1
|
Chen H, Zhang Y, Wen Y, Fan X, Sciolino N, Lin Y, Breindel L, Dai Y, Shekhtman A, Xue XS, Zhang Q. Production of constrained L-cyclo-tetrapeptides by epimerization-resistant direct aminolysis. Nat Commun 2024; 15:5372. [PMID: 38918367 PMCID: PMC11199569 DOI: 10.1038/s41467-024-49329-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
The synthesis of constrained 12-membered rings is notably difficult. The main challenges result from constraints during the linear peptide cyclization. Attempts to overcome constraints through excessive activation frequently cause peptidyl epimerization, while insufficient activation of the C-terminus hampers cyclization and promotes intermolecular oligomer formation. We present a β-thiolactone framework that enables the synthesis of cyclo-tetrapeptides via direct aminolysis. This tactic utilizes a mechanism that restricts C-terminal carbonyl rotation while maintaining high reactivity, thereby enabling efficient head-to-tail amidation, reducing oligomerization, and preventing epimerization. A broad range of challenging cyclo-tetrapeptides ( > 20 examples) are synthesized in buffer and exhibits excellent tolerance toward nearly all proteinogenic amino acids. Previously unattainable macrocycles, such as cyclo-L-(Pro-Tyr-Pro-Val), have been produced and identified as μ-opioid receptor (MOR) agonists, with an EC50 value of 2.5 nM. Non-epimerizable direct aminolysis offers a practical solution for constrained peptide cyclization, and the discovery of MOR agonist activity highlights the importance of overcoming synthetic challenges for therapeutic development.
Collapse
Affiliation(s)
- Huan Chen
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Yuchen Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Yuming Wen
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Xinhao Fan
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Nicholas Sciolino
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Yanyun Lin
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Leonard Breindel
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Yuanwei Dai
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA.
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China.
| | - Qiang Zhang
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA.
| |
Collapse
|
2
|
Kumari S, Nehra M, Jain S, Dilbaghi N, Chaudhary GR, Kim KH, Kumar S. Metallosurfactant aggregates: Structures, properties, and potentials for multifarious applications. Adv Colloid Interface Sci 2024; 323:103065. [PMID: 38091690 DOI: 10.1016/j.cis.2023.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
Metallosurfactants offer important scientific and technological advances due to their novel interfacial properties. As a special class of structures formed by the integration of metal ions into amphiphilic surfactant molecules, these metal-based amphiphilic molecules possess both organometallic and surface chemistries. This review critically examines the structural transitions of metallosurfactants from micelle to vesicle upon metal coordination. The properties of a metallosurfactant can be changed by tuning the coordination between the metal ions and surfactants. The self-assembled behavior of surfactants can be controlled by selecting transition-metal ions that enhance their catalytic efficiency in environmental applications by applying a hydrogen evolution reaction or oxygen evolution reaction. We present the different scattering techniques available to examine the properties of metallosurfactants (e.g., size, shape, structure, and aggregation behavior). The utility of metallosurfactants in catalysis, the synthesis of nanoparticles, and biomedical applications (involving diagnostics and therapeutics) is also explored.
Collapse
Affiliation(s)
- Sonam Kumari
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh, 160014, India; Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Monika Nehra
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Shikha Jain
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh, 160014, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India; Physics Department, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India.
| |
Collapse
|
3
|
Zhang B, Zheng Y, Chu G, Deng X, Wang T, Shi W, Zhou Y, Tang S, Zheng JS, Liu L. Backbone-Installed Split Intein-Assisted Ligation for the Chemical Synthesis of Mirror-Image Proteins. Angew Chem Int Ed Engl 2023; 62:e202306270. [PMID: 37357888 DOI: 10.1002/anie.202306270] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Membrane-associated D-proteins are an important class of synthetic molecules needed for D-peptide drug discovery, but their chemical synthesis using canonical ligation methods such as native chemical ligation is often hampered by the poor solubility of their constituent peptide segments. Here, we describe a Backbone-Installed Split Intein-Assisted Ligation (BISIAL) method for the synthesis of these proteins, wherein the native L-forms of the N- and C-intein fragments of the unique consensus-fast (Cfa) (i.e. L-CfaN and L-CfaC ) are separately installed onto the two D-peptide segments to be ligated via a removable backbone modification. The ligation proceeds smoothly at micromolar (μM) concentrations under strongly chaotropic conditions (8.0 M urea), and the subsequent removal of the backbone modification groups affords the desired D-proteins without leaving any "ligation scar" on the products. The effectiveness and practicality of the BISIAL method are exemplified by the synthesis of the D-enantiomers of the extracellular domains of T cell immunoglobulin and ITIM domain (TIGIT) and tropomyosin receptor kinase C (TrkC). The BISIAL method further expands the chemical protein synthesis ligation toolkit and provides practical access to challenging D-protein targets.
Collapse
Affiliation(s)
- Baochang Zhang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yupeng Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Guochao Chu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiangyu Deng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tongyue Wang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Weiwei Shi
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yongkang Zhou
- The First Affiliated Hospital of USTC, MOE Key Laboratory of Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shan Tang
- The First Affiliated Hospital of USTC, MOE Key Laboratory of Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Ji-Shen Zheng
- The First Affiliated Hospital of USTC, MOE Key Laboratory of Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Clark ET, Sievers EE, Debelouchina GT. A Chemical Biology Primer for NMR Spectroscopists. JOURNAL OF MAGNETIC RESONANCE OPEN 2022; 10-11:100044. [PMID: 35494416 PMCID: PMC9053072 DOI: 10.1016/j.jmro.2022.100044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Among structural biology techniques, NMR spectroscopy offers unique capabilities that enable the atomic resolution studies of dynamic and heterogeneous biological systems under physiological and native conditions. Complex biological systems, however, often challenge NMR spectroscopists with their low sensitivity, crowded spectra or large linewidths that reflect their intricate interaction patterns and dynamics. While some of these challenges can be overcome with the development of new spectroscopic approaches, chemical biology can also offer elegant and efficient solutions at the sample preparation stage. In this tutorial, we aim to present several chemical biology tools that enable the preparation of selectively and segmentally labeled protein samples, as well as the introduction of site-specific spectroscopic probes and post-translational modifications. The four tools covered here, namely cysteine chemistry, inteins, native chemical ligation, and unnatural amino acid incorporation, have been developed and optimized in recent years to be more efficient and applicable to a wider range of proteins than ever before. We briefly introduce each tool, describe its advantages and disadvantages in the context of NMR experiments, and offer practical advice for sample preparation and analysis. We hope that this tutorial will introduce beginning researchers in the field to the possibilities chemical biology can offer to NMR spectroscopists, and that it will inspire new and exciting applications in the quest to understand protein function in health and disease.
Collapse
Affiliation(s)
- Evan T. Clark
- Department of Chemistry and Biochemistry, Division of Physical Sciences, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Elanor E. Sievers
- Department of Chemistry and Biochemistry, Division of Physical Sciences, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, Division of Physical Sciences, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Corresponding author: Galia Debelouchina, University of California, San Diego, Natural Sciences Building 4322, 9500 Gilman Dr., La Jolla, CA 92093, 858-534-3038,
| |
Collapse
|
5
|
Moon S, Javed A, Hard ER, Pratt MR. Methods for Studying Site-Specific O-GlcNAc Modifications: Successes, Limitations, and Important Future Goals. JACS AU 2022; 2:74-83. [PMID: 35098223 PMCID: PMC8791055 DOI: 10.1021/jacsau.1c00455] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 06/14/2023]
Abstract
O-GlcNAcylation is a dynamic post-translational modification which affects myriad proteins, cellular functions, and disease states. Its presence or absence modulates protein function via differential protein- and site-specific mechanisms, necessitating innovative techniques to probe the modification in highly selective manners. To this end, a variety of biological and chemical methods have been developed to study specific O-GlcNAc modification events both in vitro and in vivo, each with their own respective strengths and shortcomings. Together, they comprise a potent chemical biology toolbox for the analysis of O-GlcNAcylation (and, in theory, other post-translational modifications) while highlighting the need and space for more facile, generalizable, and biologically authentic techniques.
Collapse
Affiliation(s)
- Stuart
P. Moon
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Afraah Javed
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Eldon R. Hard
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Matthew R. Pratt
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| |
Collapse
|
6
|
Kahana A, Lancet D. Self-reproducing catalytic micelles as nanoscopic protocell precursors. Nat Rev Chem 2021; 5:870-878. [PMID: 37117387 DOI: 10.1038/s41570-021-00329-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
Protocells at life's origin are often conceived as bilayer-enclosed precursors of life, whose self-reproduction rests on the early advent of replicating catalytic biopolymers. This Perspective describes an alternative scenario, wherein reproducing nanoscopic lipid micelles with catalytic capabilities were forerunners of biopolymer-containing protocells. This postulate gains considerable support from experiments describing micellar catalysis and autocatalytic proliferation, and, more recently, from reports on cross-catalysis in mixed micelles that lead to life-like steady-state dynamics. Such results, along with evidence for micellar prebiotic compatibility, synergize with predictions of our chemically stringent computer-simulated model, illustrating how mutually catalytic lipid networks may enable micellar compositional reproduction that could underlie primal selection and evolution. Finally, we highlight studies on how endogenously catalysed lipid modifications could guide further protocellular complexification, including micelle to vesicle transition and monomer to biopolymer progression. These portrayals substantiate the possibility that protocellular evolution could have been seeded by pre-RNA lipid assemblies.
Collapse
|
7
|
Gou S, Li B, Ouyang X, Ba Z, Zhong C, Ni J. Tuning the Activity of Anoplin by Dendrimerization of Lysine and Lipidation of the N-Terminal. ACS OMEGA 2021; 6:21359-21367. [PMID: 34471740 PMCID: PMC8387982 DOI: 10.1021/acsomega.1c01854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Dendrimeric antimicrobial peptides or lipopeptides have strong transmembrane ability and antibacterial activity. To obtain some ideal antimicrobial peptides, anoplin, a natural antimicrobial peptide with weak antimicrobial activity, was modified by C-terminal dendrimerization using lysine and N-terminal lipidation using fatty acids. 2K-3A-C4, a trimer of anoplin, was dendrimerized by two lysines at the C-terminal and was lipidated by n-butyric acid at the N-terminal, and thus exhibited the best antibacterial activity. However, the trimer had high hemolytic activity. Finally, A-C8, a simple structural lipopeptide, which is not a dendrimer, was obtained following the lipidation of anoplin using octanoic acid; it exhibited the highest therapeutic index, which makes it a probable antibiotic and thus was screened out.
Collapse
Affiliation(s)
- Sanhu Gou
- Institute
of Pharmaceutics, School of Pharmacy, Lanzhou
University, Lanzhou 730000, China
- Institute
of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Beibei Li
- Institute
of Pharmaceutics, School of Pharmacy, Lanzhou
University, Lanzhou 730000, China
| | - Xu Ouyang
- Institute
of Pharmaceutics, School of Pharmacy, Lanzhou
University, Lanzhou 730000, China
| | - Zufang Ba
- Institute
of Pharmaceutics, School of Pharmacy, Lanzhou
University, Lanzhou 730000, China
| | - Chao Zhong
- Institute
of Pharmaceutics, School of Pharmacy, Lanzhou
University, Lanzhou 730000, China
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- Institute
of Pharmaceutics, School of Pharmacy, Lanzhou
University, Lanzhou 730000, China
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|