1
|
Kwon YS, Han Z. Advanced nanomedicines for the treatment of age-related macular degeneration. NANOSCALE 2024; 16:16769-16790. [PMID: 39177654 DOI: 10.1039/d4nr01917b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The critical and unmet medical need for novel therapeutic advancements in the treatment of age-related macular degeneration (AMD) cannot be overstated, particularly given the aging global population and the increasing prevalence of this condition. Current AMD therapy involves intravitreal treatments that require monthly or bimonthly injections to maintain optimal efficacy. This underscores the necessity for improved approaches, prompting recent research into developing advanced drug delivery systems to prolong the intervals between treatments. Nanoparticle-based therapeutic approaches have enabled the controlled release of drugs, targeted delivery of therapeutic materials, and development of smart solutions for the harsh microenvironment of diseased tissues, offering a new perspective on ocular disease treatment. This review emphasizes the latest pre-clinical treatment options in ocular drug delivery to the retina and explores the advantages of nanoparticle-based therapeutic approaches, with a focus on AMD, the leading cause of irreversible blindness in the elderly.
Collapse
Affiliation(s)
- Yong-Su Kwon
- Department of Ophthalmology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | - Zongchao Han
- Department of Ophthalmology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Alshaikh RA, Chullipalliyalil K, Waeber C, Ryan KB. Extended siponimod release via low-porosity PLGA fibres: a comprehensive three-month in vitro evaluation for neovascular ocular diseases. Biomater Sci 2024; 12:4823-4844. [PMID: 39157879 DOI: 10.1039/d4bm00339j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Neovascular ocular diseases are among the most common causes of preventable or treatable vision loss. Their management involves lifelong, intravitreal injections of anti-vascular endothelial growth factor (VEGF) therapeutics to inhibit neovascularization, the key pathological step in these diseases. Anti-VEGF products approved for ocular administration are expensive biological agents with limited stability and short half-life. Additionally, their therapeutic advantages are hindered by high treatment resistance, poor patient compliance and the need for frequent, invasive administration. Herein, we used electrospinning to develop a unique, non-porous, PLGA implant for the ocular delivery of siponimod to improve ocular neovascular disease management. Siponimod is an FDA-approved drug for multiple sclerosis with a novel indication as a potential ocular angiogenesis inhibitor. The electrospinning conditions were optimised to produce a microfibrous, PLGA matte that was cut and rolled into the desired implant size. Physical characterisation techniques (Raman, PXRD, DSC and FTIR) indicated siponimod was distributed uniformly within the electrospun fibres as a stabilised, amorphous, solid dispersion with a character modifying drug-polymer interaction. Siponimod dispersion and drug-polymer interactions contributed to the formation of smooth fibres, with reduced porous structures. The apparent reduced porosity, coupled with the drug's hydrophobic dispersion, afforded resistance to water penetration. This led to a slow, controlled, Higuchi-type drug diffusion, with ∼30% of the siponimod load released over 90 days. The released drug inhibited human retinal microvascular endothelial cell migration and did not affect the cells' metabolic activity at different time points. The electrospun implant was physically stable after incubation under stress conditions for three months. This novel siponimod intravitreal implant broadens the therapeutic possibilities for neovascular ocular diseases, representing a potential alternative to biological, anti-VEGF treatments due to lower financial and stability burdens. Additionally, siponimod interaction with PLGA provides a unique opportunity to sustain the drug release from the electrospun fibres, thereby reducing the frequency of intravitreal injection and improving patient adherence.
Collapse
Affiliation(s)
- Rasha A Alshaikh
- School of Pharmacy, University College Cork, Cork, Ireland.
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Christian Waeber
- School of Pharmacy, University College Cork, Cork, Ireland.
- Department of Pharmacology and Therapeutics, School of Medicine, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland.
- SSPC The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Chang W, Lv X, Zhu J, Shen JJ, Yao J, Liu Z, Chen Q. Multifunctional Nanotherapeutics with Long-Acting Release against Macular Degeneration by Minimally Invasive Administration. ACS NANO 2024. [PMID: 39018483 DOI: 10.1021/acsnano.4c04494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Neovascular age-related macular degeneration (AMD), a leading cause of blindness, requires frequent intravitreal injection of antivascular endothelial growth factor (anti-VEGF), which could generate a succession of complications with poor patient compliance. The current VEGF-targeting therapies often fail in half of patients due to the complex pathologic microenvironment of excessive reactive oxygen species (ROS) production, and increased levels of inflammation are accompanied by choroidal neovascularization (CNV). We herein reported multifunctional nanotherapeutics featuring superior antioxidant and anti-inflammation properties that aim to reverse the pathological condition, alongside its strong targeted antiangiogenesis to CNV and its ability to provide long-term sustained bioactive delivery via the minimally invasive subconjunctival injection, so as to achieve satisfactory wet AMD treatment effects. Concretely, the nanomedicine was designed by coencapsulation of astaxanthin (AST), a red pigmented carotenoid known for its antioxidative, anti-inflammatory and antiapoptotic properties, and axitinib (AXI), a small molecule tyrosine kinase inhibitor that selectively targets the vascular epidermal growth factor receptor for antiangiogenesis, into the Food and Drug Administration (FDA) approved poly(lactic-co-glycolic acid) (PLGA), which forms the nanodrug of PLGA@AST/AXI. Our results demonstrated that a single-dose subconjunctival administration of PLGA@AST/AXI showed a rational synergistic effect by targeting various prevailing risk factors associated with wet AMD, ensuring persistent drug release profiles, maintaining good ocular biocompatibility, and causing no obvious mechanical damage. Such attributes are vital and hold significant potential in treating ocular posterior segment diseases. Moreover, this nanotherapeutic strategy represents a versatile and broad-spectrum nanoplatform, offering a promising alternative for the complex pathological progression of other neovascular diseases.
Collapse
Affiliation(s)
- Wanwan Chang
- School of Pharmacy, Faculty of Medicine & Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau SAR 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215127, China
| | - Xinying Lv
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215127, China
| | - Jiafei Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215127, China
| | - Jing-Jing Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215127, China
| | - Jing Yao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Zhuang Liu
- School of Pharmacy, Faculty of Medicine & Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau SAR 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215127, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215127, China
| |
Collapse
|
4
|
Wu J, Wang Y, Zhang M, Sun X. Publication trends of vascular endothelial growth factor (VEGF) and anti-VEGF treatment in neovascular age-related macular degeneration during 2001-2020: a 20-year bibliometric study. Int Ophthalmol 2024; 44:295. [PMID: 38951350 DOI: 10.1007/s10792-024-02914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/24/2023] [Indexed: 07/03/2024]
Abstract
PURPOSE This study sought to provide an overview of the current research and further analyze publication trends in the field of vascular endothelial growth factor (VEGF) and anti-VEGF treatment for neovascular age-related macular degeneration (NVAMD). METHODS We downloaded all related publications from 2001 to 2020 from the Web of Science Core Collection and conducted a bibliometric analysis using the bibiometrix package in R programming software. RESULTS A total of 3717 publications were included in the analysis. The USA contributed the largest number of publications (1443), and achieved the highest number of citations (74,946) and H-index value (28). Johns Hopkins University, USA, was the top institution with the most publications, and Peter A. Campochiaro was the most productive professor at The Wilmer Eye Institute, USA. 9.60% of the total publications were from the Journal of Retinal and Vitreous Diseases. Trend analysis demonstrated that anti-VEGF therapy was introduced in early 2000 after steroids, and the last 2 decades have witnessed the blossom of several anti-VEGF agents. "Treat-and-extend" and "resistance" were two popular trend topics in recent years. CONCLUSIONS The USA occupies a dominant position in the research field of VEGF and anti-VEGF treatments in NVAMD. Steroid administration, photodynamic therapy, and anti-VEGF therapy have been pivotal advances in the treatment of NVAMD patients over the past 2 decades. Limited acting period and resistance are potential investigation directions in future studies.
Collapse
Affiliation(s)
- Jiali Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Wujing Road No. 85, Hongkou District, Shanghai, 200080, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yimin Wang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Wujing Road No. 85, Hongkou District, Shanghai, 200080, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Wujing Road No. 85, Hongkou District, Shanghai, 200080, China.
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China.
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| |
Collapse
|
5
|
Liu X, Huang K, Zhang F, Huang G, Wang L, Wu G, Ren H, Yang G, Lin Z. Multifunctional nano-in-micro delivery systems for targeted therapy in fundus neovascularization diseases. J Nanobiotechnology 2024; 22:354. [PMID: 38902775 PMCID: PMC11191225 DOI: 10.1186/s12951-024-02614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Fundus neovascularization diseases are a series of blinding eye diseases that seriously impair vision worldwide. Currently, the means of treating these diseases in clinical practice are continuously evolving and have rapidly revolutionized treatment opinions. However, key issues such as inadequate treatment effectiveness, high rates of recurrence, and poor patient compliance still need to be urgently addressed. Multifunctional nanomedicine can specifically respond to both endogenous and exogenous microenvironments, effectively deliver drugs to specific targets and participate in activities such as biological imaging and the detection of small molecules. Nano-in-micro (NIM) delivery systems such as metal, metal oxide and up-conversion nanoparticles (NPs), quantum dots, and carbon materials, have shown certain advantages in overcoming the presence of physiological barriers within the eyeball and are widely used in the treatment of ophthalmic diseases. Few studies, however, have evaluated the efficacy of NIM delivery systems in treating fundus neovascular diseases (FNDs). The present study describes the main clinical treatment strategies and the adverse events associated with the treatment of FNDs with NIM delivery systems and summarizes the anatomical obstacles that must be overcome. In this review, we wish to highlight the principle of intraocular microenvironment normalization, aiming to provide a more rational approach for designing new NIM delivery systems to treat specific FNDs.
Collapse
Affiliation(s)
- Xin Liu
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Keke Huang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Fuxiao Zhang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Ge Huang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Lu Wang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Guiyu Wu
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Hui Ren
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Guang Yang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Zhiqing Lin
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| |
Collapse
|
6
|
Poudel S, Kaffash E, Zhao L, Pangeni R, Chow WN, Xu Q. Dexamethasone sodium phosphate loaded nanoparticles for prevention of nitrogen mustard induced corneal injury. Exp Eye Res 2024; 243:109902. [PMID: 38641196 PMCID: PMC11184523 DOI: 10.1016/j.exer.2024.109902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Nitrogen mustard (NM) is a potent vesicating chemical warfare agent that is primarily absorbed through skin, inhalation, or ocular surface. Ocular exposure of NM can cause acute to chronic keratopathy which can eventually lead to blindness. There is a current lack of effective countermeasures against ocular exposure of NM despite their imperative need. Herein, we aim to explore the sustained effect of Dexamethasone sodium phosphate (DSP)-loaded polymeric nanoparticles (PLGA-DSP-NP) following a single subconjunctival injection in the management and prevention of corneal injury progression upon exposure to NM. DSP is an FDA approved corticosteroid with proven anti-inflammatory properties. We formulated PLGA-DSP-NP with zinc chelation ion bridging method using PLGA polymer, with particles of approximately 250 nm and a drug loading of 6.5 wt%. Under in vitro sink conditions, PLGA-DSP-NP exhibited a sustained drug release for two weeks. Notably, in NM injured cornea, a single subconjunctival (SCT) injection of PLGA-DSP-NP outperformed DSP eyedrops (0.1%), DSP solution, placebo NP, and saline, significantly mitigating corneal neovascularization, ulceration, and opacity for the two weeks study period. Through PLGA-DSP-NP injection, sustained DSP release hindered inflammatory cytokine recruitment, angiogenic factors, and endothelial cell proliferation in the cornea. This strategy presents a promising localized corticosteroid delivery system to effectively combat NM-induced corneal injury, offering insights into managing vesicant exposure.
Collapse
Affiliation(s)
- Sagun Poudel
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ehsan Kaffash
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Long Zhao
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rudra Pangeni
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Woon Nam Chow
- Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA 23298, USA; Center for Pharmaceutical Engineering, and Institute for Structural Biology, Drug Discovery & Development (ISB3D), Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
7
|
Chobisa D, Muniyandi A, Sishtla K, Corson TW, Yeo Y. Long-Acting Microparticle Formulation of Griseofulvin for Ocular Neovascularization Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306479. [PMID: 37940612 PMCID: PMC10939919 DOI: 10.1002/smll.202306479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Neovascular age-related macular degeneration (nAMD) is a leading cause of vision loss in older adults. nAMD is treated with biologics targeting vascular endothelial growth factor; however, many patients do not respond to the current therapy. Here, a small molecule drug, griseofulvin (GRF), is used due to its inhibitory effect on ferrochelatase, an enzyme important for choroidal neovascularization (CNV). For local and sustained delivery to the eyes, GRF is encapsulated in microparticles based on poly(lactide-co-glycolide) (PLGA), a biodegradable polymer with a track record in long-acting formulations. The GRF-loaded PLGA microparticles (GRF MPs) are designed for intravitreal application, considering constraints in size, drug loading content, and drug release kinetics. Magnesium hydroxide is co-encapsulated to enable sustained GRF release over >30 days in phosphate-buffered saline with Tween 80. Incubated in cell culture medium over 30 days, the GRF MPs and the released drug show antiangiogenic effects in retinal endothelial cells. A single intravitreal injection of MPs containing 0.18 µg GRF releases the drug over 6 weeks in vivo to inhibit the progression of laser-induced CNV in mice with no abnormality in the fundus and retina. Intravitreally administered GRF MPs prove effective in preventing CNV, providing proof-of-concept toward a novel, cost-effective nAMD therapy.
Collapse
Affiliation(s)
- Dhawal Chobisa
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 West Stadium Avenue, West Lafayette, IN, 47907, USA
- Integrated Product Development Organization, Innovation Plaza Dr. Reddy's Laboratories, Hyderabad, 500050, India
| | - Anbukkarasi Muniyandi
- Departments of Pharmacology & Toxicology and Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Kamakshi Sishtla
- Departments of Pharmacology & Toxicology and Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Timothy W Corson
- Departments of Pharmacology & Toxicology and Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Yoon Yeo
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 West Stadium Avenue, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN, 47907, USA
| |
Collapse
|
8
|
Appell MB, Pejavar J, Pasupathy A, Rompicharla SVK, Abbasi S, Malmberg K, Kolodziejski P, Ensign LM. Next generation therapeutics for retinal neurodegenerative diseases. J Control Release 2024; 367:708-736. [PMID: 38295996 PMCID: PMC10960710 DOI: 10.1016/j.jconrel.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/05/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Neurodegenerative diseases affecting the visual system encompass glaucoma, macular degeneration, retinopathies, and inherited genetic disorders such as retinitis pigmentosa. These ocular pathologies pose a serious burden of visual impairment and blindness worldwide. Current treatment modalities include small molecule drugs, biologics, or gene therapies, most of which are administered topically as eye drops or as injectables. However, the topical route of administration faces challenges in effectively reaching the posterior segment and achieving desired concentrations at the target site, while injections and implants risk severe complications, such as retinal detachment and endophthalmitis. This necessitates the development of innovative therapeutic strategies that can prolong drug release, deliver effective concentrations to the back of the eye with minimal systemic exposure, and improve patient compliance and safety. In this review, we introduce retinal degenerative diseases, followed by a discussion of the existing clinical standard of care. We then delve into detail about drug and gene delivery systems currently in preclinical and clinical development, including formulation and delivery advantages/drawbacks, with a special emphasis on potential for clinical translation.
Collapse
Affiliation(s)
- Matthew B Appell
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jahnavi Pejavar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Ashwin Pasupathy
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sri Vishnu Kiran Rompicharla
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kiersten Malmberg
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Patricia Kolodziejski
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Gynecology and Obstetrics, Biomedical Engineering, Oncology, and Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
9
|
Chandra S, Tan EY, Empeslidis T, Sivaprasad S. Tyrosine Kinase Inhibitors and their role in treating neovascular age-related macular degeneration and diabetic macular oedema. Eye (Lond) 2023; 37:3725-3733. [PMID: 37286867 PMCID: PMC10697959 DOI: 10.1038/s41433-023-02610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023] Open
Abstract
The advent of intravitreal anti-VEGF injections has revolutionised the treatment of both neovascular age-related macular degeneration (nAMD or wet AMD) and diabetic macular oedema (DMO). Despite their efficacy, anti-VEGF injections precipitate significant treatment burden for patients, caregivers and healthcare systems due to the high frequency of injections required to sustain treatment benefit. Therefore, there remains an unmet need for lower-burden therapies. Tyrosine kinase inhibitors (TKI) are a novel class of drugs that may have considerable potential in addressing this issue. This review will summarise and discuss the results of various pilot studies and clinical trials exploring the role of TKIs in treatment of nAMD and DMO, highlighting promising candidates and possible challenges in developments.
Collapse
Affiliation(s)
- Shruti Chandra
- National Institute of Health Research Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
- University College London, Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Emanuel Yuquan Tan
- National Institute of Health Research Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
- Queen Mary University of London, Faculty of Medicine and Dentistry, Bethnal Green, London, E1 4NS, UK
| | | | - Sobha Sivaprasad
- National Institute of Health Research Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.
- University College London, Institute of Ophthalmology, London, EC1V 9EL, UK.
| |
Collapse
|
10
|
Chacin Ruiz EA, Swindle-Reilly KE, Ford Versypt AN. Experimental and mathematical approaches for drug delivery for the treatment of wet age-related macular degeneration. J Control Release 2023; 363:464-483. [PMID: 37774953 PMCID: PMC10842193 DOI: 10.1016/j.jconrel.2023.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
Several chronic eye diseases affect the posterior segment of the eye. Among them age-related macular degeneration can cause vision loss if left untreated and is one of the leading causes of visual impairment in the world. Most treatments are based on intravitreally injected therapeutics that inhibit the action of vascular endothelial growth factor. However, due to the need for monthly injections, this method is associated with poor patient compliance. To address this problem, numerous drug delivery systems (DDSs) have been developed. This review covers a selection of particulate systems, non-stimuli responsive hydrogels, implants, and composite systems that have been developed in the last few decades. Depending on the type of DDS, polymer material, and preparation method, different mechanical properties and drug release profiles can be achieved. Furthermore, DDS development can be optimized by implementing mathematical modeling of both drug release and pharmacokinetic aspects. Several existing mathematical models for diffusion-controlled, swelling-controlled, and erosion-controlled drug delivery from polymeric systems are summarized. Compartmental and physiologically based models for ocular drug transport and pharmacokinetics that have studied drug concentration profiles after intravitreal delivery or release from a DDS are also reviewed. The coupling of drug release models with ocular pharmacokinetic models can lead to obtaining much more efficient DDSs for the treatment of age-related macular degeneration and other diseases of the posterior segment of the eye.
Collapse
Affiliation(s)
- Eduardo A Chacin Ruiz
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Katelyn E Swindle-Reilly
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA; Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, USA
| | - Ashlee N Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA; Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
11
|
Nichani PAH, Popovic MM, Dhoot AS, Pathak A, Muni RH, Kertes PJ. Treat-and-extend dosing of intravitreal anti-VEGF agents in neovascular age-related macular degeneration: a meta-analysis. Eye (Lond) 2023; 37:2855-2863. [PMID: 36859600 PMCID: PMC10517126 DOI: 10.1038/s41433-023-02439-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/04/2022] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
Intravitreal injections of antiangiogenic agents are pivotal in treating neovascular age-related macular degeneration (nAMD). The comparative efficacy and safety of treat-and-extend (T&E) versus bimonthly, monthly, and pro re nata (PRN) dosing remains unclear. A systematic review and meta-analysis of English-language RCTs reporting on efficacy and/or safety outcomes of dosing regimens of anti-VEGF agents in nAMD was performed. Best-corrected visual acuity (BCVA, ETDRS letters) at last follow-up represented the primary endpoint, while central subfield thickness (CSFT, μm), injection burden, and ocular adverse events were secondary endpoints. A random effects meta-analysis was performed, and 95% confidence intervals were calculated. Across six RCTs, 781 T&E-, 663 monthly-, 130 PRN-, and 123 bimonthly treated eyes were included. Mean changes in BCVA and CSFT at last follow-up were similar between T&E versus monthly (WMD, -0.62 letters; 95% CI, -2.12 to 0.87; P = 0.41; WMD, 5.30 microns; 95% CI, -10.67 to 21.26; P = 0.52, respectively), bimonthly (WMD, 1.68 letters; 95% CI, -3.55 to 6.91; P = 0.53; WMD, -18.91 microns; 95% CI, -46.41 to 8.60; P = 0.18, respectively), and PRN (BCVA WMD, 1.08 letters; 95% CI, -2.95 to 5.11; P = 0.60) regimens. T&E was associated with a reduced injection burden versus monthly (WMD, -4.52 injections; 95% CI, -6.66 to 2.39; P < 0.001) but higher injection burden versus PRN (WMD, 1.81 injections; 95% CI, 1.12 to 2.51; P < 0.001) dosing. There was no significant difference in safety outcomes amongst comparators. There was no significant difference in efficacy and safety between T&E, bimonthly, monthly, and PRN dosing. T&E resulted in fewer injections versus monthly and fewer clinic visits versus PRN.
Collapse
Affiliation(s)
- Prem A H Nichani
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Marko M Popovic
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Arjan S Dhoot
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - Ananya Pathak
- Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University, Hamilton, ON, Canada
| | - Rajeev H Muni
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peter J Kertes
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada.
- John and Liz Tory Eye Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|
12
|
Bhat M, Shirzad S, Fofana ARK, Gobeil F, Couture R, Vaucher E. Prevention of Inflammation, Neovascularization, and Retinal Dysfunction by Kinin B 1 Receptor Antagonism in a Mouse Model of Age-Related Macular Degeneration. J Clin Med 2023; 12:6213. [PMID: 37834856 PMCID: PMC10573521 DOI: 10.3390/jcm12196213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The kallikrein-kinin system (KKS) contributes to vascular inflammation and neovascularization in age-related macular degeneration (AMD), particularly via the kinin B1 receptor (B1R). The aim of the present study was to determine the protective effects of the topical administration of the B1R antagonist (R-954) on inflammation, neovascularization, and retinal dysfunction in a murine model of neovascular AMD. Choroidal neovascularization (CNV) was induced in C57BL6 mice using an argon laser. A treatment with ocular drops of R-954 (100 μg/15 μL, twice daily in both eyes), or vehicle, was started immediately on day 0, for 7, 14, or 21 days. CNV, invasive microglia, and B1R immunoreactive glial cells, as well as electroretinography alterations, were observed within the retina and choroid of the CNV group but not in the control group. The staining of B1R was abolished by R-954 treatment as well as the proliferation of microglia. R-954 treatment prevented the CNV development (volume: 20 ± 2 vs. 152 ± 5 × 104 µm3 in R-954 vs. saline treatment). R-954 also significantly decreased photoreceptor and bipolar cell dysfunction (a-wave amplitude: -47 ± 20 vs. -34 ± 14 µV and b-wave amplitude: 101 ± 27 vs. 64 ± 17 µV in R-954 vs. saline treatment, day 7) as well as angiogenesis tufts in the retina. These results suggest that self-administration of R-954 by eye-drop treatment could be a promising therapy in AMD to preserve retinal health and vision.
Collapse
Affiliation(s)
- Menakshi Bhat
- School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada; (M.B.)
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| | - Shima Shirzad
- School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada; (M.B.)
| | | | - Fernand Gobeil
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| | - Elvire Vaucher
- School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada; (M.B.)
| |
Collapse
|
13
|
Wang X, Luan F, Yue H, Song C, Wang S, Feng J, Zhang X, Yang W, Li Y, Wei W, Tao Y. Recent advances of smart materials for ocular drug delivery. Adv Drug Deliv Rev 2023; 200:115006. [PMID: 37451500 DOI: 10.1016/j.addr.2023.115006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Owing to the variety and complexity of ocular diseases and the natural ocular barriers, drug therapy for ocular diseases has significant limitations, such as poor drug targeting to the site of the disease, poor drug penetration, and short drug retention time in the vitreous body. With the development of biotechnology, biomedical materials have reached the "smart" stage. To date, despite their inability to overcome all the aforementioned drawbacks, a variety of smart materials have been widely tested to treat various ocular diseases. This review analyses the most recent developments in multiple smart materials (inorganic particles, polymeric particles, lipid-based particles, hydrogels, and devices) to treat common ocular diseases and discusses the future directions and perspectives regarding clinical translation issues. This review can help researchers rationally design more smart materials for specific ocular applications.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Fuxiao Luan
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Cui Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jing Feng
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wei Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yuxin Li
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
14
|
Cai R, Zhang L, Chi H. Recent development of polymer nanomicelles in the treatment of eye diseases. Front Bioeng Biotechnol 2023; 11:1246974. [PMID: 37600322 PMCID: PMC10436511 DOI: 10.3389/fbioe.2023.1246974] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
The eye, being one of the most intricate organs in the human body, hosts numerous anatomical barriers and clearance mechanisms. This highlights the importance of devising a secure and efficacious ocular medication delivery system. Over the past several decades, advancements have been made in the development of a nano-delivery platform based on polymeric micelles. These advancements encompass diverse innovations such as poloxamer, chitosan, hydrogel-encapsulated micelles, and contact lenses embedded with micelles. Such technological evolutions allow for sustained medication retention and facilitate enhanced permeation within the eye, thereby standing as the avant-garde in ocular medication technology. This review provides a comprehensive consolidation of ocular medications predicated on polymer nanomicelles from 2014 to 2023. Additionally, it explores the challenges they pose in clinical applications, a discussion intended to aid the design of future clinical research concerning ocular medication delivery formulations.
Collapse
Affiliation(s)
- Ruijun Cai
- Department of Pharmacy, The People’s Hospital of Jiuquan, Jiuquan, Gansu, China
| | - Ling Zhang
- Department of Pharmacy, The People’s Hospital of Jiuquan, Jiuquan, Gansu, China
| | - Hao Chi
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
15
|
Chang W, Shen J, Liu Z, Chen Q. Application of organic nanocarriers for intraocular drug delivery. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:259-266. [PMID: 37476937 PMCID: PMC10409895 DOI: 10.3724/zdxbyxb-2023-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
The application of intraocular drug delivery is usually limited due to special anatomical and physiological barriers, and the elimination mechanisms in the eye. Organic nano-drug delivery carriers exhibit excellent adhesion, permeability, targeted modification and controlled release abilities to overcome the obstacles and improve the efficiency of drug delivery and bioavailability. Solid lipid nanoparticles can entrap the active components in the lipid structure to improve the stability of drugs and reduce the production cost. Liposomes can transport hydrophobic or hydrophilic molecules, including small molecules, proteins and nucleic acids. Compared with linear macromolecules, dendrimers have a regular structure and well-defined molecular mass and size, which can precisely control the molecular shape and functional groups. Degradable polymer materials endow nano-delivery systems a variety of size, potential, morphology and other characteristics, which enable controlled release of drugs and are easy to modify with a variety of ligands and functional molecules. Organic biomimetic nanocarriers are highly optimized through evolution of natural particles, showing better biocompatibility and lower toxicity. In this article, we summarize the advantages of organic nanocarriers in overcoming multiple barriers and improving the bioavailability of drugs, and highlight the latest research progresses on the application of organic nanocarriers for treatment of ocular diseases.
Collapse
Affiliation(s)
- Wanwan Chang
- Institute of Functional Nano & Soft Materials, Soochow University, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Suzhou 215123, Jiangsu Province, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, China
| | - Jingjing Shen
- Institute of Functional Nano & Soft Materials, Soochow University, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Suzhou 215123, Jiangsu Province, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials, Soochow University, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Suzhou 215123, Jiangsu Province, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials, Soochow University, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
16
|
Huang X, Zhang L, Fu Y, Zhang M, Yang Q, Peng J. Rethinking the potential and necessity of drug delivery systems in neovascular age-related macular degeneration therapy. Front Bioeng Biotechnol 2023; 11:1199922. [PMID: 37288355 PMCID: PMC10242387 DOI: 10.3389/fbioe.2023.1199922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Age-related macular degeneration (AMD) is the predominant threat to human vision and ultimately results in blindness. With the increase in the aging population, it has become a more crucial issue to human health. AMD is a multifactorial disease with the unique feature of uncontrollable angiogenesis during initiation and progression. Although increasing evidence indicates that AMD is largely hereditary, the predominant efficient treatment is antiangiogenesis, which mainly involves VEGF and HIF-α as therapeutic targets. The repeated administration of this treatment over the long term, generally through intravitreal injection, has called for the introduction of long-term drug delivery systems, which are expected to be achieved by biomaterials. However, the clinical results of the port delivery system indicate that the optimization of medical devices toward prolonging the activities of therapeutic biologics in AMD therapy seems more promising. These results indicate that we should rethink the possibility and potential of biomaterials as drug delivery systems in achieving long-term, sustained inhibition of angiogenesis in AMD therapy. In this review, the etiology, categorization, risk factors, pathogenesis, and current clinical treatments of AMD are briefly introduced. Next, the development status of long-term drug delivery systems is discussed, and the drawbacks and shortages of these systems are emphasized. By comprehensively considering the pathological aspect and the recent application of drug delivery systems in AMD therapy, we hope to find a better solution for the further development of long-term therapeutic strategies for AMD.
Collapse
Affiliation(s)
- Xi Huang
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyan Fu
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meixia Zhang
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Yang
- Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Jinrong Peng
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Wu KY, Joly-Chevrier M, Akbar D, Tran SD. Overcoming Treatment Challenges in Posterior Segment Diseases with Biodegradable Nano-Based Drug Delivery Systems. Pharmaceutics 2023; 15:1094. [PMID: 37111579 PMCID: PMC10142934 DOI: 10.3390/pharmaceutics15041094] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Posterior segment eye diseases present a challenge in treatment due to the complex structures in the eye that serve as robust static and dynamic barriers, limiting the penetration, residence time, and bioavailability of topical and intraocular medications. This hinders effective treatment and requires frequent dosing, such as the regular use of eye drops or visits to the ophthalmologist for intravitreal injections, to manage the disease. Moreover, the drugs must be biodegradable to minimize toxicity and adverse reactions, as well as small enough to not affect the visual axis. The development of biodegradable nano-based drug delivery systems (DDSs) can be the solution to these challenges. First, they can stay in ocular tissues for longer periods of time, reducing the frequency of drug administration. Second, they can pass through ocular barriers, offering higher bioavailability to targeted tissues that are otherwise inaccessible. Third, they can be made up of polymers that are biodegradable and nanosized. Hence, therapeutic innovations in biodegradable nanosized DDS have been widely explored for ophthalmic drug delivery applications. In this review, we will present a concise overview of DDSs utilized in the treatment of ocular diseases. We will then examine the current therapeutic challenges faced in the management of posterior segment diseases and explore how various types of biodegradable nanocarriers can enhance our therapeutic arsenal. A literature review of the pre-clinical and clinical studies published between 2017 and 2023 was conducted. Through the advances in biodegradable materials, combined with a better understanding of ocular pharmacology, the nano-based DDSs have rapidly evolved, showing great promise to overcome challenges currently encountered by clinicians.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada;
| | | | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
18
|
Gomes Souza L, Antonio Sousa-Junior A, Alves Santana Cintra B, Vieira Dos Anjos JL, Leite Nascimento T, Palmerston Mendes L, de Souza Vieira M, do Nascimento Ducas R, Campos Valadares M, Antônio Mendanha S, Martins Lima E. Pre-clinical safety of topically administered sunitinib-loaded lipid and polymeric nanocarriers targeting corneal neovascularization. Int J Pharm 2023; 635:122682. [PMID: 36754184 DOI: 10.1016/j.ijpharm.2023.122682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
Three different types of sunitinib-loaded (SUN-loaded) nanocarriers were compared, aiming at the topical treatment of corneal neovascularization (CNV): polymeric nanospheres (NS), liposomes (LIP), and solid lipid nanoparticles (SLN). Three out of eleven formulations prepared for an optimization study - the best SUN-loaded nanocarrier of each assessed type (NS, LIP, and SLN) - were selected, based on their size, polydispersity index (PdI), drug load (DL), and encapsulation efficiency (EE). These three optimal formulations were further characterized by nanoparticle tracking analysis (NTA), electron paramagnetic resonance (EPR) spectroscopy, and zeta potential. In vitro SUN release profiles were obtained for the optimal formulations, along with ex vivo corneal permeability/retention studies, and ocular tolerance assays, namely: the bovine corneal opacity and permeability (BCOP) assay, the HET-CAM test (hen's egg test - chorioallantoic membrane), and hemolytic potential (HP) assay. None of the optimal formulations exhibited toxicity or potential for ocular irritation. SLN showed higher surface fluidity, drug release more suitable for topical ocular applications, besides greater SUN corneal retention. Our results suggest that SLN are the best CNV-targeting SUN-loaded nanocarriers for clinical translation when compared to their NS and LIP analogues.
Collapse
Affiliation(s)
- Leonardo Gomes Souza
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil
| | - Ailton Antonio Sousa-Junior
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil
| | - Bertilha Alves Santana Cintra
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil
| | - Jorge Luiz Vieira Dos Anjos
- Federal University of Catalão - UFCAT. Av. Doutor Lamartine P. Avelar, 1120, Catalão/GO - CEP 75704-020, Brazil
| | - Thaís Leite Nascimento
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil
| | - Lívia Palmerston Mendes
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil
| | - Marcelo de Souza Vieira
- ToxIn - Laboratory of Education and Research in In Vitro Toxicology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil
| | - Rafael do Nascimento Ducas
- ToxIn - Laboratory of Education and Research in In Vitro Toxicology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil
| | - Marize Campos Valadares
- ToxIn - Laboratory of Education and Research in In Vitro Toxicology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil
| | - Sebastião Antônio Mendanha
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil; Physics Institute, Federal University of Goias, Avenida Esperança, s/n, Campus Samambaia, Goiânia/GO - CEP 74690-900, Brazil; CNanoMed - Nanomedicine Integrated Research Center, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil
| | - Eliana Martins Lima
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil; CNanoMed - Nanomedicine Integrated Research Center, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil.
| |
Collapse
|
19
|
Li W, Chen L, Gu Z, Chen Z, Li H, Cheng Z, Li H, Zou L. Co-delivery of microRNA-150 and quercetin by lipid nanoparticles (LNPs) for the targeted treatment of age-related macular degeneration (AMD). J Control Release 2023; 355:358-370. [PMID: 36738972 DOI: 10.1016/j.jconrel.2023.01.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/06/2023]
Abstract
Age-related macular degeneration (AMD) is characterized by choroidal neovascularization (CNV), which leads to severe vision loss in middle-aged and elderly patients. Current treatments for CNV show weak, transient efficacy, and they can cause several adverse effects. A potential new treatment is to use microRNA-150 (mR150), which regulates physiological and pathological angiogenesis by modulating the expression of CXCR4 at the post-transcriptional level. Here, we developed solid lipid nanoparticles that we modified with an Asp-Gly-Arg peptide to target endothelial cells during abnormal angiogenesis, then we co-loaded them with mR150 and the anti-angiogenic drug quercetin. The resulting nanoparticles had an average size around 200 nm and showed strong ability to target the fundus and inhibit CNV for up to two weeks in a mouse model without causing retinal toxicity. They significantly enhanced the uptake of mR150 in vitro compared to free mR150 or nanoparticles without peptide. Our study suggests that co-administration of mR150 and quercetin has potential for treating age-related macular degeneration and that nanoparticles modified with Asp-Gly-Arg peptide are an effective platform for the co-delivery of small-molecule and nucleic acid drugs via intravitreal injection.
Collapse
Affiliation(s)
- Wei Li
- School of Basic Medicine, Institute for Advanced Study, Chengdu University, Chengdu 610106, People's Republic of China
| | - Liang Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, People's Republic of China
| | - Zhongwei Gu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Zhoujiang Chen
- School of Basic Medicine, Institute for Advanced Study, Chengdu University, Chengdu 610106, People's Republic of China
| | - Hong Li
- Affiliated Hospital & Clnical Medical College of Chengdu University, Chengdu 610081, People's Republic of China
| | - Zhongxia Cheng
- Affiliated Hospital & Clnical Medical College of Chengdu University, Chengdu 610081, People's Republic of China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, People's Republic of China.
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, People's Republic of China.
| |
Collapse
|
20
|
Khachigian LM, Liew G, Teo KYC, Wong TY, Mitchell P. Emerging therapeutic strategies for unmet need in neovascular age-related macular degeneration. J Transl Med 2023; 21:133. [PMID: 36810060 PMCID: PMC9942398 DOI: 10.1186/s12967-023-03937-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Neovascular age-related macular degeneration (nAMD) is a major cause of visual impairment and blindness. Anti-vascular endothelial growth factor (VEGF) agents, such as ranibizumab, bevacizumab, aflibercept, brolucizumab and faricimab have revolutionized the clinical management of nAMD. However, there remains an unmet clinical need for new and improved therapies for nAMD, since many patients do not respond optimally, may lose response over time or exhibit sub-optimal durability, impacting on real world effectiveness. Evidence is emerging that targeting VEGF-A alone, as most agents have done until recently, may be insufficient and agents that target multiple pathways (e.g., aflibercept, faricimab and others in development) may be more efficacious. This article reviews issues and limitations that have arisen from the use of existing anti-VEGF agents, and argues that the future may lie in multi-targeted therapies including alternative agents and modalities that target both the VEGF ligand/receptor system as well as other pathways.
Collapse
Affiliation(s)
- Levon M. Khachigian
- grid.1005.40000 0004 4902 0432Vascular Biology and Translational Research, Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Gerald Liew
- grid.476921.fCentre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
| | - Kelvin Y. C. Teo
- grid.419272.b0000 0000 9960 1711Singapore National Eye Centre and Singapore Eye Research Institute, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
| | - Tien Y. Wong
- grid.419272.b0000 0000 9960 1711Singapore National Eye Centre and Singapore Eye Research Institute, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore ,grid.12527.330000 0001 0662 3178Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Paul Mitchell
- grid.476921.fCentre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
| |
Collapse
|
21
|
Lima e Silva R, Mirando AC, Tzeng SY, Green JJ, Popel AS, Pandey NB, Campochiaro PA. Anti-angiogenic collagen IV-derived peptide target engagement with α vβ 3 and α 5β 1 in ocular neovascularization models. iScience 2023; 26:106078. [PMID: 36844452 PMCID: PMC9947312 DOI: 10.1016/j.isci.2023.106078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
AXT107, a collagen-derived peptide that binds integrins αvβ3 and α5β1 with high affinity, suppresses vascular endothelial growth factor (VEGF) signaling, promotes angiopoietin 2-induced Tie2 activation, and suppresses neovascularization (NV) and vascular leakage. Immunohistochemical staining for αvβ3 and α5β1 was markedly increased in NV compared with normal retinal vessels. After intravitreous injection of AXT107, there was no staining with an anti-AXT107 antibody on normal vessels but robust staining of NV that co-localized with αvβ3 and α5β1. Likewise, after intravitreous injection, fluorescein amidite-labeled AXT107 co-localized with αvβ3 and α5β1 on NV but not normal vessels. AXT107 also co-localized with αv and α5 at cell-cell junctions of human umbilical vein endothelial cells (HUVECs). AXT107-integrin binding was demonstrated by ex vivo cross-linking/pull-down experiments. These data support the hypothesis that AXT107 therapeutic activity is mediated through binding αvβ3 and α5β1 which are markedly upregulated on endothelial cells in NV providing selective targeting of diseased vessels which has therapeutic and safety benefits.
Collapse
Affiliation(s)
- Raquel Lima e Silva
- Department of Ophthalmology and The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adam C. Mirando
- AsclepiX Therapeutics, Inc., Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jordan J. Green
- Department of Ophthalmology and The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Niranjan B. Pandey
- AsclepiX Therapeutics, Inc., Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A. Campochiaro
- Department of Ophthalmology and The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Ahmed S, Amin MM, Sayed S. Ocular Drug Delivery: a Comprehensive Review. AAPS PharmSciTech 2023; 24:66. [PMID: 36788150 DOI: 10.1208/s12249-023-02516-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023] Open
Abstract
The human eye is a sophisticated organ with distinctive anatomy and physiology that hinders the passage of drugs into targeted ophthalmic sites. Effective topical administration is an interest of scientists for many decades. Their difficult mission is to prolong drug residence time and guarantee an appropriate ocular permeation. Several ocular obstacles oppose effective drug delivery such as precorneal, corneal, and blood-corneal barriers. Routes for ocular delivery include topical, intravitreal, intraocular, juxtascleral, subconjunctival, intracameral, and retrobulbar. More than 95% of marketed products exists in liquid state. However, other products could be in semi-solid (ointments and gels), solid state (powder, insert and lens), or mixed (in situ gel). Nowadays, attractiveness to nanotechnology-based carries is resulted from their capabilities to entrap both hydrophilic and lipophilic drugs, enhance ocular permeability, sustain residence time, improve drug stability, and augment bioavailability. Different in vitro, ex vivo, and in vivo characterization approaches help to predict the outcomes of the constructed nanocarriers. This review aims to clarify anatomy of the eye, various ocular diseases, and obstacles to ocular delivery. Moreover, it studies the advantages and drawbacks of different ocular routes of administration and dosage forms. This review also discusses different nanostructured platforms and their characterization approaches. Strategies to enhance ocular bioavailability are also explained. Finally, recent advances in ocular delivery are described.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Maha M Amin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| |
Collapse
|
23
|
Srimongkol A, Laosillapacharoen N, Saengwimol D, Chaitankar V, Rojanaporn D, Thanomchard T, Borwornpinyo S, Hongeng S, Kaewkhaw R. Sunitinib efficacy with minimal toxicity in patient-derived retinoblastoma organoids. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:39. [PMID: 36726110 PMCID: PMC9890748 DOI: 10.1186/s13046-023-02608-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/20/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Recurrence of retinoblastoma (RB) following chemoreduction is common and is often managed with local (intra-arterial/intravitreal) chemotherapy. However, some tumors are resistant to even local administration of maximum feasible drug dosages, or effective tumor control and globe preservation may be achieved at the cost of vision loss due to drug-induced retinal toxicity. The aim of this study was to identify drugs with improved antitumor activity and more favorable retinal toxicity profiles via screening of potentially repurposable FDA-approved drugs in patient-derived tumor organoids. METHODS Genomic profiling of five RB organoids and the corresponding parental tissues was performed. RB organoids were screened with 133 FDA-approved drugs, and candidate drugs were selected based on cytotoxicity and potency. RNA sequencing was conducted to generate a drug signature from RB organoids, and the effects of drugs on cell cycle progression and proliferative tumor cone restriction were examined. Drug toxicity was assessed with human embryonic stem cell-derived normal retinal organoids. The efficacy/toxicity profiles of candidate drugs were compared with those of drugs in clinical use. RESULTS RB organoids maintained the genomic features of the parental tumors. Sunitinib was identified as highly cytotoxic against both classical RB1-deficient and novel MYCN-amplified RB organoids and inhibited proliferation while inducing differentiation in RB. Sunitinib was a more effective suppressor of proliferative tumor cones in RB organoids and had lower toxicity in normal retinal organoids than either melphalan or topotecan. CONCLUSION The efficacy and retinal toxicity profiles of sunitinib suggest that it could potentially be repurposed for local chemotherapy of RB.
Collapse
Affiliation(s)
- Atthapol Srimongkol
- grid.10223.320000 0004 1937 0490Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400 Bangkok, Thailand
| | - Natanan Laosillapacharoen
- grid.10223.320000 0004 1937 0490Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400 Bangkok, Thailand
| | - Duangporn Saengwimol
- grid.10223.320000 0004 1937 0490Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400 Bangkok, Thailand
| | - Vijender Chaitankar
- grid.94365.3d0000 0001 2297 5165Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD USA
| | - Duangnate Rojanaporn
- grid.10223.320000 0004 1937 0490Department of Ophthalmology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400 Bangkok, Thailand
| | - Thanastha Thanomchard
- grid.10223.320000 0004 1937 0490Ramathibodi Comprehensive Cancer Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400 Bangkok, Thailand
| | - Suparerk Borwornpinyo
- grid.10223.320000 0004 1937 0490Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, 10400 Bangkok, Thailand ,grid.10223.320000 0004 1937 0490Department of Biotechnology, Faculty of Science, Mahidol University, 10400 Bangkok, Thailand
| | - Suradej Hongeng
- grid.10223.320000 0004 1937 0490Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400 Bangkok, Thailand
| | - Rossukon Kaewkhaw
- grid.10223.320000 0004 1937 0490Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400 Bangkok, Thailand ,grid.10223.320000 0004 1937 0490Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10540 Samut Prakan, Thailand
| |
Collapse
|
24
|
Gong Y, Tomita Y, Edin ML, Ren A, Ko M, Yang J, Bull E, Zeldin DC, Hellström A, Fu Z, Smith LEH. Cytochrome P450 oxidase 2J inhibition suppresses choroidal neovascularization in mice. Metabolism 2022; 134:155266. [PMID: 35868524 PMCID: PMC9535696 DOI: 10.1016/j.metabol.2022.155266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Choroidal neovascularization (CNV) in age-related macular degeneration (AMD) leads to blindness. It has been widely reported that increased intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) diets reduce CNV. Of the three major pathways metabolizing ω-3 (and ω-6 LCPUFA), the cyclooxygenase and lipoxygenase pathways generally produce pro-angiogenic metabolites from ω-6 LCPUFA and anti-angiogenic ones from ω-3 LCPUFA. Howevehr, cytochrome P450 oxidase (CPY) 2C produces pro-angiogenic metabolites from both ω-6 and ω-3 LCPUFA. The effects of CYP2J2 products on ocular neovascularization are still unknown. Understanding how each metabolic pathway affects the protective effect of ω-3 LCPUFA on retinal neovascularization may lead to therapeutic interventions. OBJECTIVES To investigate the effects of LCPUFA metabolites through CYP2J2 pathway and CYP2J2 regulation on CNV both in vivo and ex vivo. METHODS The impact of CYP2J2 overexpression and inhibition on neovascularization in the laser-induced CNV mouse model was assessed. The plasma levels of CYP2J2 metabolites were measured by liquid chromatography and tandem mass spectroscopy. The choroidal explant sprouting assay was used to investigate the effects of CYP2J2 inhibition and specific LCPUFA CYP2J2 metabolites on angiogenesis ex vivo. RESULTS CNV was exacerbated in Tie2-Cre CYP2J2-overexpressing mice and was associated with increased levels of plasma docosahexaenoic acids. Inhibiting CYP2J2 activity with flunarizine decreased CNV in both ω-6 and ω-3 LCPUFA-fed wild-type mice. In Tie2-Cre CYP2J2-overexpressing mice, flunarizine suppressed CNV by 33 % and 36 % in ω-6, ω-3 LCPUFA diets, respectively, and reduced plasma levels of CYP2J2 metabolites. The pro-angiogenic role of CYP2J2 was corroborated in the choroidal explant sprouting assay. Flunarizine attenuated ex vivo choroidal sprouting, and 19,20-EDP, a ω-3 LCPUFA CYP2J2 metabolite, increased sprouting. The combined inhibition of CYP2J2 with flunarizine and CYP2C8 with montelukast further enhanced CNV suppression via tumor necrosis factor-α suppression. CONCLUSIONS CYP2J2 inhibition augmented the inhibitory effect of ω-3 LCPUFA on CNV. Flunarizine suppressed pathological choroidal angiogenesis, and co-treatment with montelukast inhibiting CYP2C8 further enhanced the effect. CYP2 inhibition might be a viable approach to suppress CNV in AMD.
Collapse
Affiliation(s)
- Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yohei Tomita
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew L Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Minji Ko
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jay Yang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward Bull
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Ann Hellström
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Göteborg, Sweden
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Yao K, Liang X, Zhang G, Rong Y, Zhang Q, Liao Q, Zhang H, Xi K, Wang J. Covalent Organic Framework (COF): A Drug and Carrier to Attenuate Retinal Ganglion Cells Death in an Acute Glaucoma Mouse Model. Polymers (Basel) 2022; 14:polym14163265. [PMID: 36015521 PMCID: PMC9414516 DOI: 10.3390/polym14163265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose: We aim to investigate the use of covalent organic framework (COF) nanoparticles in the local treatment of glaucoma, both as a means of protecting retinal ganglion cells (RGCs), and as a carrier for delayed release of the medication rapamycin following a single intravitreal injection. Methods: a water-dispersible COF, and a COF-based nanoplatform for rapamycin release (COF-Rapa) was constructed. C57BL/6J mice were randomly divided into four groups: intravitreal injection of 1.5 µL normal saline (NS), COF (0.67 ng/µL), rapamycin (300 µM) or COF-Rapa (0.67 ng/µL-300 µM), respectively. The ischemia–reperfusion (I/R) model was established to mimic high intraocular pressure (IOP)-induced retinal injury in glaucoma. Labeling of RGCs by Fluoro-Gold and retinal electroretinogram were used to evaluate retinal function. Immunohistochemistry and Western blotting analyses of retinas were performed. Results: COF nanoparticles were delivered in vitro and in vivo. Six weeks after the COF injection, the number of RGCs was unaffected. In addition, the number of RBPMS-positive RGCs, GFAP-positive astrocytes and Iba1-positive microglia did not differ from the normal control. COF could effectively reduce RGCs death, improve phototransduction function and alleviate the overactivation of microglia compared to NS control after retinal I/R injury. Within six weeks, the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway in the retinas could be inhibited by a single intravitreal injection of COF-Rapa. Compared with single COF administration, COF-Rapa significantly reduced the inflammatory reaction after retinal I/R injury. Conclusions: COF may act as both an RGC protection agent and a carrier for prolonged rapamycin release. This research may lead to the development of novel RGC protection agents and drug delivery techniques, as well as the creation of multifunctional COF-based biomaterials for glaucoma retinopathy.
Collapse
Affiliation(s)
- Ke Yao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xin Liang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430000, China
| | - Guiyang Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210000, China
| | - Yan Rong
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430000, China
| | - Qiuxiang Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430000, China
| | - Qiaobo Liao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210000, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430000, China
| | - Kai Xi
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210000, China
- Correspondence: (K.X.); (J.W.)
| | - Junming Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430000, China
- Correspondence: (K.X.); (J.W.)
| |
Collapse
|
26
|
Pirmardvand Chegini S, Varshosaz J, Dehghani A, Minaiyan M, Mirmohammad Sadeghi H. Ocular delivery of sunitinib-loaded nanoparticles doped in tragacanthic acid hydrogel in treatment of diabetic retinopathy in rats. Drug Dev Ind Pharm 2022; 48:29-39. [PMID: 35723593 DOI: 10.1080/03639045.2022.2092745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus. This study aimed to compare the effect of sunitinib-loaded poly (glycerol sebacate) (PGS)/gelatin nanoparticles doped in an injectable hydrogel with bevacizumab as a standard treatment of DR. METHODS The shear-sensitive hydrogel was prepared based on tragacanthic acid (TA) cross-linked with sodium acetate. DR was induced in rats by streptozotocin (STZ), and the animals were injected intravitreally a single dose of 20 µL sunitinib solution in three different concentrations (12.5, 25, and 50 µg/mL), sunitinib-loaded nanoparticles in hydrogel (413 μg/mL) and bevacizumab solution (6.25 mg/mL). The efficacy of the treatments was studied by histological and immunohisitological tests, angiogenesis, and optical coherence tomography (OCT). Vascular endothelial growth factor (VEGF) concentration was measured in the retina. RESULTS The results revealed that 20 µL of sunitinib with the concentration of 25 µg/mL was effective in DR without any disruption in the retina or any other side effects. This dose was considered the therapeutic dose for nanoparticles. Sunitinib loaded PGS/gelatine nanoparticles that were incorporated in the injectable hydrogel were as effective as bevacizumab in controlling DR. Although sunitinib solution reduced VEGF production and neovascularization in the retina compared to the negative control group, it was not as suitable as the nanoparticles. TA-based hydrogel showed no toxicity on the normal retina, and the angiography and histologic studies confirmed the VEGF results. Conclusions: Sunitinib nanoparticles doped in TA hydrogel may be an appropriate substitution of bevacizumab in the treatment of DR.
Collapse
Affiliation(s)
- Sana Pirmardvand Chegini
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Dehghani
- School of Medicine, Isfahan Eye Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Mirmohammad Sadeghi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
27
|
An update on long-acting therapies in chronic sight-threatening eye diseases of the posterior segment: AMD, DMO, RVO, uveitis and glaucoma. Eye (Lond) 2022; 36:1154-1167. [PMID: 34974541 PMCID: PMC9151779 DOI: 10.1038/s41433-021-01766-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/19/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022] Open
Abstract
In the real-world setting, there is suboptimal compliance with treatments that require frequent administration and assessment visits. This undertreatment frequently has negative consequences in eye disease and carries a real risk to vision. For example, patients with glaucoma risk progression of visual loss even with a small number of missed doses, and patients with neovascular age-related degeneration (nAMD) who fail to attend a bi-monthly clinic appointment to receive an intravitreal anti-vascular endothelial growth factor (VEGF) drug injections may lose the initial vision gains in vision. Protracted regular treatment schedules represent a high burden not only for patients and families, but also healthcare professionals, systems, and ultimately society too. There has been a clear need for longer-acting therapies that reduce the frequency, and therefore the burden, of treatment interventions. Several longer-acting interventions for nAMD, diabetic macular oedema, retinal vein occlusion, uveitis and glaucoma have either been developed or are in late-phase development, some of which employ novel mechanisms of actions, and all of which of promise longer (≥3 month) treatment intervals. This review delivers an overview of anti-VEGF agents with longer durations of action, DARPins, bispecific anti-VEGF/Ang2 therapies, anti-PDGF and anti-integrin therapy, Rho-kinase inhibitors, the Port Delivery System, steroids, gene therapy for retina and uveitis, and for glaucoma, ROCK inhibitors, implants and plugs, and SLT laser and MIGS. The review also refers to the potential of artificial intelligence to tailor treatment efficacy with a resulting reduction in treatment burden.
Collapse
|
28
|
Alshaikh RA, Waeber C, Ryan KB. Polymer based sustained drug delivery to the ocular posterior segment: barriers and future opportunities for the treatment of neovascular pathologies. Adv Drug Deliv Rev 2022; 187:114342. [PMID: 35569559 DOI: 10.1016/j.addr.2022.114342] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
There is an increasing momentum in research and pharmaceutical industry communities to design sustained, non-invasive delivery systems to treat chronic neovascular ocular diseases that affect the posterior segment of the eye including age-related macular degeneration and diabetic retinopathy. Current treatments include VEGF blockers, which have revolutionized the standard of care for patients, but their maximum therapeutic benefit is hampered by the need for recurrent and invasive administration procedures. Currently approved delivery systems intended to address these limitations exploit polymer technology to regulate drug release in a sustained manner. Here, we critically review sustained drug delivery approaches for the treatment of chronic neovascular diseases affecting the ocular posterior segment, with a special emphasis on novel and polymeric technologies spanning the spectrum of preclinical and clinical investigation, and those approved for treatment. The mechanism by which each formulation imparts sustained release, the impact of formulation characteristics on release and foreign body reaction, and special considerations related to the translation of these systems are discussed.
Collapse
Affiliation(s)
| | - Christian Waeber
- School of Pharmacy, University College Cork, Cork, Ireland; Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland; SSPC The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland.
| |
Collapse
|
29
|
Ben-Arzi A, Ehrlich R, Neumann R. Retinal Diseases: The Next Frontier in Pharmacodelivery. Pharmaceutics 2022; 14:pharmaceutics14050904. [PMID: 35631490 PMCID: PMC9143814 DOI: 10.3390/pharmaceutics14050904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/03/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
The future continuous growth of the global older population augments the burden of retinal diseases worldwide. Retinal characteristics isolating and protecting the sensitive neuro-retina from the rest of the ocular tissues challenge drug delivery and promote research and development toward new horizons. In this review, we wish to describe the unmet medical needs, discuss the novel modes of delivery, and disclose to the reader a spectrum of older-to-novel drug delivery technologies, innovations, and the frontier of pharmacodelivery to the retina. Treating the main retinal diseases in the everlasting war against blindness and its associated morbidity has been growing steadily over the last two decades. Implants, new angiogenesis inhibitor agents, micro- and nano-carriers, and the anchored port delivery system are becoming new tools in this war. The revolution and evolution of new delivery methods might be just a few steps ahead, yet its assimilation in our daily clinical work may take time, due to medical, economical, and regulatory elements that need to be met in order to allow successful development and market utilization of new technologies. Therefore, further work is warranted, as detailed in this Pharmaceutics Special Issue.
Collapse
Affiliation(s)
- Assaf Ben-Arzi
- Department of Ophthalmology, Rabin Medical Center, 39 Jabotinski St., Petah Tikva 4941492, Israel; (A.B.-A.); (R.E.)
- Sackler School of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Rita Ehrlich
- Department of Ophthalmology, Rabin Medical Center, 39 Jabotinski St., Petah Tikva 4941492, Israel; (A.B.-A.); (R.E.)
- Sackler School of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Ron Neumann
- Department of Ophthalmology, Maccabi Sherutei Briut, Ramat Hasharon 4731001, Israel
- Correspondence:
| |
Collapse
|
30
|
Tavakoli S, Puranen J, Bahrpeyma S, Lautala VE, Karumo S, Lajunen T, del Amo EM, Ruponen M, Urtti A. Liposomal sunitinib for ocular drug delivery: a potential treatment for choroidal neovascularization. Int J Pharm 2022; 620:121725. [DOI: 10.1016/j.ijpharm.2022.121725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022]
|
31
|
Ren J, Ren A, Deng X, Huang Z, Jiang Z, Li Z, Gong Y. Long-Chain Polyunsaturated Fatty Acids and Their Metabolites Regulate Inflammation in Age-Related Macular Degeneration. J Inflamm Res 2022; 15:865-880. [PMID: 35173457 PMCID: PMC8842733 DOI: 10.2147/jir.s347231] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease, whose incidence strongly increases with ages. The etiology of AMD is complex, including aging, abnormal lipid metabolism, chronic inflammation and oxidative stress. Long-chain polyunsaturated fatty acids (LCPUFA) are essential for ocular structures and functions. This review summarizes the regulatory effects of LCPUFA on inflammation in AMD. LCPUFA are related to aging, autophagy and chronic inflammation. They are metabolized to pro- and anti-inflammatory metabolites by various enzymes. These metabolites stimulate inflammation in response to oxidative stress, causing innate and acquired immune responses. This review also discusses the possible clinical applications, which provided novel targets for the prevention and treatment of AMD and other age-related diseases.
Collapse
Affiliation(s)
- Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Ziyu Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, Hubei, People’s Republic of China
- Correspondence: Yan Gong; Zhi Li, Tel +86 27 6781 1461; +86 27 6781 2622, Fax +86 27 6781 1471; +86 27 6781 3133, Email ;
| |
Collapse
|
32
|
Wang J, Kang G, Yuan H, Cao X, Huang H, de Marco A. Research Progress and Applications of Multivalent, Multispecific and Modified Nanobodies for Disease Treatment. Front Immunol 2022; 12:838082. [PMID: 35116045 PMCID: PMC8804282 DOI: 10.3389/fimmu.2021.838082] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recombinant antibodies such as nanobodies are progressively demonstrating to be a valid alternative to conventional monoclonal antibodies also for clinical applications. Furthermore, they do not solely represent a substitute for monoclonal antibodies but their unique features allow expanding the applications of biotherapeutics and changes the pattern of disease treatment. Nanobodies possess the double advantage of being small and simple to engineer. This combination has promoted extremely diversified approaches to design nanobody-based constructs suitable for particular applications. Both the format geometry possibilities and the functionalization strategies have been widely explored to provide macromolecules with better efficacy with respect to single nanobodies or their combination. Nanobody multimers and nanobody-derived reagents were developed to image and contrast several cancer diseases and have shown their effectiveness in animal models. Their capacity to block more independent signaling pathways simultaneously is considered a critical advantage to avoid tumor resistance, whereas the mass of these multimeric compounds still remains significantly smaller than that of an IgG, enabling deeper penetration in solid tumors. When applied to CAR-T cell therapy, nanobodies can effectively improve the specificity by targeting multiple epitopes and consequently reduce the side effects. This represents a great potential in treating malignant lymphomas, acute myeloid leukemia, acute lymphoblastic leukemia, multiple myeloma and solid tumors. Apart from cancer treatment, multispecific drugs and imaging reagents built with nanobody blocks have demonstrated their value also for detecting and tackling neurodegenerative, autoimmune, metabolic, and infectious diseases and as antidotes for toxins. In particular, multi-paratopic nanobody-based constructs have been developed recently as drugs for passive immunization against SARS-CoV-2 with the goal of impairing variant survival due to resistance to antibodies targeting single epitopes. Given the enormous research activity in the field, it can be expected that more and more multimeric nanobody molecules will undergo late clinical trials in the next future. Systematic Review Registration.
Collapse
Affiliation(s)
- Jiewen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Haibin Yuan
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| |
Collapse
|
33
|
Wolf AT, Harris A, Oddone F, Siesky B, Vercellin AV, Ciulla TA. Disease progression pathways of wet AMD: opportunities for new target discovery. Expert Opin Ther Targets 2022; 26:5-12. [PMID: 35060431 PMCID: PMC8915198 DOI: 10.1080/14728222.2022.2030706] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is the leading cause of irreversible blindness among people age 60 years or older in developed countries. Current standard-of-care anti-vascular endothelial growth factor (VEGF) therapy, which inhibits angiogenesis and vascular permeability, has been shown to stabilize choroidal neovascularization and increase visual acuity in neovascular AMD. However, therapeutic limitations of anti-VEGF therapy include limited durability with consequent need for frequent intravitreal injections, and a ceiling of efficacy. Current strategies under investigation include targeting VEGF-C and VEGF-D, integrins, tyrosine kinase receptors, and the Tie2/angiopoietin-2 pathway. A literature search was conducted through November 30, 2021 on PubMed, Medline, Google Scholar, and associated digital platforms with the following keywords: wet macular degeneration, age-related macular degeneration, therapy, VEGF-A, VEGF-C, VEGF-D, integrins, Tie2/Ang2, and tyrosine kinase inhibitors. AREAS COVERED The authors provide a comprehensive review of AMD disease pathways and mechanisms involved in wet AMD as well as novel targets for future therapies. EXPERT OPINION With novel targets and advancements in drug delivery, there is potential to address treatment burden and to improve outcomes for patients afflicted with neovascular AMD.
Collapse
Affiliation(s)
- Amber T. Wolf
- Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Alon Harris
- Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | | | - Brent Siesky
- Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | | | - Thomas A. Ciulla
- Vitreoretinal Medicine and Surgery, Midwest Eye Institute, Indianapolis, IN, USA
| |
Collapse
|
34
|
Campochiaro PA. Retinal and Choroidal Vascular Diseases: Past, Present, and Future: The 2021 Proctor Lecture. Invest Ophthalmol Vis Sci 2021; 62:26. [PMID: 34817536 PMCID: PMC8637787 DOI: 10.1167/iovs.62.14.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Peter A Campochiaro
- Departments of Ophthalmology and Neuroscience, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
35
|
Sarkar A, Junnuthula V, Dyawanapelly S. Ocular Therapeutics and Molecular Delivery Strategies for Neovascular Age-Related Macular Degeneration (nAMD). Int J Mol Sci 2021; 22:10594. [PMID: 34638935 PMCID: PMC8508687 DOI: 10.3390/ijms221910594] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in geriatric population. Intravitreal (IVT) injections are popular clinical option. Biologics and small molecules offer efficacy but relatively shorter half-life after intravitreal injections. To address these challenges, numerous technologies and therapies are under development. Most of these strategies aim to reduce the frequency of injections, thereby increasing patient compliance and reducing patient-associated burden. Unlike IVT frequent injections, molecular therapies such as cell therapy and gene therapy offer restoration ability hence gained a lot of traction. The recent approval of ocular gene therapy for inherited disease offers new hope in this direction. However, until such breakthrough therapies are available to the majority of patients, antibody therapeutics will be on the shelf, continuing to provide therapeutic benefits. The present review aims to highlight the status of pre-clinical and clinical studies of neovascular AMD treatment modalities including Anti-VEGF therapy, upcoming bispecific antibodies, small molecules, port delivery systems, photodynamic therapy, radiation therapy, gene therapy, cell therapy, and combination therapies.
Collapse
Affiliation(s)
- Aira Sarkar
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA;
| | | | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai 400019, India
| |
Collapse
|
36
|
Li Z, Liu M, Ke L, Wang LJ, Wu C, Li C, Li Z, Wu YL. Flexible polymeric nanosized micelles for ophthalmic drug delivery: research progress in the last three years. NANOSCALE ADVANCES 2021; 3:5240-5254. [PMID: 36132623 PMCID: PMC9417891 DOI: 10.1039/d1na00596k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 05/17/2023]
Abstract
The eye is a complex structure with a variety of anatomical barriers and clearance mechanisms, so the provision of safe and effective ophthalmic drug delivery technology is a major challenge. In the past few decades, a number of reports have shown that nano-delivery platforms based on polymeric micelles are of great interest, because of their hydrophobic core that encapsulates lipid-soluble drugs and small size with high penetration, allowing long-term drug retention and posterior penetration in the eye. Furthermore, as an ocular delivery platform, polymeric micelles not only cover the single micellar drug delivery system formed by poloxamer, chitosan or other polymers, but also include composite drug delivery systems like micelle-encapsulated hydrogels and micelle-embedded contact lenses. In this review, a number of ophthalmic micelles that have emerged in the last three years will be systematically reviewed, with a summary of and discussion on their unique advantages or unique drug delivery performance. Last but not least, the current challenges of polymeric micelle formulations in potential clinical ophthalmic therapeutic applications will also be proposed, which might be helpful for future design of ocular drug delivery formulations.
Collapse
Affiliation(s)
- Zhiguo Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Li-Juan Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Cheng Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University Xiamen 361102 China
| | - Zibiao Li
- Department of Materials Science and Engineering, National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| |
Collapse
|
37
|
Arrigo A, Bandello F. Molecular Features of Classic Retinal Drugs, Retinal Therapeutic Targets and Emerging Treatments. Pharmaceutics 2021; 13:pharmaceutics13071102. [PMID: 34371793 PMCID: PMC8309124 DOI: 10.3390/pharmaceutics13071102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Abstract
The management of exudative retinal diseases underwent a revolution due to the introduction of intravitreal treatments. There are two main classes of intravitreal drugs, namely anti-vascular endothelial growth factors (anti-VEGF) and corticosteroids molecules. The clinical course and the outcome of retinal diseases radically changed thanks to the efficacy of these molecules in determining the regression of the exudation and the restoration of the macular profile. In this review, we described the molecular features of classic retinal drugs, highlighting the main therapeutic targets, and we provided an overview of new emerging molecules. We performed a systematic review of the current literature available in the MEDLINE library, focusing on current intravitreal molecules and on new emerging therapies. The anti-VEGF molecules include Bevacizumab, Pegaptanib, Ranibizumab, Aflibercept, Conbercept, Brolucizumab, Abicipar-pegol and Faricimab. The corticosteroids approach is mainly based on the employment of triamcinolone acetonide, dexamethasone and fluocinolone acetonide molecules. Many clinical trials and real-life reports demonstrated their efficacy in exudative retinal diseases, highlighting differences in terms of molecular targeting and pharmacologic profiles. Furthermore, several new molecules are currently under investigation. Intravitreal drugs focus their activity on a wide range of therapeutic targets and are safe and efficacy in managing retinal diseases.
Collapse
|
38
|
Kim YC, Hsueh HT, Shin MD, Berlinicke CA, Han H, Anders NM, Hemingway A, Leo KT, Chou RT, Kwon H, Appell MB, Rai U, Kolodziejski P, Eberhart C, Pitha I, Zack DJ, Hanes J, Ensign LM. A hypotonic gel-forming eye drop provides enhanced intraocular delivery of a kinase inhibitor with melanin-binding properties for sustained protection of retinal ganglion cells. Drug Deliv Transl Res 2021; 12:826-837. [PMID: 33900546 DOI: 10.1007/s13346-021-00987-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 12/22/2022]
Abstract
While eye drops are the most common ocular dosage form, eye drops for treating diseases of the posterior segment (retina, choroid, optic nerve) have yet to be developed. In glaucoma, eye drops are used extensively for delivering intraocular pressure (IOP)-lowering medications to the anterior segment. However, degeneration of retinal ganglion cells (RGCs) in the retina may progress despite significant IOP lowering, suggesting that a complementary neuroprotective therapy would improve glaucoma management. Here, we describe a hypotonic, thermosensitive gel-forming eye drop for effective delivery of sunitinib, a protein kinase inhibitor with activity against the neuroprotective targets dual leucine zipper kinase (DLK) and leucine zipper kinase (LZK), to enhance survival of RGCs after optic nerve injury. Further, binding of sunitinib to melanin in the pigmented cells in the choroid and retinal pigment epithelium (RPE) led to prolonged intraocular residence time, including therapeutically relevant concentrations in the non-pigmented retinal tissue where the RGCs reside. The combination of enhanced intraocular absorption provided by the gel-forming eye drop vehicle and the intrinsic melanin binding properties of sunitinib led to significant protection of RGCs with only once weekly eye drop dosing. For a chronic disease such as glaucoma, an effective once weekly eye drop for neuroprotection could result in greater patient adherence, and thus, greater disease management and improved patient quality of life.
Collapse
Affiliation(s)
- Yoo Chun Kim
- Center for Nanomedicine At the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Wilmer Eye Institute, Baltimore, MD, 21287, USA
| | - Henry T Hsueh
- Center for Nanomedicine At the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Matthew D Shin
- Center for Nanomedicine At the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Wilmer Eye Institute, Baltimore, MD, 21287, USA
| | - Cynthia A Berlinicke
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Wilmer Eye Institute, Baltimore, MD, 21287, USA
| | - Hyounkoo Han
- Center for Nanomedicine At the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Wilmer Eye Institute, Baltimore, MD, 21287, USA
| | - Nicole M Anders
- The Sidney Kimmel Comprehensive Cancer Center At Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Avelina Hemingway
- The Sidney Kimmel Comprehensive Cancer Center At Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Kirby T Leo
- Center for Nanomedicine At the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Renee Ti Chou
- Department of Computational Biology, Bioinformatics, and Genomics, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, 20742, USA
| | - HyeYoung Kwon
- Center for Nanomedicine At the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Matthew B Appell
- Center for Nanomedicine At the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Usha Rai
- Center for Nanomedicine At the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Wilmer Eye Institute, Baltimore, MD, 21287, USA
| | - Patricia Kolodziejski
- Center for Nanomedicine At the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Charles Eberhart
- Center for Nanomedicine At the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Wilmer Eye Institute, Baltimore, MD, 21287, USA
| | - Ian Pitha
- Center for Nanomedicine At the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Wilmer Eye Institute, Baltimore, MD, 21287, USA
| | - Donald J Zack
- Center for Nanomedicine At the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Wilmer Eye Institute, Baltimore, MD, 21287, USA.,Departments of Neuroscience, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Justin Hanes
- Center for Nanomedicine At the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Wilmer Eye Institute, Baltimore, MD, 21287, USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,The Sidney Kimmel Comprehensive Cancer Center At Johns Hopkins University, Baltimore, MD, 21287, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Laura M Ensign
- Center for Nanomedicine At the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA. .,Department of Ophthalmology, Johns Hopkins University School of Medicine, Wilmer Eye Institute, Baltimore, MD, 21287, USA. .,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA. .,The Sidney Kimmel Comprehensive Cancer Center At Johns Hopkins University, Baltimore, MD, 21287, USA. .,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, 21287, USA. .,Departments Gynecology and Obstetrics and Infectious Diseases, Johns Hopkins University, Baltimore, MD, 21287, USA.
| |
Collapse
|
39
|
Thomas CN, Sim DA, Lee WH, Alfahad N, Dick AD, Denniston AK, Hill LJ. Emerging therapies and their delivery for treating age-related macular degeneration. Br J Pharmacol 2021; 179:1908-1937. [PMID: 33769566 DOI: 10.1111/bph.15459] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of blindness in the Western world and is characterised in its latter stages by retinal cell death and neovascularisation and earlier stages with the loss of parainflammatory homeostasis. Patients with neovascular AMD (nAMD) are treated with frequent intraocular injections of anti-vascular endothelial growth factor (VEGF) therapies, which are not only unpopular with patients but carry risks of sight-threatening complications. A minority of patients are unresponsive with no alternative treatment available, and some patients who respond initially eventually develop a tolerance to treatment. New therapeutics with improved delivery methods and sustainability of clinical effects are required, in particular for non-neovascular AMD (90% of cases and no current approved treatments). There are age-related and disease-related changes that occur which can affect ocular drug delivery. Here, we review the latest emerging therapies for AMD, their delivery routes and implications for translating to clinical practice.
Collapse
Affiliation(s)
- Chloe N Thomas
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dawn A Sim
- Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK
| | - Wen Hwa Lee
- Action Against AMD, London, UK.,Affordable Medicines Programme, Oxford Martin School, University of Oxford, Oxford, UK
| | - Nada Alfahad
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew D Dick
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK.,Academic Unit of Ophthalmology, Bristol Medical School and School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Alastair K Denniston
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK.,Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Centre for Patient Reported Outcome Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK.,Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK.,Health Data Research UK, London, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
40
|
A 60% Edible Ethanolic Extract of Ulmus davidiana Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis. Molecules 2021; 26:molecules26040781. [PMID: 33546250 PMCID: PMC7913375 DOI: 10.3390/molecules26040781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
As abnormal angiogenesis is associated with exacerbation of various diseases, precise control over angiogenesis is imperative. Vascular endothelial growth factor (VEGF), the most well-known angiogenic factor, binds to VEGF receptor (VEGFR), activates various signaling pathways, and mediates angiogenesis. Therefore, blocking the VEGF-induced angiogenic response-related signaling pathways may alleviate various disease symptoms through inhibition of angiogenesis. Ulmus davidiana is a safe natural product that has been traditionally consumed, but its effects on endothelial cells (ECs) and the underlying mechanism of action are unclear. In the present study, we focused on the effect of a 60% edible ethanolic extract of U. davidiana (U60E) on angiogenesis. U60E inhibited the VEGF-mediated proliferation, tube formation, and migration ability of ECs. Mechanistically, U60E inhibited endothelial nitric oxide synthase activation and nitric oxide production by blocking the protein kinase B signaling pathway activated by VEGF and consequently inhibiting proliferation, tube formation, and migration of ECs. These results suggest that U60E could be a potential and safe therapeutic agent capable of suppressing proangiogenic diseases by inhibiting VEGF-induced angiogenesis.
Collapse
|
41
|
Lyu Q, Peng L, Hong X, Fan T, Li J, Cui Y, Zhang H, Zhao J. Smart nano-micro platforms for ophthalmological applications: The state-of-the-art and future perspectives. Biomaterials 2021; 270:120682. [PMID: 33529961 DOI: 10.1016/j.biomaterials.2021.120682] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Smart nano-micro platforms have been extensively applied for diverse biomedical applications, mostly focusing on cancer therapy. In comparison with conventional nanotechnology, the smart nano-micro matrix can exhibit specific response to exogenous or endogenous triggers, and thus can achieve multiple functions e.g. site-specific drug delivery, bio-imaging and detection of bio-molecules. These intriguing techniques have expanded into ophthalmology in recent years, yet few works have been summarized in this field. In this work, we provide the state-of-the-art of diverse nano-micro platforms based on both the conventional materials (e.g. natural or synthetic polymers, lipid nanomaterials, metal and metal oxide nanoparticles) and emerging nanomaterials (e.g. up-conversion nanoparticles, quantum dots and carbon materials) in ophthalmology, with some smart nano/micro platformers highlighted. The common ocular diseases studied in the field of nano-micro systems are firstly introduced, and their therapeutic method and the related drawback in clinic treatment are presented. The recent progress of different materials for diverse ocular applications is then demonstrated, with the representative nano- and micro-systems highlighted in detail. At last, an in-depth discussion on the clinical translation challenges faced in this field and the future direction are provided. This review would allow the researchers to design more smart nanomedicines in a more rational manner for specific ophthalmology applications.
Collapse
Affiliation(s)
- Qinghua Lyu
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ling Peng
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiangqian Hong
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Taojian Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Jingying Li
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, 518000, PR China
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College,Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, PR China
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jun Zhao
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College,Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, PR China.
| |
Collapse
|
42
|
Ocular Drug Delivery to the Retina: Current Innovations and Future Perspectives. Pharmaceutics 2021; 13:pharmaceutics13010108. [PMID: 33467779 PMCID: PMC7830424 DOI: 10.3390/pharmaceutics13010108] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment options for retinal diseases, such as neovascular age-related macular degeneration, diabetic retinopathy, and retinal vascular disorders, have markedly expanded following the development of anti-vascular endothelial growth factor intravitreal injection methods. However, because intravitreal treatment requires monthly or bimonthly repeat injections to achieve optimal efficacy, recent investigations have focused on extended drug delivery systems to lengthen the treatment intervals in the long term. Dose escalation and increasing molecular weight of drugs, intravitreal implants and nanoparticles, hydrogels, combined systems, and port delivery systems are presently under preclinical and clinical investigations. In addition, less invasive techniques rather than intravitreal administration routes, such as topical, subconjunctival, suprachoroidal, subretinal, and trans-scleral, have been evaluated to reduce the treatment burden. Despite the latest advancements in the field of ophthalmic pharmacology, enhancing drug efficacy with high ocular bioavailability while avoiding systemic and local adverse effects is quite challenging. Consequently, despite the performance of numerous in vitro studies, only a few techniques have translated to clinical trials. This review discusses the recent developments in ocular drug delivery to the retina, the pharmacokinetics of intravitreal drugs, efforts to extend drug efficacy in the intraocular space, minimally invasive techniques for drug delivery to the retina, and future perspectives in this field.
Collapse
|
43
|
DeJulius C, Bernardo-Colón A, Naguib S, Backstrom J, Kavanaugh T, Gupta M, Duvall C, Rex T. Microsphere antioxidant and sustained erythropoietin-R76E release functions cooperate to reduce traumatic optic neuropathy. J Control Release 2021; 329:762-773. [PMID: 33049330 PMCID: PMC8162757 DOI: 10.1016/j.jconrel.2020.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 01/12/2023]
Abstract
Wild-type erythropoietin (EPO) is promising for neuroprotection, but its therapeutic use is limited because it causes a systemic rise in hematocrit. We have developed an EPO-R76E derivative that maintains neuroprotective function without effects on hematocrit, but this protein has a short half-life in vivo. Here, we compare the efficacy and carrier-induced inflammatory response of two polymeric microparticle (MP) EPO-R76E sustained release formulations based on conventional hydrolytically degradable poly(lactic-co-glycolic acid) (PLGA) and reactive oxygen species (ROS)-degradable poly(propylene sulfide) (PPS). Both MP types effectively loaded EPO-R76E and achieved sustained release, providing detectable levels of EPO-R76E at the injection site in the eye in vivo for at least 28 days. Testing in an in vitro oxidative stress assay and a mouse model of blast-induced indirect traumatic optic neuropathy (bITON) showed that PPS and PLGA MP-mediated delivery of EPO-R76E provided therapeutic protection. While unloaded PLGA MPs inherently increase levels of pro-inflammatory cytokines in the bITON model, drug-free PPS MPs have innate antioxidant properties that provide therapeutic benefit both in vitro and in vivo. Both PLGA and PPS MPs enabled sustained release of EPO-R76E, providing therapeutic benefits including reduction in inflammation and axon degeneration, and preservation of visual function as measured by electroretinogram. The PPS-based MP platform is especially promising for further development, as the delivery system provides inherent antioxidant benefits that can be harnessed to work in complement with EPO-R76E or other drugs for neuroprotection in the setting of traumatic eye injury.
Collapse
Affiliation(s)
- C.R. DeJulius
- Department of Biomedical Engineering, Vanderbilt University, United States
| | - A. Bernardo-Colón
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, United States
| | - S. Naguib
- Department of Ophthalmology & Visual Science, Vanderbilt University School of Medicine, United States
| | - J.R. Backstrom
- Department of Biomedical Engineering, Vanderbilt University, United States,Vanderbilt Eye Institute, Vanderbilt University Medical Center, United States
| | - T. Kavanaugh
- Department of Biomedical Engineering, Vanderbilt University, United States
| | - M.K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, United States
| | - C.L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, United States,Corresponding authors at: Department of Biomedical Engineering, Vanderbilt University, and Vanderbilt Eye Institute, Vanderbilt University Medical Center, United States. (C.L. Duvall), (T.S. Rex)
| | - T.S. Rex
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, United States,Department of Ophthalmology & Visual Science, Vanderbilt University School of Medicine, United States,Corresponding authors at: Department of Biomedical Engineering, Vanderbilt University, and Vanderbilt Eye Institute, Vanderbilt University Medical Center, United States. (C.L. Duvall), (T.S. Rex)
| |
Collapse
|
44
|
Cao B, Zhang N, Zhang Y, Fu Y, Zhao D. Plasma cytokines for predicting diabetic retinopathy among type 2 diabetic patients via machine learning algorithms. Aging (Albany NY) 2020; 13:1972-1988. [PMID: 33323553 PMCID: PMC7880388 DOI: 10.18632/aging.202168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/09/2020] [Indexed: 11/25/2022]
Abstract
AIMS This study aimed to investigate changes of plasma cytokines and to develop machine learning classifiers for predicting non-proliferative diabetic retinopathy among type 2 diabetes mellitus patients. RESULTS There were 12 plasma cytokines significantly higher in the non-proliferative diabetic retinopathy group in the pilot cohort. The validation cohort showed that angiopoietin 1, platelet-derived growth factor-BB, tissue inhibitors of metalloproteinase 2 and vascular endothelial growth factor receptor 2 were significantly higher in the NPDR group. Machine learning algorithms using the random forest yielded the best performance, with sensitivity of 92.3%, specificity of 75%, PPV of 82.8%, NPV of 88.2% and area under the curve of 0.84. CONCLUSIONS Plasma angiopoietin 1, platelet-derived growth factor-BB, and vascular endothelial growth factor receptor 2 were associated with presence of non-proliferative diabetic retinopathy and may be good biomarkers that play important roles in pathophysiology of diabetic retinopathy. MATERIALS AND METHODS In pilot cohort, 60 plasma cytokines were simultaneously measured. In validation cohort, angiopoietin 1, CXC-chemokine ligand 16, platelet-derived growth factor-BB, tissue inhibitors of metalloproteinase 1, tissue inhibitors of metalloproteinase 2, and vascular endothelial growth factor receptor 2 were validated using ELISA kits. Machine learning algorithms were developed to build a prediction model for non-proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Bin Cao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing 101149, China
| | - Ning Zhang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing 101149, China
| | - Yuanyuan Zhang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing 101149, China
| | - Ying Fu
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing 101149, China
| | - Dong Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing 101149, China
| |
Collapse
|
45
|
Campochiaro PA, Akhlaq A. Sustained suppression of VEGF for treatment of retinal/choroidal vascular diseases. Prog Retin Eye Res 2020; 83:100921. [PMID: 33248215 DOI: 10.1016/j.preteyeres.2020.100921] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/27/2022]
Abstract
Neovascular age-related macular degeneration (NVAMD) is the most prevalent choroidal vascular disease, and diabetic retinopathy (DR) and retinal vein occlusion (RVO) are the most prevalent retinal vascular diseases. In each of these, hypoxia plays a central role by stabilizing hypoxia-inducible factor-1 which increases production of vascular endothelial growth factor (VEGF) and other hypoxia-regulated gene products. High VEGF causes excessive vascular permeability, neovascularization, and in DR and RVO, promotes closure of retinal vessels exacerbating hypoxia and creating a positive feedback loop. Hence once VEGF expression is elevated it tends to remain elevated and drives disease progression. While other hypoxia-regulated gene products also contribute to pathology in these disease processes, it is remarkable how much pathology is reversed by selective inhibition of VEGF. Clinical trials have demonstrated outstanding visual outcomes in patients with NVAMD, DR, or RVO from frequent intraocular injections of VEGF-neutralizing proteins, but for a variety of reasons injection frequency has been substantially less in clinical practice and visual outcomes are disappointing. Herein we discuss the rationale, preclinical, and early clinical results of new approaches that provide sustained suppression of VEGF. These approaches will revolutionize the management of these prevalent retinal/choroidal vascular diseases.
Collapse
Affiliation(s)
- Peter A Campochiaro
- The Departments of Ophthalmology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Anam Akhlaq
- The Departments of Ophthalmology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
46
|
Xia S, Ding Z, Luo L, Chen B, Schneider J, Yang J, Eberhart CG, Stark WJ, Xu Q. Shear-Thinning Viscous Materials for Subconjunctival Injection of Microparticles. AAPS PharmSciTech 2020; 22:8. [PMID: 33241486 DOI: 10.1208/s12249-020-01877-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
While drug-loaded microparticles (MPs) can serve as drug reservoirs for sustained drug release and therapeutic effects, needle clogging by MPs poses a challenge for ocular drug delivery via injection. Two polymers commonly used in ophthalmic procedures-hyaluronic acid (HA) and methylcellulose (MC)-have been tested for their applicability for ocular injections. HA and MC were physically blended with sunitinib malate (SUN)-loaded PLGA MPs for subconjunctival (SCT) injection into rat eyes. The HA and MC viscous solutions facilitated injection through fine-gauged needles due to their shear-thinning properties as shown by rheological characterizations. The diffusion barrier presented by HA and MC reduced burst drug release and extended overall release from MPs. The significant level of MP retention in the conjunctiva tissue post-operation confirmed the minimal leakage of MPs following injection. The safety of HA and MC for ocular applications was demonstrated histologically.
Collapse
|
47
|
Affiliation(s)
- Ivan Seah
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xinyi Su
- Department of Ophthalmology, National University Hospital, Singapore, Singapore. .,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,Singapore Eye Research Institute (SERI), Singapore, Singapore.
| |
Collapse
|
48
|
Gelling hypotonic polymer solution for extended topical drug delivery to the eye. Nat Biomed Eng 2020; 4:1053-1062. [PMID: 32895514 PMCID: PMC7655548 DOI: 10.1038/s41551-020-00606-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/28/2020] [Indexed: 01/19/2023]
Abstract
Eye-drop formulations should hold as high a concentration of soluble drug in contact with ocular epithelium for as long as possible. However, eye tears and frequent blinking limit drug retention on the ocular surface, and gelling drops typically form clumps that blur vision. Here, we describe a gelling hypotonic solution containing a low concentration of a thermosensitive triblock copolymer, for extended ocular drug delivery. On topical application, the hypotonic formulation forms a highly uniform and clear thin layer that conforms to the ocular surface and resists clearance from blinking, significantly increasing the intraocular absorption of hydrophilic and hydrophobic drugs and extending the drug–ocular-epithelium contact time with respect to conventional thermosensitive gelling formulations and commercial eye drops. We also show that the conformal gel layer allows for therapeutically relevant drug delivery to the eyeball’s posterior segment in pigs. Our findings highlight the importance of formulations that conform to the ocular surface prior to viscosity enhancement, for increased and prolonged ocular-surface contact and drug absorption.
Collapse
|
49
|
Sunitinib malate-loaded biodegradable microspheres for the prevention of corneal neovascularization in rats. J Control Release 2020; 327:456-466. [PMID: 32822742 DOI: 10.1016/j.jconrel.2020.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023]
Abstract
Corneal neovascularization (NV) predisposes patients to compromised corneal transparency and visional acuity. Sunitinib malate (Sunb-malate) targeting against multiple receptor tyrosine kinases, exerts potent antiangiogenesis. However, the rapid clearance of Sunb-malate eye drops administered through topical instillation limits its therapeutic efficacy and poses a challenge for potential patient compliance. Sunb-malate, the water-soluble form of sunitinib, was shown to have higher intraocular penetration through transscleral diffusion following subconjunctival (SCT) injection in comparison to its sunitinib free base formulation. However, it is difficult to load highly water-soluble drugs and achieve sustained drug release. We developed Sunb-malate loaded poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres (Sunb-malate MS) with a particle size of approximately 15 μm and a drug loading of 7 wt%. Sunb-malate MS sustained the drug release for 30 days under the in vitro infinite sink condition. Subconjunctival (SCT) injection of Sunb-malate MS provided a prolonged ocular drug retention and did not cause ocular toxicity at a dose of 150 μg of active agent. Sunb-malate MS following SCT injection more effectively suppressed the suture-induced corneal NV than either Sunb-malate free drug or the placebo MS. Local sustained release of Sunb-malate through the SCT injection of Sunb-malate MS mitigated the proliferation of vascular endothelial cells and the recruitment of mural cells into the cornea. Moreover, the gene upregulation of proangiogenic factors induced by the pathological process was greatly neutralized by SCT injection of Sunb-malate MS. Our findings provide a sustained release platform for local delivery of tyrosine kinase inhibitors to treat corneal NV.
Collapse
|
50
|
Striglia E, Caccioppo A, Castellino N, Reibaldi M, Porta M. Emerging drugs for the treatment of diabetic retinopathy. Expert Opin Emerg Drugs 2020; 25:261-271. [PMID: 32715794 DOI: 10.1080/14728214.2020.1801631] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Diabetic retinopathy (DR) is one of the main pathological features of the diabetes mellitus spectrum. It is estimated that in 2020 about 4 million people worldwide suffered from blindness or visual impairment caused by DR. Many patients cannot access treatment, mostly because of high costs, while others discontinue it prematurely due to the high number of intravitreal administrations required, or the occurrence of ocular complications, or discomfort in quality of life. AREAS COVERED The aims of this paper are to summarize the current understanding of the pathogenesis and treatment of diabetic retinopathy, focus on the most promising new approaches to treatment that are being evaluated in clinical trials, and outline the potential financial impact of new drugs in future markets. EXPERT OPINION Slow-release systems with steroids, anti-VEGF or sunitinib are promising. Oral imatinib would avoid the ocular complications of intravitreal drugs. Brolucizumab and abicipar pegol may be superior to aflibercept and ranibizumab with the advantage of less frequent administrations. Faricimab, active on Tie-2 receptors, is being evaluated in two phase 3 clinical trials. Further knowledge of the efficacy and safety of these drugs is necessary before their final approval for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Elio Striglia
- Department of Medical Sciences, University of Turin , Turin, Italy
| | - Andrea Caccioppo
- Department of Medical Sciences, University of Turin , Turin, Italy
| | | | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin , Turin, Italy
| | - Massimo Porta
- Department of Medical Sciences, University of Turin , Turin, Italy
| |
Collapse
|