the length and width of CsPbBr3 nanostructures.
Collapse
Affiliation(s)
- Rakesh Kumar Behera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
12
|
Le TH, Noh S, Lee H, Lee J, Kim M, Kim C, Yoon H. Rapid and Direct Liquid-Phase Synthesis of Luminescent Metal Halide Superlattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210749. [PMID: 36739656 DOI: 10.1002/adma.202210749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/31/2023] [Indexed: 05/17/2023]
Abstract
The crystallization of nanocrystal building blocks into artificial superlattices has emerged as an efficient approach for tailoring the nanoscale properties and functionalities of novel devices. To date, ordered arrays of colloidal metal halide nanocrystals have mainly been achieved by using post-synthetic strategies. Here, a rapid and direct liquid-phase synthesis is presented to achieve a highly robust crystallization of luminescent metal halide nanocrystals into perfect face-centered-cubic (FCC) superlattices on the micrometer scale. The continuous growth of individual nanocrystals is observed within the superlattice, followed by the disassembly of the superlattices into individually dispersed nanocrystals owing to the highly repulsive interparticle interactions induced by large nanocrystals. Transmission electron microscopy characterization reveals that owing to an increase in solvent entropy, the structure of the superlattices transforms from FCC to hexagonal close-packed (HCP) and the nanocrystals disassemble. The FCC superlattice exhibits a single and slightly redshifted emission, due to the reabsorption-free property of the building block units. Compared to individual nanocrystals, the superlattices have three times higher quantum yield with improved environmental stability, making them ideal for use as ultrabright blue-light emitters. This study is expected to facilitate the creation of metamaterials with ordered nanocrystal structures and their practical applications.
Collapse
Affiliation(s)
- Thanh-Hai Le
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Seonmyeong Noh
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Haney Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Jisun Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Minjin Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Changjun Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyeonseok Yoon
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| |
Collapse
|
13
|
Liu Z, Qin X, Chen Q, Jiang T, Chen Q, Liu X. Metal-Halide Perovskite Nanocrystal Superlattice: Self-Assembly and Optical Fingerprints. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209279. [PMID: 36738101 DOI: 10.1002/adma.202209279] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/07/2023] [Indexed: 06/18/2023]
Abstract
Self-assembly of nanocrystals into superlattices is a fascinating process that not only changes geometric morphology, but also creates unique properties that considerably enrich the material toolbox for new applications. Numerous studies have driven the blossoming of superlattices from various aspects. These include precise control of size and morphology, enhancement of properties, exploitation of functions, and integration of the material into miniature devices. The effective synthesis of metal-halide perovskite nanocrystals has advanced research on self-assembly of building blocks into micrometer-sized superlattices. More importantly, these materials exhibit abundant optical features, including highly coherent superfluorescence, amplified spontaneous laser emission, and adjustable spectral redshift, facilitating basic research and state-of-the-art applications. This review summarizes recent advances in the field of metal-halide perovskite superlattices. It begins with basic packing models and introduces various stacking configurations of superlattices. The potential of multiple capping ligands is also discussed and their crucial role in superlattice growth is highlighted, followed by detailed reviews of synthesis and characterization methods. How these optical features can be distinguished and present contemporary applications is then considered. This review concludes with a list of unanswered questions and an outlook on their potential use in quantum computing and quantum communications to stimulate further research in this area.
Collapse
Affiliation(s)
- Zhuang Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Qihao Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Tianci Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Xiaogang Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
14
|
Nette J, Montanarella F, Zhu C, Sekh TV, Boehme SC, Bodnarchuk MI, Rainò G, Howes PD, Kovalenko MV, deMello AJ. Microfluidic synthesis of monodisperse and size-tunable CsPbBr 3 supraparticles. Chem Commun (Camb) 2023; 59:3554-3557. [PMID: 36880408 DOI: 10.1039/d3cc00093a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The highly controlled, microfluidic template-assisted self-assembly of CsPbBr3 nanocrystals into spherical supraparticles is presented, achieving precise control over average supraparticle size through the variation of nanocrystal concentration and droplet size; thus facilitating the synthesis of highly monodisperse, sub-micron supraparticles (with diameters between 280 and 700 nm).
Collapse
Affiliation(s)
- Julia Nette
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland.
| | - Federico Montanarella
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Chenglian Zhu
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Taras V Sekh
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Simon C Boehme
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Maryna I Bodnarchuk
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Gabriele Rainò
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Philip D Howes
- Division of Mechanical Engineering and Design, London South Bank University, 103 Borough Road, London SE1 0AA, UK
| | - Maksym V Kovalenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Andrew J deMello
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland.
| |
Collapse
|
15
|
Chan WK, Chen J, Zhou D, Ye J, Vázquez RJ, Zhou C, Bazan GC, Rao A, Yu Z, Tan TTY. Hybrid Organic-Inorganic Perovskite Superstructures for Ultrapure Green Emissions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:815. [PMID: 36903695 PMCID: PMC10005548 DOI: 10.3390/nano13050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
All inorganic CsPbBr3 superstructures (SSs) have attracted much research interest due to their unique photophysical properties, such as their large emission red-shifts and super-radiant burst emissions. These properties are of particular interest in displays, lasers and photodetectors. Currently, the best-performing perovskite optoelectronic devices incorporate organic cations (methylammonium (MA), formamidinium (FA)), however, hybrid organic-inorganic perovskite SSs have not yet been investigated. This work is the first to report on the synthesis and photophysical characterization of APbBr3 (A = MA, FA, Cs) perovskite SSs using a facile ligand-assisted reprecipitation method. At higher concentrations, the hybrid organic-inorganic MA/FAPbBr3 nanocrystals self-assemble into SSs and produce red-shifted ultrapure green emissions, meeting the requirement of Rec. 2020 displays. We hope that this work will be seminal in advancing the exploration of perovskite SSs using mixed cation groups to further improve their optoelectronic applications.
Collapse
Affiliation(s)
- Wen Kiat Chan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Jiawei Chen
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Donglei Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Junzhi Ye
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Ricardo Javier Vázquez
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
| | - Cheng Zhou
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Guillermo Carlos Bazan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Zhongzheng Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Timothy Thatt Yang Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
16
|
Yang D, Zhang X, Liu S, Xu Z, Yang Y, Li X, Ye Q, Xu Q, Zeng H. Diverse CsPbI 3 assembly structures: the role of surface acids. NANOSCALE 2023; 15:1637-1644. [PMID: 36594626 DOI: 10.1039/d2nr06208a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface ligand engineering, seed introduction and external driving forces play major roles in controlling the anisotropic growth of halide perovskites, which have been widely established in CsPbBr3 nanomaterials. However, colloidal CsPbI3 nanocrystals (NCs) have been less studied due to their low formation energy and low electronegativity. Here, by introducing different molar ratios of surface acids and amines to limit the monomer concentration of lead-iodine octahedra during nucleation, we report dumbbell-shaped CsPbI3 NCs obtained by the in situ self-assembly of nanospheres and nanorods with average sizes of 89 nm and 325 nm, respectively, which showed a high photoluminescence quantum yield of 89%. Structural and surface state analyses revealed that the strong binding of benzenesulfonic acid promoted the formation of a Pb(SO3-)x-rich surface of CsPbI3 assembly structures. Furthermore, the addition of benzenesulfonic acid increases the supersaturation threshold and the solubility of PbI2 in a high-temperature reaction system, and controls effectively the lead-iodine octahedron monomer concentration in the second nucleation stage. As a result, the as-synthesized CsPbI3-Sn NCs exhibited different assembly morphologies and high PLQYs, among which the role of sulfonate groups can be further verified by UV absorption and surface characteristics. The strategy provides a new frontier to rationally control the surface ligand-induced self-assembly structures of perovskites.
Collapse
Affiliation(s)
- Dandan Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Xuebin Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Shijia Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Zhiheng Xu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yang Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Xiaoming Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qiuyu Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
17
|
Lv L, Liu S, Li J, Lei H, Qin H, Peng X. Synthesis of Weakly Confined, Cube-Shaped, and Monodisperse Cadmium Chalcogenide Nanocrystals with Unexpected Photophysical Properties. J Am Chem Soc 2022; 144:16872-16882. [PMID: 36067446 DOI: 10.1021/jacs.2c05151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zinc-blende CdSe, CdS, and CdSe/CdS core/shell nanocrystals with a structure-matched shape (cube-shaped, edge length ≤30 nm) are synthesized via a universal scheme. With the edge length up to five times larger than exciton diameter of the bulk semiconductors, the nanocrystals exhibit novel properties in the weakly confined size regime, such as near-unity single exciton and biexciton photoluminescence (PL) quantum yields, single-nanocrystal PL nonblinking, mixed PL decay dynamics of exciton and free carriers with sub-microsecond monoexponential decay lifetime, and stable yet extremely narrow PL full width at half maximum (FWHM < 0.1 meV) at 1.8 K. Their monodisperse edge length, shape, and facet structure enable demonstration of unexpected yet size-dependent PL properties at room temperature, including unusually broad and abnormally size-dependent PL FWHM (∼100 meV), nonmonotonic size dependence of PL peak energy, and dual-peak single-exciton PL. Calculations suggest that these unusual properties should be originated from the band-edge electron/hole states of the dynamic-exciton, whose exciton binding energy is too small to hold the photogenerated electron-hole pair as a bonded Wannier exciton in a weakly confined nanocrystal.
Collapse
Affiliation(s)
- Liulin Lv
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shaojie Liu
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jiongzhao Li
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Haixin Lei
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Haiyan Qin
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Liu J, Zheng X, Mohammed OF, Bakr OM. Self-Assembly and Regrowth of Metal Halide Perovskite Nanocrystals for Optoelectronic Applications. Acc Chem Res 2022; 55:262-274. [PMID: 35037453 PMCID: PMC8811956 DOI: 10.1021/acs.accounts.1c00651] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Over the past decade, the impressive development
of metal halide
perovskites (MHPs) has made them leading candidates for applications
in photovoltaics (PVs), X-ray scintillators, and light-emitting diodes
(LEDs). Constructing MHP nanocrystals (NCs) with promising optoelectronic
properties using a low-cost approach is critical to realizing their
commercial potential. Self-assembly and regrowth techniques provide
a simple and powerful “bottom-up” platform for controlling
the structure, shape, and dimensionality of MHP NCs. The soft ionic
nature of MHP NCs, in conjunction with their low formation energy,
rapid anion exchange, and ease of ion migration, enables the rearrangement
of their overall appearance via self-assembly or regrowth. Because
of their low formation energy and highly dynamic surface ligands,
MHP NCs have a higher propensity to regrow than conventional hard-lattice
NCs. Moreover, their self-assembly and regrowth can be achieved simultaneously.
The self-assembly of NCs into close-packed, long-range-ordered mesostructures
provides a platform for modulating their electronic properties (e.g.,
conductivity and carrier mobility). Moreover, assembled MHP NCs exhibit
collective properties (e.g., superfluorescence, renormalized emission,
longer phase coherence times, and long exciton diffusion lengths)
that can translate into dramatic improvements in device performance.
Further regrowth into fused MHP nanostructures with the removal of
ligand barriers between NCs could facilitate charge carrier transport,
eliminate surface point defects, and enhance stability against moisture,
light, and electron-beam irradiation. However, the synthesis strategies,
diversity and complexity of structures, and optoelectronic applications
that emanate from the self-assembly and regrowth of MHPs have not
yet received much attention. Consequently, a comprehensive understanding
of the design principles of self-assembled and fused MHP nanostructures
will fuel further advances in their optoelectronic applications. In this Account, we review the latest developments in the self-assembly
and regrowth of MHP NCs. We begin with a survey of the mechanisms,
driving forces, and techniques for controlling MHP NC self-assembly.
We then explore the phase transition of fused MHP nanostructures at
the atomic level, delving into the mechanisms of facet-directed connections
and the kinetics of their shape-modulation behavior, which have been
elucidated with the aid of high-resolution transmission electron microscopy
(HRTEM) and first-principles density functional theory calculations
of surface energies. We further outline the applications of assembled
and fused nanostructures. Finally, we conclude with a perspective
on current challenges and future directions in the field of MHP NCs.
Collapse
Affiliation(s)
- Jiakai Liu
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Xiaopeng Zheng
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F. Mohammed
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M. Bakr
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Zhou C, M. Pina J, Zhu T, H. Parmar D, Chang H, Yu J, Yuan F, Bappi G, Hou Y, Zheng X, Abed J, Chen H, Zhang J, Gao Y, Chen B, Wang Y, Chen H, Zhang T, Hoogland S, Saidaminov MI, Sun L, Bakr OM, Dong H, Zhang L, H. Sargent E. Quantum Dot Self-Assembly Enables Low-Threshold Lasing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101125. [PMID: 34449133 PMCID: PMC8529423 DOI: 10.1002/advs.202101125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/23/2021] [Indexed: 05/19/2023]
Abstract
Perovskite quantum dots (QDs) are of interest for solution-processed lasers; however, their short Auger lifetime has limited lasing operation principally to the femtosecond temporal regime the photoexcitation levels to achieve optical gain threshold are up to two orders of magnitude higher in the nanosecond regime than in the femtosecond. Here the authors report QD superlattices in which the gain medium facilitates excitonic delocalization to decrease Auger recombination and in which the macroscopic dimensions of the structures provide the optical feedback required for lasing. The authors develope a self-assembly strategy that relies on sodiumd-an assembly director that passivates the surface of the QDs and induces self-assembly to form ordered three-dimensional cubic structures. A density functional theory model that accounts for the attraction forces between QDs allows to explain self-assembly and superlattice formation. Compared to conventional organic-ligand-passivated QDs, sodium enables higher attractive forces, ultimately leading to the formation of micron-length scale structures and the optical faceting required for feedback. Simultaneously, the decreased inter-dot distance enabled by the new ligand enhances exciton delocalization among QDs, as demonstrated by the dynamically red-shifted photoluminescence. These structures function as the lasing cavity and the gain medium, enabling nanosecond-sustained lasing with a threshold of 25 µJ cm-2 .
Collapse
Affiliation(s)
- Chun Zhou
- Key Laboratory of Materials for High‐Power LaserShanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghai201800China
- The Edward S. Rogers Department of Electrical and Computer EngineeringUniversity of Toronto10 King's College RoadTorontoOntarioM5S 3G4Canada
- University of Chinese Academy of SciencesNo.19(A) Yuquan Road, Shijingshan DistrictBeijing100049China
| | - Joao M. Pina
- The Edward S. Rogers Department of Electrical and Computer EngineeringUniversity of Toronto10 King's College RoadTorontoOntarioM5S 3G4Canada
| | - Tong Zhu
- The Edward S. Rogers Department of Electrical and Computer EngineeringUniversity of Toronto10 King's College RoadTorontoOntarioM5S 3G4Canada
| | - Darshan H. Parmar
- The Edward S. Rogers Department of Electrical and Computer EngineeringUniversity of Toronto10 King's College RoadTorontoOntarioM5S 3G4Canada
| | - Hao Chang
- Key Laboratory of Materials for High‐Power LaserShanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghai201800China
- University of Chinese Academy of SciencesNo.19(A) Yuquan Road, Shijingshan DistrictBeijing100049China
| | - Jie Yu
- Key Laboratory of Materials for High‐Power LaserShanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghai201800China
- University of Chinese Academy of SciencesNo.19(A) Yuquan Road, Shijingshan DistrictBeijing100049China
| | - Fanglong Yuan
- The Edward S. Rogers Department of Electrical and Computer EngineeringUniversity of Toronto10 King's College RoadTorontoOntarioM5S 3G4Canada
| | - Golam Bappi
- The Edward S. Rogers Department of Electrical and Computer EngineeringUniversity of Toronto10 King's College RoadTorontoOntarioM5S 3G4Canada
| | - Yi Hou
- The Edward S. Rogers Department of Electrical and Computer EngineeringUniversity of Toronto10 King's College RoadTorontoOntarioM5S 3G4Canada
| | - Xiaopeng Zheng
- Division of Physical Sciences and Engineering (PSE)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Jehad Abed
- The Edward S. Rogers Department of Electrical and Computer EngineeringUniversity of Toronto10 King's College RoadTorontoOntarioM5S 3G4Canada
| | - Hao Chen
- The Edward S. Rogers Department of Electrical and Computer EngineeringUniversity of Toronto10 King's College RoadTorontoOntarioM5S 3G4Canada
| | - Jian Zhang
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
| | - Yuan Gao
- The Edward S. Rogers Department of Electrical and Computer EngineeringUniversity of Toronto10 King's College RoadTorontoOntarioM5S 3G4Canada
| | - Bin Chen
- The Edward S. Rogers Department of Electrical and Computer EngineeringUniversity of Toronto10 King's College RoadTorontoOntarioM5S 3G4Canada
| | - Ya‐Kun Wang
- The Edward S. Rogers Department of Electrical and Computer EngineeringUniversity of Toronto10 King's College RoadTorontoOntarioM5S 3G4Canada
| | - Haijie Chen
- The Edward S. Rogers Department of Electrical and Computer EngineeringUniversity of Toronto10 King's College RoadTorontoOntarioM5S 3G4Canada
| | - Tianju Zhang
- Key Laboratory of Materials for High‐Power LaserShanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghai201800China
| | - Sjoerd Hoogland
- The Edward S. Rogers Department of Electrical and Computer EngineeringUniversity of Toronto10 King's College RoadTorontoOntarioM5S 3G4Canada
| | - Makhsud I. Saidaminov
- The Edward S. Rogers Department of Electrical and Computer EngineeringUniversity of Toronto10 King's College RoadTorontoOntarioM5S 3G4Canada
- Department of Chemistry and Electrical & Computer EngineeringCentre for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaBritish ColumbiaV8P 5C2Canada
| | - Liaoxin Sun
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
| | - Osman M. Bakr
- Division of Physical Sciences and Engineering (PSE)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Hongxing Dong
- Key Laboratory of Materials for High‐Power LaserShanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghai201800China
| | - Long Zhang
- Key Laboratory of Materials for High‐Power LaserShanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghai201800China
| | - Edward H. Sargent
- The Edward S. Rogers Department of Electrical and Computer EngineeringUniversity of Toronto10 King's College RoadTorontoOntarioM5S 3G4Canada
| |
Collapse
|
20
|
Ying G, Farrow T, Jana A, Shao H, Im H, Osokin V, Baek SB, Alanazi M, Karmakar S, Mukherjee M, Park Y, Taylor RA. Resonantly Pumped Bright-Triplet Exciton Lasing in Cesium Lead Bromide Perovskites. ACS PHOTONICS 2021; 8:2699-2704. [PMID: 34557568 PMCID: PMC8451394 DOI: 10.1021/acsphotonics.1c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 06/13/2023]
Abstract
The surprising recent observation of highly emissive triplet-states in lead halide perovskites accounts for their orders-of-magnitude brighter optical signals and high quantum efficiencies compared to other semiconductors. This makes them attractive for future optoelectronic applications, especially in bright low-threshold nanolasers. While nonresonantly pumped lasing from all-inorganic lead-halide perovskites is now well-established as an attractive pathway to scalable low-power laser sources for nano-optoelectronics, here we showcase a resonant optical pumping scheme on a fast triplet-state in CsPbBr3 nanocrystals. The scheme allows us to realize a polarized triplet-laser source that dramatically enhances the coherent signal by 1 order of magnitude while suppressing noncoherent contributions. The result is a source with highly attractive technological characteristics, including a bright and polarized signal and a high stimulated-to-spontaneous emission signal contrast that can be filtered to enhance spectral purity. The emission is generated by pumping selectively on a weakly confined excitonic state with a Bohr radius ∼10 nm in the nanocrystals. The exciton fine-structure is revealed by the energy-splitting resulting from confinement in nanocrystals with tetragonal symmetry. We use a linear polarizer to resolve 2-fold nondegenerate sublevels in the triplet exciton and use photoluminescence excitation spectroscopy to determine the energy of the state before pumping it resonantly.
Collapse
Affiliation(s)
- Guanhua Ying
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Tristan Farrow
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
- Centre
for Quantum Technologies, National University
of Singapore, Science
Drive 2, Singapore 117543, Singapore
| | - Atanu Jana
- Division
of Physics and Semiconductor, Dongguk University, Seoul 04620, Korea
| | - Hanbo Shao
- State
Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
| | - Hyunsik Im
- Division
of Physics and Semiconductor, Dongguk University, Seoul 04620, Korea
| | - Vitaly Osokin
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Seung Bin Baek
- School of
Natural Science, Ulsan National Institute
of Science and Technology, Ulsan 44919, Korea
| | - Mutibah Alanazi
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Sanjit Karmakar
- Centre
for Quantum Technologies, National University
of Singapore, Science
Drive 2, Singapore 117543, Singapore
| | - Manas Mukherjee
- Centre
for Quantum Technologies, National University
of Singapore, Science
Drive 2, Singapore 117543, Singapore
| | - Youngsin Park
- School of
Natural Science, Ulsan National Institute
of Science and Technology, Ulsan 44919, Korea
| | - Robert A. Taylor
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| |
Collapse
|
21
|
Liu J, Enomoto K, Takeda K, Inoue D, Pu YJ. Simple cubic self-assembly of PbS quantum dots by finely controlled ligand removal through gel permeation chromatography. Chem Sci 2021; 12:10354-10361. [PMID: 34377421 PMCID: PMC8336479 DOI: 10.1039/d1sc02096j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
The geometry in self-assembled superlattices of colloidal quantum dots (QDs) strongly affects their optoelectronic properties and is thus of critical importance for applications in optoelectronic devices. Here, we achieve the selective control of the geometry of colloidal quasi-spherical PbS QDs in highly-ordered two and three dimensional superlattices: Disordered, simple cubic (sc), and face-centered cubic (fcc). Gel permeation chromatography (GPC), not based on size-exclusion effects, is developed to quantitatively and continuously control the ligand coverage of PbS QDs. The obtained QDs can retain their high stability and photoluminescence on account of the chemically soft removal of the ligands by GPC. With increasing ligand coverage, the geometry of the self-assembled superlattices by solution-casting of the GPC-processed PbS QDs changed from disordered, sc to fcc because of the finely controlled ligand coverage and anisotropy on QD surfaces. Importantly, the highly-ordered sc supercrystal usually displays unique superfluorescence and is expected to show high charge transporting properties, but it has not yet been achieved for colloidal quasi-spherical QDs. It is firstly accessible by fine-tuning the QD ligand density using the GPC method here. This selective formation of different geometric superlattices based on GPC promises applications of such colloidal quasi-spherical QDs in high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Jianjun Liu
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Kazushi Enomoto
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Kotaro Takeda
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Daishi Inoue
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| |
Collapse
|
22
|
Dey A, Ye J, De A, Debroye E, Ha SK, Bladt E, Kshirsagar AS, Wang Z, Yin J, Wang Y, Quan LN, Yan F, Gao M, Li X, Shamsi J, Debnath T, Cao M, Scheel MA, Kumar S, Steele JA, Gerhard M, Chouhan L, Xu K, Wu XG, Li Y, Zhang Y, Dutta A, Han C, Vincon I, Rogach AL, Nag A, Samanta A, Korgel BA, Shih CJ, Gamelin DR, Son DH, Zeng H, Zhong H, Sun H, Demir HV, Scheblykin IG, Mora-Seró I, Stolarczyk JK, Zhang JZ, Feldmann J, Hofkens J, Luther JM, Pérez-Prieto J, Li L, Manna L, Bodnarchuk MI, Kovalenko MV, Roeffaers MBJ, Pradhan N, Mohammed OF, Bakr OM, Yang P, Müller-Buschbaum P, Kamat PV, Bao Q, Zhang Q, Krahne R, Galian RE, Stranks SD, Bals S, Biju V, Tisdale WA, Yan Y, Hoye RLZ, Polavarapu L. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS NANO 2021; 15:10775-10981. [PMID: 34137264 PMCID: PMC8482768 DOI: 10.1021/acsnano.0c08903] [Citation(s) in RCA: 388] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/04/2021] [Indexed: 05/10/2023]
Abstract
Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Collapse
Grants
- from U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division
- Ministry of Education, Culture, Sports, Science and Technology
- European Research Council under the European Unionâ??s Horizon 2020 research and innovation programme (HYPERION)
- Ministry of Education - Singapore
- FLAG-ERA JTC2019 project PeroGas.
- Deutsche Forschungsgemeinschaft
- Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy
- EPSRC
- iBOF funding
- Agencia Estatal de Investigaci�ón, Ministerio de Ciencia, Innovaci�ón y Universidades
- National Research Foundation Singapore
- National Natural Science Foundation of China
- Croucher Foundation
- US NSF
- Fonds Wetenschappelijk Onderzoek
- National Science Foundation
- Royal Society and Tata Group
- Department of Science and Technology, Ministry of Science and Technology
- Swiss National Science Foundation
- Natural Science Foundation of Shandong Province, China
- Research 12210 Foundation?Flanders
- Japan International Cooperation Agency
- Ministry of Science and Innovation of Spain under Project STABLE
- Generalitat Valenciana via Prometeo Grant Q-Devices
- VetenskapsrÃÂ¥det
- Natural Science Foundation of Jiangsu Province
- KU Leuven
- Knut och Alice Wallenbergs Stiftelse
- Generalitat Valenciana
- Agency for Science, Technology and Research
- Ministerio de EconomÃÂa y Competitividad
- Royal Academy of Engineering
- Hercules Foundation
- China Association for Science and Technology
- U.S. Department of Energy
- Alexander von Humboldt-Stiftung
- Wenner-Gren Foundation
- Welch Foundation
- Vlaamse regering
- European Commission
- Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
Collapse
Affiliation(s)
- Amrita Dey
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Junzhi Ye
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Apurba De
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Elke Debroye
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Seung Kyun Ha
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eva Bladt
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Anuraj S. Kshirsagar
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Ziyu Wang
- School
of
Science and Technology for Optoelectronic Information ,Yantai University, Yantai, Shandong Province 264005, China
| | - Jun Yin
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Li Na Quan
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Fei Yan
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Mengyu Gao
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Xiaoming Li
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Javad Shamsi
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tushar Debnath
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Muhan Cao
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Manuel A. Scheel
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Sudhir Kumar
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Julian A. Steele
- MACS Department
of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Marina Gerhard
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Lata Chouhan
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Ke Xu
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
- Multiscale
Crystal Materials Research Center, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-gang Wu
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Yanxiu Li
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Yangning Zhang
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Anirban Dutta
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Chuang Han
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Ilka Vincon
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Angshuman Nag
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Anunay Samanta
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Brian A. Korgel
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Chih-Jen Shih
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Daniel R. Gamelin
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dong Hee Son
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Haibo Zeng
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Haizheng Zhong
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Handong Sun
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371
- Centre
for Disruptive Photonic Technologies (CDPT), Nanyang Technological University, Singapore 637371
| | - Hilmi Volkan Demir
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 639798
- Department
of Electrical and Electronics Engineering, Department of Physics,
UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ivan G. Scheblykin
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Iván Mora-Seró
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12071 Castelló, Spain
| | - Jacek K. Stolarczyk
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Jin Z. Zhang
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
| | - Jochen Feldmann
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Joseph M. Luther
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán 2, Paterna, Valencia 46980, Spain
| | - Liang Li
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | | | - Narayan Pradhan
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis
Center, King Abdullah University of Science
and Technology, Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Osman M. Bakr
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peidong Yang
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Peter Müller-Buschbaum
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz
Zentrum (MLZ), Technische Universität
München, Lichtenbergstr. 1, D-85748 Garching, Germany
| | - Prashant V. Kamat
- Notre Dame
Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Qiaoliang Bao
- Department
of Materials Science and Engineering and ARC Centre of Excellence
in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Qiao Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raquel E. Galian
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Sara Bals
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Vasudevanpillai Biju
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong Yan
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Robert L. Z. Hoye
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lakshminarayana Polavarapu
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
| |
Collapse
|
23
|
Ebrahimi A, Yousefi M, Shahbazi F, Sheikh Beig Goharrizi MA, Masoudi-Nejad A. Nodes with the highest control power play an important role at the final level of cooperation in directed networks. Sci Rep 2021; 11:13668. [PMID: 34211043 PMCID: PMC8249622 DOI: 10.1038/s41598-021-93144-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Controllability of complex networks aims to seek the lowest number of nodes (the driver nodes) that can control all the nodes by receiving the input signals. The concept of control centrality is used to determine the power of each node to control the network. The more a node controls the nodes through connections in the network, the more it has the power to control. Although the cooperative and free-rider strategies and the final level of cooperation in a population are considered and studied in the public goods game. However, it is yet to determine a solution to indicate the effectiveness of each member in changing the strategies of the other members. In a network, the choice of nodes effective in changing the other nodes' strategies, as free-riders, will lead to lower cooperation and vice versa. This paper uses simulated and real networks to investigate that the nodes with the highest control power are more effective than the hubs, local, and random nodes in changing the strategies of the other nodes and the final level of cooperation. Results indicate that the nodes with the highest control power as free-riders, compared to the other sets being under consideration, can lead to a lower level of cooperation and are, therefore, more effective in changing the strategies of the other nodes. The obtained results can be considered in the treatment of cancer. So that, destroying the tumoral cells with the highest control power should be a priority as these cells have a higher capability to change the strategies of the other cells from cooperators to free-riders (healthy to tumoral).
Collapse
Affiliation(s)
- Ali Ebrahimi
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Marzieh Yousefi
- Department of Physics, Isfahan University of Technology (IUT), Isfahan, Iran
| | - Farhad Shahbazi
- Department of Physics, Isfahan University of Technology (IUT), Isfahan, Iran
| | | | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
24
|
Yamauchi M, Yamamoto S, Masuo S. A Highly Ordered Quantum Dot Supramolecular Assembly Exhibiting Photoinduced Emission Enhancement. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mitsuaki Yamauchi
- Department of Applied Chemistry for Environment Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Seiya Yamamoto
- Department of Applied Chemistry for Environment Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Sadahiro Masuo
- Department of Applied Chemistry for Environment Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| |
Collapse
|
25
|
Yamauchi M, Yamamoto S, Masuo S. A Highly Ordered Quantum Dot Supramolecular Assembly Exhibiting Photoinduced Emission Enhancement. Angew Chem Int Ed Engl 2021; 60:6473-6479. [PMID: 33368995 DOI: 10.1002/anie.202015535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Indexed: 01/22/2023]
Abstract
Multicomponent supramolecular assembly systems enable the generation of materials with outstanding properties, not obtained from single-component systems, via a synergetic effect. Herein, we demonstrate a novel supramolecular coassembly system rendering highly ordered quantum dot (QD) arrangement structures formed via the self-assembly of azobenzene derivatives, where the photocontrollable photoluminescence (PL) properties of the QDs are realized based on photoisomerization. Upon mixing the assembled azobenzene derivatives and QDs in apolar media, a time-evolution coaggregation into hierarchical nanosheets with a highly ordered QD arrangement structure occurs. Upon photoirradiation, the nanosheets transform into ill-defined aggregates without arranged QDs together with enhancing the PL intensity. In days, the photoirradiated coaggregates undergo recovery of the PL properties corresponding to the arranged QDs through thermal isomerization.
Collapse
Affiliation(s)
- Mitsuaki Yamauchi
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Seiya Yamamoto
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Sadahiro Masuo
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
26
|
Li X, Liu X, Liu X. Self-assembly of colloidal inorganic nanocrystals: nanoscale forces, emergent properties and applications. Chem Soc Rev 2021; 50:2074-2101. [PMID: 33325927 DOI: 10.1039/d0cs00436g] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of colloidal nanoparticles has made it possible to bridge the nanoscopic and macroscopic worlds and to make complex nanostructures. The nanoparticle-mediated assembly enables many potential applications, from biodetection and nanomedicine to optoelectronic devices. Properties of assembled materials are determined not only by the nature of nanoparticle building blocks, but also by spatial positions of nanoparticles within the assemblies. A deep understanding of nanoscale interactions between nanoparticles is a prerequisite to controlling nanoparticle arrangement during assembly. In this review, we present an overview of interparticle interactions governing their assembly in a liquid phase. Considerable attention is devoted to examples that illustrate nanoparticle assembly into ordered superstructures using different types of building blocks, including plasmonic nanoparticles, magnetic nanoparticles, lanthanide-doped nanophosphors, and quantum dots. We also cover the physicochemical properties of nanoparticle ensembles, especially those arising from particle coupling effects. We further discuss future research directions and challenges in controlling self-assembly at a level of precision that is most crucial to technology development.
Collapse
Affiliation(s)
- Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China.
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Institute of Flexible Electronics (SIFE), 8. Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Xiaogang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543, Singapore. and Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Fuzhou 350207, China and The N.1 Institute for Health, National University of Singapore, 117456, Singapore
| |
Collapse
|
27
|
Krieg F, Sercel PC, Burian M, Andrusiv H, Bodnarchuk MI, Stöferle T, Mahrt RF, Naumenko D, Amenitsch H, Rainò G, Kovalenko MV. Monodisperse Long-Chain Sulfobetaine-Capped CsPbBr 3 Nanocrystals and Their Superfluorescent Assemblies. ACS CENTRAL SCIENCE 2021; 7:135-144. [PMID: 33532576 PMCID: PMC7845019 DOI: 10.1021/acscentsci.0c01153] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 05/18/2023]
Abstract
Ligand-capped nanocrystals (NCs) of lead halide perovskites, foremost fully inorganic CsPbX3 NCs, are the latest generation of colloidal semiconductor quantum dots. They offer a set of compelling characteristics-large absorption cross section, as well as narrow, fast, and efficient photoluminescence with long exciton coherence times-rendering them attractive for applications in light-emitting devices and quantum optics. Monodisperse and shape-uniform, broadly size-tunable, scalable, and robust NC samples are paramount for unveiling their basic photophysics, as well as for putting them into use. Thus far, no synthesis method fulfilling all these requirements has been reported. For instance, long-chain zwitterionic ligands impart the most durable surface coating, but at the expense of reduced size uniformity of the as-synthesized colloid. In this work, we demonstrate that size-selective precipitation of CsPbBr3 NCs coated with a long-chain sulfobetaine ligand, namely, 3-(N,N-dimethyloctadecylammonio)-propanesulfonate, yields monodisperse and sizable fractions (>100 mg inorganic mass) with the mean NC size adjustable in the range between 3.5 and 16 nm and emission peak wavelength between 479 and 518 nm. We find that all NCs exhibit an oblate cuboidal shape with the aspect ratio of 1.2 × 1.2 × 1. We present a theoretical model (effective mass/k·p) that accounts for the anisotropic NC shape and describes the size dependence of the first and second excitonic transition in absorption spectra and explains room-temperature exciton lifetimes. We also show that uniform zwitterion-capped NCs readily form long-range ordered superlattices upon solvent evaporation. In comparison to more conventional ligand systems (oleic acid and oleylamine), supercrystals of zwitterion-capped NCs exhibit larger domain sizes and lower mosaicity. Both kinds of supercrystals exhibit superfluorescence at cryogenic temperatures-accelerated collective emission arising from the coherent coupling of the emitting dipoles.
Collapse
Affiliation(s)
- Franziska Krieg
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Peter C. Sercel
- Center
for Hybrid Organic Inorganic Semiconductors for Energy, 15013 Denver West Parkway, Golden, Colorado 80401, United States
- Department
of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Max Burian
- Swiss
Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Hordii Andrusiv
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Thilo Stöferle
- IBM Research
Europe - Zurich, Säumerstrasse
4, 8803 Rüschlikon, Switzerland
| | - Rainer F. Mahrt
- IBM Research
Europe - Zurich, Säumerstrasse
4, 8803 Rüschlikon, Switzerland
| | - Denys Naumenko
- Institute
of Inorganic Chemistry, Graz University
of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
| | - Heinz Amenitsch
- Institute
of Inorganic Chemistry, Graz University
of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
28
|
Gu C, Zhang H, Yu J, Shen Q, Luo G, Chen X, Xue P, Wang Z, Hu J. Assembled Exciton Dynamics in Porphyrin Metal-Organic Framework Nanofilms. NANO LETTERS 2021; 21:1102-1107. [PMID: 33404245 DOI: 10.1021/acs.nanolett.0c04492] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) provide a novel strategy to precisely control the alignment of molecules to enhance exciton diffusion for high-performance organic semiconductors. In this paper, we characterize exciton dynamics in highly ordered and crystalline porphyrin MOF nanofilms by time-resolved photoluminescence and femtosecond-resolved transient absorption spectroscopy. Results suggest that porphyrin MOF nanofilms could be a promising candidate for high-performance organic photovoltaic semiconductors in which the diffusion coefficient and diffusion length of excitons are 9.0 × 10-2 cm2 s-1 and 16.6 nm, respectively, comparable with or even beyond that of other excellent organic semiconductors. Moreover, by monitoring real-time exciton dynamics it is revealed that excitons in MOF nanofilms undergo high-efficient intermolecular hopping and multiexciton annihilation due to the short intermolecular distance and aligned molecular orientation in MOF structure, thus providing new insights into the underlying physics of exciton dynamics and many-body interaction in molecular assembled systems.
Collapse
Affiliation(s)
- Chun Gu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
| | - Hang Zhang
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Junhong Yu
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qiang Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Guoqiang Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xuan Chen
- Key Laboratory for the Green Preparation and Application of Functional Materials Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ping Xue
- Key Laboratory for the Green Preparation and Application of Functional Materials Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zhengbang Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jianbo Hu
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
29
|
Baranov D, Fieramosca A, Yang RX, Polimeno L, Lerario G, Toso S, Giansante C, Giorgi MD, Tan LZ, Sanvitto D, Manna L. Aging of Self-Assembled Lead Halide Perovskite Nanocrystal Superlattices: Effects on Photoluminescence and Energy Transfer. ACS NANO 2021; 15:650-664. [PMID: 33350811 DOI: 10.1021/acsnano.0c06595] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Excitonic coupling, electronic coupling, and cooperative interactions in self-assembled lead halide perovskite nanocrystals were reported to give rise to a red-shifted collective emission peak with accelerated dynamics. Here we report that similar spectroscopic features could appear as a result of the nanocrystal reactivity within the self-assembled superlattices. This is demonstrated by studying CsPbBr3 nanocrystal superlattices over time with room-temperature and cryogenic micro-photoluminescence spectroscopy, X-ray diffraction, and electron microscopy. It is shown that a gradual contraction of the superlattices and subsequent coalescence of the nanocrystals occurs over several days of keeping such structures under vacuum. As a result, a narrow, low-energy emission peak is observed at 4 K with a concomitant shortening of the photoluminescence lifetime due to the energy transfer between nanocrystals. When exposed to air, self-assembled CsPbBr3 nanocrystals develop bulk-like CsPbBr3 particles on top of the superlattices. At 4 K, these particles produce a distribution of narrow, low-energy emission peaks with short lifetimes and excitation fluence-dependent, oscillatory decays. Overall, the aging of CsPbBr3 nanocrystal assemblies dramatically alters their emission properties and that should not be overlooked when studying collective optoelectronic phenomena nor confused with superfluorescence effects.
Collapse
Affiliation(s)
- Dmitry Baranov
- Nanochemistry Department, Italian Institute of Technology, Via Morego 30, Genova 16163, Italy
| | - Antonio Fieramosca
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Ruo Xi Yang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Laura Polimeno
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
- Dipartimento di Matematica e Fisica "E. de Giorgi", Università Del Salento, Campus Ecotekne, Via Monteroni, Lecce 73100, Italy
| | - Giovanni Lerario
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Stefano Toso
- Nanochemistry Department, Italian Institute of Technology, Via Morego 30, Genova 16163, Italy
- International Doctoral Program in Science, Università Cattolica del Sacro Cuore, Brescia 25121, Italy
| | - Carlo Giansante
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Milena De Giorgi
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Liang Z Tan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniele Sanvitto
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Liberato Manna
- Nanochemistry Department, Italian Institute of Technology, Via Morego 30, Genova 16163, Italy
| |
Collapse
|
30
|
Li H, Liu X, Ying Q, Wang C, Jia W, Xing X, Yin L, Lu Z, Zhang K, Pan Y, Shi Z, Huang L, Jia D. Self‐Assembly of Perovskite CsPbBr
3
Quantum Dots Driven by a Photo‐Induced Alkynyl Homocoupling Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hongbo Li
- Institute of Advanced Materials (IAM) Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Xiangdong Liu
- Institute of Advanced Materials (IAM) Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Qifei Ying
- Institute of Advanced Materials (IAM) Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Chao Wang
- College of Engineering and Applied Sciences State Key Laboratory of Analytical Chemistry for Life Science Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing Jiangsu 211816 China
| | - Wei Jia
- Laboratory of Energy Materials Chemistry Ministry of Education Key Laboratory of Advanced Functional Materials Autonomous Region Institute of Applied Chemistry Xinjiang University Urumqi Xinjiang 830046 China
| | - Xing Xing
- College of Engineering and Applied Sciences State Key Laboratory of Analytical Chemistry for Life Science Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing Jiangsu 211816 China
| | - Lisha Yin
- Institute of Advanced Materials (IAM) Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Zhenda Lu
- College of Engineering and Applied Sciences State Key Laboratory of Analytical Chemistry for Life Science Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing Jiangsu 211816 China
| | - Kun Zhang
- Institute of Advanced Materials (IAM) Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Yue Pan
- Institute of Advanced Materials (IAM) Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Ling Huang
- Institute of Advanced Materials (IAM) Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Dianzeng Jia
- Laboratory of Energy Materials Chemistry Ministry of Education Key Laboratory of Advanced Functional Materials Autonomous Region Institute of Applied Chemistry Xinjiang University Urumqi Xinjiang 830046 China
| |
Collapse
|
31
|
Li H, Liu X, Ying Q, Wang C, Jia W, Xing X, Yin L, Lu Z, Zhang K, Pan Y, Shi Z, Huang L, Jia D. Self-Assembly of Perovskite CsPbBr 3 Quantum Dots Driven by a Photo-Induced Alkynyl Homocoupling Reaction. Angew Chem Int Ed Engl 2020; 59:17207-17213. [PMID: 32578927 DOI: 10.1002/anie.202004947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/04/2020] [Indexed: 12/29/2022]
Abstract
Herein, we report the facile growth of three-dimensional CsPbBr3 perovskite supercrystals (PSCs) self-assembled from individual CsPbBr3 perovskite quantum dots (PQDs). By varying the carbon chain length of a surface-bound ligand molecule, 1-alkynyl acid, different morphologies of PSCs were obtained accompanied by an over 1000-fold photoluminescence improvement compared with that of PQDs. Systematic analyses have shown, for the first time, that under UV irradiation, CsBr, the byproduct formed during PQDs synthesis, could effectively catalyze the homocoupling reaction between two alkynyl groups, which further worked as a driving force to push forward the self-assembly of PQDs.
Collapse
Affiliation(s)
- Hongbo Li
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Xiangdong Liu
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Qifei Ying
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Chao Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 211816, China
| | - Wei Jia
- Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, China
| | - Xing Xing
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 211816, China
| | - Lisha Yin
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 211816, China
| | - Kun Zhang
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Yue Pan
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ling Huang
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Dianzeng Jia
- Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, China
| |
Collapse
|
32
|
Deng K, Luo Z, Tan L, Quan Z. Self-assembly of anisotropic nanoparticles into functional superstructures. Chem Soc Rev 2020; 49:6002-6038. [PMID: 32692337 DOI: 10.1039/d0cs00541j] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Self-assembly of colloidal nanoparticles (NPs) into superstructures offers a flexible and promising pathway to manipulate the nanometer-sized particles and thus make full use of their unique properties. This bottom-up strategy builds a bridge between the NP regime and a new class of transformative materials across multiple length scales for technological applications. In this field, anisotropic NPs with size- and shape-dependent physical properties as self-assembly building blocks have long fascinated scientists. Self-assembly of anisotropic NPs not only opens up exciting opportunities to engineer a variety of intriguing and complex superlattice architectures, but also provides access to discover emergent collective properties that stem from their ordered arrangement. Thus, this has stimulated enormous research interests in both fundamental science and technological applications. This present review comprehensively summarizes the latest advances in this area, and highlights their rich packing behaviors from the viewpoint of NP shape. We provide the basics of the experimental techniques to produce NP superstructures and structural characterization tools, and detail the delicate assembled structures. Then the current understanding of the assembly dynamics is discussed with the assistance of in situ studies, followed by emergent collective properties from these NP assemblies. Finally, we end this article with the remaining challenges and outlook, hoping to encourage further research in this field.
Collapse
Affiliation(s)
- Kerong Deng
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zhishan Luo
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Li Tan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|