1
|
Quercia P, Chavet K, Gaveau J. Ocular and General Proprioception in Dyslexic Children: A Review of Their Diurnal and Nocturnal Dysfunctions and Their Repercussions. Vision (Basel) 2025; 9:44. [PMID: 40407626 PMCID: PMC12101306 DOI: 10.3390/vision9020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/26/2025] Open
Abstract
We provide a summary of the research conducted in our laboratory on the relationship between ocular proprioception, general proprioception, and dyslexia. Dyslexic children show a marked proprioceptive deficit which affects motor control, attention and spatial perception. The spatial disturbances are expressed by the presence of a vertical microheterophoria which has very specific characteristics. It is associated with abnormal tone of the oblique muscles and can be modified by means of very low powered prisms and/or remote sensory stimulation. When ocular proprioception is modified, sounds cause stochastic visual losses. This may interfere with the association between phonemes and graphemes, which is necessary for learning to read. The effects of a generalized nocturnal proprioceptive disorder may play a role in the abnormal brain development that has been observed in dyslexic children.
Collapse
Affiliation(s)
- Patrick Quercia
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, F-21000 Dijon, France;
| | - Kalvin Chavet
- UFR des Sciences du Sport, Université de Bourgogne, F-21000 Dijon, France;
| | - Jérémie Gaveau
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, F-21000 Dijon, France;
| |
Collapse
|
2
|
Zhang Y, Zhuang H, Ren X, Zhou P. Implications of mechanosensitive ion channels in the pathogenesis of osteoarthritis: a comprehensive review. Front Cell Dev Biol 2025; 13:1549812. [PMID: 40376614 PMCID: PMC12078208 DOI: 10.3389/fcell.2025.1549812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/21/2025] [Indexed: 05/18/2025] Open
Abstract
Osteoarthritis (OA) is the predominant cause of joint pain and limited mobility in older people, and its prevalence is increasing as the population ages. Given the lack of effective therapeutic interventions, the disability rate associated with OA is a staggering 53%, which significantly affects the wellbeing of those affected and represents a significant social and family financial burden. Consequently, OA has emerged as a pressing social and public health concern globally. Various forms of mechanical strain, such as dynamic compression, fluid shear, tissue shear, and hydrostatic pressure, serve as crucial physical stimuli perceived by chondrocytes. Recent studies indicate that aberrant mechanical loading represents a fundamental risk factor for OA. Upon exposure to mechanical loading, chondrocytes translate mechanical cues into chemical signals primarily via mechanosensitive ion channels, resulting in alterations in cartilage metabolism. Numerous studies have demonstrated the significance of mechanosensitive ion channels in the pathogenesis of OA, suggesting that therapeutic interventions targeting these channels on chondrocytes may offer potential benefits.
Collapse
Affiliation(s)
| | | | | | - Panghu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Espino CM, Nagaraja C, Ortiz S, Dayton JR, Murali AR, Ma Y, Mann EL, Garlapalli S, Wohlgemuth RP, Brashear SE, Smith LR, Wilkinson KA, Griffith TN. Differential encoding of mammalian proprioception by voltage-gated sodium channels. SCIENCE ADVANCES 2025; 11:eads6660. [PMID: 39772670 PMCID: PMC11708877 DOI: 10.1126/sciadv.ads6660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Animals requiring purposeful movement for survival are endowed with mechanoreceptors, called proprioceptors, that provide essential sensory feedback from muscles and joints to spinal cord circuits, which modulates motor output. Despite the essential nature of proprioceptive signaling in daily life, the mechanisms governing proprioceptor activity are poorly understood. Here, we identified nonredundant roles for two voltage-gated sodium channels (NaVs), NaV1.1 and NaV1.6, in mammalian proprioception. Deletion of NaV1.6 in somatosensory neurons (NaV1.6cKO mice) causes severe motor deficits accompanied by loss of proprioceptive transmission, which contrasts with our previous findings using similar mouse models to target NaV1.1 (NaV1.1cKO). In NaV1.6cKO animals, we observed impairments in proprioceptor end-organ structure and a marked reduction in skeletal muscle myofiber size that were absent in NaV1.1cKO mice. We attribute the differential contributions of NaV1.1 and NaV1.6 to distinct cellular localization patterns. Collectively, we provide evidence that NaVs uniquely shape neural signaling within a somatosensory modality.
Collapse
Affiliation(s)
- Cyrrus M. Espino
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Chetan Nagaraja
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Serena Ortiz
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Jacquelyn R. Dayton
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Akash R. Murali
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| | - Yanki Ma
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| | - Emari L. Mann
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Postbaccalaureate Research Education Program at UC Davis, University of California, Davis, Davis, CA, USA
| | - Snigdha Garlapalli
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Psychology, University of California, Davis, Davis, CA, USA
| | - Ross P. Wohlgemuth
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Sarah E. Brashear
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Lucas R. Smith
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | | | - Theanne N. Griffith
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
4
|
Ding JF, Tu B, Song K, Liu ZY, Lin LC, Liu ZY, Shi Y, Yang JJ, Zhao JY, Tao H. Epitranscriptomic regulation of cardiac fibrosis via YTHDF1-dependent PIEZO2 mRNA m6A modification. Cardiovasc Res 2024; 120:2236-2248. [PMID: 39498803 DOI: 10.1093/cvr/cvae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/25/2024] [Accepted: 09/15/2024] [Indexed: 11/07/2024] Open
Abstract
AIMS Mechanosensitive (MS) ion channels play a key role in heart development, physiology, and disease. However, little is known about the molecular mechanisms of the MS non-selective cationic channel Piezo family in cardiac fibrosis. METHODS AND RESULTS Mice were treated with ISO/Ang-II/TAC to induce cardiac fibrosis. AAV9 carrying POSTN promoter-driven small hairpin RNA targeting YTHDF1, and Piezo2 were administered to ISO mice to investigate their roles in cardiac fibrosis. RNA-seq, single-cell sequencing, and histological and biochemical analyses were performed to determine the mechanism by which YTHDF1 regulates Piezo2 expression in cardiac fibrosis. Piezo2 was reconstituted in YTHDF1-deficient cardiac fibroblasts (CFs) and mouse hearts to study its effects on CF autophagy and fibrosis. Piezo2 but not Piezo1 expression increased in experimental cardiac fibrosis and TGF-β1-induced CFs. Fibroblast-specific Piezo2 deficiency ameliorated fibroblast activation and autophagy and inhibited cardiac fibrosis. Mechanistically, Piezo2 up-regulation was associated with elevated m6A mRNA levels. Site-specific m6A modifications at peak_26355 were crucial for regulating the binding of YTHDF1 to Piezo2 mRNA and inducing Piezo2 translation. Notably, Piezo2 epitranscriptomic repression ameliorated experimental cardiac fibrosis. CONCLUSIONS We demonstrated a novel epitranscriptomic mechanism through which YTHDF1 recognizes Piezo2 and controls cardiac fibroblast autophagy and fibrosis through m6A-dependent modulation. Our findings provide new insights for the development of preventive measures for cardiac fibrosis.
Collapse
Affiliation(s)
- Ji-Fei Ding
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhen-Yu Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yan Shi
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Hui Tao
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
5
|
Orlovsky K, Appel E, Hantisteanu S, Olender T, Lotem J, Levanon D, Groner Y. Runx3, Brn3a and Isl1 interplay orchestrates the transcriptional program in the early stages of proprioceptive neuron development. PLoS Genet 2024; 20:e1011401. [PMID: 39715266 PMCID: PMC11729954 DOI: 10.1371/journal.pgen.1011401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/13/2025] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND The development and diversification of sensory proprioceptive neurons, which reside in the dorsal root ganglia (DRG) and express the tropomyosin receptor kinase C (TrkC), depend on the transcription factor (TF) Runx3. Runx3-deficient mice develop severe limb ataxia due to TrkC neuron cell death. Two additional TFs Pou4f1 (also called Brn3a) and Isl1 also play an important role in sensory neuron development. Thus, we aimed to unravel the chromatin state of early-developing TrkC neurons and decipher the Runx3 high-confidence target genes (HCT) and the possible cooperation between Runx3, Brn3a and Isl1 in the regulation of these genes. METHODS Runx3 expression is driven by the gene proximal P2 promoter. Transcriptome analysis was conducted by RNA-seq on RNA isolated from heterozygous (P2+/-) vs. homozygous (P2-/-) TrkC neurons and differentially expressed genes (DEGs) were determined. Genome-wide occupancy of Runx3, Brn3a, Isl1 and histone H3 acetylated on lysine 27 (H3K27Ac) was determined using CUT&RUN. The landscape of Transposase-accessible chromatin was analyzed via ATAC-seq. FINDINGS The intersection of Runx3 genomic occupancy-associated genes and DEG data discovered 244 Runx3 HCT. Brn3a and Isl1 were found to bind to numerous genomic loci, some of which overlapped with Runx3. Most genomic regions bound by each of these three TFs or co-bound by them resided in distantly located enhancer regions rather than in gene promoters. In activated and suppressed neuronal Runx3 HCT, Runx3 cooperated mainly with Brn3a to regulate expression through distantly located enhancers. Interestingly, suppression of non-neuronal immune genes was mainly managed via Runx3 without Brn3a. The distribution of ATAC and H3K27Ac marked regions in Runx3 peaks containing at least one RUNX binding site (Runx3_RBS) revealed that while most promoter regions were marked by ATAC, a prominent fraction of intron/intergenic regions occupied by Runx3, Brn3a or Isl1 were unmarked by ATAC and/or H3K27Ac. CONCLUSIONS These analyses shed new light on the interplay of Runx3, Brn3a, Isl1, and open chromatin regions in regulating the Runx3 HCT in the early developmental stages of TrkC neurons.
Collapse
Affiliation(s)
- Kira Orlovsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Appel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shay Hantisteanu
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Joseph Lotem
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ditsa Levanon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoram Groner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Xiao B. Mechanisms of mechanotransduction and physiological roles of PIEZO channels. Nat Rev Mol Cell Biol 2024; 25:886-903. [PMID: 39251883 DOI: 10.1038/s41580-024-00773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
Mechanical force is an essential physical element that contributes to the formation and function of life. The discovery of the evolutionarily conserved PIEZO family, including PIEZO1 and PIEZO2 in mammals, as bona fide mechanically activated cation channels has transformed our understanding of how mechanical forces are sensed and transduced into biological activities. In this Review, I discuss recent structure-function studies that have illustrated how PIEZO1 and PIEZO2 adopt their unique structural design and curvature-based gating dynamics, enabling their function as dedicated mechanotransduction channels with high mechanosensitivity and selective cation conductivity. I also discuss our current understanding of the physiological and pathophysiological roles mediated by PIEZO channels, including PIEZO1-dependent regulation of development and functional homeostasis and PIEZO2-dominated mechanosensation of touch, tactile pain, proprioception and interoception of mechanical states of internal organs. Despite the remarkable progress in PIEZO research, this Review also highlights outstanding questions in the field.
Collapse
Affiliation(s)
- Bailong Xiao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Sánchez-Carranza O, Chakrabarti S, Kühnemund J, Schwaller F, Bégay V, García-Contreras JA, Wang L, Lewin GR. Piezo2 voltage-block regulates mechanical pain sensitivity. Brain 2024; 147:3487-3500. [PMID: 38984717 PMCID: PMC11449130 DOI: 10.1093/brain/awae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/19/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024] Open
Abstract
PIEZO2 is a trimeric mechanically-gated ion channel expressed by most sensory neurons in the dorsal root ganglia. Mechanosensitive PIEZO2 channels are also genetically required for normal touch sensation in both mice and humans. We previously showed that PIEZO2 channels are also strongly modulated by membrane voltage. Specifically, it is only at very positive voltages that all channels are available for opening by mechanical force. Conversely, most PIEZO2 channels are blocked at normal negative resting membrane potentials. The physiological function of this unusual biophysical property of PIEZO2 channels, however, remained unknown. We characterized the biophysical properties of three PIEZO2 ion channel mutations at an evolutionarily conserved arginine (R2756). Using genome engineering in mice we generated Piezo2R2756H/R2756H and Piezo2R2756K/R2756K knock-in mice to characterize the physiological consequences of altering PIEZO2 voltage sensitivity in vivo. We measured endogenous mechanosensitive currents in sensory neurons isolated from the dorsal root ganglia and characterized mechanoreceptor and nociceptor function using electrophysiology. Mice were also assessed behaviourally and morphologically. Mutations at the conserved Arginine (R2756) dramatically changed the biophysical properties of the channel relieving voltage block and lowering mechanical thresholds for channel activation. Piezo2R2756H/R2756H and Piezo2R2756K/R2756K knock-in mice that were homozygous for gain-of-function mutations were viable and were tested for sensory changes. Surprisingly, mechanosensitive currents in nociceptors, neurons that detect noxious mechanical stimuli, were substantially sensitized in Piezo2 knock-in mice, but mechanosensitive currents in most mechanoreceptors that underlie touch sensation were only mildly affected by the same mutations. Single-unit electrophysiological recordings from sensory neurons innervating the glabrous skin revealed that rapidly-adapting mechanoreceptors that innervate Meissner's corpuscles exhibited slightly decreased mechanical thresholds in Piezo2 knock-in mice. Consistent with measurements of mechanically activated currents in isolated sensory neurons essentially all cutaneous nociceptors, both fast conducting Aδ-mechanonociceptors and unmyelinated C-fibre nociceptors were substantially more sensitive to mechanical stimuli and indeed acquired receptor properties similar to ultrasensitive touch receptors in Piezo2 knock-in mice. Mechanical stimuli also induced enhanced ongoing activity in cutaneous nociceptors in Piezo2 knock-in mice and hyper-sensitive PIEZO2 channels were sufficient alone to drive ongoing activity, even in isolated nociceptive neurons. Consistently, Piezo2 knock-in mice showed substantial behavioural hypersensitivity to noxious mechanical stimuli. Our data indicate that ongoing activity and sensitization of nociceptors, phenomena commonly found in human chronic pain syndromes, can be driven by relieving the voltage-block of PIEZO2 ion channels. Indeed, membrane depolarization caused by multiple noxious stimuli may sensitize nociceptors by relieving voltage-block of PIEZO2 channels.
Collapse
Affiliation(s)
- Oscar Sánchez-Carranza
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 10409, Germany
| | - Sampurna Chakrabarti
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 10409, Germany
| | - Johannes Kühnemund
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 10409, Germany
| | - Fred Schwaller
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 10409, Germany
| | - Valérie Bégay
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 10409, Germany
| | - Jonathan Alexis García-Contreras
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 10409, Germany
| | - Lin Wang
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 10409, Germany
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 10409, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Center for Mental Health (DZPG), partner site Berlin, 10117 Berlin, Germany
| |
Collapse
|
8
|
Espino CM, Nagaraja C, Ortiz S, Dayton JR, Murali AR, Ma Y, Mann EL, Garlapalli S, Wohlgemuth RP, Brashear SE, Smith LR, Wilkinson KA, Griffith TN. Differential encoding of mammalian proprioception by voltage-gated sodium channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609982. [PMID: 39253497 PMCID: PMC11383322 DOI: 10.1101/2024.08.27.609982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Animals that require purposeful movement for survival are endowed with mechanosensory neurons called proprioceptors that provide essential sensory feedback from muscles and joints to spinal cord circuits, which modulates motor output. Despite the essential nature of proprioceptive signaling in daily life, the mechanisms governing proprioceptor activity are poorly understood. Here, we have identified distinct and nonredundant roles for two voltage-gated sodium channels (NaVs), NaV1.1 and NaV1.6, in mammalian proprioception. Deletion of NaV1.6 in somatosensory neurons (NaV1.6cKO mice) causes severe motor deficits accompanied by complete loss of proprioceptive transmission, which contrasts with our previous findings using similar mouse models to target NaV1.1 (NaV1.1cKO). In NaV1.6cKO animals, loss of proprioceptive feedback caused non-cell-autonomous impairments in proprioceptor end-organs and skeletal muscle that were absent in NaV1.1cKO mice. We attribute the differential contribution of NaV1.1 and NaV1.6 in proprioceptor function to distinct cellular localization patterns. Collectively, these data provide the first evidence that NaV subtypes uniquely shape neurotransmission within a somatosensory modality.
Collapse
Affiliation(s)
- Cyrrus M. Espino
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Chetan Nagaraja
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Serena Ortiz
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Jacquelyn R. Dayton
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Akash R. Murali
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| | - Yanki Ma
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| | - Emari L. Mann
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Postbaccalaureate Research Education Program at UC Davis, University of California, Davis, Davis, CA, USA
| | - Snigdha Garlapalli
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Psychology, University of California, Davis, Davis, CA, USA
| | - Ross P. Wohlgemuth
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Sarah E. Brashear
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Lucas R. Smith
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | | | - Theanne N. Griffith
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
9
|
Aragona M, Mhalhel K, Pansera L, Montalbano G, Guerrera MC, Levanti M, Laurà R, Abbate F, Vega JA, Germanà A. Localization of Piezo 1 and Piezo 2 in Lateral Line System and Inner Ear of Zebrafish ( Danio rerio). Int J Mol Sci 2024; 25:9204. [PMID: 39273152 PMCID: PMC11395407 DOI: 10.3390/ijms25179204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Piezo proteins have been identified as mechanosensitive ion channels involved in mechanotransduction. Several ion channel dysfunctions may be associated with diseases (including deafness and pain); thus, studying them is critical to understand their role in mechanosensitive disorders and to establish new therapeutic strategies. The current study investigated for the first time the expression patterns of Piezo proteins in zebrafish octavolateralis mechanosensory organs. Piezo 1 and 2 were immunoreactive in the sensory epithelia of the lateral line system and the inner ear. Piezo 1 (28.7 ± 1.55 cells) and Piezo 2 (28.8 ± 3.31 cells) immunopositive neuromast cells were identified based on their ultrastructural features, and their overlapping immunoreactivity to the s100p specific marker (28.6 ± 1.62 cells), as sensory cells. These findings are in favor of Piezo proteins' potential role in sensory cell activation, while their expression on mantle cells reflects their implication in the maintenance and regeneration of the neuromast during cell turnover. In the inner ear, Piezo proteins' colocalization with BDNF introduces their potential implication in neuronal plasticity and regenerative events, typical of zebrafish mechanosensory epithelia. Assessing these proteins in zebrafish could open up new scenarios for the roles of these important ionic membrane channels, for example in treating impairments of sensory systems.
Collapse
Affiliation(s)
- Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, 33006 Oviedo, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
10
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
11
|
Ojewunmi OO, Adeyemo TA, Oyetunji AI, Inyang B, Akinrindoye A, Mkumbe BS, Gardner K, Rooks H, Brewin J, Patel H, Lee SH, Chung R, Rashkin S, Kang G, Chianumba R, Sangeda R, Mwita L, Isa H, Agumadu UN, Ekong R, Faruk JA, Jamoh BY, Adebiyi NM, Umar IA, Hassan A, Grace C, Goel A, Inusa BPD, Falchi M, Nkya S, Makani J, Ahmad HR, Nnodu O, Strouboulis J, Menzel S. The genetic dissection of fetal haemoglobin persistence in sickle cell disease in Nigeria. Hum Mol Genet 2024; 33:919-929. [PMID: 38339995 PMCID: PMC11070134 DOI: 10.1093/hmg/ddae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
The clinical severity of sickle cell disease (SCD) is strongly influenced by the level of fetal haemoglobin (HbF) persistent in each patient. Three major HbF loci (BCL11A, HBS1L-MYB, and Xmn1-HBG2) have been reported, but a considerable hidden heritability remains. We conducted a genome-wide association study for HbF levels in 1006 Nigerian patients with SCD (HbSS/HbSβ0), followed by a replication and meta-analysis exercise in four independent SCD cohorts (3,582 patients). To dissect association signals at the major loci, we performed stepwise conditional and haplotype association analyses and included public functional annotation datasets. Association signals were detected for BCL11A (lead SNP rs6706648, β = -0.39, P = 4.96 × 10-34) and HBS1L-MYB (lead SNP rs61028892, β = 0.73, P = 1.18 × 10-9), whereas the variant allele for Xmn1-HBG2 was found to be very rare. In addition, we detected three putative new trait-associated regions. Genetically, dissecting the two major loci BCL11A and HBS1L-MYB, we defined trait-increasing haplotypes (P < 0.0001) containing so far unidentified causal variants. At BCL11A, in addition to a haplotype harbouring the putative functional variant rs1427407-'T', we identified a second haplotype, tagged by the rs7565301-'A' allele, where a yet-to-be-discovered causal DNA variant may reside. Similarly, at HBS1L-MYB, one HbF-increasing haplotype contains the likely functional small indel rs66650371, and a second tagged by rs61028892-'C' is likely to harbour a presently unknown functional allele. Together, variants at BCL11A and HBS1L-MYB SNPs explained 24.1% of the trait variance. Our findings provide a path for further investigation of the causes of variable fetal haemoglobin persistence in sickle cell disease.
Collapse
Affiliation(s)
- Oyesola O Ojewunmi
- School of Cancer and Pharmaceutical Sciences, King’s College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Titilope A Adeyemo
- Department of Haematology and Blood Transfusion, College of Medicine, University of Lagos, P.M.B 12003, Lagos, Nigeria
| | - Ajoke I Oyetunji
- Sickle Cell Foundation Nigeria, Ishaga Road, Idi-Araba, P.O. Box 3463, Lagos, Nigeria
| | - Bassey Inyang
- Department of Medical Biochemistry, College of Health Sciences, University of Abuja, Mohammed Maccido Road, Airport Road, P.M.B 117, Abuja, Nigeria
| | - Afolashade Akinrindoye
- Sickle Cell Foundation Nigeria, Ishaga Road, Idi-Araba, P.O. Box 3463, Lagos, Nigeria
- School of Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Baraka S Mkumbe
- Department of Biochemistry and Molecular Biology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, United Nations Rd, Dar es Salaam, Tanzania
- Department of Artificial Intelligence and Innovative Medicine, Tohoku University Graduate School of Medicine, 980-8573, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Kate Gardner
- School of Cancer and Pharmaceutical Sciences, King’s College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
- Clinical Haematology, Haematology and Oncology Directorate, Guy’s Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Helen Rooks
- School of Cancer and Pharmaceutical Sciences, King’s College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - John Brewin
- School of Cancer and Pharmaceutical Sciences, King’s College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
- Department of Haematological Medicine, King's College Hospital, London SE5 9RS, United Kingdom
| | - Hamel Patel
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) and Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, 16 De Crespigny Park, London SE5 8AB, United Kingdom
| | - Sang Hyuck Lee
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) and Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, 16 De Crespigny Park, London SE5 8AB, United Kingdom
| | - Raymond Chung
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) and Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, 16 De Crespigny Park, London SE5 8AB, United Kingdom
| | - Sara Rashkin
- St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Guolian Kang
- St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Reuben Chianumba
- Centre of Excellence for Sickle Cell Disease Research and Training (CESRTA), University of Abuja, Mohammed Maccido Road, Airport Road, P.M.B 117, Abuja, Nigeria
| | - Raphael Sangeda
- Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Liberata Mwita
- Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Hezekiah Isa
- Centre of Excellence for Sickle Cell Disease Research and Training (CESRTA), University of Abuja, Mohammed Maccido Road, Airport Road, P.M.B 117, Abuja, Nigeria
- Department of Haematology and Blood Transfusion, University of Abuja Teaching Hospital, Gwagwalada, P.M.B. 228, Gwagwalada, FCT Abuja, Nigeria
| | - Uche-Nnebe Agumadu
- Department of Paediatrics, College of Health Sciences, University of Abuja, Mohammed Maccido Road, Airport Road, P.M.B 117, Abuja, Nigeria
| | - Rosemary Ekong
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jamilu A Faruk
- Department of Paediatrics, Ahmadu Bello University/Ahmadu Bello University Teaching Hospital, P.M.B 006, Zaria, Nigeria
| | - Bello Y Jamoh
- Department of Internal Medicine, Ahmadu Bello University/Ahmadu Bello University Teaching Hospital, P.M.B 006, Zaria, Nigeria
| | - Niyi M Adebiyi
- Department of Paediatrics, Ahmadu Bello University/Ahmadu Bello University Teaching Hospital, P.M.B 006, Zaria, Nigeria
| | - Ismail A Umar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Sokoto Road, Samaru, P.M.B 006, Zaria, Nigeria
| | - Abdulaziz Hassan
- Department of Haematology and Blood Transfusion, Ahmadu Bello University, Sokoto Road, Samaru, P.M.B 006, Zaria, Nigeria
| | - Christopher Grace
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Centre for Human Genetics, Roosevelt Drive, Oxford OX37BN, United Kingdom
| | - Anuj Goel
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Centre for Human Genetics, Roosevelt Drive, Oxford OX37BN, United Kingdom
| | - Baba P D Inusa
- Evelina London Children’s Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, Westminster Bridge Rd, London SE1 7EH, United Kingdom
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King’s College London, St Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, United Kingdom
| | - Siana Nkya
- Department of Biochemistry and Molecular Biology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, United Nations Rd, Dar es Salaam, Tanzania
- Tanzania Human Genetics Organisation, Sickle Cell Centre, 1 Kipalapala Street, Dar es Salaam, Tanzania
- Sickle Cell Program, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, United Nations Rd, Dar es Salaam, Tanzania
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Science, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Julie Makani
- Sickle Cell Program, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, United Nations Rd, Dar es Salaam, Tanzania
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Science, P.O. Box 65001, Dar es Salaam, Tanzania
- Centre for Haematology, Department of Immunology & Inflammation, Imperial College London, Commonwealth Building, Hammersmith Campus, Du Cane Rd, London W12 0NN, United Kingdom
| | - Hafsat R Ahmad
- Department of Paediatrics, Ahmadu Bello University/Ahmadu Bello University Teaching Hospital, P.M.B 006, Zaria, Nigeria
| | - Obiageli Nnodu
- Centre of Excellence for Sickle Cell Disease Research and Training (CESRTA), University of Abuja, Mohammed Maccido Road, Airport Road, P.M.B 117, Abuja, Nigeria
- Department of Haematology and Blood Transfusion, University of Abuja Teaching Hospital, Gwagwalada, P.M.B. 228, Gwagwalada, FCT Abuja, Nigeria
| | - John Strouboulis
- School of Cancer and Pharmaceutical Sciences, King’s College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Stephan Menzel
- School of Cancer and Pharmaceutical Sciences, King’s College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
| |
Collapse
|
12
|
Sonkodi B. Progressive Irreversible Proprioceptive Piezo2 Channelopathy-Induced Lost Forced Peripheral Oscillatory Synchronization to the Hippocampal Oscillator May Explain the Onset of Amyotrophic Lateral Sclerosis Pathomechanism. Cells 2024; 13:492. [PMID: 38534336 PMCID: PMC10969524 DOI: 10.3390/cells13060492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a mysterious lethal multisystem neurodegenerative disease that gradually leads to the progressive loss of motor neurons. A recent non-contact dying-back injury mechanism theory for ALS proposed that the primary damage is an acquired irreversible intrafusal proprioceptive terminal Piezo2 channelopathy with underlying genetic and environmental risk factors. Underpinning this is the theory that excessively prolonged proprioceptive mechanotransduction under allostasis may induce dysfunctionality in mitochondria, leading to Piezo2 channelopathy. This microinjury is suggested to provide one gateway from physiology to pathophysiology. The chronic, but not irreversible, form of this Piezo2 channelopathy is implicated in many diseases with unknown etiology. Dry eye disease is one of them where replenishing synthetic proteoglycans promote nerve regeneration. Syndecans, especially syndecan-3, are proposed as the first critical link in this hierarchical ordered depletory pathomechanism as proton-collecting/distributing antennas; hence, they may play a role in ALS pathomechanism onset. Even more importantly, the shedding or charge-altering variants of Syndecan-3 may contribute to the Piezo2 channelopathy-induced disruption of the Piezo2-initiated proton-based ultrafast long-range signaling through VGLUT1 and VGLUT2. Thus, these alterations may not only cause disruption to ultrafast signaling to the hippocampus in conscious proprioception, but could disrupt the ultrafast proprioceptive signaling feedback to the motoneurons. Correspondingly, an inert Piezo2-initiated proton-based ultrafast signaled proprioceptive skeletal system is coming to light that is suggested to be progressively lost in ALS. In addition, the lost functional link of the MyoD family of inhibitor proteins, as auxiliary subunits of Piezo2, may not only contribute to the theorized acquired Piezo2 channelopathy, but may explain how these microinjured ion channels evolve to be principal transcription activators.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary;
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
13
|
Wang X, Yue M, Cheung JPY, Cheung PWH, Fan Y, Wu M, Wang X, Zhao S, Khanshour AM, Rios JJ, Chen Z, Wang X, Tu W, Chan D, Yuan Q, Qin D, Qiu G, Wu Z, Zhang TJ, Ikegawa S, Wu N, Wise CA, Hu Y, Luk KDK, Song YQ, Gao B. Impaired glycine neurotransmission causes adolescent idiopathic scoliosis. J Clin Invest 2024; 134:e168783. [PMID: 37962965 PMCID: PMC10786698 DOI: 10.1172/jci168783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity, affecting millions of adolescents worldwide, but it lacks a defined theory of etiopathogenesis. Because of this, treatment of AIS is limited to bracing and/or invasive surgery after onset. Preonset diagnosis or preventive treatment remains unavailable. Here, we performed a genetic analysis of a large multicenter AIS cohort and identified disease-causing and predisposing variants of SLC6A9 in multigeneration families, trios, and sporadic patients. Variants of SLC6A9, which encodes glycine transporter 1 (GLYT1), reduced glycine-uptake activity in cells, leading to increased extracellular glycine levels and aberrant glycinergic neurotransmission. Slc6a9 mutant zebrafish exhibited discoordination of spinal neural activities and pronounced lateral spinal curvature, a phenotype resembling human patients. The penetrance and severity of curvature were sensitive to the dosage of functional glyt1. Administration of a glycine receptor antagonist or a clinically used glycine neutralizer (sodium benzoate) partially rescued the phenotype. Our results indicate a neuropathic origin for "idiopathic" scoliosis, involving the dysfunction of synaptic neurotransmission and central pattern generators (CPGs), potentially a common cause of AIS. Our work further suggests avenues for early diagnosis and intervention of AIS in preadolescents.
Collapse
Affiliation(s)
- Xiaolu Wang
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ming Yue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Orthopaedics and Traumatology, University of Hong Kong–Shenzhen Hospital, Shenzhen, China
| | - Prudence Wing Hang Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yanhui Fan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Meicheng Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiaojun Wang
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sen Zhao
- Department of Orthopaedic Surgery, Department of Medical Research Center, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital (PUMCH) and Chinese Academy of Medical Sciences, Beijing, China
| | - Anas M. Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children (SRC), Dallas, Texas, USA
| | - Jonathan J. Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children (SRC), Dallas, Texas, USA
- Eugene McDermott Center for Human Growth and Development, Departments of Orthopaedic Surgery and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zheyi Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiwei Wang
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Danny Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Tai Po, Hong Kong, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Tai Po, Hong Kong, China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Department of Medical Research Center, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital (PUMCH) and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Department of Orthopaedic Surgery, Department of Medical Research Center, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital (PUMCH) and Chinese Academy of Medical Sciences, Beijing, China
| | - Terry Jianguo Zhang
- Department of Orthopaedic Surgery, Department of Medical Research Center, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital (PUMCH) and Chinese Academy of Medical Sciences, Beijing, China
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Nan Wu
- Department of Orthopaedic Surgery, Department of Medical Research Center, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital (PUMCH) and Chinese Academy of Medical Sciences, Beijing, China
| | - Carol A. Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children (SRC), Dallas, Texas, USA
- Eugene McDermott Center for Human Growth and Development, Departments of Orthopaedic Surgery and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yong Hu
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Orthopaedics and Traumatology, University of Hong Kong–Shenzhen Hospital, Shenzhen, China
| | - Keith Dip Kei Luk
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - You-Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Medicine, University of Hong Kong–Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Bo Gao
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Orthopaedics and Traumatology, University of Hong Kong–Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, Tai Po, Hong Kong, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
14
|
Ramli, Aramaki T, Watanabe M, Kondo S. Piezo1 mutant zebrafish as a model of idiopathic scoliosis. Front Genet 2024; 14:1321379. [PMID: 38259612 PMCID: PMC10801085 DOI: 10.3389/fgene.2023.1321379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Scoliosis is a condition where the spine curves sideways, unique to humans due to their upright posture. However, the cause of this disease is not well understood because it is challenging to find a model for experimentation. This study aimed to create a model for human idiopathic scoliosis by manipulating the function of mechanosensitive channels called Piezo channels in zebrafish. Zebrafish were chosen because they experience similar biomechanical forces to humans, particularly in relation to the role of mechanical force in scoliosis progression. Here we describe piezo1 and piezo2a are involved in bone formation, with a double knockout resulting in congenital systemic malformations. However, an in-frame mutation of piezo1 led to fully penetrant juvenile-onset scoliosis, bone asymmetry, reduced tissue mineral density, and abnormal intervertebral discs-resembling non-congenital scoliosis symptoms in humans. These findings suggest that functional Piezo channels responding to mechanical forces are crucial for bone formation and maintaining spine integrity, providing insights into skeletal disorders.
Collapse
Affiliation(s)
- Ramli
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Toshihiro Aramaki
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Japan Science and Technology Agency, PRESTO, Tokyo, Japan
| | - Masakatsu Watanabe
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Shigeru Kondo
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
15
|
Bornstein B, Watkins B, Passini FS, Blecher R, Assaraf E, Sui XM, Brumfeld V, Tsoory M, Kröger S, Zelzer E. The mechanosensitive ion channel ASIC2 mediates both proprioceptive sensing and spinal alignment. Exp Physiol 2024; 109:135-147. [PMID: 36951012 PMCID: PMC10988735 DOI: 10.1113/ep090776] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023]
Abstract
By translating mechanical forces into molecular signals, proprioceptive neurons provide the CNS with information on muscle length and tension, which is necessary to control posture and movement. However, the identities of the molecular players that mediate proprioceptive sensing are largely unknown. Here, we confirm the expression of the mechanosensitive ion channel ASIC2 in proprioceptive sensory neurons. By combining in vivo proprioception-related functional tests with ex vivo electrophysiological analyses of muscle spindles, we showed that mice lacking Asic2 display impairments in muscle spindle responses to stretch and motor coordination tasks. Finally, analysis of skeletons of Asic2 loss-of-function mice revealed a specific effect on spinal alignment. Overall, we identify ASIC2 as a key component in proprioceptive sensing and a regulator of spine alignment.
Collapse
Affiliation(s)
- Bavat Bornstein
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Bridgette Watkins
- Department of Physiological Genomics, Biomedical CenterLudwig‐Maximilians‐UniversityPlanegg‐MartinsriedGermany
| | - Fabian S. Passini
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Ronen Blecher
- Orthopedic DepartmentAssuta Ashdod University Hospital, Ashdod, Israel, affiliated to Ben Gurion University of the NegevBeer ShebaIsrael
| | - Eran Assaraf
- Department of Orthopedic SurgeryShamir Medical Center, Assaf HaRofeh Campus, Zeffifin, Israel, affiliated to Sackler Faculty of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - Xiao Meng Sui
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Vlad Brumfeld
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Michael Tsoory
- Department of Veterinary ResourcesWeizmann Institute of ScienceRehovotIsrael
| | - Stephan Kröger
- Department of Physiological Genomics, Biomedical CenterLudwig‐Maximilians‐UniversityPlanegg‐MartinsriedGermany
| | - Elazar Zelzer
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
16
|
You X, Wu D, Chen A, Zhou X, Fan H, Jiang Y. Asymmetric expression of PIEZO2 in paraspinal muscles of adolescent idiopathic scoliosis. J Back Musculoskelet Rehabil 2024; 37:137-146. [PMID: 37840481 DOI: 10.3233/bmr-220440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
BACKGROUND Muscle imbalance has long been recognized as one of the possible pathogeneses for adolescent idiopathic scoliosis (AIS). PIEZO2, the susceptibility gene of AIS, has been identified to play an important role in neuromuscular activities. OBJECTIVE This study aims to compare the mRNA expression of PIEZO2 between concave and convex paraspinal muscles of AIS patients and to identify the relationship between the ratio of PIEZO2 expression and curve magnitude. METHODS Twenty female AIS patients (right thoracic curve) who underwent spinal correction surgery were divided into moderate (n= 12) and severe (⩾ 70 degrees) curve groups (n= 8). The morphology of the paraspinal muscles was assessed with spinal MRI. Multifidus specimens were collected during surgical operations from the concave and convex sides of the apical region, and mRNA expression of the PIEZO2 gene was compared between sides. The localization of PIEZO2 protein expression was confirmed with the markers PAX7 and PAX3, and the percentage of PIEZO2+ cells was also investigated. RESULTS In the moderate curve group, fatty infiltration in the deep paraspinal muscle was significantly higher on the concave side than on the convex side. There were no differences in deep muscle area, superficial muscle area, or fatty infiltration of superficial paraspinal muscle. The mRNA expression of PIEZO2 was significantly increased on the concave side, and the asymmetric expression predominantly occurred in moderate curves rather than severe ones. PIEZO2 was expressed on satellite cells instead of fibers of the muscle spindle. The percent of PIEZO2+PAX7+ cells in myofibers was significantly higher on the concave side in the moderate curve group, but not in the severe curve group. CONCLUSIONS Asymmetric morphological changes occur in the deep paraspinal muscles of AIS. The PIEZO2 is asymmetrically expressed in the multifidus muscle and is preferentially expressed in satellite cells.
Collapse
Affiliation(s)
- Xuanhe You
- Orthopedic Research Institute, Department of Orthopedic Surgery, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Diwei Wu
- Orthopedic Research Institute, Department of Orthopedic Surgery, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Anjing Chen
- Orthopedic Research Institute, Department of Orthopedic Surgery, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xinran Zhou
- West China Biobanks, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Haiquan Fan
- The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, Sichuan, China
| | - Yang Jiang
- The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, Sichuan, China
| |
Collapse
|
17
|
Tranter JD, Kumar A, Nair VK, Sah R. Mechanosensing in Metabolism. Compr Physiol 2023; 14:5269-5290. [PMID: 38158369 PMCID: PMC11681368 DOI: 10.1002/cphy.c230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Electrical mechanosensing is a process mediated by specialized ion channels, gated directly or indirectly by mechanical forces, which allows cells to detect and subsequently respond to mechanical stimuli. The activation of mechanosensitive (MS) ion channels, intrinsically gated by mechanical forces, or mechanoresponsive (MR) ion channels, indirectly gated by mechanical forces, results in electrical signaling across lipid bilayers, such as the plasma membrane. While the functions of mechanically gated channels within a sensory context (e.g., proprioception and touch) are well described, there is emerging data demonstrating functions beyond touch and proprioception, including mechanoregulation of intracellular signaling and cellular/systemic metabolism. Both MR and MS ion channel signaling have been shown to contribute to the regulation of metabolic dysfunction, including obesity, insulin resistance, impaired insulin secretion, and inflammation. This review summarizes our current understanding of the contributions of several MS/MR ion channels in cell types implicated in metabolic dysfunction, namely, adipocytes, pancreatic β-cells, hepatocytes, and skeletal muscle cells, and discusses MS/MR ion channels as possible therapeutic targets. © 2024 American Physiological Society. Compr Physiol 14:5269-5290, 2024.
Collapse
Affiliation(s)
- John D. Tranter
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ashutosh Kumar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vinayak K. Nair
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Cardiovascular Research, Washington University, St. Louis, Missouri, USA
- St. Louis VA Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
18
|
Lau KKL, Law KKP, Kwan KYH, Cheung JPY, Cheung KMC. Proprioception-related gene mutations in relation to the aetiopathogenesis of idiopathic scoliosis: A scoping review. J Orthop Res 2023; 41:2694-2702. [PMID: 37203456 DOI: 10.1002/jor.25626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
Since idiopathic scoliosis is a multifactorial disorder, the proprioceptive defect is considered one of its etiological factors. Genetic studies have separately revealed this relationship, yet it remains indeterminate which specific genes that related to proprioception contributed to the initiation, progression, pathology, and treatment outcomes of the curvature. A systematic search was conducted on four online databases, including PubMed, Web of Science, Embase, and Academic search complete. Studies were included if they involved human or animal subjects with idiopathic scoliosis and evaluated with proprioceptive genes. The search period was the inception of the database to February 21, 2023. Four genes (i.e., Ladybird homeobox 1 [LBX1], Piezo type mechanosensitive ion channel component 2 [PIEZO2], Runx family transcription factor 3 [RUNX3], and neurotrophin 3 [NTF3]) investigated in 19 studies were included. LBX1 has confirmed the correlation with the development of idiopathic scoliosis in 10 ethnicities, whereas PIEZO2 has shown a connection with clinical proprioceptive tests in subjects with idiopathic scoliosis. However, curve severity was less likely to be related to the proprioceptive genes. The potential pathology took place at the proprioceptive neurons. Evidence of proprioception-related gene mutations in association with idiopathic scoliosis was established. Nevertheless, the causation between the initiation, progression, and treatment outcomes with proprioceptive defect requires further investigation.
Collapse
Affiliation(s)
- Kenney K L Lau
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Karlen K P Law
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kenny Y H Kwan
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jason P Y Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Orthopaedics and Traumatology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Orthopaedics and Traumatology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
19
|
Santiago C, Sharma N, Africawala N, Siegrist J, Handler A, Tasnim A, Anjum R, Turecek J, Lehnert BP, Renauld S, Nolan-Tamariz M, Iskols M, Magee AR, Paradis S, Ginty DD. Activity-dependent development of the body's touch receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559109. [PMID: 37790437 PMCID: PMC10542488 DOI: 10.1101/2023.09.23.559109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We report a role for activity in the development of the primary sensory neurons that detect touch. Genetic deletion of Piezo2, the principal mechanosensitive ion channel in somatosensory neurons, caused profound changes in the formation of mechanosensory end organ structures and altered somatosensory neuron central targeting. Single cell RNA sequencing of Piezo2 conditional mutants revealed changes in gene expression in the sensory neurons activated by light mechanical forces, whereas other neuronal classes were less affected. To further test the role of activity in mechanosensory end organ development, we genetically deleted the voltage-gated sodium channel Nav1.6 (Scn8a) in somatosensory neurons throughout development and found that Scn8a mutants also have disrupted somatosensory neuron morphologies and altered electrophysiological responses to mechanical stimuli. Together, these findings indicate that mechanically evoked neuronal activity acts early in life to shape the maturation of the mechanosensory end organs that underlie our sense of gentle touch.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nikhil Sharma
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Nusrat Africawala
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Julianna Siegrist
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Annie Handler
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Aniqa Tasnim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - Josef Turecek
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Brendan P. Lehnert
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Sophia Renauld
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Nolan-Tamariz
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexandra R. Magee
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lead Contact
| |
Collapse
|
20
|
Cheng YR, Chi CH, Lee CH, Lin SH, Min MY, Chen CC. Probing the Effect of Acidosis on Tether-Mode Mechanotransduction of Proprioceptors. Int J Mol Sci 2023; 24:12783. [PMID: 37628964 PMCID: PMC10454156 DOI: 10.3390/ijms241612783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Proprioceptors are low-threshold mechanoreceptors involved in perceiving body position and strain bearing. However, the physiological response of proprioceptors to fatigue- and muscle-acidosis-related disturbances remains unknown. Here, we employed whole-cell patch-clamp recordings to probe the effect of mild acidosis on the mechanosensitivity of the proprioceptive neurons of dorsal root ganglia (DRG) in mice. We cultured neurite-bearing parvalbumin-positive (Pv+) DRG neurons on a laminin-coated elastic substrate and examined mechanically activated currents induced through substrate deformation-driven neurite stretch (SDNS). The SDNS-induced inward currents (ISDNS) were indentation depth-dependent and significantly inhibited by mild acidification (pH 7.2~6.8). The acid-inhibiting effect occurred in neurons with an ISDNS sensitive to APETx2 (an ASIC3-selective antagonist) inhibition, but not in those with an ISNDS resistant to APETx2. Detailed subgroup analyses revealed ISDNS was expressed in 59% (25/42) of Parvalbumin-positive (Pv+) DRG neurons, 90% of which were inhibited by APETx2. In contrast, an acid (pH 6.8)-induced current (IAcid) was expressed in 76% (32/42) of Pv+ DRG neurons, 59% (21/32) of which were inhibited by APETx2. Together, ASIC3-containing channels are highly heterogenous and differentially contribute to the ISNDS and IAcid among Pv+ proprioceptors. In conclusion, our findings highlight the importance of ASIC3-containing ion channels in the physiological response of proprioceptors to acidic environments.
Collapse
Affiliation(s)
- Yuan-Ren Cheng
- Department of Life Science, National Taiwan University, Taipei 10090, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Hung Chi
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Han Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shing-Hong Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Yuan Min
- Department of Life Science, National Taiwan University, Taipei 10090, Taiwan;
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
21
|
Nottmeier C, Lavicky J, Gonzalez Lopez M, Knauth S, Kahl-Nieke B, Amling M, Schinke T, Helms J, Krivanek J, Koehne T, Petersen J. Mechanical-induced bone remodeling does not depend on Piezo1 in dentoalveolar hard tissue. Sci Rep 2023; 13:9563. [PMID: 37308580 DOI: 10.1038/s41598-023-36699-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023] Open
Abstract
Mechanosensory ion channels are proteins that are sensitive to mechanical forces. They are found in tissues throughout the body and play an important role in bone remodeling by sensing changes in mechanical stress and transmitting signals to bone-forming cells. Orthodontic tooth movement (OTM) is a prime example of mechanically induced bone remodeling. However, the cell-specific role of the ion channels Piezo1 and Piezo2 in OTM has not been investigated yet. Here we first identify the expression of PIEZO1/2 in the dentoalveolar hard tissues. Results showed that PIEZO1 was expressed in odontoblasts, osteoblasts, and osteocytes, while PIEZO2 was localized in odontoblasts and cementoblasts. We therefore used a Piezo1floxed/floxed mouse model in combination with Dmp1cre to inactivate Piezo1 in mature osteoblasts/cementoblasts, osteocytes/cementocytes, and odontoblasts. Inactivation of Piezo1 in these cells did not affect the overall morphology of the skull but caused significant bone loss in the craniofacial skeleton. Histological analysis revealed a significantly increased number of osteoclasts in Piezo1floxed/floxed;Dmp1cre mice, while osteoblasts were not affected. Despite this increased number of osteoclasts, orthodontic tooth movement was not altered in these mice. Our results suggest that despite Piezo1 being crucial for osteoclast function, it may be dispensable for mechanical sensing of bone remodeling.
Collapse
Affiliation(s)
- Cita Nottmeier
- Department of Orthodontics, University of Leipzig Medical Center, Saxony, Germany
| | - Josef Lavicky
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcos Gonzalez Lopez
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarah Knauth
- Department of Orthodontics, University of Leipzig Medical Center, Saxony, Germany
| | - Bärbel Kahl-Nieke
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jill Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Till Koehne
- Department of Orthodontics, University of Leipzig Medical Center, Saxony, Germany.
| | - Julian Petersen
- Department of Orthodontics, University of Leipzig Medical Center, Saxony, Germany.
| |
Collapse
|
22
|
Zhang YY, Li XS, Ren KD, Peng J, Luo XJ. Restoration of metal homeostasis: a potential strategy against neurodegenerative diseases. Ageing Res Rev 2023; 87:101931. [PMID: 37031723 DOI: 10.1016/j.arr.2023.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Metal homeostasis is critical to normal neurophysiological activity. Metal ions are involved in the development, metabolism, redox and neurotransmitter transmission of the central nervous system (CNS). Thus, disturbance of homeostasis (such as metal deficiency or excess) can result in serious consequences, including neurooxidative stress, excitotoxicity, neuroinflammation, and nerve cell death. The uptake, transport and metabolism of metal ions are highly regulated by ion channels. There is growing evidence that metal ion disorders and/or the dysfunction of ion channels contribute to the progression of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for diverse neurological diseases. This review summarizes recent advances in the studies regarding the physiological and pathophysiological functions of metal ions and their channels, as well as their role in neurodegenerative diseases. In addition, currently available metal ion modulators and in vivo quantitative metal ion imaging methods are also discussed. Current work provides certain recommendations based on literatures and in-depth reflections to improve neurodegenerative diseases. Future studies should turn to crosstalk and interactions between different metal ions and their channels. Concomitant pharmacological interventions for two or more metal signaling pathways may offer clinical advantages in treating the neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xi-Sheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China.
| |
Collapse
|
23
|
Romero LO, Caires R, Kaitlyn Victor A, Ramirez J, Sierra-Valdez FJ, Walsh P, Truong V, Lee J, Mayor U, Reiter LT, Vásquez V, Cordero-Morales JF. Linoleic acid improves PIEZO2 dysfunction in a mouse model of Angelman Syndrome. Nat Commun 2023; 14:1167. [PMID: 36859399 PMCID: PMC9977963 DOI: 10.1038/s41467-023-36818-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Angelman syndrome (AS) is a neurogenetic disorder characterized by intellectual disability and atypical behaviors. AS results from loss of expression of the E3 ubiquitin-protein ligase UBE3A from the maternal allele in neurons. Individuals with AS display impaired coordination, poor balance, and gait ataxia. PIEZO2 is a mechanosensitive ion channel essential for coordination and balance. Here, we report that PIEZO2 activity is reduced in Ube3a deficient male and female mouse sensory neurons, a human Merkel cell carcinoma cell line and female human iPSC-derived sensory neurons with UBE3A knock-down, and de-identified stem cell-derived neurons from individuals with AS. We find that loss of UBE3A decreases actin filaments and reduces PIEZO2 expression and function. A linoleic acid (LA)-enriched diet increases PIEZO2 activity, mechano-excitability, and improves gait in male AS mice. Finally, LA supplementation increases PIEZO2 function in stem cell-derived neurons from individuals with AS. We propose a mechanism whereby loss of UBE3A expression reduces PIEZO2 function and identified a fatty acid that enhances channel activity and ameliorates AS-associated mechano-sensory deficits.
Collapse
Affiliation(s)
- Luis O Romero
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, Memphis, TN, 38163, USA
| | - Rebeca Caires
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - A Kaitlyn Victor
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, Leioa, Bizkaia, Spain
| | - Francisco J Sierra-Valdez
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico
| | | | | | - Jungsoo Lee
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, Leioa, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Lawrence T Reiter
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38104, USA
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38104, USA
| | - Valeria Vásquez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
| | - Julio F Cordero-Morales
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
| |
Collapse
|
24
|
Savadipour A, Palmer D, Ely EV, Collins KH, Garcia-Castorena JM, Harissa Z, Kim YS, Oestrich A, Qu F, Rashidi N, Guilak F. The role of PIEZO ion channels in the musculoskeletal system. Am J Physiol Cell Physiol 2023; 324:C728-C740. [PMID: 36717101 PMCID: PMC10027092 DOI: 10.1152/ajpcell.00544.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
PIEZO1 and PIEZO2 are mechanosensitive cation channels that are highly expressed in numerous tissues throughout the body and exhibit diverse, cell-specific functions in multiple organ systems. Within the musculoskeletal system, PIEZO1 functions to maintain muscle and bone mass, sense tendon stretch, and regulate senescence and apoptosis in response to mechanical stimuli within cartilage and the intervertebral disc. PIEZO2 is essential for transducing pain and touch sensations as well as proprioception in the nervous system, which can affect musculoskeletal health. PIEZO1 and PIEZO2 have been shown to act both independently as well as synergistically in different cell types. Conditions that alter PIEZO channel mechanosensitivity, such as inflammation or genetic mutations, can have drastic effects on these functions. For this reason, therapeutic approaches for PIEZO-related disease focus on altering PIEZO1 and/or PIEZO2 activity in a controlled manner, either through inhibition with small molecules, or through dietary control and supplementation to maintain a healthy cell membrane composition. Although many opportunities to better understand PIEZO1 and PIEZO2 remain, the studies summarized in this review highlight how crucial PIEZO channels are to musculoskeletal health and point to promising possible avenues for their modulation as a therapeutic target.
Collapse
Affiliation(s)
- Alireza Savadipour
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
| | - Daniel Palmer
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Erica V Ely
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jaquelin M Garcia-Castorena
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Zainab Harissa
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Yu Seon Kim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Arin Oestrich
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Feini Qu
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Neda Rashidi
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| |
Collapse
|
25
|
Gsmtx4 Alleviated Osteoarthritis through Piezo1/Calcineurin/NFAT1 Signaling Axis under Excessive Mechanical Strain. Int J Mol Sci 2023; 24:ijms24044022. [PMID: 36835440 PMCID: PMC9961447 DOI: 10.3390/ijms24044022] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Excessive mechanical strain is the prominent risk factor for osteoarthritis (OA), causing cartilage destruction and degeneration. However, the underlying molecular mechanism contributing to mechanical signaling transduction remains unclear in OA. Piezo type mechanosensitive ion channel component 1 (Piezo1) is a calcium-permeable mechanosensitive ion channel and provides mechanosensitivity to cells, but its role in OA development has not been determined. Herein, we found up-regulated expression of Piezo1 in OA cartilage, and that its activation contributes to chondrocyte apoptosis. The knockdown of Piezo1 could protect chondrocytes from apoptosis and maintain the catabolic and anabolic balance under mechanical strain. In vivo, Gsmtx4, a Piezo1 inhibitor, markedly ameliorated the progression of OA, inhibited the chondrocyte apoptosis, and accelerated the production of the cartilage matrix. Mechanistically, we observed the elevated activity of calcineurin (CaN) and the nuclear transfection of nuclear factor of activated T cells 1 (NFAT1) under mechanical strain in chondrocytes. Inhibitors of CaN or NFAT1 rescued the pathologic changes induced by mechanical strain in chondrocytes. Overall, our findings revealed that Piezo1 was the essential molecule response to mechanical signals and regulated apoptosis and cartilage matrix metabolism via the CaN/NFAT1 signaling axis in chondrocytes, and that Gsmtx4 could be an attractive therapeutic drug for OA treatment.
Collapse
|
26
|
Oliwa A, Hendson G, Longman C, Synnes A, Seath K, Barnicoat A, Hall JG, Patel MS. Lethal respiratory course and additional features expand the phenotypic spectrum of PIEZO2-related distal arthrogryposis type 5. Am J Med Genet A 2023; 191:546-553. [PMID: 36317804 DOI: 10.1002/ajmg.a.63019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Distal arthrogryposes (DA) are a group of conditions presenting with multiple congenital contractures in the distal joints. The 10 types of DA are distinguished by different extra-articular manifestations. Heterozygous gain-of-function variants in PIEZO2 are known to cause a spectrum of DA conditions including DA type 3, DA type 5, and possibly Marden Walker syndrome, which are usually distinguished by the presence of cleft palate (DA3), ptosis and restriction in eye movements (DA5), and specific facial abnormalities and central nervous system involvement, respectively. We report on a boy with a recurrent de novo heterozygous PIEZO2 variant in exon 20 (NM_022068.3: c.2994G > A, p.(Met998Ile); NM_001378183.1: c.3069G > A, p.(Met1023Ile)), who presented at birth with DA and later developed respiratory insufficiency. His phenotype broadly fits the PIEZO2 phenotypic spectrum and potentially extends it with novel phenotypic features of pretibial linear vertical crease, immobile skin, immobile tongue, and lipid myopathy.
Collapse
Affiliation(s)
- Agata Oliwa
- Undergraduate Medical School, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Glenda Hendson
- Division of Neuropathology, Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cheryl Longman
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Anne Synnes
- Division of Neonatology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kim Seath
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela Barnicoat
- Clinical Genetics Department, Great Ormond Street Hospital, London, UK
| | - Judith G Hall
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Millan S Patel
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Ma S, Dubin AE, Romero LO, Loud M, Salazar A, Chu S, Klier N, Masri S, Zhang Y, Wang Y, Chesler AT, Wilkinson KA, Vásquez V, Marshall KL, Patapoutian A. Excessive mechanotransduction in sensory neurons causes joint contractures. Science 2023; 379:201-206. [PMID: 36634173 PMCID: PMC10163824 DOI: 10.1126/science.add3598] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/04/2022] [Indexed: 01/13/2023]
Abstract
Distal arthrogryposis (DA) is a collection of rare disorders that are characterized by congenital joint contractures. Most DA mutations are in muscle- and joint-related genes, and the anatomical defects originate cell-autonomously within the musculoskeletal system. However, gain-of-function mutations in PIEZO2, a principal mechanosensor in somatosensation, cause DA subtype 5 (DA5) through unknown mechanisms. We show that expression of a gain-of-function PIEZO2 mutation in proprioceptive sensory neurons that mainly innervate muscle spindles and tendons is sufficient to induce DA5-like phenotypes in mice. Overactive PIEZO2 causes anatomical defects through increased activity within the peripheral nervous system during postnatal development. Furthermore, botulinum toxin (Botox) and a dietary fatty acid that modulates PIEZO2 activity reduce DA5-like deficits. This reveals a role for somatosensory neurons: Excessive mechanosensation within these neurons disrupts musculoskeletal development.
Collapse
Affiliation(s)
- Shang Ma
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Adrienne E. Dubin
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Luis O. Romero
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Meaghan Loud
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Alexandra Salazar
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Sarah Chu
- Department of Biological Sciences, San Jose State University, San Jose, CA, USA
| | - Nikola Klier
- Department of Biological Sciences, San Jose State University, San Jose, CA, USA
| | - Sameer Masri
- Department of Biological Sciences, San Jose State University, San Jose, CA, USA
| | - Yunxiao Zhang
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Yu Wang
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Alex T. Chesler
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | | | - Valeria Vásquez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kara L. Marshall
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
28
|
Bornstein B, Heinemann-Yerushalmi L, Krief S, Adler R, Dassa B, Leshkowitz D, Kim M, Bewick G, Banks RW, Zelzer E. Molecular characterization of the intact mouse muscle spindle using a multi-omics approach. eLife 2023; 12:81843. [PMID: 36744866 PMCID: PMC9931388 DOI: 10.7554/elife.81843] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
The proprioceptive system is essential for the control of coordinated movement, posture, and skeletal integrity. The sense of proprioception is produced in the brain using peripheral sensory input from receptors such as the muscle spindle, which detects changes in the length of skeletal muscles. Despite its importance, the molecular composition of the muscle spindle is largely unknown. In this study, we generated comprehensive transcriptomic and proteomic datasets of the entire muscle spindle isolated from the murine deep masseter muscle. We then associated differentially expressed genes with the various tissues composing the spindle using bioinformatic analysis. Immunostaining verified these predictions, thus establishing new markers for the different spindle tissues. Utilizing these markers, we identified the differentiation stages the spindle capsule cells undergo during development. Together, these findings provide comprehensive molecular characterization of the intact spindle as well as new tools to study its development and function in health and disease.
Collapse
Affiliation(s)
- Bavat Bornstein
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | | | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Ruth Adler
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Dena Leshkowitz
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Minchul Kim
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular MedicineBerlinGermany,Team of syncytial cell biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
| | - Guy Bewick
- Institute of Medical Sciences, University of AberdeenAberdeenUnited Kingdom
| | - Robert W Banks
- Department of Biosciences, Durham UniversityDurhamUnited Kingdom
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
29
|
Terhune EA, Monley AM, Cuevas MT, Wethey CI, Gray RS, Hadley-Miller N. Genetic animal modeling for idiopathic scoliosis research: history and considerations. Spine Deform 2022; 10:1003-1016. [PMID: 35430722 DOI: 10.1007/s43390-022-00488-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/19/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Idiopathic scoliosis (IS) is defined as a structural lateral spinal curvature ≥ 10° in otherwise healthy children and is the most common pediatric spinal deformity. IS is known to have a strong genetic component; however, the underlying etiology is still largely unknown. Animal models have been used historically to both understand and develop treatments for human disease, including within the context of IS. This intended audience for this review is clinicians in the fields of musculoskeletal surgery and research. METHODS In this review article, we synthesize current literature of genetic animal models of IS and introduce considerations for researchers. RESULTS Due to complex genetic and unique biomechanical factors (i.e., bipedalism) hypothesized to contribute to IS in humans, scoliosis is a difficult condition to replicate in model organisms. CONCLUSION We advocate careful selection of animal models based on the scientific question and introduce gaps and limitations in the current literature. We advocate future research efforts to include animal models with multiple characterized genetic or environmental perturbations to reflect current understanding of the human condition.
Collapse
Affiliation(s)
- Elizabeth A Terhune
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA
| | - Anna M Monley
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA.,Musculoskeletal Research Center, Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Melissa T Cuevas
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA
| | - Cambria I Wethey
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA
| | - Ryan S Gray
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nancy Hadley-Miller
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA. .,Musculoskeletal Research Center, Children's Hospital Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
30
|
Sonkodi B, Bardoni R, Poór G. Osteoporosis in Light of a New Mechanism Theory of Delayed Onset Muscle Soreness and Non-Contact Anterior Cruciate Ligament Injury. Int J Mol Sci 2022; 23:ijms23169046. [PMID: 36012312 PMCID: PMC9408966 DOI: 10.3390/ijms23169046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is a disorder, with a largely unknown pathomechanism, that is often marked as a “silent thief”, because it usually only becomes undisguised when fractures occur. This implies that the pathological damage occurs earlier than the sensation of pain. The current authors put forward a non-contact injury model in which the chronic overloading of an earlier autologously microinjured Piezo2 ion channel of the spinal proprioceptor terminals could lead the way to re-injury and earlier aging in a dose-limiting and threshold-driven way. As a result, the aging process could eventually lead the way to the metabolic imbalance of primary osteoporosis in a quad-phasic non-contact injury pathway. Furthermore, it is emphasised that delayed onset muscle soreness, non-contact anterior cruciate injury and osteoporosis could have the same initiating proprioceptive non-contact Piezo2 channelopathy, at different locations, however, with different environmental risk factors and a different genetic predisposition, therefore producing different outcomes longitudinally. The current injury model does not intend to challenge any running pathogenic theories or findings, but rather to highlight a principal injury mechanism.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
- Correspondence:
| | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Gyula Poór
- National Institute of Locomotor Diseases and Disabilities, 1023 Budapest, Hungary
- Section of Rheumatology and Physiotherapy, Department of Internal Medicine and Haematology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
31
|
Song S, Zhang H, Wang X, Chen W, Cao W, Zhang Z, Shi C. The role of mechanosensitive Piezo1 channel in diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:39-49. [PMID: 35436566 DOI: 10.1016/j.pbiomolbio.2022.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Mechanotransduction is associated with organ development and homoeostasis. Piezo1 and Piezo2 are novel mechanosensitive ion channels (MSCs) in mammals. MSCs are membrane proteins that are critical for the mechanotransduction of living cells. Current studies have demonstrated that the Piezo protein family not only functions in volume regulation, cellular migration, proliferation, and apoptosis but is also important for human diseases of various systems. The complete loss of Piezo1 and Piezo2 function is fatal in the embryonic period. This review summarizes the role of Piezo1 in diseases of different systems and perspectives potential treatments related to Piezo1 for these diseases.
Collapse
Affiliation(s)
- Siqi Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Hong Zhang
- Department of Cardiac Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Xiaoya Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Wei Chen
- Department of Urology, The Affiliated Xinqiao Hospital, The Third Military Medical University, Chongqing, 400038, China
| | - Wenxuan Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Zhe Zhang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong Province, China.
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China.
| |
Collapse
|
32
|
Del Rosario JS, Gabrielle M, Yudin Y, Rohacs T. TMEM120A/TACAN inhibits mechanically activated PIEZO2 channels. J Gen Physiol 2022; 154:e202213164. [PMID: 35819364 PMCID: PMC9280072 DOI: 10.1085/jgp.202213164] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/24/2022] [Indexed: 01/14/2023] Open
Abstract
PIEZO2 channels mediate rapidly adapting mechanically activated currents in peripheral sensory neurons of the dorsal root ganglia (DRG), and they are indispensable for light touch and proprioception. Relatively little is known about what other proteins regulate PIEZO2 activity in a cellular context. TMEM120A (TACAN) was proposed to act as a high threshold mechanically activated ion channel in nociceptive DRG neurons. Here, we find that Tmem120a coexpression decreased the amplitudes of mechanically activated PIEZO2 currents and increased their threshold of activation. TMEM120A did not inhibit mechanically activated PIEZO1 and TREK1 channels and TMEM120A alone did not result in the appearance of mechanically activated currents above background. Tmem120a and Piezo2 expression in mouse DRG neurons overlapped, and siRNA-mediated knockdown of Tmem120a increased the amplitudes of rapidly adapting mechanically activated currents and decreased their thresholds to mechanical activation. Our data identify TMEM120A as a negative modulator of PIEZO2 channel activity, and do not support TMEM120A being a mechanically activated ion channel.
Collapse
Affiliation(s)
- John Smith Del Rosario
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Matthew Gabrielle
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Yevgen Yudin
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
33
|
Delmas P, Parpaite T, Coste B. PIEZO channels and newcomers in the mammalian mechanosensitive ion channel family. Neuron 2022; 110:2713-2727. [PMID: 35907398 DOI: 10.1016/j.neuron.2022.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/25/2022] [Accepted: 07/01/2022] [Indexed: 10/16/2022]
Abstract
Many ion channels have been described as mechanosensitive according to various criteria. Most broadly defined, an ion channel is called mechanosensitive if its activity is controlled by application of a physical force. The last decade has witnessed a revolution in mechanosensory physiology at the molecular, cellular, and system levels, both in health and in diseases. Since the discovery of the PIEZO proteins as prototypical mechanosensitive channel, many proteins have been proposed to transduce mechanosensory information in mammals. However, few of these newly identified candidates have all the attributes of bona fide, pore-forming mechanosensitive ion channels. In this perspective, we will cover and discuss new data that have advanced our understanding of mechanosensation at the molecular level.
Collapse
Affiliation(s)
- Patrick Delmas
- SomatoSens, Laboratory for Cognitive Neuroscience, Aix-Marseille University, CNRS UMR 7291, Marseilles, France.
| | - Thibaud Parpaite
- SomatoSens, Laboratory for Cognitive Neuroscience, Aix-Marseille University, CNRS UMR 7291, Marseilles, France
| | - Bertrand Coste
- SomatoSens, Laboratory for Cognitive Neuroscience, Aix-Marseille University, CNRS UMR 7291, Marseilles, France
| |
Collapse
|
34
|
Nie X, Chung MK. Piezo channels for skeletal development and homeostasis: Insights from mouse genetic models. Differentiation 2022; 126:10-15. [DOI: 10.1016/j.diff.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
|
35
|
Nagel M, Chesler AT. PIEZO2 ion channels in proprioception. Curr Opin Neurobiol 2022; 75:102572. [PMID: 35689908 DOI: 10.1016/j.conb.2022.102572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/28/2022] [Accepted: 05/06/2022] [Indexed: 12/18/2022]
Abstract
PIEZO2 is a stretch-gated ion channel that is expressed at high levels in somatosensory neurons. Humans with rare mutations in the PIEZO2 gene have profound mechanosensory deficits that include a loss of the sense of proprioception. These striking phenotypes match those seen in conditional knockout mouse models demonstrating the highly conserved function for this gene. Here, we review the ramifications of loss of PIEZO2 function on normal daily activities and what studies like these have revealed about proprioception at the molecular and cellular level. Additionally, we highlight recent work that has uncovered the surprising functional and molecular diversity of proprioceptors. Together, these findings pioneer a path toward determining how the detection of mechanosensory input from muscles and tendons is used to control posture and refine motor performance.
Collapse
Affiliation(s)
- Maximilian Nagel
- Sensory Cells and Circuits Section, National Center for Complementary and Integrative Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Alexander T Chesler
- Sensory Cells and Circuits Section, National Center for Complementary and Integrative Health, 35 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
36
|
Wilkinson KA. Molecular determinants of mechanosensation in the muscle spindle. Curr Opin Neurobiol 2022; 74:102542. [PMID: 35430481 PMCID: PMC9815952 DOI: 10.1016/j.conb.2022.102542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/12/2022] [Accepted: 03/13/2022] [Indexed: 01/11/2023]
Abstract
The muscle spindle (MS) provides essential sensory information for motor control and proprioception. The Group Ia and II MS afferents are low threshold slowly-adapting mechanoreceptors and report both static muscle length and dynamic muscle movement information. The exact molecular mechanism by which MS afferents transduce muscle movement into action potentials is incompletely understood. This short review will discuss recent evidence suggesting that PIEZO2 is an essential mechanically sensitive ion channel in MS afferents and that vesicle-released glutamate contributes to maintaining afferent excitability during the static phase of stretch. Other mechanically gated ion channels, voltage-gated sodium channels, other ion channels, regulatory proteins, and interactions with the intrafusal fibers are also important for MS afferent mechanosensation. Future studies are needed to fully understand mechanosensation in the MS and whether different complements of molecular mediators contribute to the different response properties of Group Ia and II afferents.
Collapse
|
37
|
Li X, Hu J, Zhao X, Li J, Chen Y. Piezo channels in the urinary system. Exp Mol Med 2022; 54:697-710. [PMID: 35701561 PMCID: PMC9256749 DOI: 10.1038/s12276-022-00777-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/25/2022] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
The Piezo channel family, including Piezo1 and Piezo2, includes essential mechanosensitive transduction molecules in mammals. Functioning in the conversion of mechanical signals to biological signals to regulate a plethora of physiological processes, Piezo channels, which have a unique homotrimeric three-blade propeller-shaped structure, utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways. Piezo channels have a wide range of biological roles in various human systems, both in vitro and in vivo. Currently, there is a lack of comprehensive understanding of their antagonists and agonists, and therefore further investigation is needed. Remarkably, increasingly compelling evidence demonstrates that Piezo channel function in the urinary system is important. This review article systematically summarizes the existing evidence of the importance of Piezo channels, including protein structure, mechanogating mechanisms, and pharmacological characteristics, with a particular focus on their physiological and pathophysiological roles in the urinary system. Collectively, this review aims to provide a direction for future clinical applications in urinary system diseases.
Collapse
Affiliation(s)
- Xu Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Junwei Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xuedan Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Juanjuan Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuelai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
38
|
Gao W, Hasan H, Anderson DE, Lee W. The Role of Mechanically-Activated Ion Channels Piezo1, Piezo2, and TRPV4 in Chondrocyte Mechanotransduction and Mechano-Therapeutics for Osteoarthritis. Front Cell Dev Biol 2022; 10:885224. [PMID: 35602590 PMCID: PMC9114637 DOI: 10.3389/fcell.2022.885224] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 12/29/2022] Open
Abstract
Mechanical factors play critical roles in the pathogenesis of joint disorders like osteoarthritis (OA), a prevalent progressive degenerative joint disease that causes debilitating pain. Chondrocytes in the cartilage are responsible for extracellular matrix (ECM) turnover, and mechanical stimuli heavily influence cartilage maintenance, degeneration, and regeneration via mechanotransduction of chondrocytes. Thus, understanding the disease-associated mechanotransduction mechanisms can shed light on developing effective therapeutic strategies for OA through targeting mechanotransducers to halt progressive cartilage degeneration. Mechanosensitive Ca2+-permeating channels are robustly expressed in primary articular chondrocytes and trigger force-dependent cartilage remodeling and injury responses. This review discusses the current understanding of the roles of Piezo1, Piezo2, and TRPV4 mechanosensitive ion channels in cartilage health and disease with a highlight on the potential mechanotheraputic strategies to target these channels and prevent cartilage degeneration associated with OA.
Collapse
Affiliation(s)
- Winni Gao
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| | - Hamza Hasan
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Devon E. Anderson
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Whasil Lee
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
39
|
Garg B, Tomar N, Biswas A, Mehta N, Malhotra R. Understanding Musculoskeletal Disorders Through Next-Generation Sequencing. JBJS Rev 2022; 10:01874474-202204000-00001. [PMID: 35383688 DOI: 10.2106/jbjs.rvw.21.00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
» An insight into musculoskeletal disorders through advancements in next-generation sequencing (NGS) promises to maximize benefits and improve outcomes through improved genetic diagnosis. » The primary use of whole exome sequencing (WES) for musculoskeletal disorders is to identify functionally relevant variants. » The current evidence has shown the superiority of NGS over conventional genotyping for identifying novel and rare genetic variants in patients with musculoskeletal disorders, due to its high throughput and low cost. » Genes identified in patients with scoliosis, osteoporosis, osteoarthritis, and osteogenesis imperfecta using NGS technologies are listed for further reference.
Collapse
Affiliation(s)
- Bhavuk Garg
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
40
|
Nims RJ, Pferdehirt L, Guilak F. Mechanogenetics: harnessing mechanobiology for cellular engineering. Curr Opin Biotechnol 2022; 73:374-379. [PMID: 34735987 PMCID: PMC10061441 DOI: 10.1016/j.copbio.2021.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/28/2023]
Abstract
'Mechanogenetics,' a new field at the convergence of mechanobiology and synthetic biology, presents an innovative strategy to treat, repair, or restore diseased cells and tissues by harnessing mechanical signal transduction pathways to control gene expression. While the role of mechanical forces in regulating development, homeostasis, and disease is well established, only recently have we identified the specific mechanosensors and downstream signaling pathways involved in these processes. Simultaneously, synthetic biological systems are developing increasingly sophisticated approaches of controlling mammalian cellular responses. Continued mechanistic refinement and identification of how cellular mechanosensors respond to homeostatic and pathological mechanical forces, combined with synthetic tools to integrate and respond to these inputs, promises to extend the development of new therapeutic approaches for treating disease.
Collapse
Affiliation(s)
- Robert J Nims
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Shriners Hospitals for Children - Saint Louis, St. Louis, MO, 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lara Pferdehirt
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Shriners Hospitals for Children - Saint Louis, St. Louis, MO, 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63105, USA
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Shriners Hospitals for Children - Saint Louis, St. Louis, MO, 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63105, USA.
| |
Collapse
|
41
|
Foote AG, Lungova V, Thibeault SL. Piezo1-expressing vocal fold epithelia modulate remodeling via effects on self-renewal and cytokeratin differentiation. Cell Mol Life Sci 2022; 79:591. [PMID: 36376494 PMCID: PMC9663367 DOI: 10.1007/s00018-022-04622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Mechanoreceptors are implicated as functional afferents within mucosa of the airways and the recent discovery of mechanosensitive channels Piezo1 and Piezo2 has proved essential for cells of various mechanically sensitive tissues. However, the role for Piezo1/2 in vocal fold (VF) mucosal epithelia, a cell that withstands excessive biomechanical insult, remains unknown. The purpose of this study was to test the hypothesis that Piezo1 is required for VF mucosal repair pathways of epithelial cell injury. Utilizing a sonic hedgehog (shh) Cre line for epithelial-specific ablation of Piezo1/2 mechanoreceptors, we investigated 6wk adult VF mucosa following naphthalene exposure for repair strategies at 1, 3, 7 and 14 days post-injury (dpi). PIEZO1 localized to differentiated apical epithelia and was paramount for epithelial remodeling events. Injury to wildtype epithelium was most appreciated at 3 dpi. Shhcre/+; Piezo1loxP/loxP, Piezo2 loxP/+ mutant epithelium exhibited severe cell/nuclear defects compared to injured controls. Conditional ablation of Piezo1 and/or Piezo2 to uninjured VF epithelium did not result in abnormal phenotypes across P0, P15 and 6wk postnatal stages compared to heterozygote and control tissue. Results demonstrate a role for Piezo1-expressing VF epithelia in regulating self-renewal via effects on p63 transcription and YAP subcellular translocation-altering cytokeratin differentiation.
Collapse
Affiliation(s)
- Alexander G. Foote
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA
| | - Vlasta Lungova
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA
| | - Susan L. Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA
| |
Collapse
|
42
|
Lv X, Xu J, Jiang J, Wu P, Tan R, Wang B. Genetic animal models of scoliosis: A systematical review. Bone 2021; 152:116075. [PMID: 34174503 DOI: 10.1016/j.bone.2021.116075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Scoliosis is a complex disease with undetermined pathogenesis and has a strong relationship with genetics. Models of scoliosis in animals have been established for better comprehending its pathogenesis and treatment. In this review, we searched all the genetic animal models with body curvature in databases, and reviewed the related genes and scoliosis types. Meanwhile, we also summarized the pathogenesis of scoliosis reported so far. Summarizing the positive phenotypic animal models contributes to a better understanding on the pathogenesis of scoliosis and facilitates the selection of experimental models when a possible pathogenic factor is concerned.
Collapse
Affiliation(s)
- Xin Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jinghong Xu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jiajiong Jiang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Pengfei Wu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Renchun Tan
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
43
|
Qin L, He T, Chen S, Yang D, Yi W, Cao H, Xiao G. Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues. Bone Res 2021; 9:44. [PMID: 34667178 PMCID: PMC8526690 DOI: 10.1038/s41413-021-00168-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mechanotransduction is a fundamental ability that allows living organisms to receive and respond to physical signals from both the external and internal environments. The mechanotransduction process requires a range of special proteins termed mechanotransducers to convert mechanical forces into biochemical signals in cells. The Piezo proteins are mechanically activated nonselective cation channels and the largest plasma membrane ion channels reported thus far. The regulation of two family members, Piezo1 and Piezo2, has been reported to have essential functions in mechanosensation and transduction in different organs and tissues. Recently, the predominant contributions of the Piezo family were reported to occur in the skeletal system, especially in bone development and mechano-stimulated bone homeostasis. Here we review current studies focused on the tissue-specific functions of Piezo1 and Piezo2 in various backgrounds with special highlights on their importance in regulating skeletal cell mechanotransduction. In this review, we emphasize the diverse functions of Piezo1 and Piezo2 and related signaling pathways in osteoblast lineage cells and chondrocytes. We also summarize our current understanding of Piezo channel structures and the key findings about PIEZO gene mutations in human diseases.
Collapse
Affiliation(s)
- Lei Qin
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Sheng Chen
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dazhi Yang
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Weihong Yi
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
44
|
Poole K. The Diverse Physiological Functions of Mechanically Activated Ion Channels in Mammals. Annu Rev Physiol 2021; 84:307-329. [PMID: 34637325 DOI: 10.1146/annurev-physiol-060721-100935] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many aspects of mammalian physiology are mechanically regulated. One set of molecules that can mediate mechanotransduction are the mechanically activated ion channels. These ionotropic force sensors are directly activated by mechanical inputs, resulting in ionic flux across the plasma membrane. While there has been much research focus on the role of mechanically activated ion channels in touch sensation and hearing, recent data have highlighted the broad expression pattern of these molecules in mammalian cells. Disruption of mechanically activated channels has been shown to impact (a) the development of mechanoresponsive structures, (b) acute mechanical sensing, and (c) mechanically driven homeostatic maintenance in multiple tissue types. The diversity of processes impacted by these molecules highlights the importance of mechanically activated ion channels in mammalian physiology. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; .,Cellular and Systems Physiology, School of Medical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
45
|
Abstract
Mechanosensation is the ability to detect dynamic mechanical stimuli (e.g., pressure, stretch, and shear stress) and is essential for a wide variety of processes, including our sense of touch on the skin. How touch is detected and transduced at the molecular level has proved to be one of the great mysteries of sensory biology. A major breakthrough occurred in 2010 with the discovery of a family of mechanically gated ion channels that were coined PIEZOs. The last 10 years of investigation have provided a wealth of information about the functional roles and mechanisms of these molecules. Here we focus on PIEZO2, one of the two PIEZO proteins found in humans and other mammals. We review how work at the molecular, cellular, and systems levels over the past decade has transformed our understanding of touch and led to unexpected insights into other types of mechanosensation beyond the skin.
Collapse
Affiliation(s)
- Marcin Szczot
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, 583 30 Linköping, Sweden
| | - Alec R Nickolls
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Ruby M Lam
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,NIH-Brown University Graduate Program in Neuroscience, Providence, Rhode Island 02912, USA
| | - Alexander T Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
46
|
Whittle J, Johnson A, Dobbs MB, Gurnett CA. Models of Distal Arthrogryposis and Lethal Congenital Contracture Syndrome. Genes (Basel) 2021; 12:genes12060943. [PMID: 34203046 PMCID: PMC8234565 DOI: 10.3390/genes12060943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Distal arthrogryposis and lethal congenital contracture syndromes describe a broad group of disorders that share congenital limb contractures in common. While skeletal muscle sarcomeric genes comprise many of the first genes identified for Distal Arthrogyposis, other mechanisms of disease have been demonstrated, including key effects on peripheral nerve function. While Distal Arthrogryposis and Lethal Congenital Contracture Syndromes display superficial similarities in phenotype, the underlying mechanisms for these conditions are diverse but overlapping. In this review, we discuss the important insights gained into these human genetic diseases resulting from in vitro molecular studies and in vivo models in fruit fly, zebrafish, and mice.
Collapse
Affiliation(s)
- Julia Whittle
- Department of Neurology, Washington University in St Louis, St Louis, MO 63130, USA;
| | - Aaron Johnson
- Department of Developmental Biology, Washington University in St Louis, St Louis, MO 63130, USA;
| | - Matthew B. Dobbs
- Paley Orthopaedic and Spine Institute, West Palm Beach, FL 33407, USA;
| | - Christina A. Gurnett
- Department of Neurology, Washington University in St Louis, St Louis, MO 63130, USA;
- Correspondence:
| |
Collapse
|
47
|
Than K, Kim E, Navarro C, Chu S, Klier N, Occiano A, Ortiz S, Salazar A, Valdespino SR, Villegas NK, Wilkinson KA. Vesicle-released glutamate is necessary to maintain muscle spindle afferent excitability but not dynamic sensitivity in adult mice. J Physiol 2021; 599:2953-2967. [PMID: 33749829 DOI: 10.1113/jp281182] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/16/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Muscle spindle afferents are slowly adapting low threshold mechanoreceptors that report muscle length and movement information critical for motor control and proprioception. The rapidly adapting cation channel PIEZO2 has been identified as necessary for muscle spindle afferent stretch sensitivity, although the properties of this channel suggest that additional molecular elements are necessary for mediating the complex slowly adapting response of muscle spindle afferents. We report that glutamate increases muscle spindle afferent static sensitivity in an ex vivo mouse muscle nerve preparation, although blocking glutamate packaging into vesicles by the sole vesicular glutamate transporter, VGLUT1, either pharmacologically or by transgenic knockout of one allele of VGLUT1 decreases muscle spindle afferent static but not dynamic sensitivity. Our results confirm that vesicle-released glutamate is an important contributor to maintained muscle spindle afferent excitability and may suggest a therapeutic target for normalizing muscle spindle afferent function. ABSTRACT Muscle spindle afferents are slowly adapting low threshold mechanoreceptors that have both dynamic and static sensitivity to muscle stretch. The exact mechanism by which these neurons translate muscle movement into action potentials is not well understood, although the PIEZO2 mechanically sensitive cation channel is essential for stretch sensitivity. PIEZO2 is rapidly adapting, suggesting the requirement for additional molecular elements to maintain firing during stretch. Spindle afferent sensory endings contain glutamate-filled synaptic-like vesicles that are released in a stretch- and calcium-dependent manner. Previous work has shown that glutamate can increase and a phospholipase-D coupled metabotropic glutamate antagonist can abolish firing during static stretch. Here, we test the hypothesis that vesicle-released glutamate is necessary for maintaining muscle spindle afferent excitability during static but not dynamic stretch. To test this hypothesis, we used a mouse muscle-nerve ex vivo preparation to measure identified muscle spindle afferent responses to stretch and vibration. In C57BL/6 adult mice, bath applied glutamate significantly increased the firing rate during the plateau phase of stretch but not during the dynamic phase of stretch. Blocking the packaging of glutamate into vesicles by the sole vesicular glutamate transporter, VGLUT1, either with xanthurenic acid or by using a transgenic mouse with only one copy of the VGLUT1 gene (VGLUT1+/- ), decreased muscle spindle afferent firing during sustained stretch but not during vibration. Our results suggest a model of mechanotransduction where calcium entering the PIEZO2 channel can cause the release of glutamate from synaptic-like vesicles, which then helps to maintain afferent depolarization and firing.
Collapse
Affiliation(s)
- Kimberly Than
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Enoch Kim
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Cebrina Navarro
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Sarah Chu
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Nikola Klier
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Alyssa Occiano
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Serena Ortiz
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Alexandra Salazar
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Steven R Valdespino
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Natanya K Villegas
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | | |
Collapse
|
48
|
Bornstein B, Konstantin N, Alessandro C, Tresch MC, Zelzer E. More than movement: the proprioceptive system as a new regulator of musculoskeletal biology. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Maruyama K. Senso-immunology: crosstalk between nociceptive and immune systems. FEBS J 2021; 289:4132-4145. [PMID: 33780155 DOI: 10.1111/febs.15846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/03/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022]
Abstract
Understanding the molecular mechanisms of nociception has recently grown impressively. Nociception is mediated by mechanical, chemical, or microbial stimuli that evoke unpleasant feelings, alerting the host of the risk of tissue damage. Such diverse arrays of noxious stimuli trigger various escape reactions, usually altering immune homeostasis. Notably, nociceptors can recognize cytokines or pathogens via sensory molecules or innate immune receptors, participating in immune responses. Accumulating evidence suggests that activated nociceptors produce various humoral factors that affect the immune system and act like endocrine/paracrine signals. Thus, understanding the interplay between the nociceptive and immune systems may open new avenues for the development of an interdisciplinary research field, hereinafter referred to as 'senso-immunology'. This review will discuss the physiological relevance of the senso-immune system in the host defense context, focusing on how senso-immune research might yield novel treatments to cure pain and inflammation.
Collapse
Affiliation(s)
- Kenta Maruyama
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| |
Collapse
|
50
|
Serrancolí G, Alessandro C, Tresch MC. The Effects of Mechanical Scale on Neural Control and the Regulation of Joint Stability. Int J Mol Sci 2021; 22:ijms22042018. [PMID: 33670603 PMCID: PMC7922058 DOI: 10.3390/ijms22042018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
Recent work has demonstrated how the size of an animal can affect neural control strategies, showing that passive viscoelastic limb properties have a significant role in determining limb movements in small animals but are less important in large animals. We extend that work to consider effects of mechanical scaling on the maintenance of joint integrity; i.e., the prevention of aberrant contact forces within joints that might lead to joint dislocation or cartilage degradation. We first performed a literature review to evaluate how properties of ligaments responsible for joint integrity scale with animal size. Although we found that the cross-sectional area of the anterior cruciate ligament generally scaled with animal size, as expected, the effects of scale on the ligament’s mechanical properties were less clear, suggesting potential adaptations in passive contributions to the maintenance of joint integrity across species. We then analyzed how the neural control of joint stability is altered by body scale. We show how neural control strategies change across mechanical scales, how this scaling is affected by passive muscle properties and the cost function used to specify muscle activations, and the consequences of scaling on internal joint contact forces. This work provides insights into how scale affects the regulation of joint integrity by both passive and active processes and provides directions for studies examining how this regulation might be accomplished by neural systems.
Collapse
Affiliation(s)
- Gil Serrancolí
- Department of Mechanical Engineering, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
- Correspondence:
| | - Cristiano Alessandro
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, 27100 Pavia, Italy;
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA;
| | - Matthew C. Tresch
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA;
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| |
Collapse
|