1
|
Tashiro S, Yamada Y, Kringe LA, Okajima Y, Shionoya M. Intricate Low-Symmetry Ag 6L4 Capsules Formed by Anion-Templated Self-Assembly of the Stereoisomers of an Unsymmetric Ligand. J Am Chem Soc 2024; 146:34501-34509. [PMID: 39616534 DOI: 10.1021/jacs.4c11583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Metal-organic cages and capsules exhibit space-specific functions based on their discrete hollow structures. To acquire enzyme-like asymmetric or intricate structures, they have been modified by desymmetrization with two or more different ligands. There is a need to establish new strategies that can desymmetrize structures in a simple way using only one type of ligand, which is different from the mixed-ligand approach. In this study, a strategy was developed to form interconvertible stereoisomers using the unsymmetric macrocyclic ligand benzimidazole[3]arene. Single-crystal X-ray diffraction analysis revealed that the isomers assembled with silver tetrafluoroborate afforded a conformationally heteroleptic Ag6L4 capsule with an intricate structure. The six Ag ions in the capsule were desymmetrized, resulting in significantly different coordination geometries. Remarkably, the capsule encapsulates a single tetrafluoroborate anion via multipoint C-H···F-B hydrogen bonds in both the solid and solution states, suggesting that anions of appropriate size and shape can act as a template for the capsule formation. These results demonstrate that the use of isomerizable and unsymmetric ligands is the effectiveness of constructing highly dissymmetric supramolecular structures from a single ligand.
Collapse
Affiliation(s)
- Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshihiko Yamada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Lea Antonia Kringe
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiki Okajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
2
|
Tarzia A, Shan W, Posligua V, Cox CJT, Male L, Egleston BD, Greenaway RL, Jelfs KE, Lewis JEM. A Combined Experimental and Computational Exploration of Heteroleptic cis-Pd 2L 2L' 2 Coordination Cages through Geometric Complementarity. Chemistry 2024:e202403336. [PMID: 39462213 DOI: 10.1002/chem.202403336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
Heteroleptic (mixed-ligand) coordination cages are of interest as host systems with more structurally and functionally complex cavities than homoleptic architectures. The design of heteroleptic cages, however, is far from trivial. In this work, we experimentally probed the self-assembly of Pd(II) ions with binary ligand combinations in a combinatorial fashion to search for new cis-Pd2L2L'2 heteroleptic cages. A hierarchy of computational analyses was then applied to these systems with the aim of elucidating key factors for rationalising self-assembly outcomes. Simple and inexpensive geometric analyses were shown to be effective in identifying complementary ligand pairs. Preliminary results demonstrated the viability of relatively rapid semi-empirical calculations for predicting the topology of thermodynamically favoured assemblies with rigid ligands, whilst more flexible systems proved challenging. Stemming from this, key challenges were identified for future work developing effective computational forecasting tools for self-assembled metallo-supramolecular systems.
Collapse
Affiliation(s)
- Andrew Tarzia
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Wentao Shan
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Victor Posligua
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Cameron J T Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Benjamin D Egleston
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Rebecca L Greenaway
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - James E M Lewis
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
3
|
Kumar A, Krishnaswamy S, Chand DK. Orientational Compatibility Modulation of Ligands in Low-Symmetry Multi-Cavity Discrete Coordination Cages by Neighbouring Cage Participation. Angew Chem Int Ed Engl 2024:e202416332. [PMID: 39425482 DOI: 10.1002/anie.202416332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/21/2024]
Abstract
Complexation of Pd(II) with a designer unsymmetrical bis-monodentate ligand (2 : 4 ratio) yielded a specific Pd2L4 type "single-cavity discrete coordination cage" (SCDCC), from a pool of 4 isomeric structures. The observed selctivity is attributed to inherent orientational preference of the ligand strands around the metal centers. Crafting a short coordinating arm at either ends of the bis-monodentate ligand (i.e the longer-arm) produced a pair of unsymmetrical isomeric tris-monodentate ligands; whereas crafting the same short-arm at both ends of the ligand gives an unsymmetrical tetrakis-monodentate ligand. Complexation of Pd(II) with either of the isomeric tris-monodenate ligands (3 : 4 ratio) resulted in corresponding low-symmetry "multi-cavity discrete coordination cage" MCDCC having two conjoined cavities, though the inherent relative orientational preference of the longer arms is not achievable in these cages. The enforced orientation is sustained by "Neighbouring Cage Participation" (NCP). However, one-pot combination of Pd(II), with a mixture of isomeric tris-monodentate ligands in 3 : 2 : 2 ratio produced an integratively self-sorted mixed-ligated MCDCC from a pool of 31 structures. Also, mixing Pd(II) with the tetrakis-monodentate ligand produced a MCDCC having three conjoined cavities. The inherent orientational preference of longer-arm of the ligand strands is retained in the mixed-ligated double-cavity and the homo-ligated triple cavity cages.
Collapse
Affiliation(s)
- Ashish Kumar
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Shobhana Krishnaswamy
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Dillip Kumar Chand
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
4
|
Jurček O, Chattopadhyay S, Kalenius E, Linnanto JM, Kiesilä A, Jurček P, Radiměřský P, Marek R. Unsymmetric Chiral Ligands for Large Metallo-Macrocycles: Selectivity of Orientational Self-Sorting. Angew Chem Int Ed Engl 2024; 63:e202409134. [PMID: 38845398 DOI: 10.1002/anie.202409134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 08/02/2024]
Abstract
Nature uses various chiral and unsymmetric building blocks to form substantial and complex supramolecular assemblies. In contrast, the majority of organic ligands used in metallosupramolecular chemistry are symmetric and achiral. Here we extend the group of unsymmetric chiral bile acids used as a scaffold for organic bispyridyl ligands by employing chenodeoxycholic acid (CDCA), an epimer of the previously used ursodeoxycholic acid (UDCA). The epimerism, flexibility, and bulkiness of the ligands leads to large structural differences in coordination products upon reaction with Pd(NO3)2. The UDCA-bispyridyl ligand self-assembles quantitatively into a single crown-like Pd3L6 complex, whereas the CDCA ligand provides a mixture of coordination complexes of general formula PdnL2n, i.e., Pd2L4, Pd3L6, Pd4L8, Pd5L10, and even Pd6L12 containing an impressive 120 chiral centers. The coordination products were studied by a combination of analytical methods, with ion-mobility mass spectrometry (IM-MS) providing valuable details on their structure and allowed an effective separation of m/z 1461 to individual signals according to the arrival time distribution, thereby revealing four different ions of [Pd3L6(NO3)3]3+, [Pd4L8(NO3)4]4+, [Pd5L10(NO3)5]5+, and [Pd6L12(NO3)6]6+. The structures of all the complexes were modelled using DFT calculations. Finally, the challenges and conclusions in determining the specific structural identity of these unsymmetric species are discussed.
Collapse
Affiliation(s)
- Ondřej Jurček
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, CZ-61200, Brno, Czechia
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| | - Subhasis Chattopadhyay
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| | - Elina Kalenius
- Department of Chemistry, University of Jyvaskyla P. O. Box 35, FI-40014, Jyväskylä, Finland
| | - Juha M Linnanto
- Institute of Physics, University of Tartu, W. Ostwald Street 1, 50411, Tartu, Estonia
| | - Anniina Kiesilä
- Department of Chemistry, University of Jyvaskyla P. O. Box 35, FI-40014, Jyväskylä, Finland
| | - Pia Jurček
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| | - Petr Radiměřský
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| | - Radek Marek
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| |
Collapse
|
5
|
Walker SE, Kyratzis N, Sawant DU, McKay AI, Tuck KL, Turner DR. A Reduced-Symmetry Pd 2L 4 Cage from a Heterotopic Dipyridyl Ligand. Inorg Chem 2024; 63:15659-15666. [PMID: 39110774 DOI: 10.1021/acs.inorgchem.4c01446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Two dipyridyl ligands, L3,3 and L3,4, have been used in combination with palladium(II) in the construction of metallosupramolecular species that show anion-dependent behavior in solution. A rare example of a low-symmetry (C2h) lantern-type cage is formed in one instance, [Pd2(L3,3)4]4+, while the isomeric ligand yields a larger double-walled square complex, [Pd4(L3,4)8]8+. [Pd2(L3,3)4](NO3)4 was isolated in crystalline form revealing two anions within the interior of the C2h-symmetry cage. The cage itself is held together by hydrogen bonding between "head-to-tail" pairs of ligands that reinforces the symmetry generated by the ditopic ligands. In solution, the cage with NO3- has sharp 1H nuclear magnetic resonance (NMR) signals at room temperature, while the BF4- analogue has broad signals that sharpen at higher temperatures or upon addition of (Bu4N)(NO3), highlighting the importance of the anion in templating or otherwise influencing self-assembly in solution. Altering the substitution position of one of the pyridyl rings yields a more "open" complex, with [Pd4(L3,4)8](NO3)8 being isolated as a crystalline solid. The double-walled square complex has a greater Pd···Pd separation due to the increased angle that the pyridyl groups subtend at the core of the ligand. NMR spectroscopy and mass spectrometry studies suggest a single species in the presence of nitrate but multiple species with tetrafluoroborate.
Collapse
Affiliation(s)
- Samuel E Walker
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Nicholas Kyratzis
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Diksha U Sawant
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Alasdair I McKay
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - David R Turner
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
6
|
Kishida N, Sasafuchi H, Sawada T, Yoshizawa M. Helicity control of a polyaromatic coordination capsule through stereoselective CH-π interactions. Chem Sci 2024; 15:13234-13239. [PMID: 39183906 PMCID: PMC11339976 DOI: 10.1039/d4sc02103g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/29/2024] [Indexed: 08/27/2024] Open
Abstract
Although square-planar ML4 units are essential building blocks for coordination cages and capsules, the non-covalent control of the chirality and helicity of the resultant nanostructures is quite difficult. Here we report the helicity control of an M2L4 polyaromatic capsule, formed from metal ions with square-planar coordination geometry and bent bispyridine ligands, through stereoselective CH-π interactions with monosaccharide derivatives. Thanks to host-guest CH-π multi-interactions, one molecule of various permethylated monosaccharides is quantitatively bound by the capsule in water (K a up to >108 M-1). In the polyaromatic cavity, among them, the selective binding of a β-glucose derivative (>80 : 20 ratio) is demonstrated from a mixture of the α/β-glucoses, through the equatorial-selective recognition of the anomeric (C1) group. A similar stereoselective binding is accomplished from an α/β-galactose mixture. Interestingly, single equatorial/axial configurations on the bound monosaccharides can regulate the helical conformation of the capsule in water, confirmed by CD, NMR, and theoretical analyses. An intense capsule-based Cotton effect is exclusively observed upon encapsulation of the permethylated α-glucose (>20-fold enhancement as compared to the β-glucose derivative), via the induction of a single-handed host helicity to a large extent. Inverse capsule helicity is induced by the binding of a β-galactose derivative under the same conditions.
Collapse
Affiliation(s)
- Natsuki Kishida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Hayate Sasafuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Tomohisa Sawada
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
7
|
Sharma S, Krishnaswamy S, Prusty S, Chand DK. A pair of conjoined trinuclear sub-frameworks in a pentanuclear double-cavity discrete coordination cage. Chem Sci 2024; 15:11287-11301. [PMID: 39055040 PMCID: PMC11268487 DOI: 10.1039/d4sc01078g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
Combination of Pd(ii) with selected bis-monodentate ligands produces the familiar multinuclear Pd m L2m type self-assembled "single-cavity discrete coordination cages" (SCDCC). If the ligand provides parallel coordination vectors, then it forms a binuclear Pd2L4 type cage, whereas utilization of ligands having appropriately divergent coordination vectors results in specific higher nuclear complexes. In contrast, preparation of emergent "multi-cavity discrete coordination cages" (MCDCC) using Pd(ii) and designer ligands is quite captivating where the neighboring cavities of the framework are conjoined with each other through a common metal center. A pair of conjoined binuclear Pd2L4 type sub-frameworks are present in a trinuclear Pd3L4 type double-cavity cage prepared from Pd(ii) and a tris-monodentate ligand having parallel coordination vectors. The present work envisioned a design to make double-cavity coordination cages having a pair of conjoined trinuclear Pd3L6 type sub-frameworks. To fulfill the objective we combined Pd(ii) with a mixture of designer bis-monodentate ligand (L) and tris-monodentate ligand (L') in a 5 : 4 : 4 ratio in one pot to afford the targeted pentanuclear type cage. The choice of bis-monodentate ligand L is based on the divergent nature of the coordination vectors suitable to produce a Pd3L6 type SCDCC. The tris-monodentate ligand L' having two arms is designed in such a manner that each of the arms reasonably resembles L. Study of the complexation behavior of Pd(ii) with L' provided additional guiding factors essential for the successful making of type MCDCC by integrative self-sorting. A few other MCDCC including lower symmetry versions were also prepared in the course of the work.
Collapse
Affiliation(s)
- Shruti Sharma
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Shobhana Krishnaswamy
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Soumyakanta Prusty
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Dillip Kumar Chand
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
8
|
Liu H, Guo C, Li L, Zhang Z, Hou Y, Mu C, Hou GL, Zhang Z, Wang H, Li X, Zhang M. Multicomponent, Multicavity Metallacages That Contain Different Binding Sites for Allosteric Recognition. J Am Chem Soc 2024; 146:15787-15795. [PMID: 38738985 DOI: 10.1021/jacs.4c01873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The encapsulation of different guest molecules by their different recognition domains of proteins leads to selective binding, catalysis, and transportation. Synthetic hosts capable of selectively binding different guests in their different cavities to mimic the function of proteins are highly desirable but challenging. Here, we report three ladder-shaped, triple-cavity metallacages prepared by multicomponent coordination-driven self-assembly. Interestingly, the porphyrin-based metallacage is capable of heteroleptic encapsulation of fullerenes (C60 or C70) and coronene using its different cavities, allowing distinct allosteric recognition of coronene upon the addition of C60 or C70. Owing to the different binding affinities of the cavities, the metallacage hosts one C60 molecule in the central cavity and two coronene units in the side cavities, while encapsulating two C70 molecules in the side cavities and one coronene molecule in the central cavity. The rational design of multicavity assemblies that enable heteroleptic encapsulation and allosteric recognition will guide the further design of advanced supramolecular constructs with tunable recognition properties.
Collapse
Affiliation(s)
- Haifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Luqi Li
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Chaoqun Mu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Gao-Lei Hou
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhenyi Zhang
- Bruker (Beijing) Scientific Technology Co., Ltd., 9F, Building NO.1, Lane 2570, Hechuan Rd., Minhang District, Shanghai 201600, P. R. China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
9
|
Zhang B, Lee H, Holstein JJ, Clever GH. Shape-Complementary Multicomponent Assembly of Low-Symmetry Co(III)Salphen-Based Coordination Cages. Angew Chem Int Ed Engl 2024; 63:e202404682. [PMID: 38573026 DOI: 10.1002/anie.202404682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
While metal-mediated self-assembly is a popular technique to construct discrete nanosized objects, highly symmetric structures, built from one type of ligand at a time, are dominating reported systems. The tailored integration of a set of different ligands requires sophisticated approaches to avoid narcissistic separation or formation of statistical mixtures. Here, we demonstrate how the combination of three structure-guiding effects (metal-templated macrocyclization, additional bridging ligands and shape-complementarity) based on Co(III)salphen metal nodes allows for a rational and high-yielding synthesis of structurally complex, lantern-shaped cages with up to four differentiable bridges. Three new heteroleptic coordination cages based on dinuclear Co(III)salphen macrocycles were synthesized in a one-pot reaction approach and fully characterized, including single crystal X-ray analyses. One cage groups two of the same ligands, another two different ligands around a symmetric Co2-bis-salphen ring. In the most complex structure, this ring is unsymmetric, rendering all four connections between the two metal centers distinguishable. While heteroleptic assembly around Pd(II) nodes has been shown to be dynamic, beneficial for cage-to-cage transformations, assembly cascades and adaptive systems, the herein introduced cages based on kinetically more inert Co(III)salphen will be advantageous for applications in enzyme-like catalysis and molecular machinery that require enhanced structural and chemical stability.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Haeri Lee
- Department of Chemistry, Hannam University, 1646 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
10
|
Davies JA, Ronson TK, Nitschke JR. Triamine and Tetramine Edge-Length Matching Drives Heteroleptic Triangular and Tetragonal Prism Assembly. J Am Chem Soc 2024; 146:5215-5223. [PMID: 38349121 PMCID: PMC10910536 DOI: 10.1021/jacs.3c11320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/31/2023] [Accepted: 01/13/2024] [Indexed: 02/29/2024]
Abstract
Heteroleptic metal-organic capsules, which incorporate more than one type of ligand, can provide enclosed, anisotropic interior cavities for binding low-symmetry molecules of biological and industrial importance. However, the selective self-assembly of a single mixed-ligand architecture, as opposed to the numerous other possible self-assembly outcomes, remains a challenge. Here, we develop a design strategy for the subcomponent self-assembly of heteroleptic metal-organic architectures with anisotropic internal void spaces. Zn6Tet3Tri2 triangular prismatic and Zn8Tet2Tet'4 tetragonal prismatic architectures were prepared through careful matching of the side lengths of the tritopic (Tri) or tetratopic (Tet, Tet') and panels.
Collapse
Affiliation(s)
- Jack A. Davies
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tanya K. Ronson
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jonathan R. Nitschke
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
11
|
Mishra SS, Krishnaswamy S, Chand DK. Neighboring Cage Participation for Assisted Construction of Self-Assembled Multicavity Conjoined Cages and Augmented Guest Binding. J Am Chem Soc 2024; 146:4473-4488. [PMID: 38334098 DOI: 10.1021/jacs.3c10565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
A set of Pd2L4, Pd3L4, and Pd4L4-type single-, double-, and triple-cavity cages are prepared by complexation of Pd(NO3)2 with designer bis-monodentate (L1), tris-monodentate (L2), and tetrakis-monodentate (L3) ligands. The Pd2L4 cage exists in equilibrium with a Pd3L6 cage; the equilibrium shifted to Pd2L4 at 70 °C or upon addition of pyrazine-N,N'-dioxide (PZDO). The Pd2L4 cage binds a PZDO molecule using electrostatic, bifurcated H-bonding and overcoordinated H-bonding interactions. The discrete Pd3L4 and Pd4L4 compounds are conjoined cages comprising of unequal sized Pd2L4 cages (bigger and smaller). The bigger unit of Pd3L4 cage selectively binds a PZDO, and the smaller one binds a nitrate, fluoride, chloride, or bromide. The Pd4L4 cage, having a central bigger Pd2L4 cavity and two smaller peripheral Pd2L4 cavities, binds one PZDO and two nitrate, fluoride, chloride, or bromide. The smaller cavity can be prepared individually from Pd(II) and bis-monodentate ligand (L4), however, in the presence of template like a nitrate, fluoride, chloride, or bromide; otherwise, it forms an oligomeric mixture. Notably, the conjoined Pd3L4 and Pd4L4 cages could be prepared with (preferably) or without using a template for smaller cavity, and the bigger Pd2L4 is formed by sacrificing the possibility of the Pd3L6 moiety. Thus, the conjoined cages are formed in a symbiotic manner where the neighboring cages participate in the formation of each other. The binding of PZDO shows that the presence of one neighboring cage (as in Pd3L4) augments the binding affinity and that is further augmented in the presence of two neighboring cages (as in Pd4L4).
Collapse
Affiliation(s)
- Srabani S Mishra
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Shobhana Krishnaswamy
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Dillip Kumar Chand
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
12
|
Zhu H, Ronson TK, Wu K, Nitschke JR. Steric and Geometrical Frustration Generate Two Higher-Order Cu I12L 8 Assemblies from a Triaminotriptycene Subcomponent. J Am Chem Soc 2024; 146:2370-2378. [PMID: 38251968 PMCID: PMC10835662 DOI: 10.1021/jacs.3c09547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
The use of copper(I) in metal-organic assemblies leads readily to the formation of simple grids and helicates, whereas higher-order structures require complex ligand designs. Here, we report the clean and selective syntheses of two complex and structurally distinct CuI12L8 frameworks, 1 and 2, which assemble from the same simple triaminotriptycene subcomponent and a formylpyridine around the CuI templates. Both represent new structure types. In T-symmetric 1, the copper(I) centers describe a pair of octahedra with a common center but whose vertices are offset from each other, whereas in D3-symmetric 2, the metal ions form a distorted hexagonal prism. The syntheses of these architectures illustrate how more intricate CuI-based complexes can be prepared via subcomponent self-assembly than has been possible to date through consideration of the interplay between the subcomponent geometry and solvent and electronic effects.
Collapse
Affiliation(s)
- Huangtianzhi Zhu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Tanya K. Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
13
|
Abe T, Sanada N, Takeuchi K, Okazawa A, Hiraoka S. Assembly of Six Types of Heteroleptic Pd 2L 4 Cages under Kinetic Control. J Am Chem Soc 2023; 145:28061-28074. [PMID: 38096127 PMCID: PMC10755705 DOI: 10.1021/jacs.3c09359] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Heteroleptic assemblies composed of several kinds of building blocks have been seen in nature. It is still unclear how natural systems design and create such complicated assemblies selectively. Past efforts on multicomponent self-assembly of artificial metal-organic cages have mainly focused on finding a suitable combination of building blocks to lead to a single multicomponent self-assembly as the thermodynamically most stable product. Here, we present another approach to selectively produce multicomponent Pd(II)-based self-assemblies under kinetic control based on the selective ligand exchanges of weak Pd-L coordination bonds retaining the original orientation of the metal centers in a kinetically stabilized cyclic structure and on local reversibility given in certain areas of the energy landscape in the presence of the assist molecule that facilitates error correction of coordination bonds. The kinetic approach enabled us to build all six types of Pd2L4 cages and heteroleptic tetranuclear cages composed of three kinds of ditopic ligands. Although the cage complexes thus obtained are metastable, they are stable for 1 month or more at room temperature.
Collapse
Affiliation(s)
- Tsukasa Abe
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Naoki Sanada
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Keisuke Takeuchi
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Atsushi Okazawa
- Department
of Electrical Engineering and Bioscience, Waseda University, Tokyo 169-8555, Japan
| | - Shuichi Hiraoka
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
14
|
Molinska P, Tarzia A, Male L, Jelfs KE, Lewis JEM. Diastereoselective Self-Assembly of Low-Symmetry Pd n L 2n Nanocages through Coordination-Sphere Engineering. Angew Chem Int Ed Engl 2023; 62:e202315451. [PMID: 37888946 PMCID: PMC10952360 DOI: 10.1002/anie.202315451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Metal-organic cages (MOCs) are popular host architectures assembled from ligands and metal ions/nodes. Assembling structurally complex, low-symmetry MOCs with anisotropic cavities can be limited by the formation of statistical isomer libraries. We set out to investigate the use of primary coordination-sphere engineering (CSE) to bias isomer selectivity within homo- and heteroleptic Pdn L2n cages. Unexpected differences in selectivities between alternative donor groups led us to recognise the significant impact of the second coordination sphere on isomer stabilities. From this, molecular-level insight into the origins of selectivity between cis and trans diastereoisomers was gained, highlighting the importance of both host-guest and host-solvent interactions, in addition to ligand design. This detailed understanding allows precision engineering of low-symmetry MOC assemblies without wholesale redesign of the ligand framework, and fundamentally provides a theoretical scaffold for the development of stimuli-responsive, shape-shifting MOCs.
Collapse
Affiliation(s)
- Paulina Molinska
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUK
| | - Andrew Tarzia
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 2410129TorinoItaly
| | - Louise Male
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUK
| | - Kim E. Jelfs
- Department of ChemistryImperial College London, Molecular Sciences Research Hub White City CampusWood LaneLondonW12 0BZUK
| | - James E. M. Lewis
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUK
| |
Collapse
|
15
|
Preston D, Evans JD. A Lantern-Shaped Pd(II) Cage Constructed from Four Different Low-Symmetry Ligands with Positional and Orientational Control: An Ancillary Pairings Approach. Angew Chem Int Ed Engl 2023; 62:e202314378. [PMID: 37816684 DOI: 10.1002/anie.202314378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
One of the key challenges of metallo-supramolecular chemistry is to maintain the ease of self-assembly but, at the same time, create structures of increasingly high levels of complexity. In palladium(II) quadruply stranded lantern-shaped cages, this has been achieved through either 1) the formation of heteroleptic (multi-ligand) assemblies, or 2) homoleptic assemblies from low-symmetry ligands. Heteroleptic cages formed from low-symmetry ligands, a hybid of these two approaches, would add an additional rich level of complexity but no examples of these have been reported. Here we use a system of ancillary complementary ligand pairings at the termini of cage ligands to target heteroleptic assemblies: these complementary pairs can only interact (through coordination to a single Pd(II) metal ion) between ligands in a cis position on the cage. Complementarity between each pair (and orthogonality to other pairs) is controlled by denticity (tridentate to monodentate or bidentate to bidentate) and/or hydrogen-bonding capability (AA to DD or AD to DA). This allows positional and orientational control over ligands with different ancillary sites. By using this approach, we have successfully used low-symmetry ligands to synthesise complex heteroleptic cages, including an example with four different low-symmetry ligands.
Collapse
Affiliation(s)
- Dan Preston
- Research School of Chemistry, Australian National University, Canberra, ACT 2600, Australia
| | - Jack D Evans
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
16
|
Phukon U, Kedia M, Shankar B, Sathiyendiran M. Rhenium-Pyrazolyl-Based Figure-Eight- and Z-Shaped Metallocycles: Self-Assembly, Solid-State Structures, Dynamic Properties in Solution, and Competitive Ligand-Induced Supramolecular Transformations into Rhenium-Pyridyl/-Benzimidazolyl/-Phosphine-Based Metallocycles/Acyclic Complexes. ACS OMEGA 2023; 8:41773-41784. [PMID: 37969972 PMCID: PMC10633831 DOI: 10.1021/acsomega.3c06371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
Rhenium(I)tricarbonyl core-based heteroleptic "figure-eight"- and Z-shaped metallocycles (1a-4a) of the general formula fac-[{(CO)3Re(μ-L)Re(CO)3}2(dppz)2] were self-assembled from Re2(CO)10, H2-L (H2-L = 5,8-dihydroxy-1,4-naphthaquinone (H2-dhnq) for 1a; 1,4-dihydroxy-9,10-anthraquinone (H2-dhaq) for 2a; 6,11-dihydroxy-5,12-naphthacenedione (H2-dhnd) for 3a; 2,2'-bisbenzimidazole (H2-bbim) for 4a), and bis(4-((pyrazolyl)methyl)phenylmethane) (dppz) via one-pot coordination-driven synthetic approach. The molecular structures of 1a and 4a were unambiguously confirmed by single-crystal X-ray diffraction (SC-XRD) methods. The metallocycles in the DMSO solution exist as an acyclic dinuclear-DMSO adduct of the general formula fac-[{(CO)3Re(μ-L)Re(CO)3}(DMSO)2] (1b, L = dhnq; 2b, L = dhaq; 3b, L = dhnd; 4b, L = bbim) and dppz, which are in dynamic equilibrium. The dynamic behavior of the rhenium-pyrazolyl bond in the solution state was effectively utilized to transform metallocycles 1a-4a into pyridyl/benzimidazolyl/phosphine donor-based heteroleptic metallocycles and acyclic dinuclear complexes (4-13). These include tetranuclear rectangles fac-[{(CO)3Re(μ-L)Re(CO)3}2(4,4'-bpy)2] (4 and 11, L = dhaq for 4 and bbim for 11), dinuclear metallocycles fac-[{(CO)3Re(μ-L)Re(CO)3}(dpbim)] (5-7 and 12; L = dhnq for 5, dhaq for 6, dhnd for 7, and bbim for 12), and dinuclear acyclic complexes fac-[{(CO)3Re(μ-L)Re(CO)3}(PTA)2] (8-10 and 13; L = dhnq for 8, dhaq for 9, dhnd for 10, and bbim for 13). These transformations were achieved through component-induced supramolecular reactions while treating with competitive ligands 4,4'-bipyridine (4,4'-bpy), bis(4-((1H-benzoimidazole-1-yl)methyl)phenyl)methane (dpbim), and 1,3,5-triaza-7-phosphaadamantane (PTA). The reaction mixture in the solution was analyzed using NMR and electrospray ionization mass spectrometry (ESI-MS) analysis. Additionally, crystal structures of 4, 6, and 13, which were obtained in the mixture of the solutions, were determined, providing unequivocal evidence for the occurrence of supramolecular transformation within the system. The results reveal that the size of the chelating ligand and the pyrazolyl donor angle of the ditopic ligand play crucial roles in determining the resulting solid-state metallacyclic architecture in these synthetic combinations. The dynamic behavior of the rhenium-pyrazolyl bond in the metallocycles can be utilized to transform into other metallocycles and acyclic complexes using suitable competing ligands via ligand-induced supramolecular transformations.
Collapse
Affiliation(s)
- Upasana Phukon
- School
of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Moon Kedia
- School
of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Bhaskaran Shankar
- Department
of Chemistry, Thiagarajar College of Engineering, Madurai 625 015, India
| | | |
Collapse
|
17
|
Parra RD. Bracelet-like Complexes of Lithium Fluoride with Aromatic Tetraamides, and Their Potential for LiF-Mediated Self-Assembly: A DFT Study. Molecules 2023; 28:4812. [PMID: 37375366 DOI: 10.3390/molecules28124812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Geometries and binding energies of complexes between a LiF molecule and a model aromatic tetraamide are obtained using various DFT methods. The tetraamide consists of a benzene ring and four amides positioned so that the LiF molecule can bind via Li⋯O=C or N-H⋯F interactions. The complex with both interactions is the most stable one, followed by the complex with only N-H⋯F interactions. Doubling the size of the former resulted in a complex with a LiF dimer sandwiched between the model tetraamides. In turn, doubling the size of the latter resulted in a more stable tetramer with bracelet-like geometry having the two LiF molecules also sandwiched but far apart from each other. Additionally, all methods show that the energy barrier to transition to the more stable tetramer is small. The self-assembly of the bracelet-like complex mediated by the interactions of adjacent LiF molecules is demonstrated by all computational methods employed.
Collapse
Affiliation(s)
- Rubén D Parra
- Department of Chemistry and Biochemistry, DePaul University, Chicago, IL 60614, USA
| |
Collapse
|
18
|
Wu K, Ronson TK, Goh L, Xue W, Heard AW, Su P, Li X, Vinković M, Nitschke JR. A Diverse Array of Large Capsules Transform in Response to Stimuli. J Am Chem Soc 2023; 145:11356-11363. [PMID: 37191451 DOI: 10.1021/jacs.3c02491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The allosteric regulation of biomolecules, such as enzymes, enables them to adapt and alter their conformation to fit specific substrates, expressing different functionalities in response to stimuli. Different stimuli can also trigger synthetic coordination cages to change their shape, size, and nuclearity by reconfiguring the dynamic metal-ligand bonds that hold them together. Here we demonstrate an abiological system consisting of different organic subcomponents and ZnII metal ions, which can respond to simple stimuli in complex ways. A ZnII20L12 dodecahedron transforms to give a larger ZnII30L12 icosidodecahedron through subcomponent exchange, as an aldehyde that forms bidentate ligands is displaced in favor of one that forms tridentate ligands together with a penta-amine subcomponent. In the presence of a chiral template guest, the same system that produced the icosidodecahedron instead gives a ZnII15L6 truncated rhombohedral architecture through enantioselective self-assembly. Under specific crystallization conditions, a guest induces a further reconfiguration of either the ZnII30L12 or ZnII15L6 cages to yield an unprecedented ZnII20L8 pseudo-truncated octahedral structure. The transformation network of these cages shows how large synthetic hosts can undergo structural adaptation through the application of chemical stimuli, opening pathways to broader applications.
Collapse
Affiliation(s)
- Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| | - Leonard Goh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| | - Weichao Xue
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| | - Andrew W Heard
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - Pingru Su
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Mladen Vinković
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| |
Collapse
|
19
|
Espinosa CF, Ronson TK, Nitschke JR. Secondary Bracing Ligands Drive Heteroleptic Cuboctahedral Pd II12 Cage Formation. J Am Chem Soc 2023; 145:9965-9969. [PMID: 37115100 PMCID: PMC10176475 DOI: 10.1021/jacs.3c00661] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The structural complexity of self-assembled metal-organic capsules can be increased by incorporating two or more different ligands into a single discrete product. Such complexity can be useful, by enabling larger, less-symmetrical, or more guests to be bound. Here we describe a rational design strategy for the use of subcomponent self-assembly to selectively prepare a heteroleptic cage with a large cavity volume (2631 Å3) from simple, commercially available starting materials. Our strategy involves the initial isolation of a tris(iminopyridyl) PdII3 complex 1, which reacts with tris(pyridyl)triazine ligand 2 to form a heteroleptic sandwich-like architecture 3. The tris(iminopyridyl) ligand within 3 serves as a "brace" to control the orientations of the labile coordination sites on the PdII centers. Self-assembly of 3 with additional 2 was thus directed to generate a large PdII12 heteroleptic cuboctahedron host. This new cuboctahedron was observed to bind multiple polycyclic aromatic hydrocarbon guests simultaneously.
Collapse
Affiliation(s)
- Carles Fuertes Espinosa
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
20
|
Tessarolo J, Benchimol E, Jouaiti A, Hosseini MW, Clever GH. Modular enhancement of circularly polarized luminescence in Pd 2A 2B 2 heteroleptic cages. Chem Commun (Camb) 2023; 59:3467-3470. [PMID: 36876714 PMCID: PMC10019126 DOI: 10.1039/d3cc00262d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Metal-mediated assembly allows us to combine an achiral emissive ligand A with different chiral ligands (such as B) in a non-statistical fashion, obtaining Pd2A2B2 heteroleptic cages showing circularly polarized luminescence (CPL). By using the 'shape complementary assembly' (SCA) strategy, the cages are exclusively obtained as cis-Pd2A2B2 stereoisomers, as confirmed by NMR, MS and DFT analyses. Their unique chiroptical properties derive from the synergy of all the building blocks. Ligand B imparts the chiral information of its aliphatic backbone, comprising two stereogenic sp3 carbon centres, to the overall structure, causing CD and CPL signal induction for the chromophore on ligand A. The heteroleptic cage shows CPL with a |glum| value of 2.5 × 10-3, which is 3-times higher than that for a progenitor based on aromatic helical building block H, thus opening a rational route towards optimizing the CPL properties of self-assembled nanostructures in a modular way.
Collapse
Affiliation(s)
- Jacopo Tessarolo
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany.
| | - Elie Benchimol
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany.
| | - Abdelaziz Jouaiti
- Laboratoire de Tectonique Moléculaire, UMR Unistra-CNRS 7140, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France
| | - Mir Wais Hosseini
- Laboratoire de Tectonique Moléculaire, UMR Unistra-CNRS 7140, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany.
| |
Collapse
|
21
|
Liu Y, Liao SH, Dai WT, Bai Q, Lu S, Wang H, Li X, Zhang Z, Wang P, Lu W, Zhang Q. Controlled Construction of Heteroleptic [Pd 2 (L A ) 2 (L B )(L C )] 4+ Cages: A Facile Approach for Site-Selective endo-Functionalization of Supramolecular Cavities. Angew Chem Int Ed Engl 2023; 62:e202217215. [PMID: 36495225 DOI: 10.1002/anie.202217215] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Construction of supramolecular structures with internal functionalities is a promising approach to build enzyme-like cavities. The endo-functionalized [Pd12 L24 ] and [Pd2 L4 ] coordination cages represent the most successful systems in this regard. However, these systems mainly contain one type of endo-moiety. We herein provide a solution for the controlled endo-functionalization of [Pd2 L4 ] cages. Site-selective introduction of the endo-functional group was achieved through the formation of heteroleptic [Pd2 (LA )2 (LB )(LC )] cages. Using two orthogonal steric control elements is the key for the selective formation of the hetero-assemblies. We demonstrated the construction of two hetero-cages with a single internal functional group as well as a hetero-cage with two distinct endohedral functionalities. The endo-functionalized hetero-cages bound sulfonate guests with fast-exchange dynamics. This strategy provides a new solution for the controlled endo-functionalization of supramolecular cavities.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Shou-Heng Liao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Wen-Tao Dai
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, 3688 Nanhai Ave., Experimental Building, P112, Shenzhen, Guangdong 518060, P. R. China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, 3688 Nanhai Ave., Experimental Building, P112, Shenzhen, Guangdong 518060, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, 3688 Nanhai Ave., Experimental Building, P112, Shenzhen, Guangdong 518060, P. R. China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Wei Lu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qi Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
22
|
Sharma S, Sarkar M, Chand DK. Conjoined and non-conjoined coordination cages with palladium(II) vertices: structural diversity, solution dynamics, and intermolecular interactions. Chem Commun (Camb) 2023; 59:535-554. [PMID: 36546562 DOI: 10.1039/d2cc04828k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-assembled coordination complexes prepared from a combination of Pd(II) components with one or more types of high-symmetry or low-symmetry bis/tris/tetrakis-monodentate ligands are considered in this review. The structures of these complexes are viewed in terms of the presence of a metallo-macromonocycle or conjoined metallo-macromonocycles/metallocages in the frameworks. Analysis of the typical molecular structures revealed an open truth that one or more units of metallo-macromonocycles can be conjoined to afford planar or non-planar systems. In the same line, the enveloping surface of a 3D cage can be considered as a multiple number of conjoined metallomacrocycles that embrace a 3D space from all directions. However, two or more units of cages are conjoined in a multi-3D-cavity cage system and such a system is considered as a conjoined cage. Construction of such conjoined cages having a finite but multiple number of 3D-cavities unified in a single molecular architecture is a challenging task when compared to that of single-3D-cavity based compounds. Conjoining of as many as four units of 3D cages is known so far. Single- as well as multi-cavity cages of lower symmetry have become a very recent trend in this regard where low-symmetry ligands or mixed ligand ensembles are crafted in the framework of the cages. Other structural diversities like helicity in cages, and supramolecular isomerism are also included in this assorted literature work. Although isomerism in classical coordination complexes is well known, it is very less studied in self-assembled coordination complexes. Ligand isomerism is one such feature that is reviewed here. The dynamic behavior of the cages results in interesting reactivity aspects. A large variety of dynamic processes are collected under an umbrella, i.e., "ligand exchange reactions" and described with examples. Intermolecular interaction among the already self-assembled molecules is possible in solution, solid, and gel-phases as discussed in the last part of this review. The understanding of intermolecular interaction is likely to influence different areas of research including crystal engineering, and materials chemistry.
Collapse
Affiliation(s)
- Shruti Sharma
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Moumita Sarkar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Dillip Kumar Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
23
|
Huang X, Zhang Q. A Gourd-shaped Organometallic Coordination Cage: Synthesis and Selective Binding of Two Drug Molecules. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22120511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
24
|
Lewis JEM. Pseudo-heterolepticity in Low-Symmetry Metal-Organic Cages. Angew Chem Int Ed Engl 2022; 61:e202212392. [PMID: 36074024 PMCID: PMC9828238 DOI: 10.1002/anie.202212392] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 01/12/2023]
Abstract
Heteroleptic metal-organic cages, formed through integrative self-assembly of ligand mixtures, are highly attractive as reduced symmetry supramolecular hosts. Ensuring high-fidelity, non-statistical self-assembly, however, presents a significant challenge in molecular engineering due to the inherent difficulty in predicting thermodynamic energy landscapes. In this work, two conceptual strategies are described that circumvent this issue, using ligand design strategies to access structurally sophisticated metal-organic hosts. Using these approaches, it was possible to realise cavity environments described by two inequivalent, unsymmetrical ligand frameworks, representing a significant step forward in the construction of highly anisotropic confined spaces.
Collapse
Affiliation(s)
- James E. M. Lewis
- School of ChemistryUniversity of BirminghamEdgbastonBirmingham B15 2TTUK
- Previous address: Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood LaneLondonW12 0BZUK
| |
Collapse
|
25
|
Li RJ, Tarzia A, Posligua V, Jelfs KE, Sanchez N, Marcus A, Baksi A, Clever GH, Fadaei-Tirani F, Severin K. Orientational self-sorting in cuboctahedral Pd cages. Chem Sci 2022; 13:11912-11917. [PMID: 36320919 PMCID: PMC9580501 DOI: 10.1039/d2sc03856k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/29/2022] [Indexed: 12/01/2023] Open
Abstract
Cuboctahedral coordination cages of the general formula [Pd12L24]24+ (L = low-symmetry ligand) were analyzed theoretically and experimentally. With 350 696 potential isomers, the structural space of these assemblies is vast. Orientational self-sorting refers to the preferential formation of particular isomers within the pool of potential structures. Geometric and computational analyses predict the preferred formation of cages with a cis arrangement at the metal centers. This prediction was corroborated experimentally by synthesizing a [Pd12L24]24+ cage with a bridging 3-(4-(pyridin-4-yl)phenyl)pyridine ligand. A crystallographic analysis of this assembly showed exclusive cis coordination of the 3- and the 4-pyridyl donor groups at the Pd2+ ions.
Collapse
Affiliation(s)
- Ru-Jin Li
- Institut of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Andrew Tarzia
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| | - Victor Posligua
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| | | | - Adam Marcus
- Institut of Mathematics, EPFL Lausanne 1015 Switzerland
| | - Ananya Baksi
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Universität Dortmund Dortmund 44227 Germany
| | - Guido H Clever
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Universität Dortmund Dortmund 44227 Germany
| | - Farzaneh Fadaei-Tirani
- Institut of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Kay Severin
- Institut of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne 1015 Switzerland
| |
Collapse
|
26
|
DiNardi RG, Douglas AO, Tian R, Price JR, Tajik M, Donald WA, Beves JE. Visible-Light-Responsive Self-Assembled Complexes: Improved Photoswitching Properties by Metal Ion Coordination. Angew Chem Int Ed Engl 2022; 61:e202205701. [PMID: 35972841 PMCID: PMC9541570 DOI: 10.1002/anie.202205701] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/10/2022]
Abstract
A photoswitchable ligand based on azobenzene is self-assembled with palladium(II) ions to form a [Pd2 (E-L)4 ]4+ cage. Irradiation with 470 nm light results in the near-quantitative switching to a monomeric species [Pd(Z-L)2 ]2+ , which can be reversed by irradiation with 405 nm light, or heat. The photoswitching selectivity towards the metastable isomer is significantly improved upon self-assembly, and the thermal half-life is extended from 40 days to 850 days, a promising approach for tuning photoswitching properties.
Collapse
Affiliation(s)
| | | | - Ruoming Tian
- Crystallography laboratoryMark Wainwright Analytical CentreUNSW SydneySydneyNSW 2052Australia
| | - Jason R. Price
- School of ChemistryUNSW SydneySydneyNSW 2052Australia
- ANSTOThe Australian Synchrotron800 Blackburn RdClaytonVic 3168Australia
| | | | | | | |
Collapse
|
27
|
Lewis J. Pseudo‐heterolepticity in Low‐Symmetry Metal‐Organic Cages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- James Lewis
- University of Birmingham School of Chemistry Edgbaston B15 2TT Birmingham UNITED KINGDOM
| |
Collapse
|
28
|
Kedia M, Shankar B, Sathiyendiran M. Rhenium(I)-Based Neutral Coordination Cages with a Spherical Cavity for Selective Recognition of Fluoride. Inorg Chem 2022; 61:14506-14510. [PMID: 36067005 DOI: 10.1021/acs.inorgchem.2c02408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neutral heteroleptic trinuclear coordination cages containing a preorganized well-defined small spherical endocavity, which is made up of electron-deficient bowl frameworks, three coordination-induced neutral polar C-H donors, and a phenyl motif, were self-assembled via a one-pot approach; the endocavity accommodates fluoride selectively in the presence of other halides.
Collapse
Affiliation(s)
- Moon Kedia
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Bhaskaran Shankar
- Department of Chemistry, Thiagarajar College of Engineering, Madurai 625 015, India
| | | |
Collapse
|
29
|
Wu K, Tessarolo J, Baksi A, Clever GH. Guest-Modulated Circularly Polarized Luminescence by Ligand-to-Ligand Chirality Transfer in Heteroleptic Pd II Coordination Cages. Angew Chem Int Ed Engl 2022; 61:e202205725. [PMID: 35616285 PMCID: PMC9544203 DOI: 10.1002/anie.202205725] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/11/2022]
Abstract
Multicomponent metallo-supramolecular assembly allows the rational combination of different building blocks. Discrete multifunctional hosts with an accessible cavity can be prepared in a non-statistical fashion. We employ our shape-complementary assembly (SCA) method to achieve for the first time integrative self-sorting of heteroleptic PdII cages showing guest-tunable circularly polarized luminescence (CPL). An enantiopure helicene-based ligand (M or P configuration) is coupled with a non-chiral emissive fluorenone-based ligand (A or B) to form a series of Pd2 L2 L'2 assemblies. The modular strategy allows to impart the chiral information of the helicenes to the overall supramolecular system, resulting in CPL from the non-chiral component. Guest binding results in a 4-fold increase of CPL intensity. The principle offers potential to generate libraries of multifunctional materials with applications in molecular recognition, enantioselective photo-redox catalysis and information processing.
Collapse
Affiliation(s)
- Kai Wu
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto Hahn Str. 644227DortmundGermany
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto Hahn Str. 644227DortmundGermany
| | - Ananya Baksi
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto Hahn Str. 644227DortmundGermany
| | - Guido H. Clever
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto Hahn Str. 644227DortmundGermany
| |
Collapse
|
30
|
DiNardi RG, Douglas AO, Tian R, Price JR, Tajik M, Donald WA, Beves JE. Visible‐Light‐Responsive Self‐Assembled Complexes: Improved Photoswitching Properties by Metal Ion Coordination**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ray G. DiNardi
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | | | - Ruoming Tian
- Crystallography laboratory Mark Wainwright Analytical Centre UNSW Sydney Sydney NSW 2052 Australia
| | - Jason R. Price
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
- ANSTO The Australian Synchrotron 800 Blackburn Rd Clayton Vic 3168 Australia
| | - Mohammad Tajik
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | | | | |
Collapse
|
31
|
Li S, Cai L, Hong M, Chen Q, Sun Q. Combinatorial Self‐Assembly of Coordination Cages with Systematically Fine‐Tuned Cavities for Efficient Co‐Encapsulation and Catalysis. Angew Chem Int Ed Engl 2022; 61:e202204732. [DOI: 10.1002/anie.202204732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 01/10/2023]
Affiliation(s)
- Shao‐Chuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Qihui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| |
Collapse
|
32
|
Dasary H, Sarkar M, Chand DK. Configurational ligand isomerism in conjoined-cages. Chem Commun (Camb) 2022; 58:8480-8483. [PMID: 35792679 DOI: 10.1039/d2cc02837a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Double-decker shaped conjoined-cages of Pd3L4 formulation are prepared via self-assembly of Pd(II) with a set of three regioisomeric tridentate ligands. Alongside the targeted double-decker cage, unprecedented hour-glass shaped conjoined-cages of Pd3L4 formulation are also formed in two cases. The double-decker cage prepared from one ligand system and the hour-glass from another (but with a regioisomeric ligand) are structurally well suited to exemplify configurational ligand isomerism.
Collapse
Affiliation(s)
- Hareesha Dasary
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Moumita Sarkar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Dillip Kumar Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
33
|
Mishra SS, Chand DK. Diastereoselectively self-sorted low-symmetry binuclear metallomacrocycle and trinuclear metallocage. Dalton Trans 2022; 51:11650-11657. [PMID: 35818851 DOI: 10.1039/d2dt01571d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A pyridine/aniline appended unsymmetrical bis-monodentate ligand N-(3-aminophenyl)nicotinamide, Lun is synthesized via condensation of nicotinic acid with excess m-phenylene diamine. A low-symmetry binuclear complex of the Pd2L'2Lun2 type and an extremely rare trinuclear complex of the Pd3Lun6 type are produced by self-assembly of the ligand Lun with cis-protected palladium(II) (i.e., PdL') and palladium(II), respectively. Two isomers (i.e. [(2,0), (2,0)] and [(1,1), (1,1)]-forms) are theoretically possible for the Pd2L'2Lun2-type complex whereas nine isomers can be envisaged in the case of the Pd3Lun6-type arrangement. However, one of the isomers of the Pd2L'2Lun2-type complex as well as the one for the Pd3Lun6-type complex are experimentally obtained. The exclusive formation of specific isomers could be predicted from the 1D/2D NMR study in the solution state and the DFT calculations in the gas phase/implicit solvent media. The formation of the predicted all-(1,1)-[Pd2(en)2Lun2](NO3)4 has been confirmed by a single-crystal XRD study. DFT calculations for the isomers of the Pd3Lun6-type arrangement show that a [cis(2,2), cis(2,2), cis(2,2)] isomer is energetically favourable than the alternatively predicted [trans(2,2), trans(2,2), trans(2,2)] isomer. Conformational changes within the build of the exclusively formed isomers are proposed on the basis of NMR study.
Collapse
Affiliation(s)
| | - Dillip Kumar Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
34
|
Bhol M, Shankar B, Sathiyendiran M. Rhenium(I)-Based Heteroleptic Pentagonal Toroid-Shaped Metallocavitands: Self-Assembly and Molecular Recognition Studies. Inorg Chem 2022; 61:11497-11508. [PMID: 35820114 DOI: 10.1021/acs.inorgchem.2c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A family of neutral, heteroleptic, dinuclear M2LL'-type pentagonal toroid-shaped metallomacrocycles (1-8) were synthesized using flexible ditopic N donors (Ln = L1-L2), rigid bis-chelating ligands (H2-L' = H2-E), and Re2(CO)10 in a one-pot solvothermal self-assembly approach. The ligands and the metallomacrocycles were characterized using ATR-IR, electrospray ionization mass spectrometry, nuclear magnetic resonance, ultraviolet-visible, and emission spectroscopy methods. The molecular structures of 1, 2, 4, 6, and 7 were confirmed by an X-ray diffraction study and are similar to those of calix[5]arene. The cyclic inner cavities of the metallomacrocycles accommodate toluene/mesitylene/acetone/chlorobenzene as guest molecules that are stabilized by cumulative C-H···π and π···π interactions with the cyclic framework of metallomacrocycle. The photophysical properties of the ligands and the metallomacrocycles were studied. The host-guest recognition properties of metallocavitands 1, 2, 7, and 8 as a model host with phenol and nitrobenzene derivatives as guest molecules were studied by emission spectroscopy methods.
Collapse
Affiliation(s)
- Mamina Bhol
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Bhaskaran Shankar
- Department of Chemistry, Thiagarajar College of Engineering, Madurai 625015, India
| | | |
Collapse
|
35
|
Benchimol E, Nguyen BNT, Ronson TK, Nitschke JR. Transformation networks of metal-organic cages controlled by chemical stimuli. Chem Soc Rev 2022; 51:5101-5135. [PMID: 35661155 PMCID: PMC9207707 DOI: 10.1039/d0cs00801j] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/29/2022]
Abstract
The flexibility of biomolecules enables them to adapt and transform as a result of signals received from the external environment, expressing different functions in different contexts. In similar fashion, coordination cages can undergo stimuli-triggered transformations owing to the dynamic nature of the metal-ligand bonds that hold them together. Different types of stimuli can trigger dynamic reconfiguration of these metal-organic assemblies, to switch on or off desired functionalities. Such adaptable systems are of interest for applications in switchable catalysis, selective molecular recognition or as transformable materials. This review highlights recent advances in the transformation of cages using chemical stimuli, providing a catalogue of reported strategies to transform cages and thus allow the creation of new architectures. Firstly we focus on strategies for transformation through the introduction of new cage components, which trigger reconstitution of the initial set of components. Secondly we summarize conversions triggered by external stimuli such as guests, concentration, solvent or pH, highlighting the adaptation processes that coordination cages can undergo. Finally, systems capable of responding to multiple stimuli are described. Such systems constitute composite chemical networks with the potential for more complex behaviour. We aim to offer new perspectives on how to design transformation networks, in order to shed light on signal-driven transformation processes that lead to the preparation of new functional metal-organic architectures.
Collapse
Affiliation(s)
- Elie Benchimol
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Bao-Nguyen T Nguyen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
36
|
McTernan C, Davies JA, Nitschke JR. Beyond Platonic: How to Build Metal-Organic Polyhedra Capable of Binding Low-Symmetry, Information-Rich Molecular Cargoes. Chem Rev 2022; 122:10393-10437. [PMID: 35436092 PMCID: PMC9185692 DOI: 10.1021/acs.chemrev.1c00763] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/17/2022]
Abstract
The field of metallosupramolecular chemistry has advanced rapidly in recent years. Much work in this area has focused on the formation of hollow self-assembled metal-organic architectures and exploration of the applications of their confined nanospaces. These discrete, soluble structures incorporate metal ions as 'glue' to link organic ligands together into polyhedra.Most of the architectures employed thus far have been highly symmetrical, as these have been the easiest to prepare. Such high-symmetry structures contain pseudospherical cavities, and so typically bind roughly spherical guests. Biomolecules and high-value synthetic compounds are rarely isotropic, highly-symmetrical species. To bind, sense, separate, and transform such substrates, new, lower-symmetry, metal-organic cages are needed. Herein we summarize recent approaches, which taken together form the first draft of a handbook for the design of higher-complexity, lower-symmetry, self-assembled metal-organic architectures.
Collapse
Affiliation(s)
| | | | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
37
|
Wu K, Tessarolo J, Baksi A, Clever GH. Guest‐modulated Circularly Polarized Luminescence by Ligand‐to‐Ligand Chirality Transfer in Heteroleptic Pd(II) Coordination Cages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kai Wu
- TU Dortmund: Technische Universitat Dortmund Chemistry and Chemical Biology GERMANY
| | - Jacopo Tessarolo
- TU Dortmund: Technische Universitat Dortmund Chemistry and Chemical Biology GERMANY
| | - Ananya Baksi
- TU Dortmund: Technische Universitat Dortmund Chemistry and Chemical Biology GERMANY
| | - Guido H. Clever
- TU Dortmund University Faculty for Chemistry and Chemical Biology Otto-Hahn-Str. 6 44227 Dortmund GERMANY
| |
Collapse
|
38
|
Li SC, Cai LX, Hong M, Chen Q, Sun QF. Combinatorial Self‐Assembly of Coordination Cages with Systematically Fine‐Tuned Cavities for Efficient Co‐Encapsulation and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shao-Chuan Li
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Li-Xuan Cai
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Maochun Hong
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Qihui Chen
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Qing-Fu Sun
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
39
|
Lisboa LS, Preston D, McAdam CJ, Wright LJ, Hartinger CG, Crowley JD. Heterotrimetallic Double Cavity Cages: Syntheses and Selective Guest Binding. Angew Chem Int Ed Engl 2022; 61:e202201700. [PMID: 35194905 PMCID: PMC9310627 DOI: 10.1002/anie.202201700] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 11/29/2022]
Abstract
A strategy for the generation of heterotrimetallic double cavity (DC) cages [Pdn Ptm L4 ]6+ (DC1: n=1, m=2; and DC2: n=2, m=1) is reported. The DC cages were generated by combining an inert platinum(II) tetrapyridylaldehyde complex with a suitably substituted pyridylamine and PdII ions. 1 H and DOSY nuclear magnetic resonance spectroscopy (NMR) and electrospray ionization mass spectrometry (ESIMS) data were consistent with the formation of the DC architectures. DC1 and DC2 were shown to interact with several different guest molecules. The structure of DC1, which features two identical cavities, binding two 2,6-diaminoanthraquinone (DAQ) guest molecules was determined by single-crystal X-ray crystallography. In addition, DC1 was shown to bind two molecules of 5-fluorouracil (5-FU) in a statistical (non-cooperative) manner. In contrast, DC2, which features two different cage cavities, was found to interact with two different guests, 5-FU and cisplatin, selectively.
Collapse
Affiliation(s)
- Lynn S. Lisboa
- Department of ChemistryUniversity of OtagoPO Box 56Dunedin9054New Zealand
| | - Dan Preston
- Research School of ChemistryAustralian National UniversityCanberraACT 0200Australia
| | - C. John McAdam
- Department of ChemistryUniversity of OtagoPO Box 56Dunedin9054New Zealand
| | - L. James Wright
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - James D. Crowley
- Department of ChemistryUniversity of OtagoPO Box 56Dunedin9054New Zealand
| |
Collapse
|
40
|
Tripathy D, Debata NB, Naik KC, Sahoo HS. Coordination driven discrete metallopolygons and cages from unsymmetric bidentate ligands. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Liu Q, Jin B, Li Q, Yang H, Luo Y, Li X. Self-sorting assembly of artificial building blocks. SOFT MATTER 2022; 18:2484-2499. [PMID: 35266949 DOI: 10.1039/d2sm00153e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembly to build high-level structures, which is ubiquitous in living systems, has captured the imagination of scientists, striving to emulate the intricacy, homogeneity and versatility of the naturally occurring systems, and to pursue a similar level of organization in artificial building blocks. In particular, self-sorting assembly in multicomponent systems, based on the spontaneous recognition and consequent spatial aggregation of the same or interactive building units, is able to realize very complicated assembly behaviours, and usually results in multiple well-ordered products or hierarchical structures in a one-step manner. This highly efficient assembly strategy has attracted tremendous research attention in recent years, and numerous examples have been reported in artificial systems, particularly with supramolecular and polymeric building blocks. In the current review, we summarize the progress in recent years, and classify them into five main categories, based on their working mechanisms or principles. With the review of these strategies, we hope to provide not only some deep insights into this field, but also and more importantly, useful thoughts in the design and fabrication of self-sorting systems in the future.
Collapse
Affiliation(s)
- Qianwei Liu
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Bixin Jin
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Qin Li
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Huanzhi Yang
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Yunjun Luo
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of China, Beijing 100081, People's Republic of China
| | - Xiaoyu Li
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of China, Beijing 100081, People's Republic of China
- Experimental Centre of Advanced Materials, Beijing Institute of China, Beijing 100081, People's Republic of China
| |
Collapse
|
42
|
Lisboa LS, Preston D, McAdam CJ, Wright LJ, Hartinger CG, Crowley JD. Heterotrimetallic Double Cavity Cages: Syntheses and Selective Guest Binding. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lynn S. Lisboa
- Department of Chemistry University of Otago PO Box 56 Dunedin 9054 New Zealand
| | - Dan Preston
- Research School of Chemistry Australian National University Canberra ACT 0200 Australia
| | - C. John McAdam
- Department of Chemistry University of Otago PO Box 56 Dunedin 9054 New Zealand
| | - L. James Wright
- School of Chemical Sciences University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Christian G. Hartinger
- School of Chemical Sciences University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - James D. Crowley
- Department of Chemistry University of Otago PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
43
|
Findlay J, Patil K, Gardiner M, MacDermott-Opeskin H, O'mAra M, Kruger P, Preston D. Heteroleptic tripalladium(II) cages. Chem Asian J 2022; 17:e202200093. [PMID: 35139260 DOI: 10.1002/asia.202200093] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/08/2022] [Indexed: 11/08/2022]
Abstract
There is a concerted attempt to develop self-assembled metallo-cages of greater structural complexity, and heteroleptic Pd II cages are emerging as prime candidates in these efforts. Most of these are dinuclear: few examples of higher nuclearity have been reported. We demonstrate here a robust method for the formation of tripalladium(II) cages from the 2:3:3 combination of a tritopic ligand, Pd II , and a selection of ditopic ligands of the correct size and geometry.
Collapse
Affiliation(s)
- James Findlay
- Australian National University, Research School of Chemistry, AUSTRALIA
| | - Komal Patil
- University of Canterbury, School of Physical and Chemical Sciences, NEW ZEALAND
| | - Michael Gardiner
- Australian National University, Research School of Chemistry, AUSTRALIA
| | | | - Megan O'mAra
- Australian National University, Research School of Chemistry, AUSTRALIA
| | - Paul Kruger
- University of Canterbury, School of Physical and Chemical Sciences, NEW ZEALAND
| | - Dan Preston
- Australian National University, Research School of Chemistry, Building 137, Sullivan Creek Road, 26010, Australia, 9200, Canberra, AUSTRALIA
| |
Collapse
|
44
|
Kedia M, Priyatharsini M, Sathiyashivan SD, Shankar B, Krishnakumar RV, Sathiyendiran M. Prototype rhenium metallocavitand with four exocyclic cavities for small molecules. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Lewis JEM. Molecular engineering of confined space in metal–organic cages. Chem Commun (Camb) 2022; 58:13873-13886. [DOI: 10.1039/d2cc05560k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The host–guest chemistry of metal–organic cages can be modified through tailoring of structural aspects such as size, shape and functionality. In this review, strategies, opportunities and challenges of such molecular engineering are discussed.
Collapse
Affiliation(s)
- James E. M. Lewis
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
46
|
Li S, Liu C, Chen Q, Jiang F, Yuan D, Sun QF, Hong M. Adaptive coordination assemblies based on a flexible tetraazacyclododecane ligand for promoting carbon dioxide fixation. Chem Sci 2022; 13:9016-9022. [PMID: 36091216 PMCID: PMC9365242 DOI: 10.1039/d2sc03093d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Coordination hosts based on flexible ligands have received increasing attention due to their inherent adaptive cavities that often show induced-fit guest binding and catalysis like enzymes. Herein, we report the controlled self-assembly of a series of homo/heterometallic coordination hosts (Me4enPd)2n(ML)n [n = 2/3; M = Zn(ii)/Co(ii)/Ni(ii)/Cu(ii)/Pd(ii)/Ag(i); Me4en: N,N,N′,N′-tetramethylethylenediamine] with different shapes (tube/cage) from a flexible tetraazacyclododecane-based pyridinyl ligand (L) and cis-blocking Me4enPd(ii) units. While the Ag(i)-metalated ligand (AgL) gave rise to the formation of a (Me4enPd)4(ML)2-type cage, all other M(ii) ions led to isostructural (Me4enPd)6(ML)3-type tubular complexes. Structural transformations between cages and tubes could be realized through transmetalation of the ligand. The buffering effect on the ML panels endows the coordination tubes with remarkable acid–base resistance, which makes the (Me4enPd)6(ZnL)3 host an effective catalyst for the CO2 to CO32− conversion. Control experiments suggested that the integration of multiple active Zn(ii) sites on the tubular host and the perfect geometry match between CO32− and the cavity synergistically promoted such a conversion. Our results provide an important strategy for the design of adaptive coordination hosts to achieve efficient carbon fixation. A series of coordination hosts were prepared and their applications in CO2 fixation were studied.![]()
Collapse
Affiliation(s)
- Shaochuan Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Caiping Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Qing-Fu Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| |
Collapse
|
47
|
Keasling J, Garcia Martin H, Lee TS, Mukhopadhyay A, Singer SW, Sundstrom E. Microbial production of advanced biofuels. Nat Rev Microbiol 2021; 19:701-715. [PMID: 34172951 DOI: 10.1038/s41579-021-00577-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Concerns over climate change have necessitated a rethinking of our transportation infrastructure. One possible alternative to carbon-polluting fossil fuels is biofuels produced by engineered microorganisms that use a renewable carbon source. Two biofuels, ethanol and biodiesel, have made inroads in displacing petroleum-based fuels, but their uptake has been limited by the amounts that can be used in conventional engines and by their cost. Advanced biofuels that mimic petroleum-based fuels are not limited by the amounts that can be used in existing transportation infrastructure but have had limited uptake due to costs. In this Review, we discuss engineering metabolic pathways to produce advanced biofuels, challenges with substrate and product toxicity with regard to host microorganisms and methods to engineer tolerance, and the use of functional genomics and machine learning approaches to produce advanced biofuels and prospects for reducing their costs.
Collapse
Affiliation(s)
- Jay Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA. .,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA. .,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Center for Biosustainability, Danish Technical University, Lyngby, Denmark. .,Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Hector Garcia Martin
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,DOE Agile BioFoundry, Emeryville, CA, USA.,BCAM,Basque Center for Applied Mathematics, Bilbao, Spain.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eric Sundstrom
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, USA
| |
Collapse
|
48
|
Li RJ, Marcus A, Fadaei-Tirani F, Severin K. Orientational self-sorting: formation of structurally defined Pd 4L 8 and Pd 6L 12 cages from low-symmetry dipyridyl ligands. Chem Commun (Camb) 2021; 57:10023-10026. [PMID: 34505600 DOI: 10.1039/d1cc03828a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tetra- and hexanuclear coordination cages were obtained in reactions of [Pd(CH3CN)4](BF4)2 with low-symmetry dipyridyl ligands. In both cases, only one structurally defined complex was formed out of a vast pool of potential isomers.
Collapse
Affiliation(s)
- Ru-Jin Li
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Adam Marcus
- Institute of Mathematics, EPFL, 1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Kay Severin
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
49
|
Bäumer N, Matern J, Fernández G. Recent progress and future challenges in the supramolecular polymerization of metal-containing monomers. Chem Sci 2021; 12:12248-12265. [PMID: 34603655 PMCID: PMC8480320 DOI: 10.1039/d1sc03388c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of discrete molecular entities into functional nanomaterials has become a major research area in the past decades. The library of investigated compounds has diversified significantly, while the field as a whole has matured. The incorporation of metal ions in the molecular design of the (supra-)molecular building blocks greatly expands the potential applications, while also offering a promising approach to control molecular recognition and attractive and/or repulsive intermolecular binding events. Hence, supramolecular polymerization of metal-containing monomers has emerged as a major research focus in the field. In this perspective article, we highlight recent significant advances in supramolecular polymerization of metal-containing monomers and discuss their implications for future research. Additionally, we also outline some major challenges that metallosupramolecular chemists (will) have to face to produce metallosupramolecular polymers (MSPs) with advanced applications and functionalities.
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Jonas Matern
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
50
|
Tarzia A, Lewis JEM, Jelfs KE. High‐Throughput Computational Evaluation of Low Symmetry Pd
2
L
4
Cages to Aid in System Design**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Andrew Tarzia
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus, Wood Lane London W12 0BZ UK
| | - James E. M. Lewis
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus, Wood Lane London W12 0BZ UK
| | - Kim E. Jelfs
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus, Wood Lane London W12 0BZ UK
| |
Collapse
|