1
|
John M, Helal M, Duell J, Mattavelli G, Stanojkovska E, Afrin N, Leipold AM, Steinhardt MJ, Zhou X, Žihala D, Anilkumar Sithara A, Mersi J, Waldschmidt JM, Riedhammer C, Kadel SK, Truger M, Werner RA, Haferlach C, Einsele H, Kretzschmar K, Jelínek T, Rosenwald A, Kortüm KM, Riedel A, Rasche L. Spatial transcriptomics reveals profound subclonal heterogeneity and T-cell dysfunction in extramedullary myeloma. Blood 2024; 144:2121-2135. [PMID: 39172759 DOI: 10.1182/blood.2024024590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
ABSTRACT Extramedullary disease (EMD) is a high-risk feature of multiple myeloma (MM) and remains a poor prognostic factor, even in the era of novel immunotherapies. Here, we applied spatial transcriptomics (RNA tomography for spatially resolved transcriptomics [tomo-seq] [n = 2] and 10x Visium [n = 12]) and single-cell RNA sequencing (n = 3) to a set of 14 EMD biopsies to dissect the 3-dimensional architecture of tumor cells and their microenvironment. Overall, infiltrating immune and stromal cells showed both intrapatient and interpatient variations, with no uniform distribution over the lesion. We observed substantial heterogeneity at the copy number level within plasma cells, including the emergence of new subclones in circumscribed areas of the tumor, which is consistent with genomic instability. We further identified the spatial expression differences between GPRC5D and TNFRSF17, 2 important antigens for bispecific antibody therapy. EMD masses were infiltrated by various immune cells, including T cells. Notably, exhausted TIM3+/PD-1+ T cells diffusely colocalized with MM cells, whereas functional and activated CD8+ T cells showed a focal infiltration pattern along with M1 macrophages in tumor-free regions. This segregation of fit and exhausted T cells was resolved in the case of response to T-cell-engaging bispecific antibodies. MM and microenvironment cells were embedded in a complex network that influenced immune activation and angiogenesis, and oxidative phosphorylation represented the major metabolic program within EMD lesions. In summary, spatial transcriptomics has revealed a multicellular ecosystem in EMD with checkpoint inhibition and dual targeting as potential new therapeutic avenues.
Collapse
Affiliation(s)
- Mara John
- Mildred Scheel Early Career Center, University Hospital Würzburg, Würzburg, Germany
| | - Moutaz Helal
- Mildred Scheel Early Career Center, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Duell
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Greta Mattavelli
- Mildred Scheel Early Career Center, University Hospital Würzburg, Würzburg, Germany
| | - Emilia Stanojkovska
- Mildred Scheel Early Career Center, University Hospital Würzburg, Würzburg, Germany
| | - Nazia Afrin
- Mildred Scheel Early Career Center, University Hospital Würzburg, Würzburg, Germany
| | - Alexander M Leipold
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
| | | | - Xiang Zhou
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - David Žihala
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Anjana Anilkumar Sithara
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Julia Mersi
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | | - Christine Riedhammer
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Sofie-Katrin Kadel
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Kai Kretzschmar
- Mildred Scheel Early Career Center, University Hospital Würzburg, Würzburg, Germany
| | - Tomáš Jelínek
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | | | - K Martin Kortüm
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Angela Riedel
- Mildred Scheel Early Career Center, University Hospital Würzburg, Würzburg, Germany
| | - Leo Rasche
- Mildred Scheel Early Career Center, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Shafqat A, Khan JA, Alkachem AY, Sabur H, Alkattan K, Yaqinuddin A, Sing GK. How Neutrophils Shape the Immune Response: Reassessing Their Multifaceted Role in Health and Disease. Int J Mol Sci 2023; 24:17583. [PMID: 38139412 PMCID: PMC10744338 DOI: 10.3390/ijms242417583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neutrophils are the most abundant of the circulating immune cells and are the first to be recruited to sites of inflammation. Neutrophils are a heterogeneous group of immune cells from which are derived extracellular traps (NETs), reactive oxygen species, cytokines, chemokines, immunomodulatory factors, and alarmins that regulate the recruitment and phenotypes of neutrophils, macrophages, dendritic cells, T cells, and B cells. In addition, cytokine-stimulated neutrophils can express class II major histocompatibility complex and the internal machinery necessary for successful antigen presentation to memory CD4+ T cells. This may be relevant in the context of vaccine memory. Neutrophils thus emerge as orchestrators of immune responses that play a key role in determining the outcome of infections, vaccine efficacy, and chronic diseases like autoimmunity and cancer. This review aims to provide a synthesis of current evidence as regards the role of these functions of neutrophils in homeostasis and disease.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia (K.A.); (A.Y.); (G.K.S.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Weide LM, Schedel F, Weishaupt C. Neutrophil Extracellular Traps Correlate with Tumor Necrosis and Size in Human Malignant Melanoma Metastases. BIOLOGY 2023; 12:822. [PMID: 37372107 DOI: 10.3390/biology12060822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Neutrophil extracellular traps (NETs) are web-like structures released by neutrophils that kill invading microorganisms. However, NETs also promote tumor growth and impair the functionality of T-cells in cancer. Therefore, this study aimed at characterizing NET distribution within human melanoma metastases (n = 81 of 60 patients) by immunofluorescence staining for neutrophils (CD15) and NETs (H3Cit) in order to identify targets for NET-directed therapies. The results show that 49.3% of the metastases contained neutrophils (n = 40) and 30.8% (n = 25) contained NETs, 68% of them very densely infiltrated. A total of 75% of CD15-positive neutrophils and 96% of NET-containing metastases were necrotic while metastases without neutrophil infiltration were predominantly non-necrotic. A higher amount of NETs correlated significantly with greater tumor size. Consistently, all metastases with a cross-sectional area greater than 2.1 cm2 contained neutrophils. Analysis of metastasis from different sites revealed NETs to be present in skin, lymph node, lung and liver metastases. Taken together, our study was the first to observe NET infiltration in a larger cohort of human melanoma metastases. These results set the stage for further research regarding NET-directed therapies in metastatic melanoma.
Collapse
Affiliation(s)
- Lennard Marten Weide
- Department of Dermatology, Skin Cancer Center, University Clinic Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Fiona Schedel
- Department of Dermatology, Skin Cancer Center, University Clinic Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Carsten Weishaupt
- Department of Dermatology, Skin Cancer Center, University Clinic Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| |
Collapse
|
4
|
Spiliopoulou P, Vornicova O, Genta S, Spreafico A. Shaping the Future of Immunotherapy Targets and Biomarkers in Melanoma and Non-Melanoma Cutaneous Cancers. Int J Mol Sci 2023; 24:1294. [PMID: 36674809 PMCID: PMC9862040 DOI: 10.3390/ijms24021294] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Recent advances in treating cutaneous melanoma have resulted in impressive patient survival gains. Refinement of disease staging and accurate patient risk classification have significantly improved our prognostic knowledge and ability to accurately stratify treatment. Undoubtedly, the most important step towards optimizing patient outcomes has been the advent of cancer immunotherapy, in the form of immune checkpoint inhibition (ICI). Immunotherapy has established its cardinal role in the management of both early and late-stage melanoma. Through leveraging outcomes in melanoma, immunotherapy has also extended its benefit to other types of skin cancers. In this review, we endeavor to summarize the current role of immunotherapy in melanoma and non-melanoma skin cancers, highlight the most pertinent immunotherapy-related molecular biomarkers, and lastly, shed light on future research directions.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Olga Vornicova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Mount Sinai Hospital, University Health Network, Toronto, ON M5G 1X5, Canada
| | - Sofia Genta
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
5
|
Yang C, Zhang S, Cheng Z, Liu Z, Zhang L, Jiang K, Geng H, Qian R, Wang J, Huang X, Chen M, Li Z, Qin W, Xia Q, Kang X, Wang C, Hang H. Multi-region sequencing with spatial information enables accurate heterogeneity estimation and risk stratification in liver cancer. Genome Med 2022; 14:142. [PMID: 36527145 PMCID: PMC9758830 DOI: 10.1186/s13073-022-01143-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Numerous studies have used multi-region sampling approaches to characterize intra-tumor heterogeneity (ITH) in hepatocellular carcinoma (HCC). However, conventional multi-region sampling strategies do not preserve the spatial details of samples, and thus, the potential influences of spatial distribution on patient-wise ITH (represents the overall heterogeneity level of the tumor in a given patient) have long been overlooked. Furthermore, gene-wise transcriptional ITH (represents the expression pattern of genes across different intra-tumor regions) in HCC is also under-explored, highlighting the need for a comprehensive investigation. METHODS To address the problem of spatial information loss, we propose a simple and easy-to-implement strategy called spatial localization sampling (SLS). We performed multi-region sampling and sequencing on 14 patients with HCC, collecting a total of 75 tumor samples with spatial information and molecular data. Normalized diversity score and integrated heterogeneity score (IHS) were then developed to measure patient-wise and gene-wise ITH, respectively. RESULTS A significant correlation between spatial and molecular heterogeneity was uncovered, implying that spatial distribution of sampling sites did influence ITH estimation in HCC. We demonstrated that the normalized diversity score had the ability to overcome sampling location bias and provide a more accurate estimation of patient-wise ITH. According to this metric, HCC tumors could be divided into two classes (low-ITH and high-ITH tumors) with significant differences in multiple biological properties. Through IHS analysis, we revealed a highly heterogenous immune microenvironment in HCC and identified some low-ITH checkpoint genes with immunotherapeutic potential. We also constructed a low-heterogeneity risk stratification (LHRS) signature based on the IHS results which could accurately predict the survival outcome of patients with HCC on a single tumor biopsy sample. CONCLUSIONS This study provides new insights into the complex phenotypes of HCC and may serve as a guide for future studies in this field.
Collapse
Affiliation(s)
- Chen Yang
- grid.16821.3c0000 0004 0368 8293Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Senquan Zhang
- grid.16821.3c0000 0004 0368 8293Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoan Cheng
- grid.16821.3c0000 0004 0368 8293Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicheng Liu
- grid.412793.a0000 0004 1799 5032Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linmeng Zhang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Jiang
- grid.16821.3c0000 0004 0368 8293Renji Biobank, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haigang Geng
- grid.16821.3c0000 0004 0368 8293Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruolan Qian
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Wang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowen Huang
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Gastroenterology and Hepatology, Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mo Chen
- grid.16821.3c0000 0004 0368 8293Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Li
- grid.16821.3c0000 0004 0368 8293Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxin Qin
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Xia
- grid.16821.3c0000 0004 0368 8293Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaonan Kang
- grid.16821.3c0000 0004 0368 8293Renji Biobank, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cun Wang
- grid.16821.3c0000 0004 0368 8293Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hualian Hang
- grid.16821.3c0000 0004 0368 8293Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Ng MF, Simmons JL, Boyle GM. Heterogeneity in Melanoma. Cancers (Basel) 2022; 14:3030. [PMID: 35740696 PMCID: PMC9221188 DOI: 10.3390/cancers14123030] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
There is growing evidence that tumour heterogeneity has an imperative role in cancer development, evolution and resistance to therapy. Continuing advancements in biomedical research enable tumour heterogeneity to be observed and studied more critically. As one of the most heterogeneous human cancers, melanoma displays a high level of biological complexity during disease progression. However, much is still unknown regarding melanoma tumour heterogeneity, as well as the role it plays in disease progression and treatment response. This review aims to provide a concise summary of the importance of tumour heterogeneity in melanoma.
Collapse
Affiliation(s)
- Mei Fong Ng
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (M.F.N.); (J.L.S.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Jacinta L. Simmons
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (M.F.N.); (J.L.S.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Glen M. Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (M.F.N.); (J.L.S.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Dhainaut M, Rose SA, Akturk G, Wroblewska A, Nielsen SR, Park ES, Buckup M, Roudko V, Pia L, Sweeney R, Le Berichel J, Wilk CM, Bektesevic A, Lee BH, Bhardwaj N, Rahman AH, Baccarini A, Gnjatic S, Pe'er D, Merad M, Brown BD. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell 2022; 185:1223-1239.e20. [PMID: 35290801 PMCID: PMC8992964 DOI: 10.1016/j.cell.2022.02.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/02/2021] [Accepted: 02/12/2022] [Indexed: 12/15/2022]
Abstract
While CRISPR screens are helping uncover genes regulating many cell-intrinsic processes, existing approaches are suboptimal for identifying extracellular gene functions, particularly in the tissue context. Here, we developed an approach for spatial functional genomics called Perturb-map. We applied Perturb-map to knock out dozens of genes in parallel in a mouse model of lung cancer and simultaneously assessed how each knockout influenced tumor growth, histopathology, and immune composition. Moreover, we paired Perturb-map and spatial transcriptomics for unbiased analysis of CRISPR-edited tumors. We found that in Tgfbr2 knockout tumors, the tumor microenvironment (TME) was converted to a fibro-mucinous state, and T cells excluded, concomitant with upregulated TGFβ and TGFβ-mediated fibroblast activation, indicating that TGFβ-receptor loss on cancer cells increased TGFβ bioavailability and its immunosuppressive effects on the TME. These studies establish Perturb-map for functional genomics within the tissue at single-cell resolution with spatial architecture preserved and provide insight into how TGFβ responsiveness of cancer cells can affect the TME.
Collapse
Affiliation(s)
- Maxime Dhainaut
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuel A Rose
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guray Akturk
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aleksandra Wroblewska
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sebastian R Nielsen
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eun Sook Park
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark Buckup
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vladimir Roudko
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luisanna Pia
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sweeney
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Le Berichel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C Matthias Wilk
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anela Bektesevic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian H Lee
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adeeb H Rahman
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessia Baccarini
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center of Excellence for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Pala L, Conforti F, Pagan E, Bagnardi V, De Pas TM, Mazzarol G, Barberis M, Pennacchioli E, Orsolini G, Prestianni P, Zagami P, Nicolo' E, Patanè D, Saponara M, Queirolo P. Different Response to Immunotherapy According to Melanoma Histologic Subtype. J Immunother 2022; 45:119-124. [PMID: 34908006 DOI: 10.1097/cji.0000000000000403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/15/2021] [Indexed: 11/25/2022]
Abstract
Superficial spreading melanoma (SSM) and nodular melanoma (NM) are the most common melanoma histologic subtypes and are characterized by different biological features. We retrospectively analyzed all consecutive patients with advanced melanoma, treated with anti-PD-1 and/or anti-CTLA-4 at our center, with data available on primary tumor subtype. The primary objective was to assess the association between histologic subtype and patients' outcomes. In addition, we analyzed whole-exome and whole-transcriptome sequencing data of a cohort of advanced melanoma to identify genes and related pathways, characterized by significant differences between NMs and SSMs. Twenty-one patients with NM and 39 with SSM, treated with anti-PD-1(53/60) as monotherapy or combined with anti-CTLA-4 (7/60), were analyzed. All known clinical-pathologic prognostic factors were well balanced between NM and SSM groups, except for the ECOG-PS score. The overall response rate was 52.4% (95% confidence interval, 29.8-74.3) in the NMs group versus 20.5% (9.3-36.5) in the SSMs group (P-value=0.02). The median progression-free survival and overall survival were, respectively, 13.9 and 44.5 months in the NMs group versus only 3.2 and 12 months in SSMs group (progression-free survival P-value=0.032; overall survival P-value=0.002). Multivariable analysis adjusting for the ECOG-PS, confirmed similar results. Whole-exome and whole-transcriptome data of 28 NMs and 21 SSMs were analyzed. No significant differences were observed in terms of both TMB and frequency of mutation in any gene. A total of 266 genes were overexpressed in NMs as compared with SSMs, and enrichment-analysis revealed a significant enrichment (false discovery rate<0.05) of genes belonging to immune-related pathways involved in antigens presentation mechanisms, response to interferon gamma and neutrophil activation. We provided clinical evidences suggesting a relevant association between melanoma histologic subtype and response to immunotherapy.
Collapse
Affiliation(s)
- Laura Pala
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors
| | - Fabio Conforti
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors
| | - Eleonora Pagan
- Department of Statistics and Quantitative Methods, University of Milan-BicoccaMilan, Italy
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milan-BicoccaMilan, Italy
| | - Tommaso M De Pas
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors
| | | | | | | | | | | | - Paola Zagami
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology IRCCS
| | - Eleonora Nicolo'
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology IRCCS
| | - Damiano Patanè
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors
| | | | - Paola Queirolo
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors
| |
Collapse
|
9
|
Wu CC, Wang YA, Livingston JA, Zhang J, Futreal PA. Prediction of biomarkers and therapeutic combinations for anti-PD-1 immunotherapy using the global gene network association. Nat Commun 2022; 13:42. [PMID: 35013211 PMCID: PMC8748689 DOI: 10.1038/s41467-021-27651-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/02/2021] [Indexed: 01/05/2023] Open
Abstract
Owing to a lack of response to the anti-PD1 therapy for most cancer patients, we develop a network approach to infer genes, pathways, and potential therapeutic combinations that are associated with tumor response to anti-PD1. Here, our prediction identifies genes and pathways known to be associated with anti-PD1, and is further validated by 6 CRISPR gene sets associated with tumor resistance to cytotoxic T cells and targets of the 36 compounds that have been tested in clinical trials for combination treatments with anti-PD1. Integration of our top prediction and TCGA data identifies hundreds of genes whose expression and genetic alterations that could affect response to anti-PD1 in each TCGA cancer type, and the comparison of these genes across cancer types reveals that the tumor immunoregulation associated with response to anti-PD1 would be tissue-specific. In addition, the integration identifies the gene signature to calculate the MHC I association immunoscore (MIAS) that shows a good correlation with patient response to anti-PD1 for 411 melanoma samples complied from 6 cohorts. Furthermore, mapping drug target data to the top genes in our association prediction identifies inhibitors that could potentially enhance tumor response to anti-PD1, such as inhibitors of the encoded proteins of CDK4, GSK3B, and PTK2.
Collapse
Affiliation(s)
- Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - J Andrew Livingston
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
Morad G, Helmink BA, Sharma P, Wargo JA. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 2021; 184:5309-5337. [PMID: 34624224 DOI: 10.1016/j.cell.2021.09.020] [Citation(s) in RCA: 744] [Impact Index Per Article: 248.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/21/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
Unprecedented advances have been made in cancer treatment with the use of immune checkpoint blockade (ICB). However, responses are limited to a subset of patients, and immune-related adverse events (irAEs) can be problematic, requiring treatment discontinuation. Iterative insights into factors intrinsic and extrinsic to the host that impact ICB response and toxicity are critically needed. Our understanding of the impact of host-intrinsic factors (such as the host genome, epigenome, and immunity) has evolved substantially over the past decade, with greater insights on these factors and on tumor and immune co-evolution. Additionally, we are beginning to understand the impact of acute and cumulative exposures-both internal and external to the host (i.e., the exposome)-on host physiology and response to treatment. Together these represent the current day hallmarks of response, resistance, and toxicity to ICB. Opportunities built on these hallmarks are duly warranted.
Collapse
Affiliation(s)
- Golnaz Morad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Beth A Helmink
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology and Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Lin W, Beasley AB, Ardakani NM, Denisenko E, Calapre L, Jones M, Wood BA, Warburton L, Forrest ARR, Gray ES. Intra- and intertumoral heterogeneity of liver metastases in a patient with uveal melanoma revealed by single-cell RNA sequencing. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006111. [PMID: 34470851 PMCID: PMC8559622 DOI: 10.1101/mcs.a006111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor heterogeneity is a major obstacle to the success of cancer treatment. An accurate understanding and recognition of tumor heterogeneity is critical in the clinical management of cancer patients. Here, we utilized single-cell RNA sequencing (scRNA-seq) to uncover the intra- and intertumoral heterogeneity of liver metastases from a patient with metastatic uveal melanoma. The two metastases analyzed were largely infiltrated by noncancerous cells with significant variability in the proportion of different cell types. Analysis of copy-number variations (CNVs) showed gain of 8q and loss of 6q in both tumors, but loss of Chromosome 3 was only detected in one of the tumors. Single-nucleotide polymorphism (SNP) array revealed a uniparental isodisomy 3 in the tumor with two copies of Chromosome 3, indicating a regain of Chromosome 3 during the development of the metastatic disease. In addition, both tumors harbored subclones with additional CNVs. Pathway enrichment analysis of differentially expressed genes revealed that cancer cells in the metastasis with isodisomy 3 showed up-regulation in epithelial-mesenchymal transition and myogenesis related genes. In contrast, up-regulation in interferon signaling was observed in the metastasis with monosomy 3 and increased T-cell infiltrate. This study highlights the complexity and heterogeneity of different metastases within an individual case of uveal melanoma.
Collapse
Affiliation(s)
- Weitao Lin
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia 6027, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, the University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Aaron B Beasley
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia 6027, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia
| | - Nima Mesbah Ardakani
- Department of Anatomical Pathology, PathWest, QEII Medical Centre, Nedlands, Western Australia 6009, Australia.,School of Pathology and Laboratory Medicine, the University of Western Australia, Crawley, Western Australia 6009, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Elena Denisenko
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, the University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Leslie Calapre
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia
| | - Matthew Jones
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, the University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Benjamin A Wood
- Department of Anatomical Pathology, PathWest, QEII Medical Centre, Nedlands, Western Australia 6009, Australia.,School of Pathology and Laboratory Medicine, the University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Lydia Warburton
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia 6027, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia.,Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia.,Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, the University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Elin S Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia 6027, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia
| |
Collapse
|
12
|
Cerezo-Wallis D, Ballesteros I. Neutrophils in cancer, a love-hate affair. FEBS J 2021; 289:3692-3703. [PMID: 33999496 DOI: 10.1111/febs.16022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Abstract
Neutrophils dominate the immunological landscape of multiple types of solid tumours in mice and humans and exert different pro- or antitumoral activity. This functional heterogeneity has prompted a search for different subsets and classifications of tumour-infiltrating neutrophils with the idea of better delineating their specific roles in cancer. In this review, we describe current studies that highlight specific mechanisms by which neutrophils exert pro- or antitumoral function and focus on how distinct tumour types induce unique functional states in neutrophils, co-opt granulopoiesis, modulate neutrophil ageing and prolong the neutrophil life span. In addition, we discuss how the tissue-specific tumour stroma and the stage of the cancer influence the function and number of tumour-infiltrating neutrophils. Finally, we explore different approaches to enhance the therapeutic efficacy in cancer types dominated by neutrophils.
Collapse
Affiliation(s)
- Daniela Cerezo-Wallis
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Iván Ballesteros
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Aldea M, Andre F, Marabelle A, Dogan S, Barlesi F, Soria JC. Overcoming Resistance to Tumor-Targeted and Immune-Targeted Therapies. Cancer Discov 2021; 11:874-899. [PMID: 33811122 DOI: 10.1158/2159-8290.cd-20-1638] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Resistance to anticancer therapies includes primary resistance, usually related to lack of target dependency or presence of additional targets, and secondary resistance, mostly driven by adaptation of the cancer cell to the selection pressure of treatment. Resistance to targeted therapy is frequently acquired, driven by on-target, bypass alterations, or cellular plasticity. Resistance to immunotherapy is often primary, orchestrated by sophisticated tumor-host-microenvironment interactions, but could also occur after initial efficacy, mostly when only partial responses are obtained. Here, we provide an overview of resistance to tumor and immune-targeted therapies and discuss challenges of overcoming resistance, and current and future directions of development. SIGNIFICANCE: A better and earlier identification of cancer-resistance mechanisms could avoid the use of ineffective drugs in patients not responding to therapy and provide the rationale for the administration of personalized drug associations. A clear description of the molecular interplayers is a prerequisite to the development of novel and dedicated anticancer drugs. Finally, the implementation of such cancer molecular and immunologic explorations in prospective clinical trials could de-risk the demonstration of more effective anticancer strategies in randomized registration trials, and bring us closer to the promise of cure.
Collapse
Affiliation(s)
- Mihaela Aldea
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Fabrice Andre
- Department of Medical Oncology, Gustave Roussy, Villejuif, France.,INSERM U981, PRISM Institute, Gustave Roussy, Villejuif, France.,Paris Saclay University, Saint-Aubin, France
| | - Aurelien Marabelle
- INSERM U981, PRISM Institute, Gustave Roussy, Villejuif, France.,Drug Development Department, Gustave Roussy, Villejuif, France
| | - Semih Dogan
- INSERM U981, PRISM Institute, Gustave Roussy, Villejuif, France
| | - Fabrice Barlesi
- Department of Medical Oncology, Gustave Roussy, Villejuif, France.,Aix Marseille University, CNRS, INSERM, CRCM, Marseille, France
| | - Jean-Charles Soria
- Paris Saclay University, Saint-Aubin, France. .,Drug Development Department, Gustave Roussy, Villejuif, France
| |
Collapse
|
14
|
Duhan V, Smyth MJ. Innate myeloid cells in the tumor microenvironment. Curr Opin Immunol 2021; 69:18-28. [PMID: 33588308 DOI: 10.1016/j.coi.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/19/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapies are receiving increasing approval in the clinic, but still only a fraction of patients benefit long-term. Understanding the most important mechanisms of immunotherapeutic resistance is critical for broader utility and benefit of cancer immunotherapy. While the tumor microenvironment (TME) is made up of many cell types, immunosuppressive monocytes/macrophages, granulocytes and myeloid derived suppressor cells interact with, and play a critical role in regulating the anti-tumor lymphocyte effector cells that mediate effective immunotherapies. Herein, we discuss the latest research that has identified and compared the importance of pro-tumor and immunosuppressive mechanisms that tumor infiltrating myeloid cells employ. Exploiting this new information may help to develop totally novel therapies to boost contemporary cancer immunotherapy.
Collapse
Affiliation(s)
- Vikas Duhan
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| |
Collapse
|
15
|
Li Y, Gu J, Xu F, Zhu Q, Chen Y, Ge D, Lu C. Molecular characterization, biological function, tumor microenvironment association and clinical significance of m6A regulators in lung adenocarcinoma. Brief Bioinform 2020; 22:5916941. [PMID: 33003204 DOI: 10.1093/bib/bbaa225] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
N6-methyladenosine (m6A) modification can regulate a variety of biological processes. However, the implications of m6A modification in lung adenocarcinoma (LUAD) remain largely unknown. Here, we systematically evaluated the m6A modification features in more than 2400 LUAD samples by analyzing the multi-omics features of 23 m6A regulators. We depicted the genetic variation features of m6A regulators, and found mutations of FTO and YTHDF3 were linked to worse overall survival. Many m6A regulators were aberrantly expressed in tumors, among which FTO, IGF2BP3, YTHDF1 and RBM15 showed consistent alteration features across 11 independent cohorts. Besides, the regulator-pathway interaction network demonstrated that m6A modification was associated with various biological pathways, including immune-related pathways. The correlation between m6A regulators and tumor microenvironment was also assessed. We found that LRPPRC was negatively correlated with most tumor-infiltrating immune cells. On the other hand, we established a scoring tool named m6Sig, which was positively correlated with PD-L1 expression and could reflect both the tumor microenvironment characterization and prognosis of LUAD patients. Comparison of CNV between high and low m6Sig groups revealed differences on chromosome 7. Application of m6Sig on an anti-PD-L1 immunotherapy cohort confirmed that the high m6Sig group demonstrated therapeutic advantages and clinical benefits. Our study indicated that m6A modification is involved in many aspects of LUAD and contributes to tumor microenvironment formation. A better understanding of m6A modification will provide more insights into the molecular mechanisms of LUAD and facilitate developing more effective personalized treatment strategies. A web application was built along with this study (http://www.bioinfo-zs.com/luadexpress/).
Collapse
Affiliation(s)
- Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University
| | - Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University
| | - Yiwei Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University
| |
Collapse
|