1
|
Pasquale EB. Eph receptor signaling complexes in the plasma membrane. Trends Biochem Sci 2024; 49:1079-1096. [PMID: 39537538 DOI: 10.1016/j.tibs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Eph receptor tyrosine kinases, together with their cell surface-anchored ephrin ligands, constitute an important cell-cell communication system that regulates physiological and pathological processes in most cell types. This review focuses on the multiple mechanisms by which Eph receptors initiate signaling via the formation of protein complexes in the plasma membrane. Upon ephrin binding, Eph receptors assemble into oligomers that can further aggregate into large complexes. Eph receptors also mediate ephrin-independent signaling through interplay with intracellular kinases or other cell-surface receptors. The distinct characteristics of Eph receptor family members, as well as their conserved domain structure, provide a framework for understanding their functional differences and redundancies. Possible areas of interest for future investigations of Eph receptor signaling complexes are also highlighted.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
2
|
Chiot A, Felgner MJ, Brownell D, Rott KH, Bogachuk A, Rosmus DD, Masuda T, Ching A, Atkinson PJ, Prinz M, Sachs K, Cheng AG, Wieghofer P, Ajami B. Single-cell, spatial, and fate-mapping analyses uncover niche dependent diversity of cochlear myeloid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621184. [PMID: 39554030 PMCID: PMC11565946 DOI: 10.1101/2024.10.30.621184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Recent advances in fate mapping and single-cell technologies have revealed how the dynamics and function of tissue-resident macrophages are shaped by their environment. However, macrophages in sensory organs such as the cochlea where the central nervous system and peripheral nervous system meet remain understudied. Combining single-cell transcriptomics, fate mapping, and parabiosis experiments, we show that five types of myeloid cells including three tissue-resident macrophage subpopulations, coexist in the mouse cochlea. The three macrophage subsets showed different potential functions in relationship with their specific topography across cochlear compartments. Further analysis revealed that they were partially derived from yolk sac progenitors during development, while in adulthood, most cochlear macrophages were long-term resident. Finally, we showed that cochlear macrophage morphology and density changed during aging. Our findings show that cochlea is a microenvironment with a unique heterogeneity of macrophages in terms of gene expression, spatial distribution, ontogeny, and function.
Collapse
|
3
|
Zhao Y, Long Y, Shi T, Ma X, Lian C, Wang H, Xu H, Yu L, Zhao X. Validating the splicing effect of rare variants in the SLC26A4 gene using minigene assay. BMC Med Genomics 2024; 17:233. [PMID: 39334476 PMCID: PMC11430457 DOI: 10.1186/s12920-024-02007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The SLC26A4 gene is the second most common cause of hereditary hearing loss in human. The aim of this study was to utilize the minigene assay in order to identify pathogenic variants of SLC26A4 associated with enlarged vestibular aqueduct (EVA) and hearing loss (HL) in two patients. METHODS The patients were subjected to multiplex PCR amplification and next-generation sequencing of common deafness genes (including GJB2, SLC26A4, and MT-RNR1), then bioinformatics analysis was performed on the sequencing data to identify candidate pathogenic variants. Minigene experiments were conducted to determine the potential impact of the variants on splicing. RESULTS Genetic testing revealed that the first patient carried compound heterozygous variants c.[1149 + 1G > A]; [919-2 A > G] in the SLC26A4 gene, while the second patient carried compound heterozygous variants c.[2089 + 3 A > T]; [919-2 A > G] in the same gene. Minigene experiments demonstrated that both c.1149 + 1G > A and c.2089 + 3 A > T affected mRNA splicing. According to the ACMG guidelines and the recommendations of the ClinGen Hearing Loss Expert Panel for ACMG variant interpretation, these variants were classified as "likely pathogenic". CONCLUSIONS This study identified the molecular etiology of hearing loss in two patients with EVA and elucidated the impact of rare variants on splicing, thus contributing to the mutational spectrum of pathogenic variants in the SLC26A4 gene.
Collapse
Affiliation(s)
- Yixin Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
| | - Yan Long
- Department of Clinical Laboratory, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Tao Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
| | - Xin Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
| | - Chengyu Lian
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou, 450052, China
| | - Hanjun Wang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou, 450052, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou, 450052, China
| | - Lisheng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China.
| | - Xiaotao Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
4
|
Tlili A, Mahfood M, Al Mutery A, Chouchen J. Genetic analysis of 106 sporadic cases with hearing loss in the UAE population. Hum Genomics 2024; 18:59. [PMID: 38844983 PMCID: PMC11157727 DOI: 10.1186/s40246-024-00630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Hereditary hearing loss is a rare hereditary condition that has a significant presence in consanguineous populations. Despite its prevalence, hearing loss is marked by substantial genetic diversity, which poses challenges for diagnosis and screening, particularly in cases with no clear family history or when the impact of the genetic variant requires functional analysis, such as in the case of missense mutations and UTR variants. The advent of next-generation sequencing (NGS) has transformed the identification of genes and variants linked to various conditions, including hearing loss. However, there remains a high proportion of undiagnosed patients, attributable to various factors, including limitations in sequencing coverage and gaps in our knowledge of the entire genome, among other factors. In this study, our objective was to comprehensively identify the spectrum of genes and variants associated with hearing loss in a cohort of 106 affected individuals from the UAE. RESULTS In this study, we investigated 106 sporadic cases of hearing impairment and performed genetic analyses to identify causative mutations. Screening of the GJB2 gene in these cases revealed its involvement in 24 affected individuals, with specific mutations identified. For individuals without GJB2 mutations, whole exome sequencing (WES) was conducted. WES revealed 33 genetic variants, including 6 homozygous and 27 heterozygous DNA changes, two of which were previously implicated in hearing loss, while 25 variants were novel. We also observed multiple potential pathogenic heterozygous variants across different genes in some cases. Notably, a significant proportion of cases remained without potential pathogenic variants. CONCLUSIONS Our findings confirm the complex genetic landscape of hearing loss and the limitations of WES in achieving a 100% diagnostic rate, especially in conditions characterized by genetic heterogeneity. These results contribute to our understanding of the genetic basis of hearing loss and emphasize the need for further research and comprehensive genetic analyses to elucidate the underlying causes of this condition.
Collapse
Affiliation(s)
- Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Building W8 Room 107, P.O. Box: 27272, Sharjah, United Arab Emirates.
- Human Genetics and Stem Cell Laboratory, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates.
| | - Mona Mahfood
- Department of Applied Biology, College of Sciences, University of Sharjah, Building W8 Room 107, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Abdullah Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Building W8 Room 107, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Jihen Chouchen
- Human Genetics and Stem Cell Laboratory, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
5
|
Tritto V, Bettinaglio P, Mangano E, Cesaretti C, Marasca F, Castronovo C, Bordoni R, Battaglia C, Saletti V, Ranzani V, Bodega B, Eoli M, Natacci F, Riva P. Genetic/epigenetic effects in NF1 microdeletion syndrome: beyond the haploinsufficiency, looking at the contribution of not deleted genes. Hum Genet 2024; 143:775-795. [PMID: 38874808 PMCID: PMC11186880 DOI: 10.1007/s00439-024-02683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
NF1 microdeletion syndrome, accounting for 5-11% of NF1 patients, is caused by a deletion in the NF1 region and it is generally characterized by a severe phenotype. Although 70% of NF1 microdeletion patients presents the same 1.4 Mb type-I deletion, some patients may show additional clinical features. Therefore, the contribution of several pathogenic mechanisms, besides haploinsufficiency of some genes within the deletion interval, is expected and needs to be defined. We investigated an altered expression of deletion flanking genes by qPCR in patients with type-1 NF1 deletion, compared to healthy donors, possibly contributing to the clinical traits of NF1 microdeletion syndrome. In addition, the 1.4-Mb deletion leads to changes in the 3D chromatin structure in the 17q11.2 region. Specifically, this deletion alters DNA-DNA interactions in the regions flanking the breakpoints, as demonstrated by our 4C-seq analysis. This alteration likely causes position effect on the expression of deletion flanking genes.Interestingly, 4C-seq analysis revealed that in microdeletion patients, an interaction was established between the RHOT1 promoter and the SLC6A4 gene, which showed increased expression. We performed NGS on putative modifier genes, and identified two "likely pathogenic" rare variants in RAS pathway, possibly contributing to incidental phenotypic features.This study provides new insights into understanding the pathogenesis of NF1 microdeletion syndrome and suggests a novel pathomechanism that contributes to the expression phenotype in addition to haploinsufficiency of genes located within the deletion.This is a pivotal approach that can be applied to unravel microdeletion syndromes, improving precision medicine, prognosis and patients' follow-up.
Collapse
Affiliation(s)
- Viviana Tritto
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Milan, Italy
| | - Paola Bettinaglio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Milan, Italy
| | - Eleonora Mangano
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate (Milan), Italy
| | - Claudia Cesaretti
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Marasca
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Chiara Castronovo
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate (Milan), Italy
| | - Roberta Bordoni
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate (Milan), Italy
| | - Cristina Battaglia
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Milan, Italy
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate (Milan), Italy
| | - Veronica Saletti
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valeria Ranzani
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Beatrice Bodega
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy
- Department of Biosciences (DBS), University of Milan, Milan, Italy
| | - Marica Eoli
- Molecular Neuroncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federica Natacci
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy.
| | - Paola Riva
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Milan, Italy.
| |
Collapse
|
6
|
Takahashi S, Homma K. The molecular principles underlying diverse functions of the SLC26 family of proteins. J Biol Chem 2024; 300:107261. [PMID: 38582450 PMCID: PMC11078650 DOI: 10.1016/j.jbc.2024.107261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024] Open
Abstract
Mammalian SLC26 proteins are membrane-based anion transporters that belong to the large SLC26/SulP family, and many of their variants are associated with hereditary diseases. Recent structural studies revealed a strikingly similar homodimeric molecular architecture for several SLC26 members, implying a shared molecular principle. Now a new question emerges as to how these structurally similar proteins execute diverse physiological functions. In this study, we sought to identify the common versus distinct molecular mechanism among the SLC26 proteins using both naturally occurring and artificial missense changes introduced to SLC26A4, SLC26A5, and SLC26A9. We found: (i) the basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last transmembrane helices, TM14, is not of functional significance in SLC26A9 but crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane. These findings advance our understanding of the molecular mechanisms underlying the diverse physiological roles of the SLC26 family of proteins.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Center for Mechanical Excitability, The University of Chicago, Chicago, Illinois, USA
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Center for Mechanical Excitability, The University of Chicago, Chicago, Illinois, USA; The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
7
|
Ma Z, Huang W, Xu J, Qiu J, Liu Y, Ye M, Fan S. Analysis of deafness susceptibility gene of neonates in northern Guangdong, China. Sci Rep 2024; 14:362. [PMID: 38172182 PMCID: PMC10764796 DOI: 10.1038/s41598-023-49530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
This study aimed to explore the molecular epidemiology characteristics of deafness susceptibility genes in neonates in northern Guangdong and provide a scientific basis for deafness prevention and control. A total of 10,183 neonates were recruited between January 2018 and December 2022 at Yuebei People's Hospital. Among these, a PCR hybridization screening group of 8276 neonates was tested for four deafness genes: GJB2, SLC26A4, mtDNA, and GJB3 by PCR hybridization. Another group used next-generation sequencing (NGS) to detect genetic susceptibility genes in 1907 neonates. In PCR hybridization screening group, 346 (4.18%) of 8276 neonates were found to be carriers of the deafness gene. Among these, 182 (2.2%) had GJB2 variants, 114 (1.38%) had SLC26A4 variants, 35 (0.42%) had mtDNA variants, and 15 (0.18%) had GJB3 variants. In NGS Screening Group, 195 out of 1907 neonates were found to be carriers of the deafness gene, with a positive rate of 10.22%. Among these, 137 (7.18%) had GJB2 variants, 41 (2.15%) had SLC26A4 variants, 11 (0.58%) had mtDNA variants, and 6 (0.31%) had GJB3 variants. The prevalence of deafness gene variants was high in Northern Guangdong Province. The most common gene for deafness was GJB2, followed by SLC26A4 and mtDNA. GJB3 variants are rare. Compared with PCR hybridization method, NGS technology can expand the screening scope and greatly improve the detection rate of deafness genes. The c.109G>A of GJB2 was found to occur at a high frequency, which should be considered. Therefore, it is important to conduct neonatal deafness gene screening to prevent and control hereditary deafness.
Collapse
Affiliation(s)
- Zhanzhong Ma
- Reproductive Medicine Center, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512026, China
| | - Wenbo Huang
- Reproductive Medicine Center, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512026, China
| | - Jing Xu
- Reproductive Medicine Center, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512026, China
| | - Jianwu Qiu
- Department of Neonatology, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512026, China
| | - Yulan Liu
- Reproductive Medicine Center, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512026, China
| | - Meixian Ye
- Department of Biobank, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512026, China
| | - Shushu Fan
- Reproductive Medicine Center, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512026, China.
| |
Collapse
|
8
|
Wang L, Liu G, Ma D, Zeng H, Wang Y, Luo C, Zhang J, Xu Z. Next-generation sequencing for genetic testing of hearing loss populations. Clin Chim Acta 2024; 552:117693. [PMID: 38056549 DOI: 10.1016/j.cca.2023.117693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/03/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND AND AIMS Hearing loss is a common sensorineural disease with genetic heterogeneity. More than 140 genes are known to cause hereditary hearing loss. We aim to uncover the etiologies of hearing loss and provide patients with reasonable reproductive choices. MATERIALS AND METHODS Total 825 participants were recruited, including 74 individuals, 47 couples, and 219 families, to identify the molecular etiologies of hearing loss using next-generation sequencing (NGS). Novel mutations were verified with a minigene splicing assay and the construction of three-dimensional protein models. RESULTS A positive molecular diagnosis was obtained for 244 patients, a rate of 63.05 %. Total 470 mutations were identified in 18 causative genes in positive patients. The most common genes mutated were GJB2 and SLC26A4. 47 novel mutations were identified. Further analysis predicted that two splicing mutations would cause abnormal mRNA splicing and three missense mutations would affect the protein structure. The results of prenatal diagnosis showed that the genotypes of 15 fetuses were the same as the probands. CONCLUSION Our findings expand the mutation spectrum of hearing loss and highlight the importance of genetic diagnosis and prenatal diagnosis to allow accurate and personalized guidance for those at high risk of deafness.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Gang Liu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Dingyuan Ma
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Huasha Zeng
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Yuguo Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Chunyu Luo
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Jingjing Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China.
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China.
| |
Collapse
|
9
|
Geertsma ER, Oliver D. SLC26 Anion Transporters. Handb Exp Pharmacol 2024; 283:319-360. [PMID: 37947907 DOI: 10.1007/164_2023_698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Solute carrier family 26 (SLC26) is a family of functionally diverse anion transporters found in all kingdoms of life. Anions transported by SLC26 proteins include chloride, bicarbonate, and sulfate, but also small organic dicarboxylates such as fumarate and oxalate. The human genome encodes ten functional homologs, several of which are causally associated with severe human diseases, highlighting their physiological importance. Here, we review novel insights into the structure and function of SLC26 proteins and summarize the physiological relevance of human members.
Collapse
Affiliation(s)
- Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg, Giessen, Germany.
| |
Collapse
|
10
|
Takahashi S, Homma K. The molecular principles underlying diverse functions of the SLC26 family of proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570988. [PMID: 38106153 PMCID: PMC10723444 DOI: 10.1101/2023.12.10.570988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mammalian SLC26 proteins are membrane-based anion transporters that belong to the large SLC26/SulP family, and many of their variants are associated with hereditary diseases. Recent structural studies revealed a strikingly similar homodimeric molecular architecture for several SLC26 members, implying a shared molecular principle. Now a new question emerges as to how these structurally similar proteins execute diverse physiological functions. In this study we sought to identify the common vs. distinct molecular mechanism among the SLC26 proteins using both naturally occurring and artificial missense changes introduced to SLC26A4, SLC26A5, and SLC26A9. We found: (i) the basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last transmembrane helices, TM14, is not of functional significance in SLC26A9 but crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane. These findings advance our understanding of the molecular mechanisms underlying the diverse physiological roles of the SLC26 family of proteins.
Collapse
|
11
|
Abstract
Pattern recognition of specific temporal bone radiological phenotypes, in association with abnormalities in other organ systems, is critical in the diagnosis and management of syndromic causes of hearing loss. Several recent publications have demonstrated the presence of specific radiological appearances, allowing precise genetic and/or syndromic diagnosis, in the right clinical context. This review article aims to provide an extensive but practical guide to the radiologist dealing with syndromic causes of hearing loss.
Collapse
Affiliation(s)
- Martin Lewis
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond St. London, London, WC1N3JH, UK
| | - Caroline D Robson
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Felice D'Arco
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond St. London, London, WC1N3JH, UK. felice.d'
| |
Collapse
|
12
|
Tao Y, Lamas V, Du W, Zhu W, Li Y, Whittaker MN, Zuris JA, Thompson DB, Rameshbabu AP, Shu Y, Gao X, Hu JH, Pei C, Kong WJ, Liu X, Wu H, Kleinstiver BP, Liu DR, Chen ZY. Treatment of monogenic and digenic dominant genetic hearing loss by CRISPR-Cas9 ribonucleoprotein delivery in vivo. Nat Commun 2023; 14:4928. [PMID: 37582836 PMCID: PMC10427623 DOI: 10.1038/s41467-023-40476-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Mutations in Atp2b2, an outer hair cell gene, cause dominant hearing loss in humans. Using a mouse model Atp2b2Obl/+, with a dominant hearing loss mutation (Oblivion), we show that liposome-mediated in vivo delivery of CRISPR-Cas9 ribonucleoprotein complexes leads to specific editing of the Obl allele. Large deletions encompassing the Obl locus and indels were identified as the result of editing. In vivo genome editing promotes outer hair cell survival and restores their function, leading to hearing recovery. We further show that in a double-dominant mutant mouse model, in which the Tmc1 Beethoven mutation and the Atp2b2 Oblivion mutation cause digenic genetic hearing loss, Cas9/sgRNA delivery targeting both mutations leads to partial hearing recovery. These findings suggest that liposome-RNP delivery can be used as a strategy to recover hearing with dominant mutations in OHC genes and with digenic mutations in the auditory hair cells, potentially expanding therapeutics of gene editing to treat hearing loss.
Collapse
Affiliation(s)
- Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Veronica Lamas
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Wan Du
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
| | - Wenliang Zhu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
| | - Yiran Li
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
- C.S. Mott Children's Hospital, Ann Harbor, MI, USA
| | - Madelynn N Whittaker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General hospital, Boston, MA, 02114, USA
| | - John A Zuris
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David B Thompson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Arun Prabhu Rameshbabu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
| | - Yilai Shu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200031, China
| | - Xue Gao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Johnny H Hu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Charles Pei
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA.
| |
Collapse
|
13
|
Berry V, Ionides A, Georgiou M, Quinlan RA, Michaelides M. Multimorbidity due to novel pathogenic variants in the WFS1/RP1/NOD2 genes: autosomal dominant congenital lamellar cataract, retinitis pigmentosa and Crohn's disease in a British family. BMJ Open Ophthalmol 2023; 8:e001252. [PMID: 37493686 PMCID: PMC10351282 DOI: 10.1136/bmjophth-2023-001252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/08/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND A five generation family has been analysed by whole exome sequencing (WES) for genetic associations with the multimorbidities of congenital cataract (CC), retinitis pigmentosa (RP) and Crohn's disease (CD). METHODS WES was performed for unaffected and affected individuals within the family pedigree followed by bioinformatic analyses of these data to identify disease-causing variants with damaging pathogenicity scores. RESULTS A novel pathogenic missense variant in WFS1: c.1897G>C; p.V633L, a novel pathogenic nonsense variant in RP1: c.6344T>G; p.L2115* and a predicted pathogenic missense variant in NOD2: c.2104C>T; p.R702W are reported. The three variants cosegregated with the phenotypic combinations of autosomal dominant CC, RP and CD within individual family members. CONCLUSIONS Here, we report multimorbidity in a family pedigree listed on a CC register, which broadens the spectrum of potential cataract associated genes to include both RP1 and NOD2.
Collapse
Affiliation(s)
- Vanita Berry
- Genetics, UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK, London, UK
| | - Alexander Ionides
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK, London, UK
| | - Michalis Georgiou
- Genetics, UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK, London, UK
| | - Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, Durham DH1 3LE, UK, Durham, UK
| | - Michel Michaelides
- Genetics, UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK, London, UK
| |
Collapse
|
14
|
Koh JY, Affortit C, Ranum PT, West C, Walls WD, Yoshimura H, Shao JQ, Mostaert B, Smith RJH. Single-cell RNA-sequencing of stria vascularis cells in the adult Slc26a4 -/- mouse. BMC Med Genomics 2023; 16:133. [PMID: 37322474 PMCID: PMC10268361 DOI: 10.1186/s12920-023-01549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND The primary pathological alterations of Pendred syndrome are endolymphatic pH acidification and luminal enlargement of the inner ear. However, the molecular contributions of specific cell types remain poorly characterized. Therefore, we aimed to identify pH regulators in pendrin-expressing cells that may contribute to the homeostasis of endolymph pH and define the cellular pathogenic mechanisms that contribute to the dysregulation of cochlear endolymph pH in Slc26a4-/- mice. METHODS We used single-cell RNA sequencing to identify both Slc26a4-expressing cells and Kcnj10-expressing cells in wild-type (WT, Slc26a4+/+) and Slc26a4-/- mice. Bioinformatic analysis of expression data confirmed marker genes defining the different cell types of the stria vascularis. In addition, specific findings were confirmed at the protein level by immunofluorescence. RESULTS We found that spindle cells, which express pendrin, contain extrinsic cellular components, a factor that enables cell-to-cell communication. In addition, the gene expression profile informed the pH of the spindle cells. Compared to WT, the transcriptional profiles in Slc26a4-/- mice showed downregulation of extracellular exosome-related genes in spindle cells. Immunofluorescence studies in spindle cells of Slc26a4-/- mice validated the increased expression of the exosome-related protein, annexin A1, and the clathrin-mediated endocytosis-related protein, adaptor protein 2. CONCLUSION Overall, cell isolation of stria vascularis from WT and Slc26a4-/- samples combined with cell type-specific transcriptomic analyses revealed pH-dependent alternations in spindle cells and intermediate cells, inspiring further studies into the dysfunctional role of stria vascularis cells in SLC26A4-related hearing loss.
Collapse
Affiliation(s)
- Jin-Young Koh
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, University of Iowa, Iowa City, IA, USA
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Corentin Affortit
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Paul T Ranum
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Cody West
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - William D Walls
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Hidekane Yoshimura
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jian Q Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, USA
| | - Brian Mostaert
- Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Richard J H Smith
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, University of Iowa, Iowa City, IA, USA.
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
15
|
Carlos dos Reis D, Dastoor P, Santos AK, Sumigray K, Ameen NA. CFTR high expresser cells in cystic fibrosis and intestinal diseases. Heliyon 2023; 9:e14568. [PMID: 36967909 PMCID: PMC10031467 DOI: 10.1016/j.heliyon.2023.e14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), the Cl-/HCO3 - channel implicated in Cystic Fibrosis, is critical to the pathophysiology of many gastrointestinal diseases. Defects in CFTR lead to intestinal dysfunction, malabsorption, obstruction, infection, inflammation, and cancer that increases morbidity and reduces quality of life. This review will focus on CFTR in the intestine and the implications of the subpopulation of CFTR High Expresser Cells (CHEs) in Cystic Fibrosis (CF), intestinal physiology and pathophysiology of intestinal diseases.
Collapse
Affiliation(s)
- Diego Carlos dos Reis
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
| | - Parinaz Dastoor
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
| | - Anderson Kenedy Santos
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Kaelyn Sumigray
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Nadia A. Ameen
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT06510, USA
- Corresponding author. Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA.
| |
Collapse
|
16
|
Zhang J, Guan J, Wang Q. [Genetics of pediatric hearing loss]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2023; 37:181-185. [PMID: 36843515 PMCID: PMC10320671 DOI: 10.13201/j.issn.2096-7993.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 02/28/2023]
Abstract
With the rapid development of sequencing technology and bioinformatics, the genetic research and related clinical practice of pediatric hearing loss have also made significant progress. This review summarized and analyzed the genetic causes of hearing impairment in children and the research progress of related genetic diagnosis and screening, in order to provide reference for the prevention and treatment of pediatric hearing loss and related research.
Collapse
Affiliation(s)
- Jiao Zhang
- Department of Audiology and Vestibular Medicine,Institute of Otolaryngology,Senior Department of Otolaryngology Head and Neck Surgery,the Sixth Medical Center of Chinese PLA General Hospital,National Clinical Research Center for Otolaryngologic Diseases,Beijing,100048,China
| | - Jing Guan
- Department of Otolaryngology Head and Neck Surgery,the First Medical Center of Chinese PLA General Hospital
| | - Qiuju Wang
- Department of Audiology and Vestibular Medicine,Institute of Otolaryngology,Senior Department of Otolaryngology Head and Neck Surgery,the Sixth Medical Center of Chinese PLA General Hospital,National Clinical Research Center for Otolaryngologic Diseases,Beijing,100048,China
| |
Collapse
|
17
|
Bałdyga N, Oziębło D, Gan N, Furmanek M, Leja ML, Skarżyński H, Ołdak M. The Genetic Background of Hearing Loss in Patients with EVA and Cochlear Malformation. Genes (Basel) 2023; 14:genes14020335. [PMID: 36833263 PMCID: PMC9957411 DOI: 10.3390/genes14020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The most frequently observed congenital inner ear malformation is enlarged vestibular aqueduct (EVA). It is often accompanied with incomplete partition type 2 (IP2) of the cochlea and a dilated vestibule, which together constitute Mondini malformation. Pathogenic SLC26A4 variants are considered the major cause of inner ear malformation but the genetics still needs clarification. The aim of this study was to identify the cause of EVA in patients with hearing loss (HL). Genomic DNA was isolated from HL patients with radiologically confirmed bilateral EVA (n = 23) and analyzed by next generation sequencing using a custom HL gene panel encompassing 237 HL-related genes or a clinical exome. The presence and segregation of selected variants and the CEVA haplotype (in the 5' region of SLC26A4) was verified by Sanger sequencing. Minigene assay was used to evaluate the impact of novel synonymous variant on splicing. Genetic testing identified the cause of EVA in 17/23 individuals (74%). Two pathogenic variants in the SLC26A4 gene were identified as the cause of EVA in 8 of them (35%), and a CEVA haplotype was regarded as the cause of EVA in 6 of 7 patients (86%) who carried only one SLC26A4 genetic variant. In two individuals with a phenotype matching branchio-oto-renal (BOR) spectrum disorder, cochlear hypoplasia resulted from EYA1 pathogenic variants. In one patient, a novel variant in CHD7 was detected. Our study shows that SLC26A4, together with the CEVA haplotype, accounts for more than half of EVA cases. Syndromic forms of HL should also be considered in patients with EVA. We conclude that to better understand inner ear development and the pathogenesis of its malformations, there is a need to look for pathogenic variants in noncoding regions of known HL genes or to link them with novel candidate HL genes.
Collapse
Affiliation(s)
- Natalia Bałdyga
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
- Doctoral School of Translational Medicine, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| | - Dominika Oziębło
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
| | - Nina Gan
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
- Doctoral School of Translational Medicine, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| | - Mariusz Furmanek
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
| | - Marcin L. Leja
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-356-03-66
| |
Collapse
|
18
|
Tawalbeh M, Aburizeg D, Abu Alragheb BO, Alaqrabawi WS, Dardas Z, Srour L, Altarayra BH, Zayed AA, El Omari Z, Azab B. SLC26A4 Phenotypic Variability Influences Intra- and Inter-Familial Diagnosis and Management. Genes (Basel) 2022; 13:genes13122192. [PMID: 36553459 PMCID: PMC9778369 DOI: 10.3390/genes13122192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
SLC26A4 is one of the most common genes causing autosomal recessive non-syndromic sensorineural hearing loss (SNHL). It has been reported to cause Pendred Syndrome (PDS) and DFNB4 which is deafness with enlarged vestibular aqueduct (EVA). However, mutated SLC26A4 is not conclusive for having either DFNB4 or PDS. Three unrelated Jordanian families consisting of eight affected individuals with congenital bilateral hearing loss (HL) participated in this study. Whole-exome and Sanger sequencing were performed to investigate the underlying molecular etiology of HL. Further clinical investigations, including laboratory blood workup for the thyroid gland, CT scan for the temporal bone, and thyroid ultrasound were performed. Three disease-causing variants were identified in SLC26A4 in the three families, two of which were novel. Two families had a novel pathogenic homozygous splice-site accepter variant (c.165-1G>C), while the third family had compound heterozygous pathogenic variants (c.1446G>A; p.Trp482* and c.304G>A; p.Gly102Arg). Our approach helped in redirecting the diagnosis of several affected members of three different families from non-syndromic HL to syndromic HL. Two of the affected individuals had typical PDS, one had DFNB4, while the rest had atypical PDS. Our work emphasized the intra- and inter-familial variability of SLC26A4-related phenotypes. In addition, we highlighted the variable phenotypic impact of SLC26A4 on tailoring a personalized healthcare management.
Collapse
Affiliation(s)
- Mohamed Tawalbeh
- Department of Special Surgery, Jordan University Hospital, Amman 11942, Jordan
- Correspondence: (M.T.); (B.A.)
| | - Dunia Aburizeg
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Bayan O. Abu Alragheb
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Wala Sami Alaqrabawi
- Hearing and Speech Department, School of Rehabilitation Sciences, The University of Jordan, Amman 11942, Jordan
- Audiology Department, Faculty of Medical Sciences, Hacettepe University, Ankara 06100, Turkey
| | - Zain Dardas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luma Srour
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | | | - Ayman A. Zayed
- Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Jordan University Hospital, Amman 11942, Jordan
| | - Zaid El Omari
- Otolaryngology, Head and Neck Surgery Department, Jordanian Royal Medical Services, Amman 11855, Jordan
| | - Bilal Azab
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence: (M.T.); (B.A.)
| |
Collapse
|
19
|
Molecular diagnose of a large hearing loss population from China by targeted genome sequencing. J Hum Genet 2022; 67:643-649. [PMID: 35982127 PMCID: PMC9592555 DOI: 10.1038/s10038-022-01066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
Hereditary hearing loss is genetically heterogeneous, with diverse clinical manifestations. Here we performed targeted genome sequencing of 227 hearing loss related genes in 1027 patients with bilateral hearing loss and 520 healthy volunteers with normal hearing to comprehensively identify the molecular etiology of hereditary hearing loss in a large cohort from China. We obtained a diagnostic rate of 57.25% (588/1027) for the patients, while 4.67% (48/1027) of the patients were identified with uncertain diagnoses. Of the implicated 35 hearing loss genes, three common genes, including SLC26A4(278/588), GJB2(207/588), MT-RNR1(19/588), accounted for 85.54% (503/588) of the diagnosed cases, while 32 uncommon hearing loss genes, including MYO15A, MITF, OTOF, POU3F4, PTPN11, etc. accounted for the remaining diagnostic rate of 14.46% (85/588). Apart from Pendred syndrome, other eight types of syndromic hearing loss were also identified. Of the 64 uncertain significant variants and 244 pathogenic/likely pathogenic variants identified in the patients, 129 novel variants were also detected. Thus, the molecular etiology presented with high heterogeneity with the leading causes to be SLC26A4 and GJB2 genes in the Chinese hearing loss population. It’s urgent to develop a database of the ethnicity-matched healthy population as well as to perform functional studies for further classification of uncertain significant variants.
Collapse
|
20
|
Machine learning approaches to explore digenic inheritance. Trends Genet 2022; 38:1013-1018. [DOI: 10.1016/j.tig.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022]
|
21
|
Novel CRISPR/Cas12a-based genetic diagnostic approach for SLC26A4 mutation-related hereditary hearing loss. Eur J Med Genet 2021; 65:104406. [PMID: 34968750 DOI: 10.1016/j.ejmg.2021.104406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 09/18/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
Hereditary hearing loss is a common defect of the auditory nervous system with high-incidence, seriously affecting the quality of life of the patients. The clinical manifestations of SLC26A4 mutation-related hearing loss are congenital sensorineural or mixed deafness. Sensitive and specific SLC26A4 mutation detection in the early clinical stage is key for the early indication of potential hearing loss in the lack of effective treatment. Using clustered regularly interspaced short palindromic repeats (CRISPR)-based nucleic acid detection technology, we designed a fast and sensitive detection system for SLC26A4 pathogenic mutations (c.919-2A > G, c.2168A > G and c.1229C > T). This recombinase-aided amplification-based detection system allows rapid target gene amplification and, in combination with the CRISPR-based nucleic acid testing (NAT) system, mutation site detection. Moreover, mismatches were introduced in CRISPR-derived RNA (crRNA) to increase signal differences between the wild-type genes and mutant genes. A total of 64 samples were examined using this approach and all results were verified using Sanger sequencing. The detection results were consistent with the polymerase chain reaction-Sanger sequencing results. Overall, this CRISPR-based NAT technology provides a sensitive and fast new approach for the detection of hereditary deafness and provides a crRNA optimization strategy for single-nucleotide polymorphism detection, which could be helpful for the clinical diagnosis of SLC26A4 mutation-related hereditary hearing loss.
Collapse
|
22
|
Tesolin P, Fiorino S, Lenarduzzi S, Rubinato E, Cattaruzzi E, Ammar L, Castro V, Orzan E, Granata C, Dell’Orco D, Morgan A, Girotto G. Pendred Syndrome, or Not Pendred Syndrome? That Is the Question. Genes (Basel) 2021; 12:1569. [PMID: 34680964 PMCID: PMC8535891 DOI: 10.3390/genes12101569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Pendred syndrome (PDS) is the most common form of syndromic Hearing Loss (HL), characterized by sensorineural HL, inner ear malformations, and goiter, with or without hypothyroidism. SLC26A4 is the major gene involved, even though ~50% of the patients carry only one pathogenic mutation. This study aims to define the molecular diagnosis for a cohort of 24 suspected-PDS patients characterized by a deep radiological and audiological evaluation. Whole-Exome Sequencing (WES), the analysis of twelve variants upstream of SLC26A4, constituting the "CEVA haplotype" and Multiplex Ligation Probe Amplification (MLPA) searching for deletions/duplications in SLC26A4 gene have been carried out. In five patients (20.8%) homozygous/compound heterozygous SLC26A4 mutations, or pathogenic mutation in trans with the CEVA haplotype have been identified, while five subjects (20.8%) resulted heterozygous for a single variant. In silico protein modeling supported the pathogenicity of the detected variants, suggesting an effect on the protein stabilization/function. Interestingly, we identified a genotype-phenotype correlation among those patients carrying SLC26A4 mutations, whose audiograms presented a characteristic slope at the medium and high frequencies, providing new insights into PDS. Finally, an interesting homozygous variant in MYO5C has been identified in one patient negative to SLC26A4 gene, suggesting the identification of a new HL candidate gene.
Collapse
Affiliation(s)
- Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | - Sofia Fiorino
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Stefania Lenarduzzi
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; (S.L.); (E.R.); (E.C.); (L.A.); (V.C.); (E.O.); (C.G.); (A.M.)
| | - Elisa Rubinato
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; (S.L.); (E.R.); (E.C.); (L.A.); (V.C.); (E.O.); (C.G.); (A.M.)
| | - Elisabetta Cattaruzzi
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; (S.L.); (E.R.); (E.C.); (L.A.); (V.C.); (E.O.); (C.G.); (A.M.)
| | - Lydie Ammar
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; (S.L.); (E.R.); (E.C.); (L.A.); (V.C.); (E.O.); (C.G.); (A.M.)
| | - Veronica Castro
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; (S.L.); (E.R.); (E.C.); (L.A.); (V.C.); (E.O.); (C.G.); (A.M.)
| | - Eva Orzan
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; (S.L.); (E.R.); (E.C.); (L.A.); (V.C.); (E.O.); (C.G.); (A.M.)
| | - Claudio Granata
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; (S.L.); (E.R.); (E.C.); (L.A.); (V.C.); (E.O.); (C.G.); (A.M.)
| | - Daniele Dell’Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37129 Verona, Italy;
| | - Anna Morgan
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; (S.L.); (E.R.); (E.C.); (L.A.); (V.C.); (E.O.); (C.G.); (A.M.)
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy;
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; (S.L.); (E.R.); (E.C.); (L.A.); (V.C.); (E.O.); (C.G.); (A.M.)
| |
Collapse
|
23
|
Mackowetzky K, Yoon KH, Mackowetzky EJ, Waskiewicz AJ. Development and evolution of the vestibular apparatuses of the inner ear. J Anat 2021; 239:801-828. [PMID: 34047378 PMCID: PMC8450482 DOI: 10.1111/joa.13459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The vertebrate inner ear is a labyrinthine sensory organ responsible for perceiving sound and body motion. While a great deal of research has been invested in understanding the auditory system, a growing body of work has begun to delineate the complex developmental program behind the apparatuses of the inner ear involved with vestibular function. These animal studies have helped identify genes involved in inner ear development and model syndromes known to include vestibular dysfunction, paving the way for generating treatments for people suffering from these disorders. This review will provide an overview of known inner ear anatomy and function and summarize the exciting discoveries behind inner ear development and the evolution of its vestibular apparatuses.
Collapse
Affiliation(s)
- Kacey Mackowetzky
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Kevin H. Yoon
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Andrew J. Waskiewicz
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Women & Children’s Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
24
|
Kim SY, Lee S, Seo GH, Kim BJ, Oh DY, Han JH, Park MK, Lee SM, Kim B, Yi N, Kim NJ, Koh DH, Hwang S, Keum C, Choi BY. Powerful use of automated prioritization of candidate variants in genetic hearing loss with extreme etiologic heterogeneity. Sci Rep 2021; 11:19476. [PMID: 34593925 PMCID: PMC8484668 DOI: 10.1038/s41598-021-99007-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
Variant prioritization of exome sequencing (ES) data for molecular diagnosis of sensorineural hearing loss (SNHL) with extreme etiologic heterogeneity poses a significant challenge. This study used an automated variant prioritization system (“EVIDENCE”) to analyze SNHL patient data and assess its diagnostic accuracy. We performed ES of 263 probands manifesting mild to moderate or higher degrees of SNHL. Candidate variants were classified according to the 2015 American College of Medical Genetics guidelines, and we compared the accuracy, call rates, and efficiency of variant prioritizations performed manually by humans or using EVIDENCE. In our in silico panel, 21 synthetic cases were successfully analyzed by EVIDENCE. In our cohort, the ES diagnostic yield for SNHL by manual analysis was 50.19% (132/263) and 50.95% (134/263) by EVIDENCE. EVIDENCE processed ES data 24-fold faster than humans, and the concordant call rate between humans and EVIDENCE was 97.72% (257/263). Additionally, EVIDENCE outperformed human accuracy, especially at discovering causative variants of rare syndromic deafness, whereas flexible interpretations that required predefined specific genotype–phenotype correlations were possible only by manual prioritization. The automated variant prioritization system remarkably facilitated the molecular diagnosis of hearing loss with high accuracy and efficiency, fostering the popularization of molecular genetic diagnosis of SNHL.
Collapse
Affiliation(s)
- So Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Seungmin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,R&D Center, ENCell Co. Ltd, Seoul, Republic of Korea
| | - Go Hun Seo
- 3billion, Inc., Seoul, Republic of Korea
| | - Bong Jik Kim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University Sejong Hospital, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Doo Yi Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - So Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Bonggi Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Nayoung Yi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Namju Justin Kim
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
| | - Doo Hyun Koh
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam, Republic of Korea
| | - Sohyun Hwang
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam, Republic of Korea.,Department of Pathology, CHA University, CHA Bundang Medical Center, Seongnam, Republic of Korea
| | | | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| |
Collapse
|
25
|
Roesch S, Rasp G, Sarikas A, Dossena S. Genetic Determinants of Non-Syndromic Enlarged Vestibular Aqueduct: A Review. Audiol Res 2021; 11:423-442. [PMID: 34562878 PMCID: PMC8482117 DOI: 10.3390/audiolres11030040] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Hearing loss is the most common sensorial deficit in humans and one of the most common birth defects. In developed countries, at least 60% of cases of hearing loss are of genetic origin and may arise from pathogenic sequence alterations in one of more than 300 genes known to be involved in the hearing function. Hearing loss of genetic origin is frequently associated with inner ear malformations; of these, the most commonly detected is the enlarged vestibular aqueduct (EVA). EVA may be associated to other cochleovestibular malformations, such as cochlear incomplete partitions, and can be found in syndromic as well as non-syndromic forms of hearing loss. Genes that have been linked to non-syndromic EVA are SLC26A4, GJB2, FOXI1, KCNJ10, and POU3F4. SLC26A4 and FOXI1 are also involved in determining syndromic forms of hearing loss with EVA, which are Pendred syndrome and distal renal tubular acidosis with deafness, respectively. In Caucasian cohorts, approximately 50% of cases of non-syndromic EVA are linked to SLC26A4 and a large fraction of patients remain undiagnosed, thus providing a strong imperative to further explore the etiology of this condition.
Collapse
Affiliation(s)
- Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (S.R.); (G.R.)
| | - Gerd Rasp
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (S.R.); (G.R.)
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria;
- Correspondence: ; Tel.: +43-(0)662-2420-80564
| |
Collapse
|
26
|
Smits JJ, de Bruijn SE, Lanting CP, Oostrik J, O'Gorman L, Mantere T, Cremers FPM, Roosing S, Yntema HG, de Vrieze E, Derks R, Hoischen A, Pegge SAH, Neveling K, Pennings RJE, Kremer H. Exploring the missing heritability in subjects with hearing loss, enlarged vestibular aqueducts, and a single or no pathogenic SLC26A4 variant. Hum Genet 2021; 141:465-484. [PMID: 34410491 PMCID: PMC9035008 DOI: 10.1007/s00439-021-02336-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Pathogenic variants in SLC26A4 have been associated with autosomal recessive hearing loss (arHL) and a unilateral or bilateral enlarged vestibular aqueduct (EVA). SLC26A4 is the second most frequently mutated gene in arHL. Despite the strong genotype–phenotype correlation, a significant part of cases remains genetically unresolved. In this study, we investigated a cohort of 28 Dutch index cases diagnosed with HL in combination with an EVA but without (M0) or with a single (M1) pathogenic variant in SLC26A4. To explore the missing heritability, we first determined the presence of the previously described EVA-associated haplotype (Caucasian EVA (CEVA)), characterized by 12 single nucleotide variants located upstream of SLC26A4. We found this haplotype and a delimited V1-CEVA haplotype to be significantly enriched in our M1 patient cohort (10/16 cases). The CEVA haplotype was also present in two M0 cases (2/12). Short- and long-read whole genome sequencing and optical genome mapping could not prioritize any of the variants present within the CEVA haplotype as the likely pathogenic defect. Short-read whole-genome sequencing of the six M1 cases without this haplotype and the two M0/CEVA cases only revealed previously overlooked or misinterpreted splice-altering SLC26A4 variants in two cases, who are now genetically explained. No deep-intronic or structural variants were identified in any of the M1 subjects. With this study, we have provided important insights that will pave the way for elucidating the missing heritability in M0 and M1 SLC26A4 cases. For pinpointing the pathogenic effect of the CEVA haplotype, additional analyses are required addressing defect(s) at the RNA, protein, or epigenetic level.
Collapse
Affiliation(s)
- Jeroen J Smits
- Hearing and Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cornelis P Lanting
- Hearing and Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Oostrik
- Hearing and Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Luke O'Gorman
- Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Tuomo Mantere
- Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Erik de Vrieze
- Hearing and Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronny Derks
- Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Expertise Center for Immunodeficiency and Autoinflammation and Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sjoert A H Pegge
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ronald J E Pennings
- Hearing and Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hannie Kremer
- Hearing and Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands. .,Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands. .,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Honda K, Griffith AJ. Genetic architecture and phenotypic landscape of SLC26A4-related hearing loss. Hum Genet 2021; 141:455-464. [PMID: 34345941 DOI: 10.1007/s00439-021-02311-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Mutations of coding regions and splice sites of SLC26A4 cause Pendred syndrome and nonsyndromic recessive hearing loss DFNB4. SLC26A4 encodes pendrin, a transmembrane exchanger of anions and bases. The mutant SLC26A4 phenotype is characterized by inner ear malformations, including an enlarged vestibular aqueduct (EVA), incomplete cochlear partition type II and modiolar hypoplasia, progressive and fluctuating hearing loss, and vestibular dysfunction. A thyroid iodine organification defect can lead to multinodular goiter and distinguishes Pendred syndrome from DFNB4. Pendred syndrome and DFNB4 are each inherited as an autosomal recessive trait caused by biallelic mutations of SLC26A4 (M2). However, there are some EVA patients with only one detectable mutant allele (M1) of SLC26A4. In most European-Caucasian M1 patients, there is a haplotype that consists of 12 variants upstream of SLC26A4, called CEVA (Caucasian EVA), which acts as a pathogenic recessive allele in trans to mutations affecting the coding regions or splice sites of SLC26A4. This combination of an M1 genotype with the CEVA haplotype is associated with a less severe phenotype than the M2 genotype. The phenotype in EVA patients with no mutant alleles of SLC26A4 (M0) has a very low recurrence probability and is likely to be caused by other factors.
Collapse
Affiliation(s)
- Keiji Honda
- Department of Otorhinolaryngology, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Andrew J Griffith
- Department of Otolaryngology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
28
|
Bryant JP, Chandrashekhar V, Cappadona AJ, Lookian PP, Chandrashekhar V, Donahue DR, Munasinghe JB, Kim HJ, Vortmeyer AO, Heiss JD, Zhuang Z, Rosenblum JS. Multimodal Atlas of the Murine Inner Ear: From Embryo to Adult. Front Neurol 2021; 12:699674. [PMID: 34335453 PMCID: PMC8319626 DOI: 10.3389/fneur.2021.699674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/22/2021] [Indexed: 12/02/2022] Open
Abstract
The inner ear is a complex organ housed within the petrous bone of the skull. Its intimate relationship with the brain enables the transmission of auditory and vestibular signals via cranial nerves. Development of this structure from neural crest begins in utero and continues into early adulthood. However, the anatomy of the murine inner ear has only been well-characterized from early embryogenesis to post-natal day 6. Inner ear and skull base development continue into the post-natal period in mice and early adulthood in humans. Traditional methods used to evaluate the inner ear in animal models, such as histologic sectioning or paint-fill and corrosion, cannot visualize this complex anatomy in situ. Further, as the petrous bone ossifies in the postnatal period, these traditional techniques become increasingly difficult. Advances in modern imaging, including high resolution Micro-CT and MRI, now allow for 3D visualization of the in situ anatomy of organs such as the inner ear. Here, we present a longitudinal atlas of the murine inner ear using high resolution ex vivo Micro-CT and MRI.
Collapse
Affiliation(s)
- Jean-Paul Bryant
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Vikram Chandrashekhar
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.,Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States
| | - Anthony J Cappadona
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Pashayar P Lookian
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.,Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Danielle R Donahue
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Jeeva B Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - H Jeffrey Kim
- Department of Otolaryngology, Georgetown University School of Medicine, Washington, DC, United States.,Office of Clinical Director, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, United States
| | - Alexander O Vortmeyer
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - John D Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jared S Rosenblum
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.,Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|