1
|
O'Neill N, Schran C, Cox SJ, Michaelides A. Crumbling crystals: on the dissolution mechanism of NaCl in water. Phys Chem Chem Phys 2024; 26:26933-26942. [PMID: 39417378 PMCID: PMC11483817 DOI: 10.1039/d4cp03115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Dissolution of ionic salts in water is ubiquitous, particularly for NaCl. However, an atomistic scale understanding of the process remains elusive. Simulations lend themselves conveniently to studying dissolution since they provide the spatio-temporal resolution that can be difficult to obtain experimentally. Nevertheless, the complexity of various inter- and intra-molecular interactions require careful treatment and long time scale simulations, both of which are typically hindered by computational expense. Here, we use advances in machine learning potential methodology to resolve at an ab initio level of theory the dissolution mechanism of NaCl in water. The picture that emerges is that of a steady ion-wise unwrapping of the crystal preceding its rapid disintegration, reminiscent of crumbling. The onset of crumbling can be explained by a strong increase in the ratio of the surface area to volume of the crystal. Overall, dissolution comprises a series of highly dynamical microscopic sub-processes, resulting in an inherently stochastic mechanism. These atomistic level insights contribute to the general understanding of dissolution mechanisms in other crystals, and the methodology is primed for more complex systems of recent interest such as water/salt interfaces under flow and salt crystals under confinement.
Collapse
Affiliation(s)
- Niamh O'Neill
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| | - Christoph Schran
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| | - Stephen J Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| |
Collapse
|
2
|
O’Neill N, Shi BX, Fong K, Michaelides A, Schran C. To Pair or not to Pair? Machine-Learned Explicitly-Correlated Electronic Structure for NaCl in Water. J Phys Chem Lett 2024; 15:6081-6091. [PMID: 38820256 PMCID: PMC11181334 DOI: 10.1021/acs.jpclett.4c01030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
The extent of ion pairing in solution is an important phenomenon to rationalize transport and thermodynamic properties of electrolytes. A fundamental measure of this pairing is the potential of mean force (PMF) between solvated ions. The relative stabilities of the paired and solvent shared states in the PMF and the barrier between them are highly sensitive to the underlying potential energy surface. However, direct application of accurate electronic structure methods is challenging, since long simulations are required. We develop wave function based machine learning potentials with the random phase approximation (RPA) and second order Møller-Plesset (MP2) perturbation theory for the prototypical system of Na and Cl ions in water. We show both methods in agreement, predicting the paired and solvent shared states to have similar energies (within 0.2 kcal/mol). We also provide the same benchmarks for different DFT functionals as well as insight into the PMF based on simple analyses of the interactions in the system.
Collapse
Affiliation(s)
- Niamh O’Neill
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
| | - Benjamin X. Shi
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
| | - Kara Fong
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
| | - Angelos Michaelides
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
| | - Christoph Schran
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
3
|
Liu L, Tian Y, Yang X, Liu C. Mechanistic Insights into Water Autoionization through Metadynamics Simulation Enhanced by Machine Learning. PHYSICAL REVIEW LETTERS 2023; 131:158001. [PMID: 37897750 DOI: 10.1103/physrevlett.131.158001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 07/05/2023] [Accepted: 08/21/2023] [Indexed: 10/30/2023]
Abstract
Characterizing the free energy landscape of water ionization has been a great challenge due to the limitations from expensive ab initio calculations and strong rare-event features. Lacking equilibrium sampling of the ionization pathway will cause ambiguities in the mechanistic study. Here, we obtain convergent free energy surfaces through nanosecond timescale metadynamics simulations with classical nuclei enhanced by atomic neural network potentials, which yields good reproduction of the equilibrium constant (pK_{w}=14.14) and ionization rate constant (1.369×10^{-3} s^{-1}). The character of transition state unveils the triple-proton transfer occurs through a concerted but asynchronous mechanism. Conditional ensemble average analyses establish the dual-presolvation mechanism, where a pair of hypercoordinated and undercoordinated waters bridged by one H_{2}O cooperatively constitutes the initiation environment for autoionization, and contributes extremely to the local electric field fluctuation to promote water dissociation.
Collapse
Affiliation(s)
- Ling Liu
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yingqi Tian
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuanye Yang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chungen Liu
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Leung K. Finding Infinities in Nanoconfined Geothermal Electrolyte Static Dielectric Properties and Implications on Ion Adsorption/Pairing. NANO LETTERS 2023; 23:8868-8874. [PMID: 37531607 DOI: 10.1021/acs.nanolett.3c01865] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Infinities should naturally occur in the dielectric responses of ionic solutions relevant to many geochemical, energy storage, and electrochemical applications at a strictly zero frequency. Using molecular dynamics simulations cross-referenced with coarse-grained Monte Carlo models, using nanoslit pore models at hydrothermal conditions, and treating confined mobile charges as polarization, we demonstrate the far reaching consequences. The dielectric permittivity profile perpendicular to the slit (ϵ⊥(z)) increases, not decreases, with ionic concentration, unlike in the more widely studied megahertz-to-gigahertz frequency range. In confined electrolytes, the divergences in ϵ⊥(z) correctly describe crossovers between bulk- and surface-dominated dielectric behavior. Nanoconfinement at low ionic concentrations changes monovalent ion energetics by 1-2 kJ/mol, but no dielectric property studied so far is universally correlated to ion adsorption or ion-ion interactions. We caution that infinities signal violation of the "electrical insulator" dielectric assumption.
Collapse
Affiliation(s)
- Kevin Leung
- Sandia National Laboratories, MS 0750, Albuquerque, New Mexico 87185, United States of America
| |
Collapse
|
5
|
Zhang C, Puligheddu M, Zhang L, Car R, Galli G. Thermal Conductivity of Water at Extreme Conditions. J Phys Chem B 2023; 127:7011-7017. [PMID: 37524047 PMCID: PMC10424233 DOI: 10.1021/acs.jpcb.3c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/06/2023] [Indexed: 08/02/2023]
Abstract
Measuring the thermal conductivity (κ) of water at extreme conditions is a challenging task, and few experimental data are available. We predict κ for temperatures and pressures relevant to the conditions of the Earth mantle, between 1,000 and 2,000 K and up to 22 GPa. We employ close to equilibrium molecular dynamics simulations and a deep neural network potential fitted to density functional theory data. We then interpret our results by computing the equation of state of water on a fine grid of points and using a simple model for κ. We find that the thermal conductivity is weakly dependent on temperature and monotonically increases with pressure with an approximate square-root behavior. In addition, we show how the increase of κ at high pressure, relative to ambient conditions, is related to the corresponding increase in the sound velocity. Although the relationships between the thermal conductivity, pressure and sound velocity established here are not rigorous, they are sufficiently accurate to allow for a robust estimate of the thermal conductivity of water in a broad range of temperatures and pressures, where experiments are still difficult to perform.
Collapse
Affiliation(s)
- Cunzhi Zhang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Marcello Puligheddu
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Materials
Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Linfeng Zhang
- Program
in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, United States
| | - Roberto Car
- Program
in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Chemistry, Department of Physics, and Princeton Institute for the
Science and Technology of Materials, Princeton
University, Princeton, New Jersey 08544, United States
| | - Giulia Galli
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Materials
Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Wei F, Urashima SH, Nihonyanagi S, Tahara T. Elucidation of the pH-Dependent Electric Double Layer Structure at the Silica/Water Interface Using Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. J Am Chem Soc 2023; 145:8833-8846. [PMID: 37068781 PMCID: PMC10143621 DOI: 10.1021/jacs.2c11344] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 04/19/2023]
Abstract
The silica/water interface is one of the most abundant charged interfaces in natural environments, and the elucidation of the water structure at the silica/water interface is essential. In the present study, we measured the interface-selective vibrational (χ(2)) spectra in the OH stretch region of the silica/water interface in a wide pH range of pH 2.0-12.0 while changing the salt concentration by heterodyne-detected vibrational sum-frequency generation spectroscopy. With the help of singular value decomposition analysis, it is shown that the imaginary part of the χ(2) (Imχ(2)) spectra can be decomposed into the spectra of the diffuse Gouy-Chapman layer (DL) and the compact Stern layer (SL), which enables us to quantitatively analyze the spectra of DL and SL separately. The salt-concentration dependence of the DL spectra at different pH values is analyzed using the modified Gouy-Chapman theory, and the pH-dependent surface charge density and the pKa value (4.8 ± 0.2) of the silica/water interface are evaluated. Furthermore, it is found that the pH-dependent change of the SL spectra is quantitatively explained by three spectral components that represent the three characteristic water species appearing in different pH regions in SL. The quantitative understanding obtained from the analysis of each spectral component in the Imχ(2) spectra provides a clear molecular-level picture of the electric double layer at the silica/water interface.
Collapse
Affiliation(s)
- Feng Wei
- Molecular
Spectroscopy Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Shu-hei Urashima
- Molecular
Spectroscopy Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Satoshi Nihonyanagi
- Molecular
Spectroscopy Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), Wako, Saitama 351-0198, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), Wako, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Tong J, Peng B, Kontogeorgis GM, Liang X. Behavior of the aqueous sodium chloride solutions from molecular simulations and theories. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Brünig F, Daldrop JO, Netz RR. Pair-Reaction Dynamics in Water: Competition of Memory, Potential Shape, and Inertial Effects. J Phys Chem B 2022; 126:10295-10304. [PMID: 36473702 PMCID: PMC9761671 DOI: 10.1021/acs.jpcb.2c05923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/11/2022] [Indexed: 12/12/2022]
Abstract
When described by a one-dimensional reaction coordinate, pair-reaction rates in a solvent depend, in addition to the potential barrier height and the friction coefficient, on the potential shape, the effective mass, and the friction relaxation spectrum, but a rate theory that accurately accounts for all of these effects does not exist. After a review of classical reaction-rate theories, we show how to extract all parameters of the generalized Langevin equation (GLE) and, in particular, the friction memory function from molecular dynamics (MD) simulations of two prototypical pair reactions in water, the dissociation of NaCl and of two methane molecules. The memory exhibits multiple time scales and, for NaCl, pronounced oscillatory components. Simulations of the GLE by Markovian embedding techniques accurately reproduce the pair-reaction kinetics from MD simulations without any fitting parameters, which confirms the accuracy of the approximative form of the GLE and of the parameter extraction techniques. By modification of the GLE parameters, we investigate the relative importance of memory, mass, and potential shape effects. Neglect of memory slows down NaCl and methane dissociation by roughly a factor of 2; neglect of mass accelerates reactions by a similar factor, and the harmonic approximation of the potential shape gives rise to slight acceleration. This partial error cancellation explains why Kramers' theory, which neglects memory effects and treats the potential shape in harmonic approximation, describes reaction rates better than more sophisticated theories. In essence, all three effects, friction memory, inertia, and the potential shape nonharmonicity, are important to quantitatively describe pair-reaction kinetics in water.
Collapse
Affiliation(s)
- Florian
N. Brünig
- Fachbereich Physik, Freie Universität
Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Jan O. Daldrop
- Fachbereich Physik, Freie Universität
Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Roland R. Netz
- Fachbereich Physik, Freie Universität
Berlin, Arnimallee 14, 14195Berlin, Germany
| |
Collapse
|
9
|
Molecular dynamics simulations of LiCl ion pairs in high temperature aqueous solutions by deep learning potential. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Yang X, Ji M, Zhang C, Yang X, Xu Z. Physical insight into the entropy-driven ion association. J Comput Chem 2022; 43:1621-1632. [PMID: 35801676 DOI: 10.1002/jcc.26963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
The ion association is widely believed to be dominated by the favorable entropy change arising from the release of water molecules from ion hydration shells. However, no direct thermodynamic evidence exists to validate the reliability and suitability of this view. Herein, we employ complicated free energy calculations to rigorously split the free energy including its entropic and enthalpic components into the water-induced contributions and ion-ion interaction terms for several ion pairs from monatomic to polyatomic ions, spanning the size range from small kosmotropes to large chaotropes (Na+ , Cs+ , Ca2+ , F- , I- , CO3 2- , and HPO4 2- ). Our results successfully reveal that though ion associations are indeed determined by a delicate balance between the favorable entropy variation and the repulsive enthalpy change, the entropy gain dominated by the solvent occurs only for the monatomic ion pairing. The water-induced entropic contribution significantly goes against the ion pairing between polyatomic anion and cation, which is, alternatively, dominated by the favorable entropy from the ion-ion interaction term, due to the configurational arrangement of polyatomic anions involved in ion association. The structural and dynamic analysis demonstrates that the entropy penalty from the water phase is primarily ascribed to the enhanced stability of water molecules around the cation imposed by the incoming anion. Our study successfully provides a fundamental understanding of water-mediated ion associations and highlights disparate lengthscale dependencies of the dehydration thermodynamics on the specific types of ions.
Collapse
Affiliation(s)
- Xiao Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, China
| | - Mingyu Ji
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, China
| | - Cong Zhang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, China
| | - Xiaoning Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, China
| | - Zhijun Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, China.,Zhangjiagang Institute of Nanjing Tech University, Zhangjiagang, China
| |
Collapse
|
11
|
Kinnibrugh T, Fister T. Structure of Sulfuric Acid Solutions Using Pair Distribution Function Analysis. J Phys Chem B 2022; 126:3099-3106. [PMID: 35435687 DOI: 10.1021/acs.jpcb.2c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solvation and mesoscale ordering of sulfuric acid and other strong acid solutions leads to suppressed freezing points and strong rheological changes with varying concentration. While the solid-state structures are well-understood, studies focused on the evolving solvation structure in the solution phase have probed a limited concentration range (∼1-6 M). This study applies a total scattering approach in both the wide-angle X-ray scattering (WAXS) and pair distribution function (PDF) regimes to elucidate the evolving solvation structure over its full range of acid concentration (0-18 M). The emergence of a prepeak in the WAXS regime at intermediate concentrations indicates a transition from noninteracting sulfate molecules in the dilute limit to sterically limited sulfates at concentrations near its deep eutectic point. Fits to the PDF data quantify this trend, showing a transition from octahedrally hydrated sulfates up to 6-7 M concentrations, followed by gradual dehydration, and eventually reaching a solution structure similar to that of water-in-salt electrolyte systems at high acid concentrations.
Collapse
Affiliation(s)
- Tiffany Kinnibrugh
- X-ray Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
| | - Tim Fister
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
12
|
Ye Z, Zhang C, Galli G. Photoelectron spectra of water and simple aqueous solutions at extreme conditions. Faraday Discuss 2022; 236:352-363. [DOI: 10.1039/d2fd00003b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Determining the electronic structure of aqueous solutions at extreme conditions is an important step towards understanding chemical bonding and reactions in water under pressure (P) and at high temperature (T)....
Collapse
|
13
|
Polidori A, Rowlands RF, Zeidler A, Salanne M, Fischer HE, Annighöfer B, Klotz S, Salmon PS. Structure and dynamics of aqueous NaCl solutions at high temperatures and pressures. J Chem Phys 2021; 155:194506. [PMID: 34800945 DOI: 10.1063/5.0067166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structure of a concentrated solution of NaCl in D2O was investigated by in situ high-pressure neutron diffraction with chlorine isotope substitution to give site-specific information on the coordination environment of the chloride ion. A broad range of densities was explored by first increasing the temperature from 323 to 423 K at 0.1 kbar and then increasing the pressure from 0.1 to 33.8 kbar at 423 K, thus mapping a cyclic variation in the static dielectric constant of the pure solvent. The experimental work was complemented by molecular dynamics simulations using the TIP4P/2005 model for water, which were validated against the measured equation of state and diffraction results. Pressure-induced anion ordering is observed, which is accompanied by a dramatic increase in the Cl-O and O-O coordination numbers. With the aid of bond-distance resolved bond-angle maps, it is found that the increased coordination numbers do not originate from a sizable alteration to the number of either Cl⋯D-O or O⋯D-O hydrogen bonds but from the appearance of non-hydrogen-bonded configurations. Increased pressure leads to a marked decrease in the self-diffusion coefficients but has only a moderate effect on the ion-water residence times. Contact ion pairs are observed under all conditions, mostly in the form of charge-neutral NaCl0 units, and coexist with solvent-separated Na+-Na+ and Cl--Cl- ion pairs. The exchange of water molecules with Na+ adopts a concerted mechanism under ambient conditions but becomes non-concerted as the state conditions are changed. Our findings are important for understanding the role of extreme conditions in geochemical processes.
Collapse
Affiliation(s)
- Annalisa Polidori
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Ruth F Rowlands
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Anita Zeidler
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Mathieu Salanne
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
| | - Henry E Fischer
- Institut Laue Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Burkhard Annighöfer
- Université Paris-Saclay, Laboratoire Léon Brillouin, CEA-CNRS, Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Stefan Klotz
- Sorbonne Université, UMR 7590, IMPMC, F-75252 Paris, France
| | - Philip S Salmon
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
14
|
Wills A, Fernández-Serra M. Role of water model on ion dissociation at ambient conditions. J Chem Phys 2021; 154:194502. [PMID: 34240899 DOI: 10.1063/5.0046188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study ion pair dissociation in water at ambient conditions using a combination of classical and ab initio approaches. The goal of this study is to disentangle the sources of discrepancy observed in computed potentials of mean force. In particular, we aim to understand why some models favor the stability of solvent-separated ion pairs vs contact ion pairs. We found that some observed differences can be explained by non-converged simulation parameters. However, we also unveil that for some models, small changes in the solution density can have significant effects on modifying the equilibrium balance between the two configurations. We conclude that the thermodynamic stability of contact and solvent-separated ion pairs is very sensitive to the dielectric properties of the underlying simulation model. In general, classical models are very robust in providing a similar estimation of the contact ion pair stability, while this is much more variable in density functional theory-based models. The barrier to transition from the solvent-separated to contact ion pair is fundamentally dependent on the balance between electrostatic potential energy and entropy. This reflects the importance of water intra- and inter-molecular polarizability in obtaining an accurate description of the screened ion-ion interactions.
Collapse
Affiliation(s)
- Alec Wills
- Physics and Astronomy Department, Stony Brook University. Stony Brook, New York 11794-3800, USA
| | - Marivi Fernández-Serra
- Physics and Astronomy Department, Stony Brook University. Stony Brook, New York 11794-3800, USA
| |
Collapse
|
15
|
Tripathi R, Durán Caballero L, Pérez de Tudela R, Hölzl C, Marx D. Unveiling Zwitterionization of Glycine in the Microhydration Limit. ACS OMEGA 2021; 6:12676-12683. [PMID: 34056419 PMCID: PMC8154221 DOI: 10.1021/acsomega.1c00869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Charge separation under solvation stress conditions is a fundamental process that comes in many forms in doped water clusters. Yet, the mechanism of intramolecular charge separation, where constraints due to the molecular structure might be intricately tied to restricted solvation structures, remains largely unexplored. Microhydrated amino acids are such paradigmatic molecules. Ab initio simulations are carried out at 300 K in the frameworks of metadynamics sampling and thermodynamic integration to map the thermal mechanisms of zwitterionization using Gly(H2O) n with n = 4 and 10. In both cases, a similar water-mediated proton transfer chain mechanism is observed; yet, detailed analyses of thermodynamics and kinetics demonstrate that the charge-separated zwitterion is the preferred species only for n = 10 mainly due to kinetic stabilization. Structural analyses disclose that bifurcated H-bonded water bridges, connecting the cationic and anionic sites in the fluctuating microhydration network at room temperature, are enhanced in the transition-state ensemble exclusively for n = 10 and become overwhelmingly abundant in the stable zwitterion. The findings offer potential insights into charge separation under solvation stress conditions beyond the present example.
Collapse
|
16
|
Rozsa V, Galli G. Solvation of simple ions in water at extreme conditions. J Chem Phys 2021; 154:144501. [PMID: 33858154 DOI: 10.1063/5.0046193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The interaction of ions and water at high pressure and temperature plays a critical role in Earth and planetary science yet remains poorly understood. Aqueous fluids affect geochemical properties ranging from water phase stability to mineral solubility and reactivity. Here, we report first-principles molecular dynamics simulations of mono-valent ions (Li+, K+, Cl-) as well as NaCl in liquid water at temperatures and pressures relevant to the Earth's upper mantle (11 GPa, 1000 K) and concentrations in the dilute limit (0.44-0.88 m), in the regime of ocean salinity. We find that, at extreme conditions, the average structural and vibrational properties of water are weakly affected by the presence of ions, beyond the first solvation shell, similar to what was observed at ambient conditions. We also find that the ionic conductivity of the liquid increases in the presence of ions by less than an order of magnitude and that the dielectric constant is moderately reduced by at most ∼10% at these conditions. Our findings may aid in the parameterization of deep earth water models developed to describe water-rock reactions.
Collapse
Affiliation(s)
- Viktor Rozsa
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Giulia Galli
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
17
|
Rozsa VF, Galli G. Molecular Polarizabilities in Aqueous Systems from First-Principles. J Phys Chem B 2021; 125:2183-2192. [DOI: 10.1021/acs.jpcb.0c10732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Viktor F. Rozsa
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Giulia Galli
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, Chicago, Illinois 60439, United States
| |
Collapse
|
18
|
Finney A, Salvalaglio M. Multiple Pathways in NaCl Homogeneous Crystal Nucleation. Faraday Discuss 2021; 235:56-80. [DOI: 10.1039/d1fd00089f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NaCl crystal nucleation from metastable solutions has long been considered to occur according to a single-step mechanism where the growth in the size and crystalline order of the emerging nuclei...
Collapse
|
19
|
Vong A, Widmer DR, Schwartz BJ. Nonequilibrium Solvent Effects during Photodissociation in Liquids: Dynamical Energy Surfaces, Caging, and Chemical Identity. J Phys Chem Lett 2020; 11:9230-9238. [PMID: 33064478 DOI: 10.1021/acs.jpclett.0c02515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the gas phase, potential energy surfaces can be used to provide insight into the details of photochemical reaction dynamics. In solution, however, it is unclear what potential energy surfaces, if any, can be used to describe even simple chemical reactions such as the photodissociation of a diatomic solute. In this paper, we use mixed quantum/classical (MQC) molecular dynamics (MD) to study the photodissociation of Na2+ in both liquid Ar and liquid tetrahydrofuran (THF). We examine both the gas-phase potential surfaces and potentials of mean force (PMF), which assume that the solvent remains at equilibrium with the solute throughout the photodissociation process and show that neither resemble a nonequilibrium dynamical energy surface that is generated by taking the time integral of work. For the photodissociation of Na2+ in liquid Ar, the dynamical energy surface shows clear signatures of solvent caging, and the degree of caging is directly related to the mass of the solvent atoms. For Na2+ in liquid THF, local specific interactions between the solute and solvent lead to changes in chemical identity that create a kinetic trap that effectively prevents the molecule from dissociating. The results show that nonequilibrium effects play an important role even in simple solution-phase reactions, requiring the use of dynamical energy surface to understand such chemical events.
Collapse
Affiliation(s)
- Andy Vong
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Devon R Widmer
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J Schwartz
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
20
|
DiRisio RJ, Jones CM, Ma H, Rousseau BJG. Viewpoints on the 2020 Virtual Conference on Theoretical Chemistry. J Phys Chem A 2020; 124:8875-8883. [PMID: 33054223 DOI: 10.1021/acs.jpca.0c08955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ryan J DiRisio
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Chey M Jones
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - He Ma
- Institute for Molecular engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Benjamin J G Rousseau
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|