1
|
Johannsen S, Robles R, Weismann A, Ridier K, Berndt R, Gruber M. Spin-State Switching of Spin-Crossover Complexes on Cu(111) Evidenced by Spin-Flip Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202411865. [PMID: 39185688 PMCID: PMC11627136 DOI: 10.1002/anie.202411865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Spin-crossover compounds can be switched between two stable states with different magnetic moments, conformations, electronic, and optical properties, which opens appealing perspectives for technological applications including miniaturization down to the scale of single molecules. Although control of the spin states is crucial their direct identification is challenging in single-molecule experiments. Here we investigate the spin-crossover complex [Fe(HB(1,2,4-triazol-1-yl)3)2] on a Cu(111) surface with scanning tunneling microscopy and density functional theory calculations. Spin crossover of single molecules in dense islands is achieved via electron injection. Spin-flip excitations are resolved in scanning tunneling spectra in a magnetic field enabling the direct identification of the molecular spin state, and revealing the existence of magnetic anisotropy in the HS molecules.
Collapse
Affiliation(s)
- Sven Johannsen
- Institut für Experimentelle und Angewandte PhysikChristian-Albrechts-Universität zu Kiel24098KielGermany
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU)20018Donostia-San SebastiánSpain
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte PhysikChristian-Albrechts-Universität zu Kiel24098KielGermany
| | - Karl Ridier
- LCC, CNRS and Université de Toulouse, UPS, INP31077ToulouseFrance
| | - Richard Berndt
- Institut für Experimentelle und Angewandte PhysikChristian-Albrechts-Universität zu Kiel24098KielGermany
| | - Manuel Gruber
- Faculty of Physics and CENIDEUniversity of Duisburg-Essen47057DuisburgGermany
| |
Collapse
|
2
|
Liu S, Wang W. Optical imaging of the stochastic nucleation kinetics and intrinsic activation energy of single spin-crossover nanoparticles. Proc Natl Acad Sci U S A 2024; 121:e2415379121. [PMID: 39536087 PMCID: PMC11588138 DOI: 10.1073/pnas.2415379121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Cooperative spin crossover (SCO) compounds are one of the most promising molecular bistable solids due to their intriguing thermal hysteresis phenomena around room temperature. It is well known that hysteresis is an essential kinetic effect, however, accurate assessment of the spin transition kinetics of SCO nanomaterials remains scarce. Herein, we developed a thermal-optical methodology to image the thermally induced spin transition kinetics of single SCO nanoparticles in a quantitative, repeatable, and high-throughput manner. Single-particle measurement revealed an intrinsic nucleation-dominated spin transition mechanism, where a highly stochastic nucleation process was clearly observed during the repeatable measurements. By quantifying the dependence of nucleation time on temperature, the activation energy barriers for nucleation were further extracted at a single particle level. Based on this foundation, the high throughput of the optical imaging not only contributed to uncovering the significant nanoparticle-to-nanoparticle heterogeneity, with implications for a negative correlation between apparent activation energy barriers for nucleation and size of the SCO nanoparticles, but also facilitated identifying a minority with high activation energy at least twice the average value. The extraordinary performance was then attributed to the fewer defects within their structures, as confirmed by further results from the in situ creation of defects by thermal ablation, thereby setting the lower limit for the intrinsic activation energy of ideal SCO crystals and promising their potential for future applications in high-performance molecular devices.
Collapse
Affiliation(s)
- Shasha Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Lai Y, Enríquez-Cabrera A, Ronci A, Salmon L, Routaboul L, Bousseksou A. When the Study of the Post-Synthetic Modification Method on a 1D Spin Crossover Coordination Polymer Highlights its Catalytic Activity. Chemistry 2024:e202403412. [PMID: 39471336 DOI: 10.1002/chem.202403412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/01/2024]
Abstract
We are interested in studying the catalytic activity of the spin crossover (SCO) complex ([Fe(NH2trz)3](NO3)2). In this work, we demonstrate that, by adapting the experimental conditions, we can switch from a quantitative post-synthetic modification (PSM) reaction to the use of this complex as a catalyst for the formation of imine from 4-amino-1,2,4-triazole. During the catalytic reaction, the iron complex undergoes two different PSM reactions: the first is the action of the aldehyde on the NH2 groups present on the complex, whereas the second PSM reaction occurs between the imine complex and aminotriazole, leading back to the starting complex. These two PSM reactions are at least partially involved in the catalytic mechanism. Furthermore, the combination of these two PSM reactions enables us to modulate the particle size and shape of the final amine complex without altering its excellent SCO properties. This result is of interest in the field of heterogeneous catalysis, where particle size has a strong influence on the catalytic activity, and for the proper integration in devices for different applications.
Collapse
Affiliation(s)
- Yongjian Lai
- CNRS, Laboratoire de Chimie de Coordination (LCC), 205 route de Narbonne, BP44099, Toulouse Cedex 4, 31077, France
| | - Alejandro Enríquez-Cabrera
- CNRS, Laboratoire de Chimie de Coordination (LCC), 205 route de Narbonne, BP44099, Toulouse Cedex 4, 31077, France
| | - Alexia Ronci
- CNRS, Laboratoire de Chimie de Coordination (LCC), 205 route de Narbonne, BP44099, Toulouse Cedex 4, 31077, France
| | - Lionel Salmon
- CNRS, Laboratoire de Chimie de Coordination (LCC), 205 route de Narbonne, BP44099, Toulouse Cedex 4, 31077, France
| | - Lucie Routaboul
- CNRS, Laboratoire de Chimie de Coordination (LCC), 205 route de Narbonne, BP44099, Toulouse Cedex 4, 31077, France
| | - Azzedine Bousseksou
- CNRS, Laboratoire de Chimie de Coordination (LCC), 205 route de Narbonne, BP44099, Toulouse Cedex 4, 31077, France
| |
Collapse
|
4
|
Horniichuk OY, Vendier L, Salmon L, Bousseksou A. Gradual spin crossover behavior encompasing room temperature in an iron(II) complex based on a heteroscorpionate ligand. Dalton Trans 2024; 53:17083-17096. [PMID: 39363738 DOI: 10.1039/d4dt02244k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
In this paper, we report the synthesis of six novel triazole-based heteroscorpionate ligands based on heterocycle metathesis reactions and their iron(II) complexes. Single crystal structure analyses were performed, the spectroscopic and magnetic properties of the obtained complexes were studied and their spin crossover-structural relationships were compared to those obtained for their pyrazole-based analogues reported in the literature. In particular, the amino derivative complex bis[hydrobis(pyrazol-1-yl)(3-amino-1,2,4-triazol-1-yl)]iron(II) obtained by post-synthetic catalytic nitro-group reduction under pressure of hydrogen in an autoclave presents a scarce gradual spin crossover behavior at room temperature. The profile of the SCO curve can be explained by the presence of only relatively weak H bonds, spreading only in one dimension. Among the interesting spin transition behaviors observed for the different complexes, such stable, complete and gradual spin crossover at room temperature makes this neutral complex a good candidate for sublimation and future investigation as an active element notably for thermoreflectance-based surface microthermometry applications.
Collapse
Affiliation(s)
- Oleksandr Ye Horniichuk
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 Route de Narbonne, F-31077 Toulouse, France.
| | - Laure Vendier
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 Route de Narbonne, F-31077 Toulouse, France.
| | - Lionel Salmon
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 Route de Narbonne, F-31077 Toulouse, France.
| | - Azzedine Bousseksou
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 Route de Narbonne, F-31077 Toulouse, France.
| |
Collapse
|
5
|
Yang S, Qin H, Dai Y, Yan X, Belén López-Baldomero A. Temperature distribution inversion in infrared multispectral imaging based on ensemble network. OPTICS LETTERS 2024; 49:5163-5166. [PMID: 39270255 DOI: 10.1364/ol.533666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
Temperature distribution can be acquired through non-contact temperature measurement using multispectral imaging. However, the challenge lies in radiometric temperature inversion owing to the unknown emissivity. Despite the promising results demonstrated by traditional algorithms and neural networks, enhancing the precision and reliability of temperature inversion remains a challenge. To tackle these challenges, in this work, we propose the use of ensemble learning for temperature distribution inversion in infrared multispectral imaging. The network comprises a base-learner and a meta-learner, trained to establish the nonlinear relationship between temperature and multispectral distribution measurements. Moreover, the network architecture exhibits high robustness against noise arising in the testing environment. Simulations and real experiments on multispectral imaging measurements illustrate that ensemble learning can be a potent tool for multispectral imaging radiation temperature distribution measurement, achieving superior inversion performance compared to other neural networks. The reproducible code will be available at https://github.com/shuowenyang/Temperature-Inversion.
Collapse
|
6
|
Zhang Y, Torres-Cavanillas R, Yan X, Zeng Y, Jiang M, Clemente-León M, Coronado E, Shi S. Spin crossover iron complexes with spin transition near room temperature based on nitrogen ligands containing aromatic rings: from molecular design to functional devices. Chem Soc Rev 2024; 53:8764-8789. [PMID: 39072682 DOI: 10.1039/d3cs00688c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
During last decades, significant advances have been made in iron-based spin crossover (SCO) complexes, with a particular emphasis on achieving reversible and reproducible thermal hysteresis at room temperature (RT). This pursuit represents a pivotal goal within the field of molecular magnetism, aiming to create molecular devices capable of operating in ambient conditions. Here, we summarize the recent progress of iron complexes with spin transition near RT based on nitrogen ligands containing aromatic rings from molecular design to functional devices. Specifically, we discuss the various factors, including supramolecular interactions, crystal packing, guest molecules and pressure effects, that could influence its cooperativity and the spin transition temperature. Furthermore, the most recent advances in their implementation as mechanical actuators, switching/memories, sensors, and other devices, have been introduced as well. Finally, we give a perspective on current challenges and future directions in SCO community.
Collapse
Affiliation(s)
- Yongjie Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Ramón Torres-Cavanillas
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Xinxin Yan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Yixun Zeng
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Mengyun Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Miguel Clemente-León
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Shengwei Shi
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan, 430056, China
| |
Collapse
|
7
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. Green Synthesis, Characterization and Application of Silver Nanoparticles Using Bioflocculant: A Review. Bioengineering (Basel) 2024; 11:492. [PMID: 38790359 PMCID: PMC11117625 DOI: 10.3390/bioengineering11050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Nanotechnology has emerged as an effective means of removing contaminants from water. Traditional techniques for producing nanoparticles, such as physical methods (condensation and evaporation) and chemical methods (oxidation and reduction), have demonstrated high efficiency. However, these methods come with certain drawbacks, including the significant energy requirement and the use of costly and hazardous chemicals that may cause nanoparticles to adhere to surfaces. To address these limitations, researchers are actively developing alternative procedures that are cost-effective, environmentally safe, and user-friendly. One promising approach involves biological synthesis, which utilizes plants or microorganisms as reducing and capping agents. This review discusses various methods of nanoparticle synthesis, with a focus on biological synthesis using naturally occurring bioflocculants from microorganisms. Bioflocculants offer several advantages, including harmlessness, biodegradability, and minimal secondary pollution. Furthermore, the review covers the characterization of synthesized nanoparticles, their antimicrobial activity, and cytotoxicity. Additionally, it explores the utilization of these NPs in water purification and dye removal processes.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
8
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Kaushik K, Sarkar A, Kamilya S, Li Y, Dechambenoit P, Rouzières M, Mehta S, Mondal A. Light-Induced, Structural Matrix Guided Stepwise Spin-State Switching in 3d-5d Molecular Assembly. Inorg Chem 2024; 63:7604-7612. [PMID: 38556753 DOI: 10.1021/acs.inorgchem.3c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
A new iron(II) molecular complex {[W(CN)8][Fe(bik*)3]2}BF4·7H2O·1.5CH3OH (1.7H2O·1.5CH3OH) was synthesized using a versatile octacyanotungstate(V) building block and N-donor bidentate ligand (bik* = bis(1-ethyl-1H-imidazol-2-yl)ketone) and detailed characterizations were carried out. The crystal structure of 1.7H2O·1.5CH3OH is composed of an ionic salt from one anionic [W(CN)8]3- unit, two isolated cationic [Fe(bik*)3]2+ units, and one BF4- counteranion in the asymmetric unit. Magnetic studies of 1.7H2O·1.5CH3OH display interesting two-step reversible thermo-induced spin-state switching and the partially desolvated form 1.7H2O shows a photomagnetic effect at low temperatures. Additionally, the physical properties of 1.7H2O·1.5CH3OH were compared with the monomeric unit of {[Fe(bik*)3]2}·4ReO4·H2O (2.H2O) and detailed photophysical investigations were also performed to study the effect of a structural matrix {[W(CN)8]3- and ReO4- unit} on the spin-state switching properties of the [Fe(bik*)3]2+ unit in both systems (1.7H2O·1.5CH3OH and 2.H2O).
Collapse
Affiliation(s)
- Krishna Kaushik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Archita Sarkar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Yanling Li
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, F-75252 Paris, cedex 5, France
| | - Pierre Dechambenoit
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP, UMR 5031, 33600 Pessac, France
| | - Mathieu Rouzières
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP, UMR 5031, 33600 Pessac, France
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| |
Collapse
|
10
|
Kamel SM, Daróczi L, Tóth LZ, Beke DL, Juárez GG, Cobo S, Salmon L, Molnár G, Bousseksou A. Acoustic emissions from spin crossover complexes. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:5757-5765. [PMID: 38680543 PMCID: PMC11044199 DOI: 10.1039/d4tc00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
Acoustic emission from the compounds [Fe(HB(tz)3)2] and [Fe(Htrz)(trz)2]BF4 was detected during the thermally induced spin transition and is correlated with simultaneously recorded calorimetric signals. We ascribe this phenomenon to elastic waves produced by microstructural and volume changes accompanying the spin transition. Despite the perfect reversibility of the spin state switching (seen by the calorimeter), the acoustic emission activity decreases for successive thermal cycles, revealing thus irreversible microstructural evolution of the samples. The acoustic emission signal amplitude and energy probability distribution functions followed power-law behavior and the characteristic exponents were found to be similar for the two samples both on heating and cooling, indicating the universal character, which is further substantiated by the well scaled average temporal shapes of the avalanches.
Collapse
Affiliation(s)
- Sarah M Kamel
- Department of Solid State Physics, Doctoral School of Physics, University of Debrecen P.O. Box 2 H-4010 Debrecen Hungary
- Physics Department, Faculty of Science Ain Shams University, Abbassia 11566 Cairo Egypt
| | - Lajos Daróczi
- Department of Solid State Physics, Doctoral School of Physics, University of Debrecen P.O. Box 2 H-4010 Debrecen Hungary
| | - László Z Tóth
- Department of Solid State Physics, Doctoral School of Physics, University of Debrecen P.O. Box 2 H-4010 Debrecen Hungary
| | - Dezső L Beke
- Department of Solid State Physics, Doctoral School of Physics, University of Debrecen P.O. Box 2 H-4010 Debrecen Hungary
| | - Gerardo Gutiérrez Juárez
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato-Campus León, Loma del Bosque 103, Loma del Campestre 37150 León Gto. Mexico
| | - Saioa Cobo
- LCC, CNRS & University of Toulouse, 205 route de Narbonne 31077 Toulouse France
| | - Lionel Salmon
- LCC, CNRS & University of Toulouse, 205 route de Narbonne 31077 Toulouse France
| | - Gábor Molnár
- LCC, CNRS & University of Toulouse, 205 route de Narbonne 31077 Toulouse France
| | - Azzedine Bousseksou
- LCC, CNRS & University of Toulouse, 205 route de Narbonne 31077 Toulouse France
| |
Collapse
|
11
|
Xu W, Xu C, Cui J, Hu C, Wen G, Zheng L, Zhang Z, Sun Z, Zhang Y. Luminescence thermometry driven by a support vector machine: a strategy toward precise thermal sensing. OPTICS LETTERS 2024; 49:606-609. [PMID: 38300070 DOI: 10.1364/ol.507901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/17/2023] [Indexed: 02/02/2024]
Abstract
Luminescence thermometry is a promising non-contact temperature measurement technique, but improving the precision and reliability of this method remains a challenge. Herein, we propose a thermal sensing strategy based on a machine learning. By using Gd3Ga5O12: Er3+-Yb3+ as the sensing medium, a support vector machine (SVM) is preliminarily adopted to establish the relationship between temperature and upconversion emission spectra, and the sensing properties are discussed through the comparison with luminescence intensity ratio (LIR) and multiple linear regression (MLR) methods. Within a wide operating temperature range (303-853 K), the maximum and the mean measurement errors actualized by the SVM are just about 0.38 and 0.12 K, respectively, much better than the other two methods (3.75 and 1.37 K for LIR and 1.82 and 0.43 K for MLR). Besides, the luminescence thermometry driven by the SVM presents a high robustness, although the spectral profiles are distorted by the interferences within the testing environment, where, however, LIR and MLR approaches become ineffective. Results demonstrate that the SVM would be a powerful tool to be applied on the luminescence thermometry for achieving a high sensing performance.
Collapse
|
12
|
Li R, Levchenko G, Bartual-Murgui C, Fylymonov H, Xu W, Liu Z, Li Q, Liu B, Real JA. Anomalous Pressure Response of Temperature-Induced Spin Transition and a Pressure-Induced Spin Transition in Two-Dimensional Hofmann Coordination Polymers. Inorg Chem 2024; 63:1214-1224. [PMID: 38159054 DOI: 10.1021/acs.inorgchem.3c03643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Spin transition (ST) compounds have been extensively studied because of the changes in rich physicochemical properties accompanying the ST process. The study of ST mainly focuses on the temperature-induced spin transition (TIST). To further understand the ST, we explore the pressure response behavior of TIST and pressure-induced spin transition (PIST) of the 2D Hofmann-type ST compounds [Fe(Isoq)2M(CN)4] (Isoq-M) (M = Pt, Pd, Isoq = isoquinoline). The TISTs of both Isoq-Pt and Isoq-Pd compounds exhibit anomalous pressure response, where the transition temperature (T1/2) exhibits a nonlinear pressure dependence and the hysteresis width (ΔT1/2) exhibits a nonmonotonic behavior with pressure, by the synergistic influence of the intermolecular interaction and the distortion of the octahedral coordination environment. And the distortion of the octahedra under critical pressures may be the common behavior of 2D Hofmann-type ST compounds. Moreover, ΔT1/2 is increased compared with that before compression because of the partial irreversibility of structural distortion after decompression. At room temperature, both compounds exhibit completely reversible PIST. Because of the greater change in mechanical properties before and after ST, Isoq-Pt exhibits a more abrupt ST than Isoq-Pd. In addition, it is found that the hydrostatic properties of the pressure transfer medium (PTM) significantly affect the PIST due to their influence on spin-domain formation.
Collapse
Affiliation(s)
- Ruixin Li
- State Key Laboratory of Superhard Materials, Jilin University, Changchun130012, China
| | - Georgiy Levchenko
- State Key Laboratory of Superhard Materials, International Centre of Future Science, Jilin University, Changchun130012, China
- Donetsk Institute of Physics and Engineering named after A. A. Galkin, Kyiv03028, Ukraine
| | - Carlos Bartual-Murgui
- Institut de Ciència Molecular, Departament de Química Inorgànica, Universitat de València, València E-46980, Spain
| | - Hennagii Fylymonov
- Donetsk Institute of Physics and Engineering named after A. A. Galkin, Kyiv03028, Ukraine
| | - Wei Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| | - Zhaodong Liu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun130012, China
| | - Quanjun Li
- State Key Laboratory of Superhard Materials, Jilin University, Changchun130012, China
| | - Bingbing Liu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun130012, China
| | - Jose Antonio Real
- Institut de Ciència Molecular, Departament de Química Inorgànica, Universitat de València, València E-46980, Spain
| |
Collapse
|
13
|
Torres-Cavanillas R, Gavara-Edo M, Coronado E. Bistable Spin-Crossover Nanoparticles for Molecular Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307718. [PMID: 37725707 DOI: 10.1002/adma.202307718] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Indexed: 09/21/2023]
Abstract
The field of spin-crossover complexes is rapidly evolving from the study of the spin transition phenomenon to its exploitation in molecular electronics. Such spin transition is gradual in a single-molecule, while in bulk it can be abrupt, showing sometimes thermal hysteresis and thus a memory effect. A convenient way to keep this bistability while reducing the size of the spin-crossover material is to process it as nanoparticles (NPs). Here, the most recent advances in the chemical design of these NPs and their integration into electronic devices, paying particular attention to optimizing the switching ratio are reviewed. Then, integrating spin-crossover NPs over 2D materials is focused to improve the endurance, performance, and detection of the spin state in these hybrid devices.
Collapse
Affiliation(s)
- Ramón Torres-Cavanillas
- Instituto de Ciencia Molecular, Universitat de València, Valencia, 46980, Spain
- Department of Materials, Oxford University, Oxford, OX2 6NN, UK
| | - Miguel Gavara-Edo
- Instituto de Ciencia Molecular, Universitat de València, Valencia, 46980, Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular, Universitat de València, Valencia, 46980, Spain
| |
Collapse
|
14
|
Zhang L, Ridier K, Horniichuk OY, Calvez S, Salmon L, Molnár G, Bousseksou A. Reversible Switching of Strong Light-Matter Coupling Using Spin-Crossover Molecular Materials. J Phys Chem Lett 2023:6840-6849. [PMID: 37487224 DOI: 10.1021/acs.jpclett.3c01136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The formation of hybrid light-matter states through the resonant interaction of confined electromagnetic fields with matter excitations has emerged as a fascinating tool for controlling quantum-mechanical states and then manipulating the functionalities and chemical reactivity landscape of molecular materials. Here we report the first observation of switchable strong light-matter coupling involving bistable spin-crossover molecules. Spectroscopic measurements, supported by transfer-matrix and coupled-oscillator simulations, reveal Rabi splitting values of up to 550 meV, which at 15% of the molecular excitation energy enter the regime of ultrastrong coupling. We find that the thermally induced switching of molecules between their low-spin and high-spin states allows fine control of the light-matter hybridization strength, offering the appealing possibility of reversible switching between the ultrastrong- and weak-coupling regimes within a single photonic structure. Through this work, we show that spin-crossover molecular compounds constitute a promising class of active nanomaterials in the burgeoning context of tunable polaritonic devices and polaritonic chemistry.
Collapse
Affiliation(s)
- Lijun Zhang
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, Université de Toulouse 205 route de Narbonne, F-31077 Toulouse, France
| | - Karl Ridier
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, Université de Toulouse 205 route de Narbonne, F-31077 Toulouse, France
| | - Oleksandr Ye Horniichuk
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, Université de Toulouse 205 route de Narbonne, F-31077 Toulouse, France
| | - Stéphane Calvez
- Laboratoire d'Analyse et d'Architecture des Systèmes, CNRS UPR 8001, Université de Toulouse 7 avenue du colonel Roche, F-31400 Toulouse, France
| | - Lionel Salmon
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, Université de Toulouse 205 route de Narbonne, F-31077 Toulouse, France
| | - Gábor Molnár
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, Université de Toulouse 205 route de Narbonne, F-31077 Toulouse, France
| | - Azzedine Bousseksou
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, Université de Toulouse 205 route de Narbonne, F-31077 Toulouse, France
| |
Collapse
|
15
|
Yazdani S, Phillips J, Ekanayaka TK, Cheng R, Dowben PA. The Influence of the Substrate on the Functionality of Spin Crossover Molecular Materials. Molecules 2023; 28:3735. [PMID: 37175145 PMCID: PMC10180229 DOI: 10.3390/molecules28093735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Spin crossover complexes are a route toward designing molecular devices with a facile readout due to the change in conductance that accompanies the change in spin state. Because substrate effects are important for any molecular device, there are increased efforts to characterize the influence of the substrate on the spin state transition. Several classes of spin crossover molecules deposited on different types of surface, including metallic and non-metallic substrates, are comprehensively reviewed here. While some non-metallic substrates like graphite seem to be promising from experimental measurements, theoretical and experimental studies indicate that 2D semiconductor surfaces will have minimum interaction with spin crossover molecules. Most metallic substrates, such as Au and Cu, tend to suppress changes in spin state and affect the spin state switching process due to the interaction at the molecule-substrate interface that lock spin crossover molecules in a particular spin state or mixed spin state. Of course, the influence of the substrate on a spin crossover thin film depends on the molecular film thickness and perhaps the method used to deposit the molecular film.
Collapse
Affiliation(s)
- Saeed Yazdani
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (S.Y.); (J.P.)
| | - Jared Phillips
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (S.Y.); (J.P.)
| | - Thilini K. Ekanayaka
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska, Lincoln, NE 68588-0299, USA;
| | - Ruihua Cheng
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (S.Y.); (J.P.)
| | - Peter A. Dowben
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska, Lincoln, NE 68588-0299, USA;
| |
Collapse
|
16
|
Review of Fe-based spin crossover metal complexes in multiscale device architectures. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Horniichuk OY, Ridier K, Zhang L, Zhang Y, Molnár G, Salmon L, Bousseksou A. High-Sensitivity Microthermometry Method Based on Vacuum-Deposited Thin Films Exhibiting Gradual Spin Crossover above Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52140-52148. [PMID: 36374998 DOI: 10.1021/acsami.2c13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We report on the fabrication, characterization, and microthermometry application of high-quality, nanometric thin films, with thicknesses in the range 20-200 nm, of the molecular spin-crossover complex [Fe(HB(1,2,3-triazol-1-yl)3)2]. The films were obtained by vacuum thermal evaporation and characterized by X-ray diffraction, UV spectrophotometry, and atomic force microscopy. The as-deposited films are dense and crystalline with a preferred [011] orientation of the monoclinic crystal lattice normal to the substrate surface. The films exhibit a gradual spin conversion centered at ca. 374 K spanning the 273-473 K temperature range, irrespective of their thickness. When deposited on a microelectronic device, these films can be used to enhance the UV-light thermoreflectance coefficient of reflective surfaces by more than an order of magnitude, allowing for high-sensitivity thermoreflectance thermal imaging.
Collapse
Affiliation(s)
- Oleksandr Ye Horniichuk
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 route de Narbonne, F-31077 Toulouse, France
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, 12, Lva Tolstogo str., 01033, Kyiv, Ukraine
| | - Karl Ridier
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 route de Narbonne, F-31077 Toulouse, France
| | - Lijun Zhang
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 route de Narbonne, F-31077 Toulouse, France
| | - Yuteng Zhang
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 route de Narbonne, F-31077 Toulouse, France
| | - Gábor Molnár
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 route de Narbonne, F-31077 Toulouse, France
| | - Lionel Salmon
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 route de Narbonne, F-31077 Toulouse, France
| | - Azzedine Bousseksou
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 route de Narbonne, F-31077 Toulouse, France
| |
Collapse
|
18
|
Usman A, Xiong F, Aftab W, Qin M, Zou R. Emerging Solid-to-Solid Phase-Change Materials for Thermal-Energy Harvesting, Storage, and Utilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202457. [PMID: 35616900 DOI: 10.1002/adma.202202457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Phase-change materials (PCMs) offer tremendous potential to store thermal energy during reversible phase transitions for state-of-the-art applications. The practicality of these materials is adversely restricted by volume expansion, phase segregation, and leakage problems associated with conventional solid-liquid PCMs. Solid-solid PCMs, as promising alternatives to solid-liquid PCMs, are gaining much attention toward practical thermal-energy storage (TES) owing to their inimitable advantages such as solid-state processing, negligible volume change during phase transition, no contamination, and long cyclic life. Herein, the aim is to provide a holistic analysis of solid-solid PCMs suitable for thermal-energy harvesting, storage, and utilization. The developing strategies of solid-solid PCMs are presented and then the structure-property relationship is discussed, followed by potential applications. Finally, an outlook discussion with momentous challenges and future directions is presented. Hopefully, this review will provide a guideline to the scientific community to develop high-performance solid-solid PCMs for advanced TES applications.
Collapse
Affiliation(s)
- Ali Usman
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Feng Xiong
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Waseem Aftab
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Mulin Qin
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Institute of Clean Energy, Peking University, Beijing, 100871, China
| |
Collapse
|
19
|
Resines‐Urien E, García‐Tuñón MÁG, García‐Hernández M, Rodríguez‐Velamazán JA, Espinosa A, Costa JS. Concomitant Thermochromic and Phase-Change Effect in a Switchable Spin Crossover Material for Efficient Passive Control of Day and Night Temperature Fluctuations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202253. [PMID: 35712765 PMCID: PMC9404398 DOI: 10.1002/advs.202202253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The increasing environmental protection demand has prompted the development of passive thermal regulation systems that reduce temperature fluctuations in buildings. Here, it is demonstrated that the heat generated by the sun can trigger a spin crossover (SCO) in a molecule-base material, resulting in a concomitant color variation (from pink to white) and a phase transition. This leads to a cooling effect with respect to other thermochromic materials. In addition, when the material is cooled, a dampening of the temperature decrease is produced. Therefore, these materials can potentially be implemented for passive temperature control in buildings. Furthermore, SCO materials are remarkably stable upon cycling and highly versatile, which allows for the design of compounds with properties tailored for the desired climatic conditions and comfortable temperature.
Collapse
Affiliation(s)
| | | | - Mar García‐Hernández
- Instituto de Ciencia de Materiales de MadridCSICC/Sor Juana Inés de la Cruz, 3Madrid28049Spain
| | | | | | | |
Collapse
|
20
|
Kumar B, Paul A, Mondal DJ, Paliwal P, Konar S. Spin-State Modulation in Fe II -Based Hofmann-Type Coordination Polymers: From Molecules to Materials. CHEM REC 2022; 22:e202200135. [PMID: 35815939 DOI: 10.1002/tcr.202200135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Indexed: 11/05/2022]
Abstract
Spin crossover complexes that reversibly interconvert between two stable states imitate a binary state of 0 and 1, delivering a promising possibility to address the data processing concept in smart materials. Thus, a comprehensive understanding of the modulation of magnetic transition between high spin and low spin and the factors responsible for stabilizing the spin states is an essential theme in modern materials design. In this context, the present review attempts to provide a concise outline of the design strategy employed at the molecular level for fine-tuning the spin-state switching in FeII -based Hofmann-type coordination polymers and their effects on the optical and magnetic response. In addition, development towards the nanoscale architectures of HCPs, i. e., in terms of nanoparticles and thin films, are emphasized to bridge the gap between the laboratory and reality.
Collapse
Affiliation(s)
- Bhart Kumar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Abhik Paul
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Dibya Jyoti Mondal
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Piyush Paliwal
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjit Konar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
21
|
Dynamics of Spin Crossover Molecular Complexes. NANOMATERIALS 2022; 12:nano12101742. [PMID: 35630963 PMCID: PMC9144206 DOI: 10.3390/nano12101742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
We review the current understanding of the time scale and mechanisms associated with the change in spin state in transition metal-based spin crossover (SCO) molecular complexes. Most time resolved experiments, performed by optical techniques, rely on the intrinsic light-induced switching properties of this class of materials. The optically driven spin state transition can be mediated by a rich interplay of complexities including intermediate states in the spin state transition process, as well as intermolecular interactions, temperature, and strain. We emphasize here that the size reduction down to the nanoscale is essential for designing SCO systems that switch quickly as well as possibly retaining the memory of the light-driven state. We argue that SCO nano-sized systems are the key to device applications where the “write” speed is an important criterion.
Collapse
|
22
|
Influence of Cooperative Interactions on the Spin Crossover Phenomenon in Iron(II) Complexes: A Review. THEOR EXP CHEM+ 2022. [DOI: 10.1007/s11237-022-09725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
23
|
Seo J, Braun JD, Dev VM, Mason JA. Driving Barocaloric Effects in a Molecular Spin-Crossover Complex at Low Pressures. J Am Chem Soc 2022; 144:6493-6503. [PMID: 35360899 DOI: 10.1021/jacs.2c01315] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Barocaloric effects─thermal changes in a material induced by applied hydrostatic pressure─offer promise for creating solid-state refrigerants as alternatives to conventional volatile refrigerants. To enable efficient and scalable barocaloric cooling, materials that undergo high-entropy, reversible phase transitions in the solid state in response to a small change in pressure are needed. Here, we report that pressure-induced spin-crossover (SCO) transitions in the molecular iron(II) complex Fe[HB(tz)3]2 (HB(tz)3- = bis[hydrotris(1,2,4-triazol-1-yl)borate]) drive giant and reversible barocaloric effects at easily accessible pressures. Specifically, high-pressure calorimetry and powder X-ray diffraction studies reveal that pressure shifts as low as 10 bar reversibly induce nonzero isothermal entropy changes, and a pressure shift of 150 bar reversibly induces a large isothermal entropy change (>90 J kg-1 K-1) and adiabatic temperature change (>2 K). Moreover, we demonstrate that the thermodynamics of the SCO transition can be fine-tuned through systematic deuteration of the tris(triazolyl)borate ligand. These results provide new insights into pressure-induced SCO transitions and further establish SCO materials as promising barocaloric materials.
Collapse
Affiliation(s)
- Jinyoung Seo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jason D Braun
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Vidhya M Dev
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jarad A Mason
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
24
|
Shylin SI, Shova S, Shepherd HJ, Ksenofontov V, Tremel W, Gural'skiy IA. 1D iron(II)-1,2,4-triazolic chains with spin crossover assembled from discrete trinuclear complexes. Dalton Trans 2022; 51:2364-2369. [PMID: 35043827 DOI: 10.1039/d2dt00004k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on a molecular cationic iron(II) complex with a 4-amino-1,2,4-triazole ligand and a tetraiodomercurate anion exhibiting an incomplete spin crossover (SCO). The complex exhibits an unusual disordered structure with a linear arrangement of ligand and water molecules that can potentially accommodate up to four iron atoms, but both terminal metal positions have half chemical occupancies, while occupancies of all ligands are full. This corresponds to the crystallisation of disordered trinuclear complexes arranged into 1D supramolecular chains. Iron cations have different N6 or N3O3 coordination environments, leading to the thermally induced SCO in two thirds of the metal centres. This SCO behaviour was characterised by magnetic susceptibility measurements and Mössbauer spectroscopy.
Collapse
Affiliation(s)
- Sergii I Shylin
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine. .,Department of Chemistry - Ångström Laboratory, Uppsala University, PO Box 523, 75120 Uppsala, Sweden
| | - Sergiu Shova
- Petru Poni Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Helena J Shepherd
- Supramolecular, Interfacial & Synthetic Chemistry Group, School of Physical Sciences, University of Kent, Canterbury CT2 7NH, UK
| | - Vadim Ksenofontov
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Wolfgang Tremel
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Il'ya A Gural'skiy
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine.
| |
Collapse
|
25
|
Ridier K, Nicolazzi W, Salmon L, Molnár G, Bousseksou A. Sequential Activation of Molecular and Macroscopic Spin-State Switching within the Hysteretic Region Following Pulsed Light Excitation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105468. [PMID: 34817094 DOI: 10.1002/adma.202105468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Molecular spin-crossover (SCO) compounds constitute a promising class of photoactive materials exhibiting efficient photoinduced phase transitions (PIPTs). Taking advantage of the unique, picture-perfect reproducibility of the spin-transition properties in the compound [Fe(HB(1,2,4-triazol-1-yl)3 )2 ], the spatiotemporal dynamics of the PIPT within the thermodynamic metastability (hysteretic) region of a single crystal is dissected, using pump-probe optical microscopy. Beyond a threshold laser-excitation density, complete PIPTs are evidenced, with conversion rates up to 200 switched molecules per absorbed photon. It is shown that the PIPT takes place through the sequential activation of two (molecular and macroscopic) switching mechanisms, occurring on sub-microsecond and millisecond timescales, governed by the intramolecular and free energy barriers of the system, respectively. The main finding here is that the thermodynamic metastability has strictly no influence on the sub-millisecond switching dynamics. Indeed, before this millisecond timescale, the response of the crystal to the laser excitation involves a gradual, molecular conversion process, as if there were no hysteresis loop. Consequently, in this regime, even a 100% photoinduced conversion may not give rise to a PIPT. These results provide new insight on the intrinsic dynamical limits of the PIPT, which is an important issue from a technological perspective.
Collapse
Affiliation(s)
- Karl Ridier
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| | - William Nicolazzi
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| | - Lionel Salmon
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| | - Gábor Molnár
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| | - Azzedine Bousseksou
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| |
Collapse
|
26
|
Horniichuk OY, Ridier K, Molnár G, Kotsyubynsky VO, Shova S, Amirkhanov VM, Gural'skiy IA, Salmon L, Bousseksou A. Solvatomorphism, polymorphism and spin crossover in bis[hydrotris(1,2,3-triazol-1-yl)borate]iron( ii). NEW J CHEM 2022. [DOI: 10.1039/d2nj01471h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a detailed characterization of the spin crossover bis[hydrotris(1,2,3-triazol-1-yl)borate]iron(ii) complex ([Fe(HB(1,2,3-tz)3)2]) and solvatomorphs obtained by recrystallisation or single crystal to single crystal transformation.
Collapse
Affiliation(s)
- Oleksandr Ye. Horniichuk
- Taras Shevchenko National University of Kyiv, Department of Chemistry, 64 Volodymyrska St., 01601 Kyiv, Ukraine
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 route de Narbonne, F-31077 Toulouse, France
| | - Karl Ridier
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 route de Narbonne, F-31077 Toulouse, France
| | - Gábor Molnár
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 route de Narbonne, F-31077 Toulouse, France
| | - Volodymyr O. Kotsyubynsky
- Department of Material Science and New Technology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Sergiu Shova
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania
| | - Vladimir M. Amirkhanov
- Taras Shevchenko National University of Kyiv, Department of Chemistry, 64 Volodymyrska St., 01601 Kyiv, Ukraine
| | - Il’ya A. Gural'skiy
- Taras Shevchenko National University of Kyiv, Department of Chemistry, 64 Volodymyrska St., 01601 Kyiv, Ukraine
| | - Lionel Salmon
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 route de Narbonne, F-31077 Toulouse, France
| | - Azzedine Bousseksou
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 route de Narbonne, F-31077 Toulouse, France
| |
Collapse
|
27
|
Bhar K, Guo W, Gonidec M, Nikhil Raj M V, Bhatt S, Perdih F, Guionneau P, Chastanet G, Sharma AK. High temperature spin crossover behaviour of mononuclear bis-(thiocyanato)iron( ii) complexes with judiciously designed bidentate N-donor Schiff bases with varying substituents. Dalton Trans 2022; 51:9302-9313. [DOI: 10.1039/d2dt00416j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present herein the solvent and substituent dependent diverse spin crossover behaviours of molecular bis-(thiocyanato)iron(ii) complexes with smartly designed bidentate Schiff bases above room temperature.
Collapse
Affiliation(s)
- Kishalay Bhar
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer Distt., Rajasthan-305817, India
| | - Wenbin Guo
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 87 avenue du Dr A. Schweitzer, F-33600 Pessac, France
| | - Mathieu Gonidec
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 87 avenue du Dr A. Schweitzer, F-33600 Pessac, France
| | - Venkata Nikhil Raj M
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer Distt., Rajasthan-305817, India
| | - Surabhi Bhatt
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer Distt., Rajasthan-305817, India
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, PO Box 537, SI-1000 Ljubljana, Slovenia
| | - Philippe Guionneau
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 87 avenue du Dr A. Schweitzer, F-33600 Pessac, France
| | - Guillaume Chastanet
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 87 avenue du Dr A. Schweitzer, F-33600 Pessac, France
| | - Anuj K. Sharma
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer Distt., Rajasthan-305817, India
| |
Collapse
|
28
|
Enríquez-Cabrera A, Getzner L, Salmon L, Routaboul L, Bousseksou A. Post-synthetic modification mechanism for 1D spin crossover coordination polymers. NEW J CHEM 2022. [DOI: 10.1039/d2nj04015h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Suitable solvent os crucial to achieve a quantitative PSM reaction. Then, this method is not restricted to porous materials.
Collapse
Affiliation(s)
| | - Livia Getzner
- LCC, CNRS, 205 route de Narbonne, 31077 Toulouse, France
| | - Lionel Salmon
- LCC, CNRS, 205 route de Narbonne, 31077 Toulouse, France
| | | | | |
Collapse
|
29
|
Hu Y, Picher M, Tran NM, Palluel M, Stoleriu L, Daro N, Mornet S, Enachescu C, Freysz E, Banhart F, Chastanet G. Photo-Thermal Switching of Individual Plasmonically Activated Spin Crossover Nanoparticle Imaged by Ultrafast Transmission Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105586. [PMID: 34601766 DOI: 10.1002/adma.202105586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Spin crossover (SCO) is a promising switching phenomenon when implemented in electronic devices as molecules, thin films or nanoparticles. Among the properties modulated along this phenomenon, optically induced mechanical changes are of tremendous importance as they can work as fast light-induced mechanical switches or allow to investigate and control microstructural strains and fatigability. The development of characterization techniques probing nanoscopic behavior with high spatio-temporal resolution allows to trigger and visualize such mechanical changes of individual nanoscopic objects. Here, ultrafast transmission electron microscopy (UTEM) is used to precisely probe the length changes of individual switchable nanoparticles induced thermally by nanosecond laser pulses. This allows revealing of the mechanisms of spin switching, leading to the macroscopic expansion of SCO materials. This study is conducted on individual pure SCO nanoparticles and SCO nanoparticles encapsulating gold nanorods that serve for plasmonic heating under laser pulses. Length changes are compared with time-resolved optical measurements performed on an assembly of these particles.
Collapse
Affiliation(s)
- Yaowei Hu
- Institut de Physique et Chimie des Matériaux, UMR 7504 CNRS, Université de Strasbourg, Strasbourg, F-67034, France
| | - Matthieu Picher
- Institut de Physique et Chimie des Matériaux, UMR 7504 CNRS, Université de Strasbourg, Strasbourg, F-67034, France
| | - Ngoc Minh Tran
- Universite de Bordeaux, CNRS, UMR 5798, LOMA, 358 Cours de la libération, Talence cedex, F-33405, France
| | - Marlène Palluel
- Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, Université de Bordeaux, Bordeaux INP, UMR 5026, Pessac, F-33600, France
| | - Laurentiu Stoleriu
- Faculty of Physics, Alexandru Ioan Cuza University, Iasi, 700506, Romania
| | - Nathalie Daro
- Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, Université de Bordeaux, Bordeaux INP, UMR 5026, Pessac, F-33600, France
| | - Stephane Mornet
- Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, Université de Bordeaux, Bordeaux INP, UMR 5026, Pessac, F-33600, France
| | - Cristian Enachescu
- Faculty of Physics, Alexandru Ioan Cuza University, Iasi, 700506, Romania
| | - Eric Freysz
- Universite de Bordeaux, CNRS, UMR 5798, LOMA, 358 Cours de la libération, Talence cedex, F-33405, France
| | - Florian Banhart
- Institut de Physique et Chimie des Matériaux, UMR 7504 CNRS, Université de Strasbourg, Strasbourg, F-67034, France
| | - Guillaume Chastanet
- Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, Université de Bordeaux, Bordeaux INP, UMR 5026, Pessac, F-33600, France
| |
Collapse
|
30
|
Syntheses and properties of mononuclear cobalt-dioxolene complexes with the ancillary ligand containing bulky quinoline rings – Electronic state manipulation of the complexes by steric effect. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Gakiya-Teruya M, Jiang X, Le D, Üngör Ö, Durrani AJ, Koptur-Palenchar JJ, Jiang J, Jiang T, Meisel MW, Cheng HP, Zhang XG, Zhang XX, Rahman TS, Hebard AF, Shatruk M. Asymmetric Design of Spin-Crossover Complexes to Increase the Volatility for Surface Deposition. J Am Chem Soc 2021; 143:14563-14572. [PMID: 34472348 DOI: 10.1021/jacs.1c04598] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mononuclear complex [Fe(tBu2qsal)2] has been obtained by a reaction between an Fe(II) precursor salt and a tridentate ligand 2,4-di(tert-butyl)-6-((quinoline-8-ylimino)methyl)phenol (tBu2qsalH) in the presence of triethylamine. The complex exhibits a hysteretic spin transition at 117 K upon cooling and 129 K upon warming, as well as light-induced excited spin-state trapping at lower temperatures. Although the strongly cooperative spin transition suggests substantial intermolecular interactions, the complex is readily sublimable, as evidenced by the growth of its single crystals by sublimation at 573 → 373 K and ∼10-3 mbar. This seemingly antagonistic behavior is explained by the asymmetric coordination environment, in which the tBu substituents and quinoline moieties appear on opposite sides of the complex. As a result, the structure is partitioned in well-defined layers separated by van der Waals interactions between the tBu groups, while the efficient cooperative interactions within the layer are provided by the quinoline-based moieties. The abrupt spin transition is preserved in a 20 nm thin film prepared by sublimation, as evidenced by abrupt and hysteretic changes in the dielectric properties in the temperature range comparable to the one around which the spin transition is observed for the bulk material. The changes in the dielectric response are in excellent agreement with differences in the dielectric tensor of the low-spin and high-spin crystal structures evaluated by density functional theory calculations. The substantially higher volatility of [Fe(tBu2qsal)2], as compared to a similar complex without tBu substituents, suggests that asymmetric molecular shapes offer an efficient design strategy to achieve sublimable complexes with strongly cooperative spin transitions.
Collapse
Affiliation(s)
- Miguel Gakiya-Teruya
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Xuanyuan Jiang
- Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Duy Le
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Ökten Üngör
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Abdullah J Durrani
- Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | | | - Jun Jiang
- Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Tao Jiang
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Mark W Meisel
- Department of Physics, University of Florida, Gainesville, Florida 32611, United States.,National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611, United States
| | - Hai-Ping Cheng
- Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Xiao-Guang Zhang
- Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Xiao-Xiao Zhang
- Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Talat S Rahman
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Arthur F Hebard
- Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Michael Shatruk
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States.,National High Magnetic Field Laboratory, 1800 E Paul Dirac Dr., Tallahassee, Florida 32310, United States
| |
Collapse
|
32
|
Abstract
In this work we present a detailed study showing the importance of the Kubelka-Munk (KM) correction in the analysis of diffuse reflectivity measurements to characterize spin crossover compounds. Combined reflectance and magnetic susceptibility measurements are carried out as a function of temperature or time to highlight the conditions under which this correction becomes critical. In particular, we investigate the influence of the color contrast between the two spin states on the reflectance measurements. Interestingly, the samples’ contrast seems to play an important role on the spin-like domain structure as suggested by the symmetry of the FORC diagrams. These latest results are discussed within the framework of Classical Preisach model (CPM).
Collapse
|
33
|
Jakobsen VB, Chikara S, Yu JX, Dobbelaar E, Kelly CT, Ding X, Weickert F, Trzop E, Collet E, Cheng HP, Morgan GG, Zapf VS. Giant Magnetoelectric Coupling and Magnetic-Field-Induced Permanent Switching in a Spin Crossover Mn(III) Complex. Inorg Chem 2021; 60:6167-6175. [PMID: 33331784 DOI: 10.1021/acs.inorgchem.0c02789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate giant magnetoelectric coupling at a Mn3+ spin crossover in [MnIIIL]BPh4 (L = (3,5-diBr-sal)2323) with a field-induced permanent switching of the structural, electric, and magnetic properties. An applied magnetic field induces a first-order phase transition from a high spin/low spin (HS-LS) ordered phase to a HS-only phase at 87.5 K that remains after the field is removed. We observe this unusual effect for DC magnetic fields as low as 8.7 T. The spin-state switching driven by the magnetic field in the bistable molecular material is accompanied by a change in electric polarization amplitude and direction due to a symmetry-breaking phase transition between polar space groups. The magnetoelectric coupling occurs due to a γη2 coupling between the order parameter γ related to the spin-state bistability and the symmetry-breaking order parameter η responsible for the change of symmetry between polar structural phases. We also observe conductivity occurring during the spin crossover and evaluate the possibility that it results from conducting phase boundaries. We perform ab initio calculations to understand the origin of the electric polarization change as well as the conductivity during the spin crossover. Thus, we demonstrate a giant magnetoelectric effect with a field-induced electric polarization change that is 1/10 of the record for any material.
Collapse
Affiliation(s)
- Vibe B Jakobsen
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Shalinee Chikara
- National High Magnetic Field Lab, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jie-Xiang Yu
- Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Emiel Dobbelaar
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Conor T Kelly
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Xiaxin Ding
- National High Magnetic Field Lab, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Franziska Weickert
- National High Magnetic Field Lab, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Elzbieta Trzop
- CNRS, IPR (Institut de Physique de Rennes), UMR 6251, Univ. Rennes, F-35000 Rennes, France
| | - Eric Collet
- CNRS, IPR (Institut de Physique de Rennes), UMR 6251, Univ. Rennes, F-35000 Rennes, France
| | - Hai-Ping Cheng
- Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Grace G Morgan
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Vivien S Zapf
- National High Magnetic Field Lab, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
34
|
Nonvolatile Voltage Controlled Molecular Spin-State Switching for Memory Applications. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7030037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nonvolatile, molecular multiferroic devices have now been demonstrated, but it is worth giving some consideration to the issue of whether such devices could be a competitive alternative for solid-state nonvolatile memory. For the Fe (II) spin crossover complex [Fe{H2B(pz)2}2(bipy)], where pz = tris(pyrazol-1-yl)-borohydride and bipy = 2,2′-bipyridine, voltage-controlled isothermal changes in the electronic structure and spin state have been demonstrated and are accompanied by changes in conductance. Higher conductance is seen with [Fe{H2B(pz)2}2(bipy)] in the high spin state, while lower conductance occurs for the low spin state. Plausibly, there is the potential here for low-cost molecular solid-state memory because the essential molecular thin films are easily fabricated. However, successful device fabrication does not mean a device that has a practical value. Here, we discuss the progress and challenges yet facing the fabrication of molecular multiferroic devices, which could be considered competitive to silicon.
Collapse
|
35
|
Djemel A, Stefańczyk O, Desplanches C, Kumar K, Delimi R, Benaceur F, Ohkoshi SI, Chastanet G. Switching on thermal and light-induced spin crossover by desolvation of the [Fe(3-bpp)2](XO4)2·solvent (X = Cl, Re) compounds. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00446h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermal desolvation is a very attractive method for post-synthetic modification of the physico-chemical properties of switchable materials. In this field of research, special attention is paid to the possibility of...
Collapse
|
36
|
Sakaida S, Otsubo K, Maesato M, Kitagawa H. Crystal Size Effect on the Spin-Crossover Behavior of {Fe(py)2[Pt(CN)4]} (py = Pyridine) Monitored by Raman Spectroscopy. Inorg Chem 2020; 59:16819-16823. [DOI: 10.1021/acs.inorgchem.0c02874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shun Sakaida
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuya Otsubo
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mitsuhiko Maesato
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
37
|
Liu S, Zhou K, Yuan T, Lei W, Chen HY, Wang X, Wang W. Imaging the Thermal Hysteresis of Single Spin-Crossover Nanoparticles. J Am Chem Soc 2020; 142:15852-15859. [DOI: 10.1021/jacs.0c05951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shasha Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Kai Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Tinglian Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wenrui Lei
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xinyi Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|