1
|
Day CA, Grigore F, Hakkim FL, Paul S, Langfald A, Weberg M, Fadness S, Schwab P, Sepaniac L, Stumpff J, Vaughan KT, Daniels DJ, Robinson JP, Hinchcliffe EH. The histone H3.3 K27M mutation suppresses Ser31phosphorylation and mitotic fidelity, which can directly drive gliomagenesis. Curr Biol 2025; 35:354-362.e7. [PMID: 39729988 DOI: 10.1016/j.cub.2024.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/29/2024]
Abstract
Serine 31 is a phospho-site unique to the histone H3.3 variant; mitotic phospho-Ser31 is restricted to pericentromeric heterochromatin, and disruption of phospho-Ser31 results in chromosome segregation defects and loss of p53-dependant G1 cell-cycle arrest.1,2,3,4 Ser31 is proximal to the H3.3 lysine 27-to-methionine (K27M) mutation that drives ∼80% of pediatric diffuse midline gliomas.5,6,7,8,9,10,11,12 Here, we show that expression of the H3.3 K27M mutant in normal, diploid cells results in increased chromosome missegregation and failure to arrest in the following G1. Expression of a non-phosphorylatable S31A mutant also drives chromosome missegregation, while the expression of a double K27M + phosphomimetic S31E mutant restores mitotic fidelity and the p53 response to chromosome missegregation. We show that patient-derived H3.3 K27M tumor cells have decreased mitotic Ser31 phosphorylation and increased frequency of chromosome missegregation. CRISPR reversion of the K27M mutation to wild type (WT) restores phospho-Ser31 levels and results in a decrease in chromosome missegregation. However, inserting an S31A mutation by CRISPR into these revertant cells disrupts mitotic fidelity. In vitro and in vivo analyses reveal that Chk1-the mitotic Ser31 kinase-is preferentially retained at pericentromeres in K27M-expressing tumor cells, compared with MLysine27-to-methionine mutation (M27K) isogenic revertants, correlating with both diminished phospho-Ser31 and mitotic defects. Interestingly, whereas M27K revertant cells do not form xenograft tumors in mice, H3.3 S31A cells do, similar to those formed by H3.3 K27M cells. Replication-competent avian leukosis virus splice-acceptor (RCAS)/cellular receptor for subgroup A avian sarcoma and leukosis virus (TVA) mice expressing S31A also form diffuse midline gliomas morphologically indistinguishable from K27M tumors. Together, our results reveal that the H3.3 K27M mutant alters H3.3 Ser31 phosphorylation, which, in turn, has profound impacts on chromosome segregation/cell-cycle regulation.
Collapse
Affiliation(s)
- Charles A Day
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; Neuro-Oncology Training Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Florina Grigore
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Faruck L Hakkim
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Souren Paul
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Alyssa Langfald
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Molly Weberg
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Sela Fadness
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Paiton Schwab
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Leslie Sepaniac
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA; Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Kevin T Vaughan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - David J Daniels
- Department of Neurosurgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN 55905, USA
| | - James P Robinson
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Edward H Hinchcliffe
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Jin YJ, Liang G, Li R, Wang S, Alnouri MW, Bentsen M, Kuenne C, Günther S, Yan Y, Li Y, Wettschureck N, Offermanns S. Phosphorylation of endothelial histone H3.3 serine 31 by PKN1 links flow-induced signaling to proatherogenic gene expression. NATURE CARDIOVASCULAR RESEARCH 2025:10.1038/s44161-024-00593-y. [PMID: 39779823 DOI: 10.1038/s44161-024-00593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Atherosclerotic lesions develop preferentially in arterial regions exposed to disturbed blood flow, where endothelial cells acquire an inflammatory phenotype. How disturbed flow induces endothelial cell inflammation is incompletely understood. Here we show that histone H3.3 phosphorylation at serine 31 (H3.3S31) regulates disturbed-flow-induced endothelial inflammation by allowing rapid induction of FOS and FOSB, required for inflammatory gene expression. We identified protein kinase N1 (PKN1) as the kinase responsible for disturbed-flow-induced H3.3S31 phosphorylation. Disturbed flow activates PKN1 in an integrin α5β1-dependent manner and induces its translocation into the nucleus, and PKN1 is also involved in the phosphorylation of the AP-1 transcription factor JUN. Mice with endothelium-specific PKN1 loss or endothelial expression of S31 phosphorylation-deficient H.3.3 mutants show reduced endothelial inflammation and disturbed-flow-induced vascular remodeling in vitro and in vivo. Together, we identified a pathway whereby disturbed flow through PKN1-mediated histone phosphorylation and FOS/FOSB induction promotes inflammatory gene expression and vascular inflammation.
Collapse
Affiliation(s)
- Young-June Jin
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Guozheng Liang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - ShengPeng Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mohamad Wessam Alnouri
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mette Bentsen
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Kuenne
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yang Yan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yongxin Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Centre for Molecular Medicine, Medical Faculty, JW Goethe University Frankfurt, Frankfurt, Germany
- Cardiopulmonary Institute (CPI), Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main site, Frankfurt and Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Centre for Molecular Medicine, Medical Faculty, JW Goethe University Frankfurt, Frankfurt, Germany.
- Cardiopulmonary Institute (CPI), Frankfurt, Germany.
- German Center for Cardiovascular Research (DZHK), Rhine-Main site, Frankfurt and Bad Nauheim, Germany.
| |
Collapse
|
3
|
Li Y, Huang W, Guo L, Sun Q. Ras S89D mutation induced allosteric changes that promoted its nucleotide exchange and signaling activation. Int J Biol Macromol 2025; 294:139538. [PMID: 39778822 DOI: 10.1016/j.ijbiomac.2025.139538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The small GTPase Ras is among the most frequently mutated genes and its mutations often drive oncogenesis across various cancers. While the role of NRas phosphorylation at S89 in the context of a Q61R mutation in melanoma genesis remains controversial, the impact of S89 phosphorylation on NRas function has not been fully elucidated. In this study, we employed the S89D phosphorylation-mimetic mutation and demonstrated that the S89D mutation alone activated all Ras isoforms by increasing the GTP-bound population, thereby promoting ERK phosphorylation and cell proliferation. The S89D mutant retained unaltered hydrolysis kinetics and GTP/GDP relative affinity but exhibited an accelerated intrinsic nucleotide exchange rate, due to impaired nucleotide binding. A 1.2 Å crystal structure of the S89D mutant revealed substantial local conformational changes, as well as alterations propagating to the nucleotide-binding pocket, providing a structural basis for the observed biochemical properties. Collectively, these findings established that the S89D mutation activated Ras by enhancing intrinsic nucleotide exchange, offering new insights into Ras allostery.
Collapse
Affiliation(s)
- Yuling Li
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenxin Huang
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
4
|
Bhatt AD, Brown MG, Wackford AB, Shindo Y, Amodeo AA. Local nuclear to cytoplasmic ratio regulates H3.3 incorporation via cell cycle state during zygotic genome activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603602. [PMID: 39071352 PMCID: PMC11275841 DOI: 10.1101/2024.07.15.603602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Early embryos often have unique chromatin states prior to zygotic genome activation (ZGA). In Drosophila, ZGA occurs after 13 reductive nuclear divisions during which the nuclear to cytoplasmic (N/C) ratio grows exponentially. Previous work found that histone H3 chromatin incorporation decreases while its variant H3.3 increases leading up to ZGA. In other cell types, H3.3 is associated with sites of active transcription and heterochromatin, suggesting a link between H3.3 and ZGA. Here, we test what factors regulate H3.3 incorporation at ZGA. We find that H3 nuclear availability falls more rapidly than H3.3 leading up to ZGA. We generate H3/H3.3 chimeric proteins at the endogenous H3.3A locus and observe that chaperone binding, but not gene structure, regulates H3.3 behavior. We identify the N/C ratio as a major determinant of H3.3 incorporation. To isolate how the N/C ratio regulates H3.3 incorporation we test the roles of genomic content, zygotic transcription, and cell cycle state. We determine that cell cycle regulation, but not H3 availability or transcription, controls H3.3 incorporation. Overall, we propose that local N/C ratios control histone variant usage via cell cycle state during ZGA.
Collapse
Affiliation(s)
- Anusha D. Bhatt
- Department of Biological sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Madeleine G. Brown
- Department of Biological sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Aurora B. Wackford
- Department of Biological sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Yuki Shindo
- Department of Biological sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Amanda A. Amodeo
- Department of Biological sciences, Dartmouth College, Hanover, NH 03755, USA
- Lead contact
| |
Collapse
|
5
|
Hegazy YA, Dhahri H, El Osmani N, George S, Chandler DP, Fondufe-Mittendorf YN. Histone variants: The bricks that fit differently. J Biol Chem 2024; 301:108048. [PMID: 39638247 PMCID: PMC11742582 DOI: 10.1016/j.jbc.2024.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Histone proteins organize nuclear DNA in eukaryotic cells and play crucial roles in regulating chromatin structure and function. Histone variants are produced by distinct histone genes and are produced independently of their canonical counterparts throughout the cell cycle. Even though histone variants may differ by only one or a few amino acids relative to their canonical counterparts, these minor variations can profoundly alter chromatin structure, accessibility, dynamics, and gene expression. Histone variants often interact with dedicated chaperones and remodelers and can have unique post-translational modifications that shape unique gene expression landscapes. Histone variants also play essential roles in DNA replication, damage repair, and histone-protamine transition during spermatogenesis. Importantly, aberrant histone variant expression and DNA mutations in histone variants are linked to various human diseases, including cancer, developmental disorders, and neurodegenerative diseases. In this review, we explore how core histone variants impact nucleosome structure and DNA accessibility, the significance of variant-specific post-translational modifications, how variant-specific chaperones and remodelers contribute to a regulatory network governing chromatin behavior, and discuss current knowledge about the association of histone variants with human diseases.
Collapse
Affiliation(s)
- Youssef A Hegazy
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Hejer Dhahri
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Nour El Osmani
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Smitha George
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Darrell P Chandler
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | | |
Collapse
|
6
|
Lynskey ML, Brown EE, Bhargava R, Wondisford AR, Ouriou JB, Freund O, Bowman RW, Smith BA, Lardo SM, Schamus-Hayes S, Hainer SJ, O'Sullivan RJ. HIRA protects telomeres against R-loop-induced instability in ALT cancer cells. Cell Rep 2024; 43:114964. [PMID: 39509271 PMCID: PMC11698518 DOI: 10.1016/j.celrep.2024.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Inactivating mutations in chromatin modifiers, like the α-thalassemia/mental retardation, X-linked (ATRX)-death domain-associated protein (DAXX) chromatin remodeling/histone H3.3 deposition complex, drive the cancer-specific alternative lengthening of telomeres (ALT) pathway. Prior studies revealed that HIRA, another histone H3.3 chaperone, compensates for ATRX-DAXX loss at telomeres to sustain ALT cancer cell survival. How HIRA rescues telomeres from the consequences of ATRX-DAXX deficiency remains unclear. Here, using an assay for transposase-accessible chromatin using sequencing (ATAC-seq) and cleavage under targets and release using nuclease (CUT&RUN), we establish that HIRA-mediated deposition of new H3.3 maintains telomeric chromatin accessibility to prevent the detrimental accumulation of nucleosome-free single-stranded DNA (ssDNA) in ATRX-DAXX-deficient ALT cells. We show that the HIRA-UBN1/UBN2 complex deposits new H3.3 to prevent TERRA R-loop buildup and transcription-replication conflicts (TRCs) at telomeres. Furthermore, HIRA-mediated H3.3 incorporation into telomeric chromatin links productive ALT to the phosphorylation of serine 31, an H3.3-specific amino acid, by Chk1. Therefore, we identify a critical role for HIRA-mediated H3.3 deposition that ensures the survival of ATRX-DAXX-deficient ALT cancer cells.
Collapse
Affiliation(s)
- Michelle Lee Lynskey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Emily E Brown
- Department of Biological Sciences, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Ragini Bhargava
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Jean-Baptiste Ouriou
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Oliver Freund
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Ray W Bowman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Baylee A Smith
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Santana M Lardo
- Department of Biological Sciences, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Sandra Schamus-Hayes
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA.
| |
Collapse
|
7
|
Kwok ACM, Yan KTH, Wen S, Sun S, Li C, Wong JTY. Dinochromosome Heterotermini with Telosomal Anchorages. Int J Mol Sci 2024; 25:11312. [PMID: 39457094 PMCID: PMC11508785 DOI: 10.3390/ijms252011312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Dinoflagellate birefringent chromosomes (BfCs) contain some of the largest known genomes, yet they lack typical nucleosomal micrococcal-nuclease protection patterns despite containing variant core histones. One BfC end interacts with extranuclear mitotic microtubules at the nuclear envelope (NE), which remains intact throughout the cell cycle. Ultrastructural studies, polarized light and fluorescence microscopy, and micrococcal nuclease-resistant profiles (MNRPs) revealed that NE-associated chromosome ends persisted post-mitosis. Histone H3K9me3 inhibition caused S-G2 delay in synchronous cells, without any effects at G1. Differential labeling and nuclear envelope swelling upon decompaction indicate an extension of the inner compartment into telosomal anchorages (TAs). Additionally, limited effects of low-concentration sirtinol on bulk BfCs, coupled with distinct mobility patterns in MNase-digested and psoralen-crosslinked nuclei observed on 2D gels, suggest that telomeric nucleosomes (TNs) are the primary histone structures. The absence of a nucleosomal ladder with cDNA probes, the presence of histone H2A and telomere-enriched H3.3 variants, along with the immuno-localization of H3 variants mainly at the NE further reinforce telomeric regions as the main nucleosomal domains. Cumulative biochemical and molecular analyses suggest that telomeric repeats constitute the major octameric MNRPs that provision chromosomal anchorage at the NE.
Collapse
Affiliation(s)
| | | | | | | | | | - Joseph Tin Yum Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; (A.C.M.K.); (K.T.H.Y.); (S.W.); (S.S.); (C.L.)
| |
Collapse
|
8
|
Bryant L, Sangree A, Clark K, Bhoj E. Histone 3.3-related chromatinopathy: missense variants throughout H3-3A and H3-3B cause a range of functional consequences across species. Hum Genet 2024; 143:497-510. [PMID: 36867246 DOI: 10.1007/s00439-023-02536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
There has been considerable recent interest in the role that germline variants in histone genes play in Mendelian syndromes. Specifically, missense variants in H3-3A and H3-3B, which both encode Histone 3.3, were discovered to cause a novel neurodevelopmental disorder, Bryant-Li-Bhoj syndrome. Most of the causative variants are private and scattered throughout the protein, but all seem to have either a gain-of-function or dominant negative effect on protein function. This is highly unusual and not well understood. However, there is extensive literature about the effects of Histone 3.3 mutations in model organisms. Here, we collate the previous data to provide insight into the elusive pathogenesis of missense variants in Histone 3.3.
Collapse
Affiliation(s)
- Laura Bryant
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Annabel Sangree
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kelly Clark
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Elizabeth Bhoj
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Liu K, Yin C, Ye W, Ma M, Wang Y, Wang P, Fang Y. Histone Variant H3.3 Controls Arabidopsis Fertility by Regulating Male Gamete Development. PLANT & CELL PHYSIOLOGY 2024; 65:68-78. [PMID: 37814936 DOI: 10.1093/pcp/pcad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2023] [Accepted: 10/01/2023] [Indexed: 10/11/2023]
Abstract
Reprograming of chromatin structures and changes in gene expression are critical for plant male gamete development, and epigenetic marks play an important role in these processes. Histone variant H3.3 is abundant in euchromatin and is largely associated with transcriptional activation. The precise function of H3.3 in gamete development remains unclear in plants. Here, we report that H3.3 is abundantly expressed in Arabidopsis anthers and its knockout mutant h3.3-1 is sterile due to male sterility. Transcriptome analysis of young inflorescence has identified 2348 genes downregulated in h3.3-1 mutant, among which 1087 target genes are directly bound by H3.3, especially at their 3' ends. As a group, this set of H3.3 targets is enriched in the reproduction-associated processes including male gamete generation, pollen sperm cell differentiation and pollen tube growth. The function of H3.3 in male gamete development is dependent on the Anti-Silencing Factor 1A/1B (ASF1A/1B)-Histone regulator A (HIRA)-mediated pathway. Our results suggest that ASF1A/1B-HIRA-mediated H3.3 deposition at its direct targets for transcription activation forms the regulatory networks responsible for male gamete development.
Collapse
Affiliation(s)
- Kunpeng Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunmei Yin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjing Ye
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Ma
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanda Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuda Fang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Delaney K, Weiss N, Almouzni G. The cell-cycle choreography of H3 variants shapes the genome. Mol Cell 2023; 83:3773-3786. [PMID: 37734377 PMCID: PMC10621666 DOI: 10.1016/j.molcel.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023]
Abstract
Histone variants provide versatility in the basic unit of chromatin, helping to define dynamic landscapes and cell fates. Maintaining genome integrity is paramount for the cell, and it is intimately linked with chromatin dynamics, assembly, and disassembly during DNA transactions such as replication, repair, recombination, and transcription. In this review, we focus on the family of H3 variants and their dynamics in space and time during the cell cycle. We review the distinct H3 variants' specific features along with their escort partners, the histone chaperones, compiled across different species to discuss their distinct importance considering evolution. We place H3 dynamics at different times during the cell cycle with the possible consequences for genome stability. Finally, we examine how their mutation and alteration impact disease. The emerging picture stresses key parameters in H3 dynamics to reflect on how when they are perturbed, they become a source of stress for genome integrity.
Collapse
Affiliation(s)
- Kamila Delaney
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Nicole Weiss
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
11
|
McPherson JME, Grossmann LC, Salzler HR, Armstrong RL, Kwon E, Matera AG, McKay DJ, Duronio RJ. Reduced histone gene copy number disrupts Drosophila Polycomb function. Genetics 2023; 224:iyad106. [PMID: 37279945 PMCID: PMC10411577 DOI: 10.1093/genetics/iyad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
The chromatin of animal cells contains two types of histones: canonical histones that are expressed during S phase of the cell cycle to package the newly replicated genome, and variant histones with specialized functions that are expressed throughout the cell cycle and in non-proliferating cells. Determining whether and how canonical and variant histones cooperate to regulate genome function is integral to understanding how chromatin-based processes affect normal and pathological development. Here, we demonstrate that variant histone H3.3 is essential for Drosophila development only when canonical histone gene copy number is reduced, suggesting that coordination between canonical H3.2 and variant H3.3 expression is necessary to provide sufficient H3 protein for normal genome function. To identify genes that depend upon, or are involved in, this coordinate regulation we screened for heterozygous chromosome 3 deficiencies that impair development of flies bearing reduced H3.2 and H3.3 gene copy number. We identified two regions of chromosome 3 that conferred this phenotype, one of which contains the Polycomb gene, which is necessary for establishing domains of facultative chromatin that repress master regulator genes during development. We further found that reduction in Polycomb dosage decreases viability of animals with no H3.3 gene copies. Moreover, heterozygous Polycomb mutations result in de-repression of the Polycomb target gene Ubx and cause ectopic sex combs when either canonical or variant H3 gene copy number is reduced. We conclude that Polycomb-mediated facultative heterochromatin function is compromised when canonical and variant H3 gene copy number falls below a critical threshold.
Collapse
Affiliation(s)
- Jeanne-Marie E McPherson
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lucy C Grossmann
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Harmony R Salzler
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robin L Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Esther Kwon
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
12
|
McPherson JME, Grossmann LC, Armstrong RL, Kwon E, Salzler HR, Matera AG, McKay DJ, Duronio RJ. Reduced histone gene copy number disrupts Drosophila Polycomb function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534544. [PMID: 37034607 PMCID: PMC10081267 DOI: 10.1101/2023.03.28.534544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The chromatin of animal cells contains two types of histones: canonical histones that are expressed during S phase of the cell cycle to package the newly replicated genome, and variant histones with specialized functions that are expressed throughout the cell cycle and in non-proliferating cells. Determining whether and how canonical and variant histones cooperate to regulate genome function is integral to understanding how chromatin-based processes affect normal and pathological development. Here, we demonstrate that variant histone H3.3 is essential for Drosophila development only when canonical histone gene copy number is reduced, suggesting that coordination between canonical H3.2 and variant H3.3 expression is necessary to provide sufficient H3 protein for normal genome function. To identify genes that depend upon, or are involved in, this coordinate regulation we screened for heterozygous chromosome 3 deficiencies that impair development of flies bearing reduced H3.2 and H3.3 gene copy number. We identified two regions of chromosome 3 that conferred this phenotype, one of which contains the Polycomb gene, which is necessary for establishing domains of facultative chromatin that repress master regulator genes during development. We further found that reduction in Polycomb dosage decreases viability of animals with no H3.3 gene copies. Moreover, heterozygous Polycomb mutations result in de-repression of the Polycomb target gene Ubx and cause ectopic sex combs when either canonical or variant H3 gene copy number is also reduced. We conclude that Polycomb-mediated facultative heterochromatin function is compromised when canonical and variant H3 gene copy number falls below a critical threshold.
Collapse
Affiliation(s)
- Jeanne-Marie E. McPherson
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lucy C. Grossmann
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robin L. Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Esther Kwon
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Harmony R. Salzler
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Daniel J. McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert J. Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
13
|
Tafessu A, O’Hara R, Martire S, Dube AL, Saha P, Gant VU, Banaszynski LA. H3.3 contributes to chromatin accessibility and transcription factor binding at promoter-proximal regulatory elements in embryonic stem cells. Genome Biol 2023; 24:25. [PMID: 36782260 PMCID: PMC9926682 DOI: 10.1186/s13059-023-02867-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND The histone variant H3.3 is enriched at active regulatory elements such as promoters and enhancers in mammalian genomes. These regions are highly accessible, creating an environment that is permissive to transcription factor binding and the recruitment of transcriptional coactivators that establish a unique chromatin post-translational landscape. How H3.3 contributes to the establishment and function of chromatin states at these regions is poorly understood. RESULTS We perform genomic analyses of features associated with active promoter chromatin in mouse embryonic stem cells (ESCs) and find evidence of subtle yet widespread promoter dysregulation in the absence of H3.3. Loss of H3.3 results in reduced chromatin accessibility and transcription factor (TF) binding at promoters of expressed genes in ESCs. Likewise, enrichment of the transcriptional coactivator p300 and downstream histone H3 acetylation at lysine 27 (H3K27ac) is reduced at promoters in the absence of H3.3, along with reduced enrichment of the acetyl lysine reader BRD4. Despite the observed chromatin dysregulation, H3.3 KO ESCs maintain transcription from ESC-specific genes. However, upon undirected differentiation, H3.3 KO cells retain footprinting of ESC-specific TF motifs and fail to generate footprints of lineage-specific TF motifs, in line with their diminished capacity to differentiate. CONCLUSIONS H3.3 facilitates DNA accessibility, transcription factor binding, and histone post-translational modification at active promoters. While H3.3 is not required for maintaining transcription in ESCs, it does promote de novo transcription factor binding which may contribute to the dysregulation of cellular differentiation in the absence of H3.3.
Collapse
Affiliation(s)
- Amanuel Tafessu
- grid.267313.20000 0000 9482 7121Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children’s Medical Center Research Institute, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| | - Ryan O’Hara
- grid.267313.20000 0000 9482 7121Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children’s Medical Center Research Institute, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| | - Sara Martire
- grid.267313.20000 0000 9482 7121Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children’s Medical Center Research Institute, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| | - Altair L. Dube
- grid.267313.20000 0000 9482 7121Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children’s Medical Center Research Institute, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| | - Purbita Saha
- grid.267313.20000 0000 9482 7121Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children’s Medical Center Research Institute, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| | - Vincent U. Gant
- grid.267313.20000 0000 9482 7121Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children’s Medical Center Research Institute, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| | - Laura A. Banaszynski
- grid.267313.20000 0000 9482 7121Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children’s Medical Center Research Institute, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| |
Collapse
|
14
|
Zhao T, Lu J, Zhang H, Xue M, Pan J, Ma L, Berger F, Jiang D. Histone H3.3 deposition in seed is essential for the post-embryonic developmental competence in Arabidopsis. Nat Commun 2022; 13:7728. [PMID: 36513677 PMCID: PMC9747979 DOI: 10.1038/s41467-022-35509-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
The acquisition of germination and post-embryonic developmental ability during seed maturation is vital for seed vigor, an important trait for plant propagation and crop production. How seed vigor is established in seeds is still poorly understood. Here, we report the crucial function of Arabidopsis histone variant H3.3 in endowing seeds with post-embryonic developmental potentials. H3.3 is not essential for seed formation, but loss of H3.3 results in severely impaired germination and post-embryonic development. H3.3 exhibits a seed-specific 5' gene end distribution and facilitates chromatin opening at regulatory regions in seeds. During germination, H3.3 is essential for proper gene transcriptional regulation. Moreover, H3.3 is constantly loaded at the 3' gene end, correlating with gene body DNA methylation and the restriction of chromatin accessibility and cryptic transcription at this region. Our results suggest a fundamental role of H3.3 in initiating chromatin accessibility at regulatory regions in seed and licensing the embryonic to post-embryonic transition.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingyun Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Mande Xue
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Pan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijun Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications - cause and consequence of genome function. Nat Rev Genet 2022; 23:563-580. [PMID: 35338361 DOI: 10.1038/s41576-022-00468-7] [Citation(s) in RCA: 404] [Impact Index Per Article: 134.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 12/16/2022]
Abstract
Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.
Collapse
Affiliation(s)
- Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Adam Burton
- Institute of Epigenetics and Stem Cells, Helmholtz Center Munich, Munich, Germany
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Center Munich, Munich, Germany.
- Faculty of Biology, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.
| |
Collapse
|
16
|
Huang YC, Yuan W, Jacob Y. The Role of the TSK/TONSL-H3.1 Pathway in Maintaining Genome Stability in Multicellular Eukaryotes. Int J Mol Sci 2022; 23:9029. [PMID: 36012288 PMCID: PMC9409234 DOI: 10.3390/ijms23169029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Replication-dependent histone H3.1 and replication-independent histone H3.3 are nearly identical proteins in most multicellular eukaryotes. The N-terminal tails of these H3 variants, where the majority of histone post-translational modifications are made, typically differ by only one amino acid. Despite extensive sequence similarity with H3.3, the H3.1 variant has been hypothesized to play unique roles in cells, as it is specifically expressed and inserted into chromatin during DNA replication. However, identifying a function that is unique to H3.1 during replication has remained elusive. In this review, we discuss recent findings regarding the involvement of the H3.1 variant in regulating the TSK/TONSL-mediated resolution of stalled or broken replication forks. Uncovering this new function for the H3.1 variant has been made possible by the identification of the first proteins containing domains that can selectively bind or modify the H3.1 variant. The functional characterization of H3-variant-specific readers and writers reveals another layer of chromatin-based information regulating transcription, DNA replication, and DNA repair.
Collapse
Affiliation(s)
| | | | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, 260 Whitney Avenue, New Haven, CT 06511, USA
| |
Collapse
|
17
|
HIRA Supports Hepatitis B Virus Minichromosome Establishment and Transcriptional Activity in Infected Hepatocytes. Cell Mol Gastroenterol Hepatol 2022; 14:527-551. [PMID: 35643233 PMCID: PMC9304598 DOI: 10.1016/j.jcmgh.2022.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Upon hepatitis B virus (HBV) infection, partially double-stranded viral DNA converts into a covalently closed circular chromatinized episomal structure (cccDNA). This form represents the long-lived genomic reservoir responsible for viral persistence in the infected liver. Although the involvement of host cell DNA damage response in cccDNA formation has been established, this work investigated the yet-to-be-identified histone dynamics on cccDNA during early phases of infection in human hepatocytes. METHODS Detailed studies of host chromatin-associated factors were performed in cell culture models of natural infection (ie, Na+-taurocholate cotransporting polypeptide (NTCP)-overexpressing HepG2 cells, HepG2hNTCP) and primary human hepatocytes infected with HBV, by cccDNA-specific chromatin immunoprecipitation and loss-of-function experiments during early kinetics of viral minichromosome establishment and onset of viral transcription. RESULTS Our results show that cccDNA formation requires the deposition of the histone variant H3.3 via the histone regulator A (HIRA)-dependent pathway. This occurs simultaneously with repair of the cccDNA precursor and independently from de novo viral protein expression. Moreover, H3.3 in its S31 phosphorylated form appears to be the preferential H3 variant found on transcriptionally active cccDNA in infected cultured cells and human livers. HIRA depletion after cccDNA pool establishment showed that HIRA recruitment is required for viral transcription and RNA production. CONCLUSIONS Altogether, we show a crucial role for HIRA in the interplay between HBV genome and host cellular machinery to ensure the formation and active transcription of the viral minichromosome in infected hepatocytes.
Collapse
|
18
|
Transcription-coupled H3.3 recycling: A link with chromatin states. Semin Cell Dev Biol 2022; 135:13-23. [PMID: 35595602 DOI: 10.1016/j.semcdb.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/09/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022]
Abstract
Histone variant H3.3 is incorporated into chromatin throughout the cell cycle and even in non-cycling cells. This histone variant marks actively transcribed chromatin regions with high nucleosome turnover, as well as silent pericentric and telomeric repetitive regions. In the past few years, significant progress has been made in our understanding of mechanisms involved in the transcription-coupled deposition of H3.3. Here we review how, during transcription, new H3.3 deposition intermingles with the fate of the old H3.3 variant and its recycling. First, we describe pathways enabling the incorporation of newly synthesized vs old H3.3 histones in the context of transcription. We then review the current knowledge concerning differences between these two H3.3 populations, focusing on their PTMs composition. Finally, we discuss the implications of H3.3 recycling for the maintenance of the transcriptional state and underline the emerging importance of H3.3 as a potent epigenetic regulator for both maintaining and switching a transcriptional state.
Collapse
|
19
|
Udugama M, Vinod B, Chan FL, Hii L, Garvie A, Collas P, Kalitsis P, Steer D, Das P, Tripathi P, Mann J, Voon HPJ, Wong L. Histone H3.3 phosphorylation promotes heterochromatin formation by inhibiting H3K9/K36 histone demethylase. Nucleic Acids Res 2022; 50:4500-4514. [PMID: 35451487 PMCID: PMC9071403 DOI: 10.1093/nar/gkac259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 12/24/2022] Open
Abstract
Histone H3.3 is an H3 variant which differs from the canonical H3.1/2 at four residues, including a serine residue at position 31 which is evolutionarily conserved. The H3.3 S31 residue is phosphorylated (H3.3 S31Ph) at heterochromatin regions including telomeres and pericentric repeats. However, the role of H3.3 S31Ph in these regions remains unknown. In this study, we find that H3.3 S31Ph regulates heterochromatin accessibility at telomeres during replication through regulation of H3K9/K36 histone demethylase KDM4B. In mouse embryonic stem (ES) cells, substitution of S31 with an alanine residue (H3.3 A31 -phosphorylation null mutant) results in increased KDM4B activity that removes H3K9me3 from telomeres. In contrast, substitution with a glutamic acid (H3.3 E31, mimics S31 phosphorylation) inhibits KDM4B, leading to increased H3K9me3 and DNA damage at telomeres. H3.3 E31 expression also increases damage at other heterochromatin regions including the pericentric heterochromatin and Y chromosome-specific satellite DNA repeats. We propose that H3.3 S31Ph regulation of KDM4B is required to control heterochromatin accessibility of repetitive DNA and preserve chromatin integrity.
Collapse
Affiliation(s)
| | | | - F Lyn Chan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Linda Hii
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrew Garvie
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway,Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Paul Kalitsis
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - David Steer
- Biomedical Proteomics Facility, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Partha P Das
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Pratibha Tripathi
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jeffrey R Mann
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Hsiao P J Voon
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Lee H Wong
- To whom correspondence should be addressed.
| |
Collapse
|
20
|
Shindo Y, Brown MG, Amodeo AA. Versatile roles for histones in early development. Curr Opin Cell Biol 2022; 75:102069. [PMID: 35279563 PMCID: PMC9064922 DOI: 10.1016/j.ceb.2022.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
The nuclear environment changes dramatically over the course of early development. Histones are core chromatin components that play critical roles in regulating gene expression and nuclear architecture. Additionally, the embryos of many species, including Drosophila, Zebrafish, and Xenopus use the availability of maternally deposited histones to time critical early embryonic events including cell cycle slowing and zygotic genome activation. Here, we review recent insights into how histones control early development. We first discuss the regulation of chromatin functions through interaction of histones and transcription factors, incorporation of variant histones, and histone post-translational modifications. We also highlight emerging roles for histones as developmental regulators independent of chromatin association.
Collapse
Affiliation(s)
- Yuki Shindo
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - Madeleine G Brown
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
21
|
Gatto A, Forest A, Quivy JP, Almouzni G. HIRA-dependent boundaries between H3 variants shape early replication in mammals. Mol Cell 2022; 82:1909-1923.e5. [PMID: 35381196 DOI: 10.1016/j.molcel.2022.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
The lack of a consensus DNA sequence defining replication origins in mammals has led researchers to consider chromatin as a means to specify these regions. However, to date, there is no mechanistic understanding of how this could be achieved and maintained given that nucleosome disruption occurs with each fork passage and with transcription. Here, by genome-wide mapping of the de novo deposition of the histone variants H3.1 and H3.3 in human cells during S phase, we identified how their dual deposition mode ensures a stable marking with H3.3 flanked on both sides by H3.1. These H3.1/H3.3 boundaries correspond to the initiation zones of early origins. Loss of the H3.3 chaperone HIRA leads to the concomitant disruption of H3.1/H3.3 boundaries and initiation zones. We propose that the HIRA-dependent deposition of H3.3 preserves H3.1/H3.3 boundaries by protecting them from H3.1 invasion linked to fork progression, contributing to a chromatin-based definition of early replication zones.
Collapse
Affiliation(s)
- Alberto Gatto
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Audrey Forest
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Jean-Pierre Quivy
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France.
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
22
|
Stevens KM, Hocher A, Warnecke T. Deep conservation of histone variants in Thermococcales archaea. Genome Biol Evol 2021; 14:6459647. [PMID: 34894218 PMCID: PMC8775648 DOI: 10.1093/gbe/evab274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 11/12/2022] Open
Abstract
Histones are ubiquitous in eukaryotes where they assemble into nucleosomes, binding and wrapping DNA to form chromatin. One process to modify chromatin and regulate DNA accessibility is the replacement of histones in the nucleosome with paralogous variants. Histones are also present in archaea but whether and how histone variants contribute to the generation of different physiologically relevant chromatin states in these organisms remains largely unknown. Conservation of paralogs with distinct properties can provide prima facie evidence for defined functional roles. We recently revealed deep conservation of histone paralogs with different properties in the Methanobacteriales, but little is known experimentally about these histones. In contrast, the two histones of the model archaeon Thermococcus kodakarensis, HTkA and HTkB, have been examined in some depth, both in vitro and in vivo. HTkA and HTkB exhibit distinct DNA-binding behaviors and elicit unique transcriptional responses when deleted. Here, we consider the evolution of HTkA/B and their orthologs across the order Thermococcales. We find histones with signature HTkA- and HTkB-like properties to be present in almost all Thermococcales genomes. Phylogenetic analysis indicates the presence of one HTkA- and one HTkB-like histone in the ancestor of Thermococcales and long-term maintenance of these two paralogs throughout Thermococcales diversification. Our results support the notion that archaea and eukaryotes have convergently evolved histone variants that carry out distinct adaptive functions. Intriguingly, we also detect more highly diverged histone-fold proteins, related to those found in some bacteria, in several Thermococcales genomes. The functions of these bacteria-type histones remain unknown, but structural modeling suggests that they can form heterodimers with HTkA/B-like histones.
Collapse
Affiliation(s)
- Kathryn M Stevens
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Antoine Hocher
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tobias Warnecke
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Taguchi YH, Turki T. Tensor-Decomposition-Based Unsupervised Feature Extraction in Single-Cell Multiomics Data Analysis. Genes (Basel) 2021; 12:genes12091442. [PMID: 34573424 PMCID: PMC8468466 DOI: 10.3390/genes12091442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023] Open
Abstract
Analysis of single-cell multiomics datasets is a novel topic and is considerably challenging because such datasets contain a large number of features with numerous missing values. In this study, we implemented a recently proposed tensor-decomposition (TD)-based unsupervised feature extraction (FE) technique to address this difficult problem. The technique can successfully integrate single-cell multiomics data composed of gene expression, DNA methylation, and accessibility. Although the last two have large dimensions, as many as ten million, containing only a few percentage of nonzero values, TD-based unsupervised FE can integrate three omics datasets without filling in missing values. Together with UMAP, which is used frequently when embedding single-cell measurements into two-dimensional space, TD-based unsupervised FE can produce two-dimensional embedding coincident with classification when integrating single-cell omics datasets. Genes selected based on TD-based unsupervised FE are also significantly related to reasonable biological roles.
Collapse
Affiliation(s)
- Y-h. Taguchi
- Department of Physics, Chuo University, Tokyo 112-8551, Japan
- Correspondence: ; Tel.: +81-3-3817-1791
| | - Turki Turki
- Department of Computer Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
24
|
Zhao F, Zhang H, Zhao T, Li Z, Jiang D. The histone variant H3.3 promotes the active chromatin state to repress flowering in Arabidopsis. PLANT PHYSIOLOGY 2021; 186:2051-2063. [PMID: 34618105 PMCID: PMC8331167 DOI: 10.1093/plphys/kiab224] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/29/2021] [Indexed: 05/29/2023]
Abstract
The histone H3 family in animals and plants includes replicative H3 and nonreplicative H3.3 variants. H3.3 preferentially associates with active transcription, yet its function in development and transcription regulation remains elusive. The floral transition in Arabidopsis (Arabidopsis thaliana) involves complex chromatin regulation at a central flowering repressor FLOWERING LOCUS C (FLC). Here, we show that H3.3 upregulates FLC expression and promotes active histone modifications histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 36 trimethylation (H3K36me3) at the FLC locus. The FLC activator FRIGIDA (FRI) directly mediates H3.3 enrichment at FLC, leading to chromatin conformation changes and further induction of active histone modifications at FLC. Moreover, the antagonistic H3.3 and H2A.Z act in concert to activate FLC expression, likely by forming unstable nucleosomes ideal for transcription processing. We also show that H3.3 knockdown leads to H3K4me3 reduction at a subset of particularly short genes, suggesting the general role of H3.3 in promoting H3K4me3. The finding that H3.3 stably accumulates at FLC in the absence of H3K36me3 indicates that the H3.3 deposition may serve as a prerequisite for active histone modifications. Our results reveal the important function of H3.3 in mediating the active chromatin state for flowering repression.
Collapse
Affiliation(s)
- Fengyue Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy ofSciences, Beijing, 100039, China
| | - Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ting Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zicong Li
- School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy ofSciences, Beijing, 100039, China
| |
Collapse
|
25
|
Waddell AR, Huang H, Liao D. CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers (Basel) 2021; 13:2872. [PMID: 34201346 PMCID: PMC8229436 DOI: 10.3390/cancers13122872] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023] Open
Abstract
The CREB-binding protein (CBP) and p300 are two paralogous lysine acetyltransferases (KATs) that were discovered in the 1980s-1990s. Since their discovery, CBP/p300 have emerged as important regulatory proteins due to their ability to acetylate histone and non-histone proteins to modulate transcription. Work in the last 20 years has firmly established CBP/p300 as critical regulators for nuclear hormone signaling pathways, which drive tumor growth in several cancer types. Indeed, CBP/p300 are critical co-activators for the androgen receptor (AR) and estrogen receptor (ER) signaling in prostate and breast cancer, respectively. The AR and ER are stimulated by sex hormones and function as transcription factors to regulate genes involved in cell cycle progression, metabolism, and other cellular functions that contribute to oncogenesis. Recent structural studies of the AR/p300 and ER/p300 complexes have provided critical insights into the mechanism by which p300 interacts with and activates AR- and ER-mediated transcription. Breast and prostate cancer rank the first and forth respectively in cancer diagnoses worldwide and effective treatments are urgently needed. Recent efforts have identified specific and potent CBP/p300 inhibitors that target the acetyltransferase activity and the acetytllysine-binding bromodomain (BD) of CBP/p300. These compounds inhibit AR signaling and tumor growth in prostate cancer. CBP/p300 inhibitors may also be applicable for treating breast and other hormone-dependent cancers. Here we provide an in-depth account of the critical roles of CBP/p300 in regulating the AR and ER signaling pathways and discuss the potential of CBP/p300 inhibitors for treating prostate and breast cancer.
Collapse
Affiliation(s)
- Aaron R. Waddell
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| | - Haojie Huang
- Departments of Biochemistry and Molecular Biology and Urology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA;
| | - Daiqing Liao
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| |
Collapse
|
26
|
Not just a writer: PRC2 as a chromatin reader. Biochem Soc Trans 2021; 49:1159-1170. [PMID: 34060617 PMCID: PMC8286813 DOI: 10.1042/bst20200728] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
PRC2 deposits the H3K27me3 repressive mark, which facilitates transcription repression of developmental genes. The decision of whether a particular gene is silenced at a given point during development is heavily dependent on the chromatin context. More than just a simple epigenetic writer, PRC2 employs several distinct chromatin reading capabilities to sense the local chromatin environment and modulate the H3K27me3 writer activity in a context-dependent manner. Here we discuss the complex interplay of PRC2 with the hallmarks of active and repressive chromatin, how it affects H3K27me3 deposition and how it guides transcriptional activity.
Collapse
|
27
|
Franklin R, Murn J, Cheloufi S. Cell Fate Decisions in the Wake of Histone H3 Deposition. Front Cell Dev Biol 2021; 9:654915. [PMID: 33959610 PMCID: PMC8093820 DOI: 10.3389/fcell.2021.654915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
An expanding repertoire of histone variants and specialized histone chaperone partners showcases the versatility of nucleosome assembly during different cellular processes. Recent research has suggested an integral role of nucleosome assembly pathways in both maintaining cell identity and influencing cell fate decisions during development and normal homeostasis. Mutations and altered expression profiles of histones and corresponding histone chaperone partners are associated with developmental defects and cancer. Here, we discuss the spatiotemporal deposition mechanisms of the Histone H3 variants and their influence on mammalian cell fate during development. We focus on H3 given its profound effect on nucleosome stability and its recently characterized deposition pathways. We propose that differences in deposition of H3 variants are largely dependent on the phase of the cell cycle and cellular potency but are also affected by cellular stress and changes in cell fate. We also discuss the utility of modern technologies in dissecting the spatiotemporal control of H3 variant deposition, and how this could shed light on the mechanisms of cell identity maintenance and lineage commitment. The current knowledge and future studies will help us better understand how organisms employ nucleosome dynamics in health, disease, and aging. Ultimately, these pathways can be manipulated to induce cell fate change in a therapeutic setting depending on the cellular context.
Collapse
Affiliation(s)
- Reuben Franklin
- Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States
| | - Jernej Murn
- Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States
| | - Sihem Cheloufi
- Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
28
|
Abstract
The fertilized frog egg contains all the materials needed to initiate development of a new organism, including stored RNAs and proteins deposited during oogenesis, thus the earliest stages of development do not require transcription. The onset of transcription from the zygotic genome marks the first genetic switch activating the gene regulatory network that programs embryonic development. Zygotic genome activation occurs after an initial phase of transcriptional quiescence that continues until the midblastula stage, a period called the midblastula transition, which was first identified in Xenopus. Activation of transcription is programmed by maternally supplied factors and is regulated at multiple levels. A similar switch exists in most animals and is of great interest both to developmental biologists and to those interested in understanding nuclear reprogramming. Here we review in detail our knowledge on this major switch in transcription in Xenopus and place recent discoveries in the context of a decades old problem.
Collapse
Affiliation(s)
- Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States.
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States.
| |
Collapse
|
29
|
Abstract
Nucleosomes wrap DNA and impede access for the machinery of transcription. The core histones that constitute nucleosomes are subject to a diversity of posttranslational modifications, or marks, that impact the transcription of genes. Their functions have sometimes been difficult to infer because the enzymes that write and read them are complex, multifunctional proteins. Here, we examine the evidence for the functions of marks and argue that the major marks perform a fairly small number of roles in either promoting transcription or preventing it. Acetylations and phosphorylations on the histone core disrupt histone-DNA contacts and/or destabilize nucleosomes to promote transcription. Ubiquitylations stimulate methylations that provide a scaffold for either the formation of silencing complexes or resistance to those complexes, and carry a memory of the transcriptional state. Tail phosphorylations deconstruct silencing complexes in particular contexts. We speculate that these fairly simple roles form the basis of transcriptional regulation by histone marks.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
| |
Collapse
|
30
|
Abstract
Eukaryotic nucleosomes organize chromatin by wrapping 147 bp of DNA around a histone core particle comprising two molecules each of histone H2A, H2B, H3 and H4. The DNA entering and exiting the particle may be bound by the linker histone H1. Whereas deposition of bulk histones is confined to S-phase, paralogs of the common histones, known as histone variants, are available to carry out functions throughout the cell cycle and accumulate in post-mitotic cells. Histone variants confer different structural properties on nucleosomes by wrapping more or less DNA or by altering nucleosome stability. They carry out specialized functions in DNA repair, chromosome segregation and regulation of transcription initiation, or perform tissue-specific roles. In this Cell Science at a Glance article and the accompanying poster, we briefly examine new insights into histone origins and discuss variants from each of the histone families, focusing on how structural differences may alter their functions. Summary: Histone variants change the structural properties of nucleosomes by wrapping more or less DNA, altering nucleosome stability or carrying out specialized functions.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| |
Collapse
|
31
|
The incorporation loci of H3.3K36M determine its preferential prevalence in chondroblastomas. Cell Death Dis 2021; 12:311. [PMID: 33762579 PMCID: PMC7991640 DOI: 10.1038/s41419-021-03597-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
The histone H3.3K36M mutation, identified in over 90% of chondroblastoma cases, reprograms the H3K36 methylation landscape and gene expression to promote tumorigenesis. However, it's still unclear how the H3K36M mutation preferentially occurs in the histone H3 variant H3.3 in chondroblastomas. Here, we report that H3.3K36M-, but not H3.1K36M-, mutant cells showed increased colony formation ability and differentiation defects. H3K36 methylations and enhancers were reprogrammed to different status in H3.3K36M- and H3.1K36M-mutant cells. The reprogramming of H3K36 methylation and enhancers was depended on the specific loci at which H3.3K36M and H3.1K36M were incorporated. Moreover, targeting H3K36M-mutant proteins to the chromatin inhibited the H3K36 methylation locally. Taken together, these results highlight the roles of the chromatic localization of H3.3K36M-mutant protein in the reprogramming of the epigenome and the subsequent induction of tumorigenesis, and shed light on the molecular mechanisms by which the H3K36M mutation mainly occurs in histone H3.3 in chondroblastomas.
Collapse
|
32
|
Martínez de Paz A, Josefowicz SZ. Signaling-to-chromatin pathways in the immune system. Immunol Rev 2021; 300:37-53. [PMID: 33644906 PMCID: PMC8548991 DOI: 10.1111/imr.12955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/01/2023]
Abstract
Complex organisms are able to respond to diverse environmental cues by rapidly inducing specific transcriptional programs comprising a few dozen genes among thousands. The highly complex environment within the nucleus-a crowded milieu containing large genomes tightly condensed with histone proteins in the form of chromatin-makes inducible transcription a challenge for the cell, akin to the proverbial needle in a haystack. The different signaling pathways and transcription factors involved in the transmission of information from the cell surface to the nucleus have been readily explored, but not so much the specific mechanisms employed by the cell to ultimately instruct the chromatin changes necessary for a fast and robust transcription activation. Signaling pathways rely on cascades of protein kinases that, in addition to activating transcription factors can also activate the chromatin template by phosphorylating histone proteins, what we refer to as "signaling-to-chromatin." These pathways appear to be selectively employed and especially critical for driving inducible transcription in macrophages and likely in diverse other immune cell populations. Here, we discuss signaling-to-chromatin pathways with potential relevance in diverse immune cell populations together with chromatin related mechanisms that help to "solve" the needle in a haystack challenge of robust chromatin activation and inducible transcription.
Collapse
Affiliation(s)
- Alexia Martínez de Paz
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Steven Zvi Josefowicz
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
33
|
Lowe BR, Yadav RK, Henry RA, Schreiner P, Matsuda A, Fernandez AG, Finkelstein D, Campbell M, Kallappagoudar S, Jablonowski CM, Andrews AJ, Hiraoka Y, Partridge JF. Surprising phenotypic diversity of cancer-associated mutations of Gly 34 in the histone H3 tail. eLife 2021; 10:e65369. [PMID: 33522486 PMCID: PMC7872514 DOI: 10.7554/elife.65369] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/30/2021] [Indexed: 12/11/2022] Open
Abstract
Sequencing of cancer genomes has identified recurrent somatic mutations in histones, termed oncohistones, which are frequently poorly understood. Previously we showed that fission yeast expressing only the H3.3G34R mutant identified in aggressive pediatric glioma had reduced H3K36 trimethylation and acetylation, increased genomic instability and replicative stress, and defective homology-dependent DNA damage repair. Here we show that surprisingly distinct phenotypes result from G34V (also in glioma) and G34W (giant cell tumors of bone) mutations, differentially affecting H3K36 modifications, subtelomeric silencing, genomic stability; sensitivity to irradiation, alkylating agents, and hydroxyurea; and influencing DNA repair. In cancer, only 1 of 30 alleles encoding H3 is mutated. Whilst co-expression of wild-type H3 rescues most G34 mutant phenotypes, G34R causes dominant hydroxyurea sensitivity, homologous recombination defects, and dominant subtelomeric silencing. Together, these studies demonstrate the complexity associated with different substitutions at even a single residue in H3 and highlight the utility of genetically tractable systems for their analysis.
Collapse
Affiliation(s)
- Brandon R Lowe
- Department of Pathology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Rajesh K Yadav
- Department of Pathology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Ryan A Henry
- Department of Cancer Biology, Fox Chase Cancer CenterPhiladelphiaUnited States
| | - Patrick Schreiner
- Department of Bioinformatics, St. Jude Children’s Research HospitalMemphisUnited States
| | - Atsushi Matsuda
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications TechnologyKobeJapan
- Graduate School of Frontier Biosciences, Osaka UniversitySuitaJapan
| | - Alfonso G Fernandez
- Department of Pathology, St. Jude Children’s Research HospitalMemphisUnited States
| | - David Finkelstein
- Department of Bioinformatics, St. Jude Children’s Research HospitalMemphisUnited States
| | - Margaret Campbell
- Department of Pathology, St. Jude Children’s Research HospitalMemphisUnited States
| | | | | | - Andrew J Andrews
- Department of Cancer Biology, Fox Chase Cancer CenterPhiladelphiaUnited States
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications TechnologyKobeJapan
- Graduate School of Frontier Biosciences, Osaka UniversitySuitaJapan
| | - Janet F Partridge
- Department of Pathology, St. Jude Children’s Research HospitalMemphisUnited States
| |
Collapse
|
34
|
Histone Variant H3.3 Mutations in Defining the Chromatin Function in Mammals. Cells 2020; 9:cells9122716. [PMID: 33353064 PMCID: PMC7766983 DOI: 10.3390/cells9122716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
The systematic mutation of histone 3 (H3) genes in model organisms has proven to be a valuable tool to distinguish the functional role of histone residues. No system exists in mammalian cells to directly manipulate canonical histone H3 due to a large number of clustered and multi-loci histone genes. Over the years, oncogenic histone mutations in a subset of H3 have been identified in humans, and have advanced our understanding of the function of histone residues in health and disease. The oncogenic mutations are often found in one allele of the histone variant H3.3 genes, but they prompt severe changes in the epigenetic landscape of cells, and contribute to cancer development. Therefore, mutation approaches using H3.3 genes could be relevant to the determination of the functional role of histone residues in mammalian development without the replacement of canonical H3 genes. In this review, we describe the key findings from the H3 mutation studies in model organisms wherein the genetic replacement of canonical H3 is possible. We then turn our attention to H3.3 mutations in human cancers, and discuss H3.3 substitutions in the N-terminus, which were generated in order to explore the specific residue or associated post-translational modification.
Collapse
|
35
|
Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nat Genet 2020; 52:1271-1281. [PMID: 33257899 DOI: 10.1038/s41588-020-00736-4] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
Histone-modifying enzymes are implicated in the control of diverse DNA-templated processes including gene expression. Here, we outline historical and current thinking regarding the functions of histone modifications and their associated enzymes. One current viewpoint, based largely on correlative evidence, posits that histone modifications are instructive for transcriptional regulation and represent an epigenetic 'code'. Recent studies have challenged this model and suggest that histone marks previously associated with active genes do not directly cause transcriptional activation. Additionally, many histone-modifying proteins possess non-catalytic functions that overshadow their enzymatic activities. Given that much remains unknown regarding the functions of these proteins, the field should be cautious in interpreting loss-of-function phenotypes and must consider both cellular and developmental context. In this Perspective, we focus on recent progress relating to the catalytic and non-catalytic functions of the Trithorax-COMPASS complexes, Polycomb repressive complexes and Clr4/Suv39 histone-modifying machineries.
Collapse
|
36
|
Tafessu A, Banaszynski LA. Establishment and function of chromatin modification at enhancers. Open Biol 2020; 10:200255. [PMID: 33050790 PMCID: PMC7653351 DOI: 10.1098/rsob.200255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
How a single genome can give rise to distinct cell types remains a fundamental question in biology. Mammals are able to specify and maintain hundreds of cell fates by selectively activating unique subsets of their genome. This is achieved, in part, by enhancers-genetic elements that can increase transcription of both nearby and distal genes. Enhancers can be identified by their unique chromatin signature, including transcription factor binding and the enrichment of specific histone post-translational modifications, histone variants, and chromatin-associated cofactors. How each of these chromatin features contributes to enhancer function remains an area of intense study. In this review, we provide an overview of enhancer-associated chromatin states, and the proteins and enzymes involved in their establishment. We discuss recent insights into the effects of the enhancer chromatin state on ongoing transcription versus their role in the establishment of new transcription programmes, such as those that occur developmentally. Finally, we highlight the role of enhancer chromatin in new conceptual advances in gene regulation such as condensate formation.
Collapse
Affiliation(s)
| | - Laura A. Banaszynski
- UT Southwestern Medical Center, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, Hamon Center for Regenerative Science and Medicine, Dallas, TX 75390-8511, USA
| |
Collapse
|
37
|
Martire S, Banaszynski LA. The roles of histone variants in fine-tuning chromatin organization and function. Nat Rev Mol Cell Biol 2020; 21:522-541. [PMID: 32665685 PMCID: PMC8245300 DOI: 10.1038/s41580-020-0262-8] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Histones serve to both package and organize DNA within the nucleus. In addition to histone post-translational modification and chromatin remodelling complexes, histone variants contribute to the complexity of epigenetic regulation of the genome. Histone variants are characterized by a distinct protein sequence and a selection of designated chaperone systems and chromatin remodelling complexes that regulate their localization in the genome. In addition, histone variants can be enriched with specific post-translational modifications, which in turn can provide a scaffold for recruitment of variant-specific interacting proteins to chromatin. Thus, through these properties, histone variants have the capacity to endow specific regions of chromatin with unique character and function in a regulated manner. In this Review, we provide an overview of recent advances in our understanding of the contribution of histone variants to chromatin function in mammalian systems. First, we discuss new molecular insights into chaperone-mediated histone variant deposition. Next, we discuss mechanisms by which histone variants influence chromatin properties such as nucleosome stability and the local chromatin environment both through histone variant sequence-specific effects and through their role in recruiting different chromatin-associated complexes. Finally, we focus on histone variant function in the context of both embryonic development and human disease, specifically developmental syndromes and cancer.
Collapse
Affiliation(s)
- Sara Martire
- Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laura A Banaszynski
- Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
38
|
H3.3S31 phosphorylation: linking transcription elongation to stimulation responses. Signal Transduct Target Ther 2020; 5:176. [PMID: 32862206 PMCID: PMC7456420 DOI: 10.1038/s41392-020-00293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/02/2022] Open
|
39
|
Abstract
Histone variants regulate chromatin accessibility and gene transcription. Given their distinct properties and functions, histone varint substitutions allow for profound alteration of nucleosomal architecture and local chromatin landscape. Skeletal myogenesis driven by the key transcription factor MyoD is characterized by precise temporal regulation of myogenic genes. Timed substitution of variants within the nucleosomes provides a powerful means to ensure sequential expression of myogenic genes. Indeed, growing evidence has shown H3.3, H2A.Z, macroH2A, and H1b to be critical for skeletal myogenesis. However, the relative importance of various histone variants and their associated chaperones in myogenesis is not fully appreciated. In this review, we summarize the role that histone variants play in altering chromatin landscape to ensure proper muscle differentiation. The temporal regulation and cross talk between histones variants and their chaperones in conjunction with other forms of epigenetic regulation could be critical to understanding myogenesis and their involvement in myopathies.
Collapse
Affiliation(s)
- Nandini Karthik
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
40
|
Armache A, Yang S, Martínez de Paz A, Robbins LE, Durmaz C, Cheong JQ, Ravishankar A, Daman AW, Ahimovic DJ, Klevorn T, Yue Y, Arslan T, Lin S, Panchenko T, Hrit J, Wang M, Thudium S, Garcia BA, Korb E, Armache KJ, Rothbart SB, Hake SB, Allis CD, Li H, Josefowicz SZ. Histone H3.3 phosphorylation amplifies stimulation-induced transcription. Nature 2020; 583:852-857. [PMID: 32699416 PMCID: PMC7517595 DOI: 10.1038/s41586-020-2533-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/05/2020] [Indexed: 01/07/2023]
Abstract
Complex organisms can rapidly induce select genes in response to diverse environmental cues. This regulation occurs in the context of large genomes condensed by histone proteins into chromatin. The sensing of pathogens by macrophages engages conserved signalling pathways and transcription factors to coordinate the induction of inflammatory genes1-3. Enriched integration of histone H3.3, the ancestral histone H3 variant, is a general feature of dynamically regulated chromatin and transcription4-7. However, how chromatin is regulated at induced genes, and what features of H3.3 might enable rapid and high-level transcription, are unknown. The amino terminus of H3.3 contains a unique serine residue (Ser31) that is absent in 'canonical' H3.1 and H3.2. Here we show that this residue, H3.3S31, is phosphorylated (H3.3S31ph) in a stimulation-dependent manner along rapidly induced genes in mouse macrophages. This selective mark of stimulation-responsive genes directly engages the histone methyltransferase SETD2, a component of the active transcription machinery, and 'ejects' the elongation corepressor ZMYND118,9. We propose that features of H3.3 at stimulation-induced genes, including H3.3S31ph, provide preferential access to the transcription apparatus. Our results indicate dedicated mechanisms that enable rapid transcription involving the histone variant H3.3, its phosphorylation, and both the recruitment and the ejection of chromatin regulators.
Collapse
Affiliation(s)
- Anja Armache
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Shuang Yang
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Alexia Martínez de Paz
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lexi E Robbins
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ceyda Durmaz
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jin Q Cheong
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Arjun Ravishankar
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrew W Daman
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Dughan J Ahimovic
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Thaís Klevorn
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yuan Yue
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Tanja Arslan
- Adolf-Butenandt Institute, Ludwig-Maximilians University, Munich, Germany
| | - Shu Lin
- Epigenetics Institute, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Tanya Panchenko
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Joel Hrit
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Miao Wang
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Samuel Thudium
- Department of Genetics, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Adolf-Butenandt Institute, Ludwig-Maximilians University, Munich, Germany
| | - Erica Korb
- Department of Genetics, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Karim-Jean Armache
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Sandra B Hake
- Adolf-Butenandt Institute, Ludwig-Maximilians University, Munich, Germany
- Institute for Genetics, Justus-Liebig-University, Giessen, Germany
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
| | - Steven Z Josefowicz
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|