1
|
Li T, Akhtarkhavari S, Chang TY, Shen YA, Yang J, Slusher B, Shih IM, Gaillard S, Wang TL. Inhibition of Glutamine Metabolism Suppresses Tumor Progression through Remodeling of the Macrophage Immune Microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632174. [PMID: 39868269 PMCID: PMC11760805 DOI: 10.1101/2025.01.10.632174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background Targeting glutamine metabolism has emerged as a promising strategy in cancer therapy. However, several barriers, such as in vivo anti-tumor efficacy, drug toxicity, and safety, remain to be overcome to achieve clinical utility. Prior preclinical in vivo studies had generated encouraging data showing promises of cancer metabolism targeting drugs, although most were performed on immune-deficient murine models. It is being recognized that aside from tumor cells, normal cells such as immune cells in the tumor microenvironment may also utilize glutamine for maintaining physiological functions. To provide an in-depth view of glutamine antagonist (GLNi) treatment on the tumor immune microenvironment, the current study made several unique approaches. Method First, to evaluate GLNi treatment modality that potentially involves immune cells, the study was performed on immunocompetent murine models of gynecological cancers. Second, to enhance safety and reduce potential off-target effects, we developed a GLNi prodrug, JHU083, which is bio-activated restrictively in cancer tissues. Third, to unbiasedly decode the response of single cells in the tumor microenvironment to GLNi treatment, single-cell RNA sequencing (scRNA-seq) was performed on cells prepared from tumors of the JHU083 or vehicle control-treated mice. Results In both immunocompetent murine tumor models, we observed a significant anti-tumor efficacy, resulting in reduced tumor burden and impeded tumor progression. Similarly, in both tumor models, scRNA-seq revealed significantly impeded immunosuppressive M2-like macrophages by JHU083, while the treatment spared pro-inflammatory M1-like tumor macrophages. In many tumor microenvironment (TME) cells, JHU083 downregulated genes regulated by Myc and hypoxia. M2 macrophages' greater sensitivity to glutamine antagonism when compared to M1 macrophages or monocytes was further validated on ex vivo cultures of bone marrow-derived macrophages. Conclusion Our findings support a converged mechanism of glutamine metabolism antagonists. JHU083 exerted its anti-tumor efficacy through not only direct targeting of glutamine-addicted cancer cells but also by suppressing glutamine-dependent M2 macrophages, leading to a shift in the M1/M2 macrophage landscape in favor of an immune-stimulatory microenvironment.
Collapse
|
2
|
Mahenge CM, Akasheh RT, Kinder B, Nguyen XV, Kalam F, Cheng TYD. CT-Scan-Assessed Body Composition and Its Association with Tumor Protein Expression in Endometrial Cancer: The Role of Muscle and Adiposity Quantities. Cancers (Basel) 2024; 16:4222. [PMID: 39766121 PMCID: PMC11674723 DOI: 10.3390/cancers16244222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Endometrial cancer is strongly associated with obesity, and tumors often harbor mutations in major cancer signaling pathways. To inform the integration of body composition into targeted therapy paradigms, this hypothesis-generating study explores the association between muscle mass, body fat, and tumor proteomics. Methods: We analyzed data from 113 patients in The Cancer Genome Atlas (TCGA) and Cancer Proteomic Tumor Analysis Consortium (CPTAC) cohorts and their corresponding abdominal CT scans. Among these patients, tumor proteomics data were available for 45 patients, and 133 proteins were analyzed. Adiposity and muscle components were assessed at the L3 vertebral level on the CT scans. Patients were stratified into tertiles of muscle and fat mass and categorized into three groups: high muscle/low adiposity, high muscle/high adiposity, and low muscle/all adiposities. Linear and Cox regression models were adjusted for study cohort, stage, histology type, age, race, and ethnicity. Results: Compared with the high-muscle/low-adiposity group, both the high-muscle/high-adiposity (HR = 4.3, 95% CI = 1.0-29.0) and low-muscle (HR = 4.4, 95% CI = 1.3-14.9) groups experienced higher mortality. Low muscle was associated with higher expression of phospho-4EBP1(T37 and S65), phospho-GYS(S641) and phospho-MAPK(T202/Y204) but lower expression of ARID1A, CHK2, SYK, LCK, EEF2, CYCLIN B1, and FOXO3A. High muscle/high adiposity was associated with higher expression of phospho-4EBP1 (T37), phospho-GYS (S641), CHK1, PEA15, SMAD3, BAX, DJ1, GYS, PKM2, COMPLEX II Subunit 30, and phospho-P70S6K (T389) but with lower expression of CHK2, CRAF, MSH6, TUBERIN, PR, ERK2, beta-CATENIN, AKT, and S6. Conclusions: These findings demonstrate an association between body composition and proteins involved in key cancer signaling pathways, notably the PI3K/AKT/MTOR, MAPK/ERK, cell cycle regulation, DNA damage response, and mismatch repair pathways. These findings warrant further validation and assessment in relation to prognosis and outcomes in these patients.
Collapse
Affiliation(s)
- Cuthbert Mario Mahenge
- Division of Cancer Control and Prevention, Department of Internal Medicine, College of Medicine, The Ohio State University, 3650 Olentangy River Rd., Suite 200, Columbus, OH 43214, USA; (C.M.M.); (R.T.A.); (F.K.)
| | - Rand Talal Akasheh
- Division of Cancer Control and Prevention, Department of Internal Medicine, College of Medicine, The Ohio State University, 3650 Olentangy River Rd., Suite 200, Columbus, OH 43214, USA; (C.M.M.); (R.T.A.); (F.K.)
| | - Ben Kinder
- Division of Cancer Control and Prevention, Department of Internal Medicine, College of Medicine, The Ohio State University, 3650 Olentangy River Rd., Suite 200, Columbus, OH 43214, USA; (C.M.M.); (R.T.A.); (F.K.)
| | - Xuan Viet Nguyen
- Department of Radiology, College of Medicine, The Ohio State University, 395 W 12th Ave., Suite 486, Columbus, OH 43210, USA;
| | - Faiza Kalam
- Division of Cancer Control and Prevention, Department of Internal Medicine, College of Medicine, The Ohio State University, 3650 Olentangy River Rd., Suite 200, Columbus, OH 43214, USA; (C.M.M.); (R.T.A.); (F.K.)
| | - Ting-Yuan David Cheng
- Division of Cancer Control and Prevention, Department of Internal Medicine, College of Medicine, The Ohio State University, 3650 Olentangy River Rd., Suite 200, Columbus, OH 43214, USA; (C.M.M.); (R.T.A.); (F.K.)
| |
Collapse
|
3
|
Ma F, Ren M, Li Z, Tang Y, Sun X, Wang Y, Cao N, Zhu X, Xu Y, Wang R, Shen Y, Zhao R, Li Z, Ashrafizadeh M, Sethi G, Wang F, Zhao A. ARID1A is a coactivator of STAT5 that contributes to CD8 + T cell dysfunction and anti-PD-1 resistance in gastric cancer. Pharmacol Res 2024; 210:107499. [PMID: 39549895 DOI: 10.1016/j.phrs.2024.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
ARID1A deletion mutation contributes to improved treatment of several malignancies with immune checkpoint inhibitors (ICIs). However, its role in modulating of tumor immune microenvironment (TIME) of gastric cancer (GC) remains unclear. Here, we report an increase of CD8+ T cells infiltration in GC patients with ARID1A-mutation (MUT), which enhances sensitivity to ICIs. Kaplan-Meier survival analysis showed that ARID1A-mutation patients with gastrointestinal malignancies benefit from immunotherapy. Transcriptome analysis implicated that ARID1A regulates STAT5 downstream targets to inhibit T-cell mediated toxicity. Integrated dual luciferase assay and ChIP-qPCR analyses indicated that ARID1A coordinated with STAT5 to facilitate the transcription of the immunosuppressive factors TGF-β1 and NOX4. ARID1A recruited canonical BAF complex (cBAF) subunits, including SMARCB1 and SMARCD1, to sustain DNA accessibility. Downregulation of ARID1A reduced chromatin remodeling into configurations which make GC more sensitive to ICIs. In addition, targeting STAT5 effectively improved anti-PD-1 efficiency in ARID1A-wild type (WT) GC patients. Taken together, ARID1A is a coactivator of STAT5, function as a chromatin organizer in GC ICIs resistance, and targeting STAT5 is an effective strategy to improve the efficiency of ICIs in GC.
Collapse
Affiliation(s)
- Fangqi Ma
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Department of Traditional Chinese Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Mingming Ren
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhongqiu Li
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan 450004, China
| | - Yujing Tang
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Xiaoyu Sun
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yi Wang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Nida Cao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiaohong Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Rui Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Yumiao Shen
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ruohan Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhaoyan Li
- Department of Traditional Chinese Medicine, School of Medicine Affiliated Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR) Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Furong Wang
- Department of Pathology, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong 516002, China.
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
4
|
Lou M, Zou L, Zhang L, Lu Y, Chen J, Zong B. MECOM and the PRDM gene family in uterine endometrial cancer: bioinformatics and experimental insights into pathogenesis and therapeutic potentials. Mol Med 2024; 30:190. [PMID: 39468462 PMCID: PMC11514642 DOI: 10.1186/s10020-024-00946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
To elucidate the expression profiles, methylation states, and clinicopathological significance of the PRDM gene family, focusing on the MECOM gene's role in uterine endometrial cancer (UCEC) and its molecular interactions with the TGF-beta signaling pathway. Our methodology combined detailed bioinformatics analyses using UALCAN and GEPIA with in vitro assessments in HEC-1-A cells. Techniques included CRISPR-Cas9 for gene editing and various cellular assays (CCK-8, flow cytometry, Transwell) to evaluate the effects of MECOM on cell proliferation, migration, and apoptosis, alongside Western blot analysis for protein regulation in the TGF-beta pathway. MECOM was upregulated in UCEC tissues, influencing tumor cell behavior significantly. Knockout studies demonstrated reduced proliferation and migration and increased apoptosis, while overexpression showed reverse effects. Mechanistically, MECOM modulated critical proteins within the TGF-beta pathway, impacting cell cycle dynamics and apoptotic processes. The PRDM gene family, particularly MECOM, plays a crucial role in the pathogenesis and progression of UCEC, suggesting its utility as a target for novel therapeutic interventions. Our findings offer valuable insights for future research and potential clinical application in managing uterine endometrial cancer.
Collapse
Affiliation(s)
- Meng Lou
- Department of Obstetrics and Gynecology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lian Zou
- Department of Obstetrics and Gynecology, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, 400000, China
| | - Liying Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Yongquan Lu
- Department of Clinical Laboratory, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, 400000, China
| | - Jia Chen
- Department of Obstetrics and Gynecology, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, 400000, China
| | - Beige Zong
- Department of General Surgery, Chongqing Emergency Medical Center, Chongging University Central Hospital, No.1 Jiankang Road, Yuzhong District, Chongqing, 400000, China.
| |
Collapse
|
5
|
Shen Y, Tian Y, Ding J, Chen Z, Zhao R, Lu Y, Li L, Zhang H, Wu H, Li X, Zhang Y. Unravelling the molecular landscape of endometrial cancer subtypes: insights from multiomics analysis. Int J Surg 2024; 110:5385-5395. [PMID: 38775562 PMCID: PMC11392172 DOI: 10.1097/js9.0000000000001685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/10/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Endometrial cancer (EC) as one of the most common gynecologic malignancies is increasing in incidence during the past 10 years. Genome-Wide Association Studies (GWAS) extended to metabolic and protein phenotypes inspired us to employ multiomics methods to analyze the causal relationships of plasma metabolites and proteins with EC to advance our understanding of EC biology and pave the way for more targeted approaches to its diagnosis and treatment by comparing the molecular profiles of different EC subtypes. METHODS Two-sample mendelian randomization (MR) was performed to investigate the effects of plasma metabolites and proteins on risks of different subtypes of EC (endometrioid and nonendometrioid). Pathway analysis, transcriptomic analysis, and network analysis were further employed to illustrate gene-protein-metabolites interactions underlying the pathogenesis of distinct EC histological types. RESULTS The authors identified 66 causal relationships between plasma metabolites and endometrioid EC, and 132 causal relationships between plasma proteins and endometrioid EC. Additionally, 40 causal relationships between plasma metabolites and nonendometrioid EC, and 125 causal relationships between plasma proteins and nonendometrioid EC were observed. Substantial differences were observed between endometrioid and nonendometrioid histological types of EC at both the metabolite and protein levels. The authors identified seven overlapping proteins (RGMA, NRXN2, EVA1C, SLC14A1, SLC6A14, SCUBE1, FGF8) in endometrioid subtype and six overlapping proteins (IL32, GRB7, L1CAM, CCL25, GGT2, PSG5) in nonendometrioid subtype and conducted network analysis of above proteins and metabolites to identify coregulated nodes. CONCLUSIONS Our findings observed substantial differences between endometrioid and nonendometrioid EC at the metabolite and protein levels, providing novel insights into gene-protein-metabolites interactions that could influence future EC treatments.
Collapse
Affiliation(s)
- Yufei Shen
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| | - Yan Tian
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| | - Jiashan Ding
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| | - Zhuo Chen
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| | - Rong Zhao
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| | - Yingnan Lu
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| | - Lucia Li
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| | - Hui Zhang
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| | - Haiyue Wu
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha Hunan, People's Republic of China
| | - Yu Zhang
- Department of Gynecology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Gynecological Oncology Research and Engineering Center of Hunan Province
| |
Collapse
|
6
|
Morgan JE, Jaferi N, Shonibare Z, Huang GS. ARID1A in Gynecologic Precancers and Cancers. Reprod Sci 2024; 31:2150-2162. [PMID: 38740655 DOI: 10.1007/s43032-024-01585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
The highest frequency of genetic alterations in the tumor suppressor ARID1A occurs in malignancies of the female reproductive tract. The prevalence of ARID1A alterations in gynecologic precancers and cancers is summarized from the literature, and the putative mechanisms of tumor suppressive action examined both in benign/precursor lesions including endometriosis and atypical hyperplasia and in malignancies of the ovary, uterus, cervix and vagina. ARID1A alterations in gynecologic cancers are usually loss-of-function mutations, resulting in diminished or absent protein expression. ARID1A deficiency results in pleiotropic downstream effects related not only to its role in transcriptional regulation as a SWI/SNF complex subunit, but also related to the functions of ARID1A in DNA replication and repair, immune modulation, cell cycle progression, endoplasmic reticulum (ER) stress and oxidative stress. The most promising actionable signaling pathway interactions and therapeutic vulnerabilities of ARID1A mutated cancers are presented with a critical review of the currently available experimental and clinical evidence. The role of ARID1A in response to chemotherapeutic agents, radiation therapy and immunotherapy is also addressed. In summary, the multi-faceted role of ARID1A mutation in precancer and cancer is examined through a clinical lens focused on development of novel preventive and therapeutic interventions for gynecological cancers.
Collapse
Affiliation(s)
- Jaida E Morgan
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Nishah Jaferi
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Zainab Shonibare
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Gloria S Huang
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, USA.
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Gynecologic Oncology, Yale School of Medicine, Yale Cancer Center, Yale University, PO Box 208063, New Haven, CT, 06520-8063, USA.
| |
Collapse
|
7
|
Kuhn E, Gambini D, Runza L, Ferrero S, Scarfone G, Bulfamante G, Ayhan A. Unsolved Issues in the Integrated Histo-Molecular Classification of Endometrial Carcinoma and Therapeutic Implications. Cancers (Basel) 2024; 16:2458. [PMID: 39001520 PMCID: PMC11240465 DOI: 10.3390/cancers16132458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Endometrial carcinoma (EC) is the most frequent gynecological cancer, with an increasing incidence and mortality in recent times. The last decade has represented a true revolution with the development of the integrated histo-molecular classification of EC, which allows for the stratification of patients with morphologically indistinguishable disease into groups with different prognoses. Particularly, the POLE-mutated subgroup exhibits outstanding survival. Nevertheless, the indiscriminate application of molecular classification appears premature. Its prognostic significance has been proven mainly in endometrioid EC, the most common histotype, but it has yet to be convincingly confirmed in the other minor histotypes, which indeed account for a relevant proportion of EC mortality. Moreover, its daily use both requires a mindful pathologist who is able to correctly evaluate and unambiguously report immunohistochemical staining used as a surrogated diagnostic tool and is hampered by the unavailability of POLE mutation analysis. Further molecular characterization of ECs is needed to allow for the identification of better-tailored therapies in different settings, as well as the safe avoidance of surgery for fertility preservation. Hopefully, the numerous ongoing clinical trials in the adjuvant and metastatic settings of EC will likely produce evidence to refine the histo-molecular classification and therapeutic guidelines. Our review aims to retrace the origin and evolution of the molecular classification for EC, reveal its strengths and limitations, show clinical relevance, and uncover the desired future developments.
Collapse
Affiliation(s)
- Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Donatella Gambini
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy
| | - Letterio Runza
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefano Ferrero
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giovanna Scarfone
- Gynecology Oncology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gaetano Bulfamante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Human Pathology and Molecular Pathology, TOMA Advanced Biomedical Assays S.p.A., 21052 Busto Arsizio, Italy
| | - Ayse Ayhan
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
8
|
Li K, Wang B, Hu H. Research progress of SWI/SNF complex in breast cancer. Epigenetics Chromatin 2024; 17:4. [PMID: 38365747 PMCID: PMC10873968 DOI: 10.1186/s13072-024-00531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
In the past decade, numerous epigenetic mechanisms have been discovered to be associated with cancer. The mammalian SWI/SNF complex is an ATP-dependent chromatin remodeling complex whose mutations are associated with various malignancies including breast cancer. As the SWI/SNF complex has become one of the most commonly mutated complexes in cancer, targeting epigenetic mutations acquired during breast cancer progress is a potential means of improving clinical efficacy in treatment strategies. This article reviews the composition of the SWI/SNF complex, its main roles and research progress in breast cancer, and links these findings to the latest discoveries in cancer epigenomics to discuss the potential mechanisms and therapeutic potential of SWI/SNF in breast cancer.
Collapse
Affiliation(s)
- Kexuan Li
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Baocai Wang
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Haolin Hu
- Breast Center, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
9
|
Li JJ, Lee CS. The Role of the AT-Rich Interaction Domain 1A Gene ( ARID1A) in Human Carcinogenesis. Genes (Basel) 2023; 15:5. [PMID: 38275587 PMCID: PMC10815128 DOI: 10.3390/genes15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) (SWI/SNF) complex uses energy from ATP hydrolysis to mobilise nucleosomes on chromatin. Components of SWI/SNF are mutated in 20% of all human cancers, of which mutations in AT-rich binding domain protein 1A (ARID1A) are the most common. ARID1A is mutated in nearly half of ovarian clear cell carcinoma and around one-third of endometrial and ovarian carcinomas of the endometrioid type. This review will examine in detail the molecular functions of ARID1A, including its role in cell cycle control, enhancer regulation, and the prevention of telomerase activity. ARID1A has key roles in the maintenance of genomic integrity, including DNA double-stranded break repair, DNA decatenation, integrity of the cohesin complex, and reduction in replication stress, and is also involved in mismatch repair. The role of ARID1A loss in the pathogenesis of some of the most common human cancers is discussed, with a particular emphasis on gynaecological cancers. Finally, several promising synthetic lethal strategies, which exploit the specific vulnerabilities of ARID1A-deficient cancer cells, are briefly mentioned.
Collapse
Affiliation(s)
- Jing Jing Li
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Cheok Soon Lee
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2010, Australia
| |
Collapse
|
10
|
Mandal J, Yu ZC, Shih IM, Wang TL. ARID1A loss activates MAPK signaling via DUSP4 downregulation. J Biomed Sci 2023; 30:94. [PMID: 38071325 PMCID: PMC10709884 DOI: 10.1186/s12929-023-00985-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND ARID1A, a tumor suppressor gene encoding BAF250, a protein participating in chromatin remodeling, is frequently mutated in endometrium-related malignancies, including ovarian or uterine clear cell carcinoma (CCC) and endometrioid carcinoma (EMCA). However, how ARID1A mutations alter downstream signaling to promote tumor development is yet to be established. METHODS We used RNA-sequencing (RNA-seq) to explore transcriptomic changes in isogenic human endometrial epithelial cells after deleting ARID1A. Chromatin immunoprecipitation sequencing (ChIP-seq) was employed to assess the active or repressive histone marks on DUSP4 promoter and regulatory regions. We validated our findings using genetically engineered murine endometroid carcinoma models, human endometroid carcinoma tissues, and in silico approaches. RESULTS RNA-seq revealed the downregulation of the MAPK phosphatase dual-specificity phosphatase 4 (DUSP4) in ARID1A-deficient cells. ChIP-seq demonstrated decreased histone acetylation marks (H3K27Ac, H3K9Ac) on DUSP4 regulatory regions as one of the causes for DUSP4 downregulation in ARID1A-deficient cells. Ectopic DUSP4 expression decreased cell proliferation, and pharmacologically inhibiting the MAPK pathway significantly mitigated tumor formation in vivo. CONCLUSIONS Our findings suggest that ARID1A protein transcriptionally modulates DUSP4 expression by remodeling chromatin, subsequently inactivating the MAPK pathway, leading to tumor suppression. The ARID1A-DUSP4-MAPK axis may be further considered for developing targeted therapies against ARID1A-mutated cancers.
Collapse
Affiliation(s)
- Jayaprakash Mandal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zheng-Cheng Yu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Kim YN, Chung YS, Lee JH, Park E, Lee ST, Kim S, Lee JY. Application of precision medicine based on next-generation sequencing and immunohistochemistry in ovarian cancer: a real-world experience. J Gynecol Oncol 2023; 34:e70. [PMID: 37417298 PMCID: PMC10627761 DOI: 10.3802/jgo.2023.34.e70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/02/2023] [Accepted: 05/13/2023] [Indexed: 07/08/2023] Open
Abstract
OBJECTIVE To evaluate the landscape of gene alterations and immunohistochemistry (IHC) profiles of patients with ovarian cancer for targeted therapy and investigate the real-world experience of applying precision medicine. METHODS Patients diagnosed with ovarian cancer between January 2015 and May 2021 at Severance Hospital and who underwent tumor next-generation sequencing (NGS) were reviewed. Data on germline mutation, IHC markers for mismatch repair deficiency (MMRd), programmed death ligand 1 (PD-L1) expression, and human epidermal growth factor receptor 2 (HER2) expression were acquired. The use of matched therapy and its clinical outcomes were evaluated. RESULTS Of the 512 patients who underwent tumor NGS, 403 underwent panel-based germline testing. In patients who underwent both tests, tumor NGS identified 39 patients (9.7%) with BRCA mutations and 16 patients (4.0%) with other homologous recombination repair (HRR)-associated gene mutations, which were not found in germline testing. The most common single nucleotide variants were TP53 (82.2%), ARID1A (10.4%), PIK3CA (9.7%), and KRAS (8.4%). Copy number aberrations were found in 122 patients. MMRd was found in 3.2% of patients, high PD-L1 expression in 10.1%, and HER2 overexpression in 6.5%. Subsequently, 75 patients (14.6%) received a poly (ADP-ribose) polymerase inhibitor based on BRCA mutation and 11 patients (2.1%) based on other HRR-associated gene mutations. Six patients (1.2%) with MMRd underwent immunotherapy. Twenty-eight patients (5.5%) received other matched therapies targeting HER2, fibroblast growth factor receptor, folate receptor alpha, RAS, and PIK3CA. CONCLUSION A comprehensive review of germline mutation, IHC, and tumor NGS helped identify candidates for precision therapy in patients with ovarian cancer, a proportion of whom received matched therapy.
Collapse
Affiliation(s)
- Yoo-Na Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Soo Chung
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hyun Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eunhyang Park
- Department of Pathology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
Navaridas R, Vidal‐Sabanés M, Ruiz‐Mitjana A, Altés G, Perramon‐Güell A, Yeramian A, Egea J, Encinas M, Gatius S, Matias‐Guiu X, Dolcet X. In Vivo Intra-Uterine Delivery of TAT-Fused Cre Recombinase and CRISPR/Cas9 Editing System in Mice Unveil Histopathology of Pten/p53-Deficient Endometrial Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303134. [PMID: 37749866 PMCID: PMC10646277 DOI: 10.1002/advs.202303134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/25/2023] [Indexed: 09/27/2023]
Abstract
Phosphatase and TENsin homolog (Pten) and p53 are two of the most frequently mutated tumor suppressor genes in endometrial cancer. However, the functional consequences and histopathological manifestation of concomitant p53 and Pten loss of function alterations in the development of endometrial cancer is still controversial. Here, it is demonstrated that simultaneous Pten and p53 deletion is sufficient to cause epithelial to mesenchymal transition phenotype in endometrial organoids. By a novel intravaginal delivery method using HIV1 trans-activator of transcription cell penetrating peptide fused with a Cre recombinase protein (TAT-Cre), local ablation of both p53 and Pten is achieved specifically in the uterus. These mice developed high-grade endometrial carcinomas and a high percentage of uterine carcinosarcomas resembling those found in humans. To further demonstrate that carcinosarcomas arise from epithelium, double Pten/p53 deficient epithelial cells are mixed with wild type stromal and myometrial cells and subcutaneously transplanted to Scid mice. All xenotransplants resulted in the development of uterine carcinosarcomas displaying high nuclear pleomorphism and metastatic potential. Accordingly, in vivo CRISPR/Cas9 disruption of Pten and p53 also triggered the development of metastatic carcinosarcomas. The results unfadingly demonstrate that simultaneous deletion of p53 and Pten in endometrial epithelial cells is enough to trigger epithelial to mesenchymal transition that is consistently translated to the formation of uterine carcinosarcomas in vivo.
Collapse
Affiliation(s)
- Raúl Navaridas
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Maria Vidal‐Sabanés
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Anna Ruiz‐Mitjana
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Gisela Altés
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Aida Perramon‐Güell
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Andree Yeramian
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Joaquim Egea
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Mario Encinas
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Sonia Gatius
- Oncologic Pathology Group, Department of Basic Medical SciencesBiomedical Research Institute of Lleida (IRBLleida), CIBERONC.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Xavier Matias‐Guiu
- Oncologic Pathology Group, Department of Basic Medical SciencesBiomedical Research Institute of Lleida (IRBLleida), CIBERONC.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Xavier Dolcet
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| |
Collapse
|
13
|
Chakraborty P, Kurkalang S, Ghatak S, Das S, Palodhi A, Sarkar S, Dhar R, Chenkual S, Pachuau L, Zohmingthanga J, Pautu JL, Zomuana T, Lalruatfela ST, Zothanzama J, Kumar NS, Maitra A. Deep sequencing reveals recurrent somatic mutations and distinct molecular subgroups in gastric cancer in Mizo population, North East India. Genomics 2023; 115:110741. [PMID: 37967684 DOI: 10.1016/j.ygeno.2023.110741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
In India, Mizoram has the highest incidence of gastric cancer (GC) which might be associated with environmental factors such as diet, Helicobacter pylori (H.pylori) and Epstein-Barr virus (EBV) infections, and somatic genomic alterations. We performed PCR cum sequencing and fragment analysis for detection of H. pylori/EBV infection and microsatellite Instability (MSI) in GC patients (N = 68). Somatic mutations were identified by targeted and exome sequencing. We found 87% of GC patients infected with H. pylori and or EBV. Pathogenic infections were mostly mutually exclusive with only 16% of coinfection. TP53, MUC6, and ARID1A were significantly mutated. Two molecular subgroups with distinctive mutational profiles were identified: (1) patients harboring mutations in TP53 and (2) patients harboring mutations in RTK/RAS/PI3-K signaling pathway and chromatin-remodeling genes. Therefore, EBV and H. pylori infections and somatic mutations in the genes involved in RTK/RAS/PI3K signaling pathway, chromatin-remodeling, and TP53 might drive GC development and progression in Mizo patients.
Collapse
Affiliation(s)
- Payel Chakraborty
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, PIN: 796009, India.
| | - Sillarine Kurkalang
- National Institute of Biomedical Genomics, Kalyani, West Bengal, PIN: 741251, India.
| | - Souvik Ghatak
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, PIN: 796009, India.
| | - Subrata Das
- National Institute of Biomedical Genomics, Kalyani, West Bengal, PIN: 741251, India.
| | - Arindam Palodhi
- National Institute of Biomedical Genomics, Kalyani, West Bengal, PIN: 741251, India.
| | - Sumanta Sarkar
- National Institute of Biomedical Genomics, Kalyani, West Bengal, PIN: 741251, India.
| | - Ranjan Dhar
- National Institute of Biomedical Genomics, Kalyani, West Bengal, PIN: 741251, India.
| | - Saia Chenkual
- Zoram Medical College, Falkawn, Mizoram, PIN: 796005, India.
| | - Lalawmpuii Pachuau
- Department of Pathology, Civil Hospital, Aizawl, Mizoram, PIN: -796001, India.
| | | | - Jeremy L Pautu
- Department of Medical Oncology, Mizoram State Cancer Institute, Zemabawk, Aizawl, Mizoram, PIN: 796017, India.
| | - Thomas Zomuana
- Department of Surgery, Civil Hospital, Aizawl, Mizoram, PIN: -796001, India.
| | | | - John Zothanzama
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, PIN: 796009, India.
| | | | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, West Bengal, PIN: 741251, India.
| |
Collapse
|
14
|
Shi Y, Shin DS. Dysregulation of SWI/SNF Chromatin Remodelers in NSCLC: Its Influence on Cancer Therapies including Immunotherapy. Biomolecules 2023; 13:984. [PMID: 37371564 DOI: 10.3390/biom13060984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Molecularly targeted therapeutics and immunotherapy revolutionized the clinical care of NSCLC patients. However, not all NSCLC patients harbor molecular targets (e.g., mutated EGFR), and only a subset benefits from immunotherapy. Moreover, we are lacking reliable biomarkers for immunotherapy, although PD-L1 expression has been mainly used for guiding front-line therapeutic options. Alterations of the SWI/SNF chromatin remodeler occur commonly in patients with NSCLC. This subset of NSCLC tumors tends to be undifferentiated and presents high heterogeneity in histology, and it shows a dismal prognosis because of poor response to the current standard therapies. Catalytic subunits SMARCA4/A2 and DNA binding subunits ARID1A/ARID1B/ARID2 as well as PBRM1 were identified to be the most commonly mutated subunits of SWI/SNF complexes in NSCLC. Mechanistically, alteration of these SWI/SNF subunits contributes to the tumorigenesis of NSCLC through compromising the function of critical tumor suppressor genes, enhancing oncogenic activity as well as impaired DNA repair capacity related to genomic instability. Several vulnerabilities of NSCLCS with altered SWI/SNF subunits were detected and evaluated clinically using EZH2 inhibitors, PROTACs of mutual synthetic lethal paralogs of the SWI/SNF subunits as well as PARP inhibitors. The response of NSCLC tumors with an alteration of SWI/SNF to ICIs might be confounded by the coexistence of mutations in genes capable of influencing patients' response to ICIs. High heterogenicity in the tumor with SWI/SNF deficiency might also be responsible for the seemingly conflicting results of ICI treatment of NSCLC patients with alterations of SWI/SNF. In addition, an alteration of each different SWI/SNF subunit might have a unique impact on the response of NSCLC with deficient SWI/SNF subunits. Prospective studies are required to evaluate how the alterations of the SWI/SNF in the subset of NSCLC patients impact the response to ICI treatment. Finally, it is worthwhile to point out that combining inhibitors of other chromatin modulators with ICIs has been proven to be effective for the treatment of NSCLC with deficient SWI/SNF chromatin remodelers.
Collapse
Affiliation(s)
- Yijiang Shi
- Division of Hematology/Oncology, Department of Medicine, Los Angeles, CA 90073, USA
- Division of Hematology/Oncology, Department of Medicine, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| | - Daniel Sanghoon Shin
- Division of Hematology/Oncology, Department of Medicine, Los Angeles, CA 90073, USA
- Division of Hematology/Oncology, Department of Medicine, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| |
Collapse
|
15
|
Alessandrino F, Goncalves N, Metalonis SW, Luna C, Mason MM, Lyu J, Huang M. Uterine serous carcinoma: assessing association between genomics and patterns of metastasis. Front Oncol 2023; 13:1066427. [PMID: 37228503 PMCID: PMC10203475 DOI: 10.3389/fonc.2023.1066427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Background Uterine serous carcinoma (USC) is an aggressive subtype of endometrial carcinoma which has been increasing at alarming rates, particularly among Asian, Hispanic and Black women. USC has not been well characterized in terms of mutational status, pattern of metastases and survival. Objective To investigate the association between sites of recurrence and metastases of USC, mutational status, race, and overall survival (OS). Methods This single-center retrospective study evaluated patients with biopsy-proven USC that underwent genomic testing between January 2015 and July 2021. Association between genomic profile and sites of metastases or recurrence was performed using χ2 or Fisher's exact test. Survival curves for ethnicity and race, mutations, sites of metastasis/recurrence were estimated using the Kaplan-Meier method and compared with log-rank test. Cox proportional hazard regression models were used to examine the association between OS with age, race, ethnicity, mutational status, and sites of metastasis/recurrence. Statistical analyses were performed using SAS Software Version 9.4. Results The study included 67 women (mean age 65.8 years, range 44-82) with 52 non-Hispanic women (78%) and 33 Black women (49%). The most common mutation was TP53 (55/58 women, 95%). The peritoneum was the most common site of metastasis (29/33, 88%) and recurrence (8/27, 30%). PR expression was more common in women with nodal metastases (p=0.02) and non-Hispanic women (p=0.01). ERBB2 alterations were more common in women with vaginal cuff recurrence (p=0.02), while PIK3CA mutation was more common in women with liver metastases (p=0.048). ARID1A mutation and presence of recurrence or metastases to the liver were associated with lower OS (Hazard Ratio (HR): 31.87; 95%CI: 3.21, 316.9; p<0.001 and HR: 5.66; 95%CI: 1.2, 26.79; p=0.01, respectively). In the bivariable Cox model, the presence of metastasis/recurrence to the liver and/or the peritoneum were both independent significant predictors of OS (HR: 9.8; 95%CI: 1.85-52.7; p=0.007 and HR: 2.7; 95%CI: 1.02-7.1; p=0.04, respectively). Conclusions TP53 is often mutated in USC, which most commonly metastasize and recur in the peritoneum. OS was shorter in women with ARID1A mutations and with metastasis/recurrence to the liver. The presence of metastasis/recurrence to liver and/or peritoneum were independently associated with shorter OS.
Collapse
Affiliation(s)
| | - Nicole Goncalves
- University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sarah Wishnek Metalonis
- Division of Biostatistics, Department of Public Health Science, University of Miami, Miami, FL, United States
| | - Cibele Luna
- Department of Radiology, University of Miami, Miami, FL, United States
| | - Matthew M. Mason
- University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jiangnan Lyu
- Division of Biostatistics, Department of Public Health Science, University of Miami, Miami, FL, United States
| | - Marilyn Huang
- Division of Gynecologic Oncology, Sylvester Comprehensive Cancer Center, University of Miami, FL, United States
| |
Collapse
|
16
|
Wang L, Tang J. SWI/SNF complexes and cancers. Gene 2023; 870:147420. [PMID: 37031881 DOI: 10.1016/j.gene.2023.147420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Epigenetics refers to the study of genetic changes that can affect gene expression without altering the underlying DNA sequence, including DNA methylation, histone modification, chromatin remodelling, X chromosome inactivation and non-coding RNA regulation. Of these, DNA methylation, histone modification and chromatin remodelling constitute the three classical modes of epigenetic regulation. These three mechanisms alter gene transcription by adjusting chromatin accessibility, thereby affecting cell and tissue phenotypes in the absence of DNA sequence changes. In the presence of ATP hydrolases, chromatin remodelling alters the structure of chromatin and thus changes the transcription level of DNA-guided RNA. To date, four types of ATP-dependent chromatin remodelling complexes have been identified in humans, namely SWI/SNF, ISWI, INO80 and NURD/MI2/CHD. SWI/SNF mutations are prevalent in a wide variety of cancerous tissues and cancer-derived cell lines as discovered by next-generation sequencing technologies.. SWI/SNF can bind to nucleosomes and use the energy of ATP to disrupt DNA and histone interactions, sliding or ejecting histones, altering nucleosome structure, and changing transcriptional and regulatory mechanisms. Furthermore, mutations in the SWI/SNF complex have been observed in approximately 20% of all cancers. Together, these findings suggest that mutations targeting the SWI/SNF complex may have a positive impact on tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Liyuan Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Oncology and Hematology, Jinan 250000, Shandong Province, China
| | - Jinglong Tang
- Adicon Medical Laboratory Center, Molecular Genetic Diagnosis Center, Pathological Diagnosis Center, Jinan 250014, Shandong Province, China.
| |
Collapse
|
17
|
Orazov MR, Mikhaleva LM, Mullina IA. Endometrial hyperplasia and progesterone resistance: a complex relationship. RUDN JOURNAL OF MEDICINE 2023. [DOI: 10.22363/2313-0245-2023-27-1-65-70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The endometrium is one of the most dynamic tissues that constantly undergoes changes during the menstrual cycle in women of the reproductive period. All these processes take place mainly under the influence of steroid hormones that are produced in the woman’s body. However, it is important to remember that throughout life the endometrial tissue undergoes changes under the influence of various factors that lead to imbalances in hormonal regulation. All these changes can lead to the development of endometrial hyperplasia, which has a high risk of both recurrence and malignization. Over the past few decades, the incidence of endometrial cancer has increased in many countries. This trend is thought to be related to the increasing prevalence of obesity, as well as to changing female reproductive patterns. Although there are currently no well-established screening programmers for endometrial cancer, endometrial hyperplasia is a recognized precursor, and its detection provides an opportunity for prevention. Studying the pathogenesis and risk factors will give a great advantage in the future to prevent possible complications. At this point, the activity and inhibition of the different hormone isoforms can lead to different hyperplastic processes. The management of patients depends on many factors: age, species, reproductive potential and other factors. Therefore, a comprehensive approach to treatment is always necessary. In recent years, interest in the study of endometrial hyperplasia has increased dramatically due to the increase in endometrial cancer. Therefore, the issue of early diagnosis and prevention is most urgent in modern gynecology and requires further study. This review reflects the current understanding of the disruption of progesterone signaling mechanisms in endometrial hyperplasia according to domestic and foreign literature.
Collapse
|
18
|
Fontana B, Gallerani G, Salamon I, Pace I, Roncarati R, Ferracin M. ARID1A in cancer: Friend or foe? Front Oncol 2023; 13:1136248. [PMID: 36890819 PMCID: PMC9987588 DOI: 10.3389/fonc.2023.1136248] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
ARID1A belongs to a class of chromatin regulatory proteins that function by maintaining accessibility at most promoters and enhancers, thereby regulating gene expression. The high frequency of ARID1A alterations in human cancers has highlighted its significance in tumorigenesis. The precise role of ARID1A in cancer is highly variable since ARID1A alterations can have a tumor suppressive or oncogenic role, depending on the tumor type and context. ARID1A is mutated in about 10% of all tumor types including endometrial, bladder, gastric, liver, biliopancreatic cancer, some ovarian cancer subtypes, and the extremely aggressive cancers of unknown primary. Its loss is generally associated with disease progression more often than onset. In some cancers, ARID1A loss is associated with worse prognostic features, thus supporting a major tumor suppressive role. However, some exceptions have been reported. Thus, the association of ARID1A genetic alterations with patient prognosis is controversial. However, ARID1A loss of function is considered conducive for the use of inhibitory drugs which are based on synthetic lethality mechanisms. In this review we summarize the current knowledge on the role of ARID1A as tumor suppressor or oncogene in different tumor types and discuss the strategies for treating ARID1A mutated cancers.
Collapse
Affiliation(s)
- Beatrice Fontana
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Giulia Gallerani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Irene Salamon
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Ilaria Pace
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Roberta Roncarati
- Istituto di Genetica Molecolare ”Luigi Luca Cavalli-Sforza“ – Consiglio Nazionale delle Ricerce (CNR), Bologna, Italy
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
19
|
Xu Y, Zhang M, Shi Q, Cheng X, Du R, Li C, Zhang Y. Identification of HOXB9 to predict prognosis of endometrial cancer based on comprehensive bioinformatics analysis. Eur J Med Res 2023; 28:79. [PMID: 36803556 PMCID: PMC9936693 DOI: 10.1186/s40001-022-00979-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/30/2022] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND The HOXB9 gene, which plays a key role in embryonic development, is also involved in the regulation of various human cancers. However, the potential relationship between HOXB9 and endometrial cancer (EC) has not yet been comprehensively analyzed and fully understood. METHODS We used multiple bioinformatics tools to explore the role of HOXB9 in EC. RESULTS The expression of HOXB9 was significantly upregulated in pan-cancer, including EC (P < 0.05). Quantitative real time polymerase chain reaction (qRT-PCR) experiment confirmed the high expression of HOXB9 in EC from clinical samples (P < 0.001). Double validated by Enrichr and Metascape, HOXB9 showed a strong correlation with HOX family, suggesting that HOX family may also involve in the development of EC (P < 0.05). Enrichment analysis revealed HOXB9 is mainly associated with cellular process, developmental process, P53 signaling pathway, etc. At the single-cell level, the clusters of cells ranked were glandular and luminal cells c-24, glandular and luminal cells c-9, endothelial cells c-15, compared with the other cells. At the genetic level, promoter methylation levels of HOXB9 were significantly higher in tumors than in normal tissues. Furthermore, variations of HOXB9 were closely associated with overall survival (OS) and recurrence free survival (RFS) in EC patients (P < 0.05). The agreement between univariate and multivariate Cox regression indicated that the results were more reliable. Stages III and IV, G2 and G3, tumor invasion ≥ 50%, mixed or serous histological type, age > 60 years, and high expression of HOXB9 were risk factors strongly associated with OS in EC patients (P < 0.05). Therefore, six factors were incorporated to construct a nomogram for survival prediction. Finally, we used the Kaplan-Meier (KM) curve, receiver operating characteristic (ROC) curve, and time-dependent ROC to assess predictive power of HOXB9. KM curve showed EC patients overexpressing HOXB9 had a worse OS. AUC of diagnostic ROC was 0.880. AUCs of time-dependent ROC were 0.602, 0.591, and 0.706 for 1-year, 5-year, and 10-year survival probabilities (P < 0.001). CONCLUSIONS Our study provids new insights into the diagnosis and prognosis of HOXB9 in EC and constructs a model that can accurately predict the prognosis of EC.
Collapse
Affiliation(s)
- Yanhua Xu
- grid.440642.00000 0004 0644 5481Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, No.20 Xi-Si Road, Nantong, 226001 Jiangsu China
| | - Mu Zhang
- grid.440642.00000 0004 0644 5481Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Qin Shi
- grid.440642.00000 0004 0644 5481Center For Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Xi Cheng
- grid.440642.00000 0004 0644 5481Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, No.20 Xi-Si Road, Nantong, 226001 Jiangsu China
| | - Rong Du
- grid.440642.00000 0004 0644 5481Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, No.20 Xi-Si Road, Nantong, 226001 Jiangsu China
| | - Chenglu Li
- grid.440642.00000 0004 0644 5481Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, No.20 Xi-Si Road, Nantong, 226001 Jiangsu China
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, No.20 Xi-Si Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
20
|
Asaka S, Liu Y, Yu ZC, Rahmanto YS, Ono M, Asaka R, Miyamoto T, Yen TT, Ayhan A, Wang TL, Shih IM. ARID1A Regulates Progesterone Receptor Expression in Early Endometrial Endometrioid Carcinoma Pathogenesis. Mod Pathol 2023; 36:100045. [PMID: 36853791 DOI: 10.1016/j.modpat.2022.100045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/13/2022] [Accepted: 10/18/2022] [Indexed: 01/11/2023]
Abstract
Loss of progesterone receptor (PR) expression is an established risk factor for unresponsiveness to progesterone therapy in patients with endometrial atypical hyperplasia and endometrioid carcinoma. ARID1A is one of the most commonly mutated genes in endometrioid carcinomas, and the loss of its expression is associated with tumor progression. In this study, we investigated the roles of ARID1A deficiency in PR expression in human and murine endometrial epithelial neoplasia. An analysis of genome-wide chromatin immunoprecipitation sequencing in isogenic ARID1A-/- and ARID1A+/+ human endometrial epithelial cells revealed that ARID1A-/- cells showed significantly reduced chromatin immunoprecipitation sequencing signals for ARID1A, BRG1, and H3K27AC in the PgR enhancer region. We then performed immunohistochemistry to correlate the protein expression levels of ARID1A, estrogen receptor, and PR in 50 human samples of endometrial atypical hyperplasia and 75 human samples of endometrial carcinomas. The expression levels of PR but not were significantly lower in ARID1A-deficient low-grade endometrial carcinomas and atypical hyperplasia (P = .0002). When Pten and Pten/Arid1a conditional knockout murine models were used, Pten-/-;Arid1a-/- mice exhibited significantly decreased epithelial PR expression in endometrial carcinomas (P = .003) and atypical hyperplasia (P < .0001) compared with that in the same tissues from Pten-/-;Arid1a+/+ mice. Our data suggest that the loss of ARID1A expression, as occurs in ARID1A-mutated endometrioid carcinomas, decreases PgR transcription by modulating the PgR enhancer region during early tumor development.
Collapse
Affiliation(s)
- Shiho Asaka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ying Liu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zheng-Cheng Yu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yohan Suryo Rahmanto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Motoki Ono
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryoichi Asaka
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tsutomu Miyamoto
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ting-Tai Yen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ayse Ayhan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Seirei Mikatahara Hospital, Hamamatsu, Japan; Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
21
|
Fonseca MAS, Haro M, Wright KN, Lin X, Abbasi F, Sun J, Hernandez L, Orr NL, Hong J, Choi-Kuaea Y, Maluf HM, Balzer BL, Fishburn A, Hickey R, Cass I, Goodridge HS, Truong M, Wang Y, Pisarska MD, Dinh HQ, El-Naggar A, Huntsman DG, Anglesio MS, Goodman MT, Medeiros F, Siedhoff M, Lawrenson K. Single-cell transcriptomic analysis of endometriosis. Nat Genet 2023; 55:255-267. [PMID: 36624343 PMCID: PMC10950360 DOI: 10.1038/s41588-022-01254-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/28/2022] [Indexed: 01/11/2023]
Abstract
Endometriosis is a common condition in women that causes chronic pain and infertility and is associated with an elevated risk of ovarian cancer. We profiled transcriptomes of >370,000 individual cells from endometriomas (n = 8), endometriosis (n = 28), eutopic endometrium (n = 10), unaffected ovary (n = 4) and endometriosis-free peritoneum (n = 4), generating a cellular atlas of endometrial-type epithelial cells, stromal cells and microenvironmental cell populations across tissue sites. Cellular and molecular signatures of endometrial-type epithelium and stroma differed across tissue types, suggesting a role for cellular restructuring and transcriptional reprogramming in the disease. Epithelium, stroma and proximal mesothelial cells of endometriomas showed dysregulation of pro-inflammatory pathways and upregulation of complement proteins. Somatic ARID1A mutation in epithelial cells was associated with upregulation of pro-angiogenic and pro-lymphangiogenic factors and remodeling of the endothelial cell compartment, with enrichment of lymphatic endothelial cells. Finally, signatures of ciliated epithelial cells were enriched in ovarian cancers, reinforcing epidemiologic associations between these two diseases.
Collapse
Affiliation(s)
- Marcos A S Fonseca
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marcela Haro
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kelly N Wright
- Division of Minimally Invasive Gynecologic Surgery, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xianzhi Lin
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Forough Abbasi
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer Sun
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lourdes Hernandez
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Natasha L Orr
- Department of Obstetrics and Gynecology, UBC, Vancouver, British Columbia, Canada
| | - Jooyoon Hong
- Department of Obstetrics and Gynecology, UBC, Vancouver, British Columbia, Canada
| | - Yunhee Choi-Kuaea
- Cancer Prevention and Control Program, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Horacio M Maluf
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bonnie L Balzer
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aaron Fishburn
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ryan Hickey
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ilana Cass
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Helen S Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mireille Truong
- Division of Minimally Invasive Gynecologic Surgery, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yemin Wang
- Department of Obstetrics and Gynecology, UBC, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, and Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Margareta D Pisarska
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Huy Q Dinh
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Amal El-Naggar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia Governorate, Egypt
| | - David G Huntsman
- Department of Obstetrics and Gynecology, UBC, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, and Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Michael S Anglesio
- Department of Obstetrics and Gynecology, UBC, Vancouver, British Columbia, Canada
- British Columbia's Gynecological Cancer Research (OVCARE) Program, University of British Columbia, Vancouver General Hospital, and BC Cancer, Vancouver, British Columbia, Canada
| | - Marc T Goodman
- Cancer Prevention and Control Program, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Fabiola Medeiros
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Matthew Siedhoff
- Division of Minimally Invasive Gynecologic Surgery, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Cancer Prevention and Control Program, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Molina Pimienta L, Salgado Sánchez JC, Hernández Cuello I. Implicaciones en el tratamiento de pacientes con cáncer de mama y alteraciones en ARID1A. UNIVERSITAS MÉDICA 2023. [DOI: 10.11144/javeriana.umed64-1.tpcm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
ARID1A (AT-rich interaction domain 1A) es una subunidad de los complejos SWI/SNF específicamente mutada en ~20 % de los cánceres humanos primarios. La inactivación de ARID1A a través de mutaciones somáticas y otros mecanismos epigenéticos da como resultado la pérdida de las funciones de guardián y cuidador en las células, lo que promueve la iniciación del tumor. Se ha documentado una correlación entre mutaciones de pérdida de función en ARID1A y la presencia de mutaciones activadoras en PIK3CA, pérdida de la expresión de PTEN y la pérdida de la función de p53. Las mutaciones de ARID1A estaban presentes en el 2,5 % de todos los cánceres de mama; no obstante, el porcentaje de cáncer de mama con mutaciones en ARID1A aumenta en los cánceres metastásicos un 12 %, o en los inflamatorios, un 10 %. La pérdida de la función de la ARID1A en cáncer de mama se adquiere con mayor frecuencia posterior al tratamiento y está asociada con la resistencia al tratamiento hormonal y con agentes quimioterapéuticos. Además, conduce a una reparación deficiente de las rupturas de doble cadena, que sensibilizan las células a los inhibidores de PARP. Por último, las alteraciones en ARID1A podrían ser un biomarcador de respuesta a inhibidores de punto de control.
Collapse
|
23
|
Gao L, Wang X, Wang X, Wang F, Tang J, Ji J. A prognostic model and immune regulation analysis of uterine corpus endometrial carcinoma based on cellular senescence. Front Oncol 2022; 12:1054564. [PMID: 36568182 PMCID: PMC9775865 DOI: 10.3389/fonc.2022.1054564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 12/13/2022] Open
Abstract
Background This study aimed to explore the clinical significance of cellular senescence in uterine corpus endometrial carcinoma (UCEC). Methods Cluster analysis was performed on GEO data and TCGA data based on cellular senescence related genes, and then performed subtype analysis on differentially expressed genes between subtypes. The prognostic model was constructed using Lasso regression. Survival analysis, microenvironment analysis, immune analysis, mutation analysis, and drug susceptibility analysis were performed to evaluate the practical relevance. Ultimately, a clinical nomogram was constructed and cellular senescence-related genes expression was investigated by qRT-PCR. Results We ultimately identified two subtypes. The prognostic model divides patients into high-risk and low-risk groups. There were notable discrepancies in prognosis, tumor microenvironment, immunity, and mutation between the two subtypes and groups. There was a notable connection between drug-sensitive and risk scores. The nomogram has good calibration with AUC values between 0.75-0.8. In addition, cellular senescence-related genes expression was investigated qRT-PCR. Conclusion Our model and nomogram may effectively forecast patient prognosis and serve as a reference for patient management.
Collapse
Affiliation(s)
- Lulu Gao
- Department of Obstetrics and Gynecology, Nantong Maternal and Child Health Hospital Affiliated to Nantong University, Nantong, China
| | - Xiangdong Wang
- Department of Integrated Traditional Chinese and Western Internal Medicine, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China,Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xuehai Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Fengxu Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China,*Correspondence: Juan Tang, ; Jinfeng Ji,
| | - Jinfeng Ji
- Department of Integrated Traditional Chinese and Western Internal Medicine, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China,*Correspondence: Juan Tang, ; Jinfeng Ji,
| |
Collapse
|
24
|
Korentzelos D, Elishaev E, Zhao C, Jones MW, Soong TR, Lesnock J, Orellana T, Zeccola A, Diamantopoulos LN, Wald AI, Bhargava R. ARID1A, BRG1, and INI1 deficiency in undifferentiated and dedifferentiated endometrial carcinoma: a clinicopathologic, immunohistochemical, and next-generation sequencing analysis of a case series from a single institution. Hum Pathol 2022; 130:65-78. [PMID: 36252860 DOI: 10.1016/j.humpath.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/11/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022]
Abstract
Undifferentiated/dedifferentiated endometrial carcinomas (UDEC and DDEC) are rare, aggressive uterine neoplasms, with no specific line of differentiation. A significant proportion of these cases feature mutations of SWI/SNF chromatin remodeling complex members, including ARID1A, SMARCA4, and SMARCB1 genes. To study these entities more comprehensively, we identified 10 UDECs and 10 DDECs from our pathology archives, obtained clinicopathologic findings and follow-up data, and performed immunohistochemical studies for ARID1A, BRG1 (SMARCA4), and INI1 (SMARCB1) proteins. In addition, we successfully conducted targeted next-generation sequencing for 23 samples, including 7 UDECs, and 7 undifferentiated and 9 well/moderately-differentiated components of DDECs. Cases consisted of 18 hysterectomies and 2 curettage/biopsy specimens. Patient age ranged from 47 to 77 years (median, 59 years), with a median tumor size of 8.0 cm (range, 2.5-13.0 cm). All cases demonstrated lymphovascular invasion and the majority (13/20) were FIGO stage III-IV. By immunohistochemistry, ARID1A loss was observed in 15 cases, BRG1 loss in 4, and all cases had intact INI1 expression. A trend for enrichment of the undifferentiated component of DDECs for ARID1A loss was seen, although not statistically significant. Sequencing revealed frequent pathogenic mutations in PTEN, PIK3CA, ARID1A, CTNNB1, and RNF43, a recurrent MAX pathogenic mutation, and MYC and 12p copy number gains. In DDECs, the undifferentiated component featured a higher tumor mutational burden compared to the well/moderately-differentiated component; however, the mutational landscape largely overlapped. Overall, our study provides deep insights into the mutational landscape of UDEC/DDEC, SWI/SNF chromatin remodeling complex member status, and their potential relationships with tumor features.
Collapse
Affiliation(s)
- Dimitrios Korentzelos
- Department of Pathology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; UPMC Magee-Womens Hospital, Pittsburgh, PA 15213, USA
| | - Chengquan Zhao
- Department of Pathology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; UPMC Magee-Womens Hospital, Pittsburgh, PA 15213, USA
| | - Mirka W Jones
- Department of Pathology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; UPMC Magee-Womens Hospital, Pittsburgh, PA 15213, USA
| | - T Rinda Soong
- Department of Pathology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; UPMC Magee-Womens Hospital, Pittsburgh, PA 15213, USA
| | - Jamie Lesnock
- Division of Gynecologic Oncology, UPMC Magee-Womens Hospital, Pittsburgh, PA 15213, USA
| | - Taylor Orellana
- Division of Gynecologic Oncology, UPMC Magee-Womens Hospital, Pittsburgh, PA 15213, USA
| | - Alison Zeccola
- Division of Gynecologic Oncology, UPMC Magee-Womens Hospital, Pittsburgh, PA 15213, USA
| | | | - Abigail I Wald
- Department of Pathology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA
| | - Rohit Bhargava
- Department of Pathology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; UPMC Magee-Womens Hospital, Pittsburgh, PA 15213, USA.
| |
Collapse
|
25
|
Mandal J, Mandal P, Wang TL, Shih IM. Treating ARID1A mutated cancers by harnessing synthetic lethality and DNA damage response. J Biomed Sci 2022; 29:71. [PMID: 36123603 PMCID: PMC9484255 DOI: 10.1186/s12929-022-00856-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Chromatin remodeling is an essential cellular process for organizing chromatin structure into either open or close configuration at specific chromatin locations by orchestrating and modifying histone complexes. This task is responsible for fundamental cell physiology including transcription, DNA replication, methylation, and damage repair. Aberrations in this activity have emerged as epigenomic mechanisms in cancer development that increase tumor clonal fitness and adaptability amidst various selection pressures. Inactivating mutations in AT-rich interaction domain 1A (ARID1A), a gene encoding a large nuclear protein member belonging to the SWI/SNF chromatin remodeling complex, result in its loss of expression. ARID1A is the most commonly mutated chromatin remodeler gene, exhibiting the highest mutation frequency in endometrium-related uterine and ovarian carcinomas. As a tumor suppressor gene, ARID1A is essential for regulating cell cycle, facilitating DNA damage repair, and controlling expression of genes that are essential for maintaining cellular differentiation and homeostasis in non-transformed cells. Thus, ARID1A deficiency due to somatic mutations propels tumor progression and dissemination. The recent success of PARP inhibitors in treating homologous recombination DNA repair-deficient tumors has engendered keen interest in developing synthetic lethality-based therapeutic strategies for ARID1A-mutated neoplasms. In this review, we summarize recent advances in understanding the biology of ARID1A in cancer development, with special emphasis on its roles in DNA damage repair. We also discuss strategies to harness synthetic lethal mechanisms for future therapeutics against ARID1A-mutated cancers.
Collapse
Affiliation(s)
- Jayaprakash Mandal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ie-Ming Shih
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
26
|
Guo B, Friedland SC, Alexander W, Myers JA, Wang W, O'Dell MR, Getman M, Whitney-Miller CL, Agostini-Vulaj D, Huber AR, Mello SS, Vertino PM, Land HK, Steiner LA, Hezel AF. Arid1a mutation suppresses TGF-β signaling and induces cholangiocarcinoma. Cell Rep 2022; 40:111253. [PMID: 36044839 PMCID: PMC9808599 DOI: 10.1016/j.celrep.2022.111253] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/02/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023] Open
Abstract
Activating KRAS mutations and functional loss of members of the SWI/SNF complex, including ARID1A, are found together in the primary liver tumor cholangiocarcinoma (CC). How these mutations cooperate to promote CC has not been established. Using murine models of hepatocyte and biliary-specific lineage tracing, we show that Kras and Arid1a mutations drive the formation of CC and tumor precursors from the biliary compartment, which are accelerated by liver inflammation. Using cultured cells, we find that Arid1a loss causes cellular proliferation, escape from cell-cycle control, senescence, and widespread changes in chromatin structure. Notably, we show that the biliary proliferative response elicited by Kras/Arid1a cooperation and tissue injury in CC is caused by failed engagement of the TGF-β-Smad4 tumor suppressor pathway. We thus identify an ARID1A-TGF-β-Smad4 axis as essential in limiting the biliary epithelial response to oncogenic insults, while its loss leads to biliary pre-neoplasia and CC.
Collapse
Affiliation(s)
- Bing Guo
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA
| | - Scott C Friedland
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - William Alexander
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jacquelyn A Myers
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wenjia Wang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA
| | - Michael R O'Dell
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA
| | - Michael Getman
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Christa L Whitney-Miller
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Diana Agostini-Vulaj
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Aaron R Huber
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Stephano S Mello
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Paula M Vertino
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hartmut K Land
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA
| | - Laurie A Steiner
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Aram F Hezel
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
27
|
Jdeed S, Lengyel M, Uray IP. Redistribution of the SWI/SNF Complex Dictates Coordinated Transcriptional Control over Epithelial–Mesenchymal Transition of Normal Breast Cells through TGF-β Signaling. Cells 2022; 11:cells11172633. [PMID: 36078038 PMCID: PMC9454592 DOI: 10.3390/cells11172633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Therapeutic targets in cancer cells defective for the tumor suppressor ARID1A are fundamentals of synthetic lethal strategies. However, whether modulating ARID1A function in premalignant breast epithelial cells could be exploited to reduce carcinogenic potential remains to be elucidated. In search of chromatin-modulating mechanisms activated by anti-proliferative agents in normal breast epithelial (HME-hTert) cells, we identified a distinct pattern of genome-wide H3K27 histone acetylation marks characteristic for the combined treatment by the cancer preventive rexinoid bexarotene (Bex) and carvedilol (Carv). Among these marks, several enhancers functionally linked to TGF-β signaling were enriched for ARID1A and Brg1, subunits within the SWI/SNF chromatin-remodeling complex. The recruitment of ARID1A and Brg1 was associated with the suppression of TGFBR2, KLF4, and FoxQ1, and the induction of BMP6, while the inverse pattern ensued upon the knock-down of ARID1A. Bex+Carv treatment resulted in fewer cells expressing N-cadherin and dictated a more epithelial phenotype. However, the silencing of ARID1A expression reversed the ability of Bex and Carv to limit epithelial–mesenchymal transition. The nuclear levels of SMAD4, a canonical mediator of TGF-β action, were more effectively suppressed by the combination than by TGF-β. In contrast, TGF-β treatment exceeded the ability of Bex+Carv to lower nuclear FoxQ1 levels and induced markedly higher E-cadherin positivity, indicating a target-selective antagonism of Bex+Carv to TGF-β action. In summary, the chromatin-wide redistribution of ARID1A by Bex and Carv treatment is instrumental in the suppression of genes mediating TGF-β signaling, and, thus, the morphologic reprogramming of normal breast epithelial cells. The concerted engagement of functionally linked targets using low toxicity clinical agents represents an attractive new approach for cancer interception.
Collapse
|
28
|
Fukunaga Y, Fukuda A, Omatsu M, Namikawa M, Sono M, Masuda T, Araki O, Nagao M, Yoshikawa T, Ogawa S, Hiramatsu Y, Muta Y, Tsuda M, Maruno T, Nakanishi Y, Ferrer J, Tsuruyama T, Masui T, Hatano E, Seno H. Loss of Arid1a and Pten in Pancreatic Ductal Cells Induces Intraductal Tubulopapillary Neoplasm via the YAP/TAZ Pathway. Gastroenterology 2022; 163:466-480.e6. [PMID: 35483445 DOI: 10.1053/j.gastro.2022.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/31/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) arises from several types of premalignant lesions, including intraductal tubulopapillary neoplasm (ITPN); however, the molecular pathogenesis of ITPN remains unknown. METHODS We performed studies with Hnf1b-CreERT2; Ptenf/f; Arid1af/f mice to investigate the consequence of genetic deletion of Arid1a in adult pancreatic ductal cells in the context of oncogenic PI3K/Akt pathway activation. RESULTS Simultaneous deletion of Arid1a and Pten in pancreatic ductal cells resulted in the development of ITPN, which progressed to PDAC, in mice. Simultaneous loss of Arid1a and Pten induced dedifferentiation of pancreatic ductal cells and Yes-associated protein 1/Transcriptional coactivator with PDZ-binding motif (YAP/TAZ) pathway activation. Consistent with the mouse data, TAZ expression was found elevated in human ITPNs and ITPN-derived PDACs but not in human intraductal papillary mucinous neoplasms, indicating that activation of the TAZ pathway is a distinctive feature of ITPN. Furthermore, pharmacological inhibition of the YAP/TAZ pathway suppressed the dedifferentiation of pancreatic ductal cells and development of ITPN in Arid1a and Pten double-knockout mice. CONCLUSION Concurrent loss of Arid1a and Pten in adult pancreatic ductal cells induced ITPN and ITPN-derived PDAC in mice through aberrant activation of the YAP/TAZ pathway, and inhibition of the YAP/TAZ pathway prevented the development of ITPN. These findings provide novel insights into the pathogenesis of ITPN-derived PDAC and highlight the YAP/TAZ pathway as a potential therapeutic target.
Collapse
Affiliation(s)
- Yuichi Fukunaga
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; DSP Cancer Institute, Sumitomo Dainippon Pharma Co., Osaka, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Mayuki Omatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mio Namikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Makoto Sono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonori Masuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Araki
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Munemasa Nagao
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takaaki Yoshikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Ogawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukiko Hiramatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yu Muta
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Toshihiko Masui
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Etsuro Hatano
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
29
|
Conde M, Frew IJ. Therapeutic significance of ARID1A mutation in bladder cancer. Neoplasia 2022; 31:100814. [PMID: 35750014 PMCID: PMC9234250 DOI: 10.1016/j.neo.2022.100814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Bladder cancer (BC) develops from the tissues of the urinary bladder and is responsible for nearly 200,000 deaths annually. This review aims to integrate knowledge of recently discovered functions of the chromatin remodelling tumour suppressor protein ARID1A in bladder urothelial carcinoma with a focus on highlighting potential new avenues for the development of personalised therapies for ARID1A mutant bladder tumours. ARID1A is a component of the SWI/SNF chromatin remodelling complex and functions to control many important biological processes such as transcriptional regulation, DNA damage repair (DDR), cell cycle control, regulation of the tumour microenvironment and anti-cancer immunity. ARID1A mutation is emerging as a truncal driver mutation that underlies the development of a sub-set of urothelial carcinomas, in cooperation with other driver mutations, to cause dysregulation of a number of key cellular processes. These processes represent tumour drivers but also represent potentially attractive therapeutic targets.
Collapse
Affiliation(s)
- Marina Conde
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Centre - University of Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Ian J Frew
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Centre - University of Freiburg, Freiburg, Baden-Württemberg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany; Signalling Research Centre BIOSS, University of Freiburg, Freiburg, Baden-Württemberg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Baden-Württemberg, Germany.
| |
Collapse
|
30
|
Sahoo SS, Ramanand SG, Gao Y, Abbas A, Kumar A, Cuevas IC, Li HD, Aguilar M, Xing C, Mani RS, Castrillon DH. FOXA2 suppresses endometrial carcinogenesis and epithelial-mesenchymal transition by regulating enhancer activity. J Clin Invest 2022; 132:157574. [PMID: 35703180 PMCID: PMC9197528 DOI: 10.1172/jci157574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/04/2022] [Indexed: 01/23/2023] Open
Abstract
FOXA2 encodes a transcription factor mutated in 10% of endometrial cancers (ECs), with a higher mutation rate in aggressive variants. FOXA2 has essential roles in embryonic and uterine development. However, FOXA2’s role in EC is incompletely understood. Functional investigations using human and mouse EC cell lines revealed that FOXA2 controls endometrial epithelial gene expression programs regulating cell proliferation, adhesion, and endometrial-epithelial transition. In live animals, conditional inactivation of Foxa2 or Pten alone in endometrial epithelium did not result in ECs, but simultaneous inactivation of both genes resulted in lethal ECs with complete penetrance, establishing potent synergism between Foxa2 and PI3K signaling. Studies in tumor-derived cell lines and organoids highlighted additional invasion and cell growth phenotypes associated with malignant transformation and identified key mediators, including Myc and Cdh1. Transcriptome and cistrome analyses revealed that FOXA2 broadly controls gene expression programs through modification of enhancer activity in addition to regulating specific target genes, rationalizing its tumor suppressor functions. By integrating results from our cell lines, organoids, animal models, and patient data, our findings demonstrated that FOXA2 is an endometrial tumor suppressor associated with aggressive disease and with shared commonalities among its roles in endometrial function and carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development
| | | | | | | | - Chao Xing
- Eugene McDermott Center for Human Growth and Development.,Department of Bioinformatics.,Department of Population and Data Sciences
| | - Ram S Mani
- Department of Pathology.,Harold C. Simmons Comprehensive Cancer Center.,Department of Urology, and
| | - Diego H Castrillon
- Department of Pathology.,Harold C. Simmons Comprehensive Cancer Center.,Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
31
|
MacLean JA, Hayashi K. Progesterone Actions and Resistance in Gynecological Disorders. Cells 2022; 11:647. [PMID: 35203298 PMCID: PMC8870180 DOI: 10.3390/cells11040647] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Estrogen and progesterone and their signaling mechanisms are tightly regulated to maintain a normal menstrual cycle and to support a successful pregnancy. The imbalance of estrogen and progesterone disrupts their complex regulatory mechanisms, leading to estrogen dominance and progesterone resistance. Gynecological diseases are heavily associated with dysregulated steroid hormones and can induce chronic pelvic pain, dysmenorrhea, dyspareunia, heavy bleeding, and infertility, which substantially impact the quality of women's lives. Because the menstrual cycle repeatably occurs during reproductive ages with dynamic changes and remodeling of reproductive-related tissues, these alterations can accumulate and induce chronic and recurrent conditions. This review focuses on faulty progesterone signaling mechanisms and cellular responses to progesterone in endometriosis, adenomyosis, leiomyoma (uterine fibroids), polycystic ovary syndrome (PCOS), and endometrial hyperplasia. We also summarize the association with gene mutations and steroid hormone regulation in disease progression as well as current hormonal therapies and the clinical consequences of progesterone resistance.
Collapse
Affiliation(s)
- James A. MacLean
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, 1770 NE Stadium Way, Pullman, WA 99164, USA
| | - Kanako Hayashi
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, 1770 NE Stadium Way, Pullman, WA 99164, USA
| |
Collapse
|
32
|
Lu Y, Liu Z, Wang W, Chen X, Zhou X, Fu W. Expression Signature of the AT-Rich Interactive Domain Gene Family Identified in Digestive Cancer. Front Med (Lausanne) 2022; 8:775357. [PMID: 35127746 PMCID: PMC8811461 DOI: 10.3389/fmed.2021.775357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/29/2021] [Indexed: 12/29/2022] Open
Abstract
BackgroundThe AT-rich interactive domain (ARID) gene family of 15 proteins has an important role in development and proliferation. Gene expression alterations of the ARID family are correlated with the pathogenesis of digestive cancer, but systematic research has not been conducted.MethodsWe obtained transcriptome sequencing data, clinical characteristics and stemness indices of the seven main types of digestive cancer (cholangiocarcinoma, colon adenocarcinoma, oesophageal carcinoma, liver hepatocellular carcinoma, pancreatic adenocarcinoma, rectum adenocarcinoma and stomach adenocarcinoma) from public pan-cancer data to combine the analysis of the expression and prognostic signature of the ARID gene family. The stromal and immune scores for each sample were calculated to explore the correlations between the ARID gene family members and the tumour microenvironment.ResultsAfter screening, 1,920 digestive cancer samples were included in our study. ARID3C was expressed at low levels throughout the digestive cancer samples. The expression levels of ARID1A and JARID1C were relatively high, but there was striking heterogeneity across the different cancer types for specific family members. The survival analysis indicated that many genes were significantly related to the prognosis of patients with liver hepatocellular carcinoma. The stemness indices, stromal score, and immune score analysis showed that the expression of a single ARID gene had characteristic consistency in each tumour, but the levels among the different genes still varied.ConclusionOur systematic study of the ARID gene family and its association with the immune infiltrate, tumour microenvironment and outcomes of digestive cancer patients focus on the complex relations and indicate the need to study each ARID member as an individual in a specific cancer type.
Collapse
|
33
|
Liu X, Li Z, Wang Z, Liu F, Zhang L, Ke J, Xu X, Zhang Y, Yuan Y, Wei T, Shan Q, Chen Y, Huang W, Gao J, Wu N, Chen F, Sun L, Qiu Z, Deng Y, Wang X. Chromatin remodeling induced by ARID1A loss in lung cancer promotes glycolysis and confers JQ1 vulnerability. Cancer Res 2022; 82:791-804. [PMID: 34987057 DOI: 10.1158/0008-5472.can-21-0763] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/03/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
ARID1A is a key mammalian SWI/SNF complex subunit that is mutated in 5%-11% of lung cancers. Although recent studies have elucidated the mechanism underlying dysregulation of SWI/SNF complexes in cancers, the significance of ARID1A loss and its implications in lung cancers remain poorly defined. This study investigates how ARID1A loss affects initiation and progression of lung cancer. In genetically engineered mouse models bearing mutant Kras and a deficient Trp53 allele (KP), ARID1A loss (KPA) promoted lung tumorigenesis. Analysis of the transcriptome profiles of KP and KPA tumors suggested enhanced glycolysis following ARID1A loss, and expression of the glycolytic regulators Pgam1, Pkm, and Pgk1 was significantly increased in ARID1A-deficient lung tumors. Furthermore, ARID1A loss increased chromatin accessibility and enhanced HIF1α binding to the promoter regions of Pgam1, Pkm, and Pgk1. Loss of ARID1A in lung adenocarcinoma also resulted in loss of histone deacetylase 1 (HDAC1) recruitment, increasing acetylation of histone 4 lysine at the promoters of Pgam1, Pkm, and Pgk1 and subsequently enhancing BRD4-driven transcription of these genes. Metabolic analyses confirmed that glycolysis is enhanced in ARID1A-deficient tumors, and genetic or pharmacologic inhibition of glycolysis inhibited lung tumorigenesis in KPA mice. Treatment with the small molecule bromodomain and extra terminal protein (BET) inhibitor JQ1 compromised both initiation and progression of ARID1A-deficient lung adenocarcinoma. ARID1A negatively correlated with glycolysis-related genes in human lung adenocarcinoma. Overall, ARID1A loss leads to metabolic reprogramming that supports tumorigenesis but also confers a therapeutic vulnerability that could be harnessed to improve the treatment of ARID1A-deficient lung cancer.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical College, Anhui, China
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Li
- Department of Oncology, Xiangya Cancer Center Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and Key Laboratory of Molecular Radiation Oncology, Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongmin Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiology, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Liu
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical College, Anhui, China
| | - Linling Zhang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical College, Anhui, China
| | - Jingjing Ke
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical College, Anhui, China
| | - Xu Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuefang Zhang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yiting Yuan
- State Key Laboratory of Neuroscience, Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qungang Shan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiology, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjie Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiology, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Huang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiology, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Gao
- Department of Oncology, Xiangya Cancer Center Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and Key Laboratory of Molecular Radiation Oncology, Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Wu
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical College, Anhui, China
| | - Fuliang Chen
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical College, Anhui, China
| | - Lunquan Sun
- Department of Oncology, Xiangya Cancer Center Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and Key Laboratory of Molecular Radiation Oncology, Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Zilong Qiu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yuezhen Deng
- Department of Oncology, Xiangya Cancer Center Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and Key Laboratory of Molecular Radiation Oncology, Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical College, Anhui, China
| |
Collapse
|
34
|
Lu X, Jing L, Liu S, Wang H, Chen B. miR-149-3p Is a Potential Prognosis Biomarker and Correlated with Immune Infiltrates in Uterine Corpus Endometrial Carcinoma. Int J Endocrinol 2022; 2022:5006123. [PMID: 35719192 PMCID: PMC9200575 DOI: 10.1155/2022/5006123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Endocrine disruption is an important factor in the development of endometrial cancer. Expression of miR-149-3p is observed in some cancer types, while its role in uterine corpus endometrial carcinoma (UCEC) is unclear. METHODS The clinical and genomic data and prognostic information on UCEC were obtained for patients from the TCGA database. The Kruskal-Wallis test, Wilcoxon signed-rank test, and logistic regression were used to analyze the relationship between clinical characteristics and miR-149-3p expression. Kaplan-Meier survival curve analysis was used to study the influence of miR-149-3p expression and miR-149-3p target genes on the prognosis of UCEC patients. The TargetScan, PicTar, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to determine the involvement of miR-149-3p target genes in function. Immune infiltration analysis was used to analyze the functional involvement of miR-149-3p. QRT-PCR was used to validate the expression of miR-149-3p in UCEC cell lines. RESULTS High expression of miR-149-3p in UCEC was significantly associated with age (P < 0.001), histological type (P < 0.001), histological grade (P < 0.001), tumor invasion (P=0.014), and radiation therapy (P=0.011). High miR-149-3p expression predicted poorer overall survival (OS) (HR: 2.56; 95% CI: 1.64-4.00; P < 0.001), progression-free interval (PFI) (HR: 1.85; 95% CI: 1.29-2.65; P=0.001), and disease-specific survival (DSS) (HR: 2.33; 95% CI: 1.37-3.99; P=0.002). Low expressions of miR-149-3p target genes, including ADCYAP1R1, CGNL1, CHST3, CYGB, DNAH9, ESR1, HHIP, HIC1, HOXD11, IGF1, INMT, LSP1, MTMR10, NFIC, PLCE1, RARA, SNTN, SPRYD3, and ZBTB7A, were associated with poor OS in UCEC. MiR-149-3p may be involved in the occurrence and development of UCEC via pathways including PI3K-Akt signaling pathway, Ras signaling pathway, AGE-RAGE signaling pathway in diabetic complications, focal adhesion, and MAPK signaling pathway. miR-149-3p may inhibit the function of CD8 T cells, cytotoxic cells, eosinophils, iDC, mast cells, neutrophils, NK CD56bright cells, NK CD56dim cells, pDC, T cells, T helper cells, TFH, Th17 cells, and Treg. miR-149-3p was significantly upregulated in UCEC cell lines compared with endometriotic stromal cells. CONCLUSION High expression of miR-149-3p was significantly associated with poor survival in UCEC patients. It may be a promising biomarker of prognosis and response to immunotherapy for UCEC patients.
Collapse
Affiliation(s)
- Xiaoyuan Lu
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
- Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Li Jing
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Sicong Liu
- Graduate School, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Haihong Wang
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Buze Chen
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
- Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| |
Collapse
|
35
|
Maru Y, Hippo Y. Two-Way Development of the Genetic Model for Endometrial Tumorigenesis in Mice: Current and Future Perspectives. Front Genet 2021; 12:798628. [PMID: 34956336 PMCID: PMC8696168 DOI: 10.3389/fgene.2021.798628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Endometrial cancer (EC) is the most common malignancy of the female reproductive tract worldwide. Although comprehensive genomic analyses of EC have already uncovered many recurrent genetic alterations and deregulated signaling pathways, its disease model has been limited in quantity and quality. Here, we review the current status of genetic models for EC in mice, which have been developed in two distinct ways at the level of organisms and cells. Accordingly, we first describe the in vivo model using genetic engineering. This approach has been applied to only a subset of genes, with a primary focus on Pten inactivation, given that PTEN is the most frequently altered gene in human EC. In these models, the tissue specificity in genetic engineering determined by the Cre transgenic line has been insufficient. Consequently, the molecular mechanisms underlying EC development remain poorly understood, and preclinical models are still limited in number. Recently, refined Cre transgenic mice have been created to address this issue. With highly specific gene recombination in the endometrial cell lineage, acceptable in vivo modeling of EC development is warranted using these Cre lines. Second, we illustrate an emerging cell-based model. This hybrid approach comprises ex vivo genetic engineering of organoids and in vivo tumor development in immunocompromised mice. Although only a few successful cases have been reported as proof of concept, this approach allows quick and comprehensive analysis, ensuring a high potential for reconstituting carcinogenesis. Hence, ex vivo/in vivo hybrid modeling of EC development and its comparison with corresponding in vivo models may dramatically accelerate EC research. Finally, we provide perspectives on future directions of EC modeling.
Collapse
Affiliation(s)
- Yoshiaki Maru
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yoshitaka Hippo
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
36
|
Co-existing TP53 and ARID1A mutations promote aggressive endometrial tumorigenesis. PLoS Genet 2021; 17:e1009986. [PMID: 34941867 PMCID: PMC8741038 DOI: 10.1371/journal.pgen.1009986] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/07/2022] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
TP53 and ARID1A are frequently mutated across cancer but rarely in the same primary tumor. Endometrial cancer has the highest TP53-ARID1A mutual exclusivity rate. However, the functional relationship between TP53 and ARID1A mutations in the endometrium has not been elucidated. We used genetically engineered mice and in vivo genomic approaches to discern both unique and overlapping roles of TP53 and ARID1A in the endometrium. TP53 loss with oncogenic PIK3CAH1047R in the endometrial epithelium results in features of endometrial hyperplasia, adenocarcinoma, and intraepithelial carcinoma. Mutant endometrial epithelial cells were transcriptome profiled and compared to control cells and ARID1A/PIK3CA mutant endometrium. In the context of either TP53 or ARID1A loss, PIK3CA mutant endometrium exhibited inflammatory pathway activation, but other gene expression programs differed based on TP53 or ARID1A status, such as epithelial-to-mesenchymal transition. Gene expression patterns observed in the genetic mouse models are reflective of human tumors with each respective genetic alteration. Consistent with TP53-ARID1A mutual exclusivity, the p53 pathway is activated following ARID1A loss in the endometrial epithelium, where ARID1A normally directly represses p53 pathway genes in vivo, including the stress-inducible transcription factor, ATF3. However, co-existing TP53-ARID1A mutations led to invasive adenocarcinoma associated with mutant ARID1A-driven ATF3 induction, reduced apoptosis, TP63+ squamous differentiation and invasion. These data suggest TP53 and ARID1A mutations drive shared and distinct tumorigenic programs in the endometrium and promote invasive endometrial cancer when existing simultaneously. Hence, TP53 and ARID1A mutations may co-occur in a subset of aggressive or metastatic endometrial cancers, with ARID1A loss promoting squamous differentiation and the acquisition of invasive properties. Endometrial cancer is the most commonly diagnosed gynecologic malignancy in the United States, with annual incidence continuing to rise. Although the majority of endometrial cancer patients have an excellent overall prognosis if the disease is confined to the endometrium, myometrial invasion and metastasis to other sites correlate with poor survival. Here, we used genetically engineered mice, in vivo genomics, and public cancer patient data to understand the relationship between TP53 and ARID1A, two of the most commonly mutated genes in endometrial cancer, in the context of mutant PIK3CA. Mutations in TP53 and ARID1A change different aspects of endometrial cell health but also share some similarities. ARID1A mutations specifically promote cancer cells to invade nearby tissue, a hallmark of metastasis, associated with squamous differentiation. Mice with co-existing TP53 and ARID1A mutations developed more invasive disease. Our studies suggest that co-existing TP53 and ARID1A tumor mutations may promote invasion and metastasis.
Collapse
|
37
|
Park Y, Jung JG, Yu ZC, Asaka R, Shen W, Wang Y, Jung WH, Tomaszewski A, Shimberg G, Chen Y, Parimi V, Gaillard S, Shih IM, Wang TL. A novel human endometrial epithelial cell line for modeling gynecological diseases and for drug screening. J Transl Med 2021; 101:1505-1512. [PMID: 34376780 PMCID: PMC8720294 DOI: 10.1038/s41374-021-00624-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
Endometrium-related malignancies including uterine endometrioid carcinoma, ovarian clear cell carcinoma and ovarian endometrioid carcinoma are major types of gynecologic cancer, claiming more than 13,000 women's lives annually in the United States. In vitro cell models that recapitulate "normal" endometrial epithelial cells and their malignant counterparts are critically needed to facilitate the studies of pathogenesis in endometrium-related carcinomas. To achieve this objective, we have established a human endometrial epithelial cell line, hEM3, through immortalization and clonal selection from a primary human endometrium culture. hEM3 exhibits stable growth in vitro without senescence. hEM3 expresses protein markers characteristic of the endometrial epithelium, and they include PAX8, EpCAM, cytokeratin 7/8, and ER. hEM3 does not harbor pathogenic germline mutations in genes involving DNA mismatch repair (MMR) or homologous repair (HR) pathways. Despite its unlimited capacity of in vitro proliferation, hEM3 cells are not transformed, as they are not tumorigenic in immunocompromised mice. The cell line is amenable for gene editing, and we have established several gene-specific knockout clones targeting ARID1A, a tumor suppressor gene involved in the SWI/SNF chromatin remodeling. Drug screening demonstrates that both HDAC inhibitor and PARP inhibitor are effective in targeting cells with ARID1A deletion. Together, our data support the potential of hEM3 as a cell line model for studying the pathobiology of endometrium-related diseases and for developing effective precision therapies.
Collapse
Affiliation(s)
- Youngran Park
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin-Gyoung Jung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zheng-Cheng Yu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryoichi Asaka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenjing Shen
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yeh Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wei-Hung Jung
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alicja Tomaszewski
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Geoff Shimberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Vamsi Parimi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephanie Gaillard
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
38
|
Zundell JA, Fukumoto T, Lin J, Fatkhudinov N, Nacarelli T, Kossenkov AV, Liu Q, Cassel J, Hu CCA, Wu S, Zhang R. Targeting the IRE1α/XBP1 Endoplasmic Reticulum Stress Response Pathway in ARID1A-Mutant Ovarian Cancers. Cancer Res 2021; 81:5325-5335. [PMID: 34548333 DOI: 10.1158/0008-5472.can-21-1545] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/22/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
The SWI/SNF chromatin-remodeling complex is frequently altered in human cancers. For example, the SWI/SNF component ARID1A is mutated in more than 50% of ovarian clear cell carcinomas (OCCC), for which effective treatments are lacking. Here, we report that ARID1A transcriptionally represses the IRE1α-XBP1 axis of the endoplasmic reticulum (ER) stress response, which confers sensitivity to inhibition of the IRE1α-XBP1 pathway in ARID1A-mutant OCCC. ARID1A mutational status correlated with response to inhibition of the IRE1α-XBP1 pathway. In a conditional Arid1aflox/flox/Pik3caH1047R genetic mouse model, Xbp1 knockout significantly improved survival of mice bearing OCCCs. Furthermore, the IRE1α inhibitor B-I09 suppressed the growth of ARID1A-inactivated OCCCs in vivo in orthotopic xenograft, patient-derived xenograft, and the genetic mouse models. Finally, B-I09 synergized with inhibition of HDAC6, a known regulator of the ER stress response, in suppressing the growth of ARID1A-inactivated OCCCs. These studies define the IRE1α-XBP1 axis of the ER stress response as a targetable vulnerability for ARID1A-mutant OCCCs, revealing a promising therapeutic approach for treating ARID1A-mutant ovarian cancers. SIGNIFICANCE: These findings indicate that pharmacological inhibition of the IRE1α-XBP1 pathway alone or in combination with HDAC6 inhibition represents an urgently needed therapeutic strategy for ARID1A-mutant ovarian cancers.
Collapse
Affiliation(s)
- Joseph A Zundell
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania.,Department of Biological Sciences, Misher College of Arts and Sciences, University of Science, Philadelphia, Pennsylvania
| | - Takeshi Fukumoto
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jianhuang Lin
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Nail Fatkhudinov
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Timothy Nacarelli
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Andrew V Kossenkov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joel Cassel
- Molecular Screening and Protein Expression Facility, The Wistar Institute, Philadelphia, Pennsylvania
| | - Chih-Chi Andrew Hu
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, Texas
| | - Shuai Wu
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania.
| | - Rugang Zhang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
39
|
Lapke N, Chen CH, Chang TC, Chao A, Lu YJ, Lai CH, Tan KT, Chen HC, Lu HY, Chen SJ. Genetic alterations and their therapeutic implications in epithelial ovarian cancer. BMC Cancer 2021; 21:499. [PMID: 33947352 PMCID: PMC8097933 DOI: 10.1186/s12885-021-08233-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/21/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Genetic alterations for epithelial ovarian cancer are insufficiently characterized. Previous studies are limited regarding included histologies, gene numbers, copy number variant (CNV) detection, and interpretation of pathway alteration patterns of individual patients. METHODS We sequenced 410 genes to analyze mutations and CNV of 82 ovarian carcinomas, including high-grade serous (n = 37), endometrioid (n = 22) and clear cell (n = 23) histologies. Eligibility for targeted therapy was determined for each patient by a pathway-based approach. The analysis covered DNA repair, receptor tyrosine kinase, PI3K/AKT/MTOR, RAS/MAPK, cell cycle, and hedgehog pathways, and included 14 drug targets. RESULTS Postulated PARP, MTOR, and CDK4/6 inhibition sensitivity were most common. BRCA1/2 alterations, PTEN loss, and gain of PIK3CA and CCND1 were characteristic for high-grade serous carcinomas. Mutations of ARID1A, PIK3CA, and KRAS, and ERBB2 gain were enriched in the other histologies. PTEN mutations and high tumor mutational burden were characteristic for endometrioid carcinomas. Drug target downstream alterations impaired actionability in all histologies, and many alterations would not have been discovered by key gene mutational analysis. Individual patients often had more than one actionable drug target. CONCLUSIONS Genetic alterations in ovarian carcinomas are complex and differ among histologies. Our results aid the personalization of therapy and biomarker analysis for clinical studies, and indicate a high potential for combinations of targeted therapies.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Clear Cell/therapy
- Carcinoma/genetics
- Carcinoma/pathology
- Carcinoma/therapy
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/pathology
- Carcinoma, Endometrioid/therapy
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/pathology
- Carcinoma, Ovarian Epithelial/therapy
- Cell Cycle/genetics
- DNA Copy Number Variations
- DNA Mutational Analysis/methods
- DNA Repair/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Hedgehog Proteins/genetics
- High-Throughput Nucleotide Sequencing/methods
- Humans
- Mutation
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Precision Medicine
- Retrospective Studies
Collapse
Affiliation(s)
- Nina Lapke
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
- ACT Genomics, Co. Ltd., Units 803 - 807, 8F, Building 15W, No.15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok. NT, Hong Kong, Hong Kong
| | - Chien-Hung Chen
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Ting-Chang Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Linkou Medical Center, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
| | - Angel Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Linkou Medical Center, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
| | - Yen-Jung Lu
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan.
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Linkou Medical Center, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
| | - Kien Thiam Tan
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Hua-Chien Chen
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Hsiao-Yun Lu
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Shu-Jen Chen
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| |
Collapse
|
40
|
Wang X, Praça MSL, Wendel JRH, Emerson RE, DeMayo FJ, Lydon JP, Hawkins SM. Vaginal Squamous Cell Carcinoma Develops in Mice with Conditional Arid1a Loss and Gain of Oncogenic Kras Driven by Progesterone Receptor Cre. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1281-1291. [PMID: 33882289 DOI: 10.1016/j.ajpath.2021.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022]
Abstract
Oncogenic KRAS mutations are a common finding in endometrial cancers. Recent sequencing studies indicate that loss-of-function mutations in the ARID1A gene are enriched in gynecologic malignant tumors. However, neither of these genetic insults alone are sufficient to develop gynecologic cancer. To determine the role of the combined effects of deletion of Arid1a and oncogenic Kras, Arid1aflox/flox mice were crossed with KrasLox-Stop-Lox-G12D/+ mice using progesterone receptor Cre (PgrCre/+). Histologic analysis and immunohistochemistry of survival studies were used to characterize the mutant mouse phenotype. Hormone dependence was evaluated by ovarian hormone depletion and estradiol replacement. Arid1aflox/flox; KrasLox-Stop-Lox-G12D/+; PgrCre/+ mice were euthanized early because of invasive vaginal squamous cell carcinoma. Younger mice had precancerous intraepithelial lesions. Immunohistochemistry supported the pathological diagnosis with abnormal expression and localization of cytokeratin 5, tumor protein P63, cyclin-dependent kinase inhibitor 2A, and Ki-67, the marker of proliferation. Ovarian hormone deletion in Arid1aflox/flox; KrasLox-Stop-Lox-G12D/+; PgrCre/+ mice resulted in atrophic vaginal epithelium without evidence of vaginal tumors. Estradiol replacement in ovarian hormone-depleted Arid1aflox/flox; KrasLox-Stop-Lox-G12D/+; PgrCre/+ mice resulted in lesions that resembled the squamous cell carcinoma in intact mice. Therefore, this mouse can be used to study the transition from benign precursor lesions into invasive vaginal human papillomavirus-independent squamous cell carcinoma, offering insights into progression and pathogenesis of this rare disease.
Collapse
Affiliation(s)
- Xiyin Wang
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mariana S L Praça
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jillian R H Wendel
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Robert E Emerson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Francesco J DeMayo
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Shannon M Hawkins
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
41
|
Chen X, Shi X, Neuwald AF, Hilakivi-Clarke L, Clarke R, Xuan J. ChIP-BIT2: a software tool to detect weak binding events using a Bayesian integration approach. BMC Bioinformatics 2021; 22:193. [PMID: 33858322 PMCID: PMC8051094 DOI: 10.1186/s12859-021-04108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 03/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ChIP-seq combines chromatin immunoprecipitation assays with sequencing and identifies genome-wide binding sites for DNA binding proteins. While many binding sites have strong ChIP-seq 'peak' observations and are well captured, there are still regions bound by proteins weakly, with a relatively low ChIP-seq signal enrichment. These weak binding sites, especially those at promoters and enhancers, are functionally important because they also regulate nearby gene expression. Yet, it remains a challenge to accurately identify weak binding sites in ChIP-seq data due to the ambiguity in differentiating these weak binding sites from the amplified background DNAs. RESULTS ChIP-BIT2 ( http://sourceforge.net/projects/chipbitc/ ) is a software package for ChIP-seq peak detection. ChIP-BIT2 employs a mixture model integrating protein and control ChIP-seq data and predicts strong or weak protein binding sites at promoters, enhancers, or other genomic locations. For binding sites at gene promoters, ChIP-BIT2 simultaneously predicts their target genes. ChIP-BIT2 has been validated on benchmark regions and tested using large-scale ENCODE ChIP-seq data, demonstrating its high accuracy and wide applicability. CONCLUSION ChIP-BIT2 is an efficient ChIP-seq peak caller. It provides a better lens to examine weak binding sites and can refine or extend the existing binding site collection, providing additional regulatory regions for decoding the mechanism of gene expression regulation.
Collapse
Affiliation(s)
- Xi Chen
- grid.438526.e0000 0001 0694 4940Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, 900 North Glebe Road, Arlington, VA 22203 USA ,grid.430264.7Center for Computational Biology, Flatiron Institute, Simons Foundation, 162 Fifth Avenue, New York, NY 10010 USA
| | - Xu Shi
- grid.438526.e0000 0001 0694 4940Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, 900 North Glebe Road, Arlington, VA 22203 USA
| | - Andrew F. Neuwald
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences and Department Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Leena Hilakivi-Clarke
- grid.17635.360000000419368657Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912 USA
| | - Robert Clarke
- grid.17635.360000000419368657Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912 USA
| | - Jianhua Xuan
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, 900 North Glebe Road, Arlington, VA, 22203, USA.
| |
Collapse
|
42
|
Wu S, Fukumoto T, Lin J, Nacarelli T, Wang Y, Ong D, Liu H, Fatkhutdinov N, Zundell JA, Karakashev S, Zhou W, Schwartz LE, Tang HY, Drapkin R, Liu Q, Huntsman DG, Kossenkov AV, Speicher DW, Schug ZT, Van Dang C, Zhang R. Targeting glutamine dependence through GLS1 inhibition suppresses ARID1A-inactivated clear cell ovarian carcinoma. NATURE CANCER 2021; 2:189-200. [PMID: 34085048 PMCID: PMC8168620 DOI: 10.1038/s43018-020-00160-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alterations in components of the SWI/SNF chromatin-remodeling complex occur in ~20% of all human cancers. For example, ARID1A is mutated in up to 62% of clear cell ovarian carcinoma (OCCC), a disease currently lacking effective therapies. Here we show that ARID1A mutation creates a dependence on glutamine metabolism. SWI/SNF represses glutaminase (GLS1) and ARID1A inactivation upregulates GLS1. ARID1A inactivation increases glutamine utilization and metabolism through the tricarboxylic acid cycle to support aspartate synthesis. Indeed, glutaminase inhibitor CB-839 suppresses the growth of ARID1A mutant, but not wildtype, OCCCs in both orthotopic and patient-derived xenografts. In addition, glutaminase inhibitor CB-839 synergizes with immune checkpoint blockade anti-PDL1 antibody in a genetic OCCC mouse model driven by conditional Arid1a inactivation. Our data indicate that pharmacological inhibition of glutaminase alone or in combination with immune checkpoint blockade represents an effective therapeutic strategy for cancers involving alterations in the SWI/SNF complex such as ARID1A mutations.
Collapse
Affiliation(s)
- Shuai Wu
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Takeshi Fukumoto
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Jianhuang Lin
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Timothy Nacarelli
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Dionzie Ong
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heng Liu
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Nail Fatkhutdinov
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Joseph A. Zundell
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Sergey Karakashev
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Wei Zhou
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Lauren E. Schwartz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - David G. Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew V. Kossenkov
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - David W. Speicher
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, USA,Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Zachary T. Schug
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Chi Van Dang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA,Ludwig Institute for Cancer Research, New York, NY, USA
| | - Rugang Zhang
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
43
|
Li L, Yue P, Song Q, Yen TT, Asaka S, Wang TL, Beavis AL, Fader AN, Jiao Y, Yuan G, Shih IM, Song Y. Genome-wide mutation analysis in precancerous lesions of endometrial carcinoma. J Pathol 2020; 253:119-128. [PMID: 33016334 DOI: 10.1002/path.5566] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/27/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
Clinicopathological evidence supports endometrial atypical hyperplasia (AH) or endometrial intraepithelial neoplasia as the precursor of uterine endometrioid carcinoma (EC), the most common gynecologic malignancy. However, the pathogenic progression from AH to EC remains unclear. Here, we employed whole-exome sequencing to identify somatic mutations and copy number changes in micro-dissected lesions from 30 pairs of newly diagnosed AH and EC. We found that all but one pair of AHs shared the same DNA mismatch repair status as their corresponding ECs. The percentage of common mutations between AH lesions and corresponding ECs varied significantly, ranging from 0.1% to 82%. Microsatellite stable AHs had fewer cancer driver mutations than ECs (5 versus 7, p = 0.017), but among microsatellite unstable AHs and ECs there was no difference in mutational numbers (36 versus 38, p = 0.65). As compared to AH specimens, 19 (79%) of 24 microsatellite stable EC tumors gained new cancer driver mutations, most of which involved PTEN, ARID1A, PIK3CA, CTNNB1, or CHD4. Our results suggest that some AH lesions are the immediate precursor of ECs, and progression depends on acquisition of additional cancer driver mutations. However, a complex clonal relationship between AH and EC can also be appreciated, as in some cases both lesions diverge very early or arise independently, thus co-developing with distinct genetic trajectories. Our genome-wide profile of mutations in AH and EC shines new light on the molecular landscape of tumor progression. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lihong Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.,Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Pinli Yue
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Qianqian Song
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ting-Tai Yen
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Shiho Asaka
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Anna L Beavis
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Amanda N Fader
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Guangwen Yuan
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ie-Ming Shih
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Yan Song
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|