1
|
Xi Y, Li X, Liu L, Xiu F, Yi X, Chen H, You X. Sneaky tactics: Ingenious immune evasion mechanisms of Bartonella. Virulence 2024; 15:2322961. [PMID: 38443331 PMCID: PMC10936683 DOI: 10.1080/21505594.2024.2322961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Gram-negative Bartonella species are facultative intracellular bacteria that can survive in the harsh intracellular milieu of host cells. They have evolved strategies to evade detection and degradation by the host immune system, which ensures their proliferation in the host. Following infection, Bartonella alters the initial immunogenic surface-exposed proteins to evade immune recognition via antigen or phase variation. The diverse lipopolysaccharide structures of certain Bartonella species allow them to escape recognition by the host pattern recognition receptors. Additionally, the survival of mature erythrocytes and their resistance to lysosomal fusion further complicate the immune clearance of this species. Certain Bartonella species also evade immune attacks by producing biofilms and anti-inflammatory cytokines and decreasing endothelial cell apoptosis. Overall, these factors create a challenging landscape for the host immune system to rapidly and effectively eradicate the Bartonella species, thereby facilitating the persistence of Bartonella infections and creating a substantial obstacle for therapeutic interventions. This review focuses on the effects of three human-specific Bartonella species, particularly their mechanisms of host invasion and immune escape, to gain new perspectives in the development of effective diagnostic tools, prophylactic measures, and treatment options for Bartonella infections.
Collapse
Affiliation(s)
- Yixuan Xi
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinru Li
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Lu Liu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Feichen Xiu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinchao Yi
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Hongliang Chen
- Chenzhou NO.1 People’s Hospital, The Affiliated Chenzhou Hospital, Hengyang Medical College, University of South China, ChenZhou, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
2
|
Bush JC, Robveille C, Maggi RG, Breitschwerdt EB. Neurobartonelloses: emerging from obscurity! Parasit Vectors 2024; 17:416. [PMID: 39369199 PMCID: PMC11452993 DOI: 10.1186/s13071-024-06491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Bartonella species are fastidious, intracellular bacteria responsible for an expanding array of human pathologies. Most are considered to be transmitted by direct inoculation with infected bodily fluids from a mammalian reservoir species or vector-transmitted through a variety of arthropod species and their excrement. However, there are mounting reports of infection in the absence of documented animal or vector contact. A variety of Bartonella species have been documented in conditions affecting both the peripheral and central nervous systems. More common conditions, including neuroretinitis, are often associated with Bartonella henselae. However, Bartonella quintana, the agent of trench fever, as well as emerging pathogens related to rodent reservoir species, B. grahamii and B. elizabethae, have also been documented. Encephalitis and encephalopathy, also most often associated with B. henselae, have been reported with B. quintana, B. washoensis (ground squirrels) and B. vinsonii subsp. vinsonii (voles) infections. Bartonella infections have also been associated with peripheral neuropathies, such as cranial nerve paresis and neuropathic pain, including infection with less commonly encountered species such as Bartonella koehlerae. Recently, molecular diagnostic testing revealed that DNA from Bartonella spp. was found to be more prevalent in blood of patients with neuropsychiatric disorders such as schizophrenia and psychoses compared to healthy controls. METHODS A systematic literature search was conducted on PubMed, Google Scholar and Web of Science. Search terms included Bartonella and specific neurological conditions and focused on peer-reviewed case reports published after 2012 pursuant to a prior review, with limited exceptions for conditions not previously covered. Published diagnostic testing, serology, molecular testing or pathology, were necessary for inclusion, except for one case which had clinical and epidemiological evidence consistent with diagnosis along with follow-up. RESULTS Neurobartonelloses included neuralgic amyotrophy, complex regional pain syndrome, chronic inflammatory demyelinating polyneuropathy, cranial nerve paralysis, Guillain-Barré syndrome, peripheral vasculitic polyneuropathy, acute transverse myelopathy, neuroretinitis, encephalitis/encephalopathy, cerebral vasculitis/aneurysm and neuropsychiatric conditions. CONCLUSIONS The breadth of reported symptoms and clinical syndromes associated with an increasing number of Bartonella species continues to expand. Increased clinical awareness of this important zoonotic pathogen is necessary to advance One Health among the medical and veterinary communities.
Collapse
Affiliation(s)
- Janice C Bush
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Cynthia Robveille
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Ricardo G Maggi
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Edward B Breitschwerdt
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
3
|
Solis Cayo L, Hammerbauerová I, Sommer J, Nemati Z, Ballhorn W, Tsukayama P, Dichter A, Votýpka J, Kempf VAJ. Genome sequences of three Bartonella schoenbuchensis strains from Czechia. Microbiol Resour Announc 2024; 13:e0039724. [PMID: 38953338 PMCID: PMC11320913 DOI: 10.1128/mra.00397-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Bartonella schoenbuchensis causes bacteremia in ruminants and is transmitted by deer keds. Here, we report the complete genome sequences of three B. schoenbuchensis strains (L2, L19, and L24) recently isolated from deer keds (Lipoptena fortisetosa) in Czechia.
Collapse
Affiliation(s)
- Luis Solis Cayo
- Laboratorio de Microbiología Molecular y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Laboratorio de Genómica Microbiana, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical “Alexander von Humboldt,” Universidad Peruana Cayetano Heredia, Lima, Peru
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Iva Hammerbauerová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Julian Sommer
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Zahra Nemati
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Wibke Ballhorn
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Pablo Tsukayama
- Laboratorio de Genómica Microbiana, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alexander Dichter
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
4
|
Ribatti D. Microbiota and angiogenesis in the intestinal vasculature. Tissue Cell 2024; 89:102466. [PMID: 38986346 DOI: 10.1016/j.tice.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
The gut microbiota is responsible for several metabolic functions, producing various metabolites with numerous roles for the host. The gut microbiota plays a key role in constructing the microvascular network in the intestinal villus, depending on the Paneth cells, strategically positioned to coordinate the development of both the microbiota and the microvasculature. The gut microbiota secretes several molecules and chemokines involved in the induction of the secretion of pro-angiogenic factors.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
5
|
Sato S, Nishioka E, Kabeya H, Maruyama S. Genomic properties of a Bartonella quintana strain from Japanese macaque (Macaca fuscata) revealed by genome comparison with human and rhesus macaque strains. Sci Rep 2024; 14:10941. [PMID: 38740807 PMCID: PMC11091102 DOI: 10.1038/s41598-024-61782-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
Bartonella quintana, the causative agent of trench fever, is an intracellular bacterium that infects human erythrocytes and vascular endothelial cells. For many years, humans were considered the only natural hosts for B. quintana; however, it was recently discovered that wild Japanese macaques (Macaca fuscata) also serve as hosts for B. quintana. To elucidate the genetic characteristics of the B. quintana strain MF1-1 isolated from a Japanese macaque, we determined the complete genome sequence of the strain and compared it with those of strain Toulouse from a human and strain RM-11 from a rhesus macaque. General genomic features and orthologous gene cluster profiles are similar among the three strains, and strain MF1-1 is genetically closer to strain RM-11 than strain Toulouse based on the average nucleotide identity values; however, a significant inversion of approximately 0.68 Mb was detected in the chromosome of strain MF1-1. Moreover, the Japanese macaque strains lacked the bepA gene, which is responsible for anti-apoptotic function, and the trwL2, trwL4, and trwL6 genes, which may be involved in adhesion to erythrocytes of rhesus macaque and human. These features likely represent the genomic traits acquired by Japanese macaque strains in their host-associated evolution.
Collapse
Affiliation(s)
- Shingo Sato
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Emu Nishioka
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hidenori Kabeya
- Laboratory of Veterinary Food Hygiene, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Soichi Maruyama
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
6
|
Ymaña B, Enciso-Benavides J, Moncunill G, Pons MJ. Cytokine Profile Response of Human Peripheral Blood Mononuclear Cells Stimulated by Bartonella bacilliformis. J Interferon Cytokine Res 2024; 44:16-25. [PMID: 37967433 DOI: 10.1089/jir.2023.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Carrion's disease is a neglected endemic disease found in remote Andean areas. As an overlooked disease, knowledge of innate immune responses to Bartonella bacilliformis, the etiological agent, is scarce. This study aimed to evaluate the cytokine response to B. bacilliformis using in vitro human peripheral blood mononuclear cells (PBMCs) stimulations. PBMCs from naive adults were isolated by gradient centrifugation and cocultured with heat-inactivated (HI) B. bacilliformis at different incubation times (3, 6, 12, 24, and 36 h). Cytokines, chemokines, and growth factors were determined in culture supernatants by multiplex fluorescent bead-based quantitative suspension array technology. During the first 36 h, a proinflammatory response was observed, including tumor necrosis factor-α, interleukin (IL)-1α, IL-1β, interferon-α2, and IL-6, followed by an anti-inflammatory response mainly related to IL-1RA. Moreover, high expression levels of chemokines IL-8, monocyte chemoattractant protein-1α, and macrophage inflammatory protein (MIP)-1β were detected from 3 h poststimulation and MIP-1α was detected at 24 h. Some growth factors, mainly granulocyte macrophage colony-stimulating factor and granulocyte colony-stimulating factor, and in minor concentrations vascular endothelial growth factor, epidermal growth factor, and eotaxin, were also detected. Innate response to HI B. bacilliformis stimulation consists of a rapid and strong proinflammatory response characterized by a wide range of cytokines and chemokines followed by an anti-inflammatory response and increased specific growth factors.
Collapse
Affiliation(s)
- Barbara Ymaña
- Grupo de Enfermedades Infecciosas Re-emergentes, Universidad Científica del Sur, Lima, Peru
| | | | - Gemma Moncunill
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Maria J Pons
- Grupo de Enfermedades Infecciosas Re-emergentes, Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
7
|
Secamilli EN, Drummond MR, Serrano JYM, Stelini RF, Cintra ML, Velho PENF. Is Bartonella sp. infection relevant in hematological malignancies in HIV-negative patients? A literature review. Leuk Res Rep 2023; 21:100402. [PMID: 38192503 PMCID: PMC10772291 DOI: 10.1016/j.lrr.2023.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/22/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024] Open
Abstract
Bartonelloses are diseases caused by Bartonella sp., transmitted to humans by blood sucking arthropod vectors. Clinical presentations include bacillary angiomatosis, cat scratch disease and atypical forms. We performed a review of cases of bartonelloses and hematological malignancies published in HIV-negative patients. Terms used were Bartonella or Bacillary Angiomatosis and Leukemia, Lymphoma, Multiple Myeloma, or Cancer. Fifteen cases met our criteria. Clinical presentations included bacillary angiomatosis, chronic fever, chronic lymphadenopathy, osteomyelitis, neuroretinitis, chronic anemia and hepatosplenic peliosis. Fourteen patients were asymptomatic after antibiotic therapy, and one died before antibiotic treatment. Clinicians should be suspicious of Bartonella sp. infections in immunocompromised patients.
Collapse
Affiliation(s)
- Elisa Nunes Secamilli
- Department of Clinical Medicine, School of Medical Sciences, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marina Rovani Drummond
- Laboratory of Applied Research in Dermatology and Bartonella Infection, School of Medical Sciences, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Juliana Yumi Massuda Serrano
- Department of Clinical Medicine, School of Medical Sciences, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Rafael Fantelli Stelini
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Maria Leticia Cintra
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | |
Collapse
|
8
|
Jin X, Gou Y, Xin Y, Li J, Sun J, Li T, Feng J. Advancements in understanding the molecular and immune mechanisms of Bartonella pathogenicity. Front Microbiol 2023; 14:1196700. [PMID: 37362930 PMCID: PMC10288214 DOI: 10.3389/fmicb.2023.1196700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Bartonellae are considered to be emerging opportunistic pathogens. The bacteria are transmitted by blood-sucking arthropods, and their hosts are a wide range of mammals including humans. After a protective barrier breach in mammals, Bartonella colonizes endothelial cells (ECs), enters the bloodstream, and infects erythrocytes. Current research primarily focuses on investigating the interaction between Bartonella and ECs and erythrocytes, with recent attention also paid to immune-related aspects. Various molecules related to Bartonella's pathogenicity have been identified. The present review aims to provide a comprehensive overview of the newly described molecular and immune responses associated with Bartonella's pathogenicity.
Collapse
Affiliation(s)
- Xiaoxia Jin
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yuze Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
| | - Yuxian Xin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
| | - Jingwei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingrong Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
| | - Tingting Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jie Feng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Nugraha DK, Nishida T, Tamaki Y, Hiramatsu Y, Yamaguchi H, Horiguchi Y. Survival of Bordetella bronchiseptica in Acanthamoeba castellanii. Microbiol Spectr 2023; 11:e0048723. [PMID: 36971600 PMCID: PMC10100856 DOI: 10.1128/spectrum.00487-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
The respiratory pathogenic bacterium Bordetella bronchiseptica can persistently survive in terrestrial and aquatic environments, providing a source of infection. However, the environmental lifestyle of the bacterium is poorly understood. In this study, expecting repeated encounters of the bacteria with environmental protists, we explored the interaction between B. bronchiseptica and a representative environmental amoeba, Acanthamoeba castellanii, and found that the bacteria resisted amoeba digestion and entered contractile vacuoles (CVs), which are intracellular compartments involved in osmoregulation, to escape amoeba cells. In prolonged coculture, A. castellanii supported the proliferation of B. bronchiseptica. The avirulent Bvg- phase, but not the virulent Bvg+ phase, of the bacteria was advantageous for survival in the amoebae. We further demonstrate that two Bvg+ phase-specific virulence factors, filamentous hemagglutinin and fimbriae, were targeted for predation by A. castellanii. These results are evidence that the BvgAS two-component system, the master regulator for Bvg phase conversion, plays an indispensable role in the survival of B. bronchiseptica in amoebae. IMPORTANCE The pathogenic bacterium Bordetella bronchiseptica, which causes respiratory diseases in various mammals, exhibits distinct Bvg+ and Bvg- phenotypes. The former represents the virulent phase, in which the bacteria express a set of virulence factors, while the role of the latter in the bacterial life cycle remains to be understood. In this study, we demonstrate that B. bronchiseptica in the Bvg- phase, but not the Bvg+ phase, survives and proliferates in coculture with Acanthamoeba castellanii, an environmental amoeba. Two Bvg+ phase-specific virulence factors, filamentous hemagglutinin and fimbriae, were targeted by A. castellanii predation. B. bronchiseptica turns into the Bvg- phase at temperatures in which the bacteria normally encounter these amoebae. These findings demonstrate that the Bvg- phase of B. bronchiseptica is advantageous for survival outside mammalian hosts and that the bacteria can utilize protists as transient hosts in natural environments.
Collapse
Affiliation(s)
- Dendi Krisna Nugraha
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takashi Nishida
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yuki Tamaki
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yukihiro Hiramatsu
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
10
|
Kumadaki K, Suzuki N, Tatematsu K, Doi Y, Tsukamoto K. Comparison of Biological Activities of BafA Family Autotransporters within Bartonella Species Derived from Cats and Rodents. Infect Immun 2023; 91:e0018622. [PMID: 36744895 PMCID: PMC10016083 DOI: 10.1128/iai.00186-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bartonella species are hemotropic, facultative intracellular bacteria, some of which cause zoonoses, that are widely disseminated among many mammals, including humans. During infection in humans, vascular endothelial cells play a crucial role as a replicative niche for Bartonella, and some are capable of promoting vascular proliferation. Along with well-studied pathogenic factors such as a trimeric autotransporter adhesin BadA or VirB/D4 type IV secretion system, bacteria-secreted protein BafA is also involved in Bartonella-induced vasoproliferation. Genes encoding BafA orthologs have been found in the genomes of most Bartonella species, but their functionality remains unclear. In this study, we focused on three cat-derived zoonotic species (B. henselae, B. koehlerae, and B. clarridgeiae) and two rodent-derived species (B. grahamii and B. doshiae) and compared the activity of BafA derived from each species. Recombinant BafA proteins of B. henselae, B. koehlerae, B. clarridgeiae, and B. grahamii, species that also cause human disease, induced cell proliferation and tube formation in cultured endothelial cells, while BafA derived from B. doshiae, a species that is rarely found in humans, showed neither activity. Additionally, treatment of cells with these BafA proteins increased phosphorylation of both vascular endothelial growth factor receptor 2 and extracellular signal-regulated kinase 1/2, with the exception of B. doshiae BafA. Differential bafA mRNA expression and BafA secretion among the species likely contributed to the differences in the cell proliferation phenotype of the bacteria-infected cells. These findings suggest that the biological activity of BafA may be involved in the infectivity or pathogenicity of Bartonella species in humans.
Collapse
Affiliation(s)
- Kayo Kumadaki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Natsumi Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kaoru Tatematsu
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yohei Doi
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kentaro Tsukamoto
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
11
|
Suzuki N, Kumadaki K, Tatematsu K, Doi Y, Tsukamoto K. The autotransporter BafA contributes to the proangiogenic potential of Bartonella elizabethae. Microbiol Immunol 2023; 67:248-257. [PMID: 36810719 DOI: 10.1111/1348-0421.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
Bartonella elizabethae is a rat-borne zoonotic bacterium that causes human infectious endocarditis or neuroretinitis. Recently, a case of bacillary angiomatosis (BA) resulting from this organism was reported, leading to speculation that B. elizabethae may also trigger vasoproliferation. However, there are no reports of B. elizabethae promoting human vascular endothelial cell (EC) proliferation or angiogenesis, and to date, the effects of this bacterium on ECs are unknown. We recently identified a proangiogenic autotransporter, BafA, secreted from B. henselae and B. quintana, which are recognized as Bartonella spp. responsible for BA in humans. Here, we hypothesized that B. elizabethae also harbored a functional bafA gene and examined the proangiogenic activity of recombinant B. elizabethae-derived BafA. The bafA gene of B. elizabethae, which was found to share a 51.1% amino acid sequence identity with BafA of B. henselae and 52.5% with that of B. quintana in the passenger domain, was located in a syntenic region of the genome. The recombinant protein of the N-terminal passenger domain of B. elizabethae-BafA facilitated EC proliferation and capillary structure formation. Furthermore, it upregulated the receptor signaling pathway of vascular endothelial growth factor, as observed in B. henselae-BafA. Taken together, B. elizabethae-derived BafA stimulates human EC proliferation and may contribute to the proangiogenic potential of this bacterium. So far, functional bafA genes have been found in all BA-causing Bartonella spp., supporting the key role BafA may play in BA pathogenesis.
Collapse
Affiliation(s)
- Natsumi Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kayo Kumadaki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kaoru Tatematsu
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yohei Doi
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Japan.,Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Japan.,Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kentaro Tsukamoto
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
12
|
Hiramatsu Y, Nishida T, Nugraha DK, Osada-Oka M, Nakane D, Imada K, Horiguchi Y. Interference of flagellar rotation up-regulates the expression of small RNA contributing to Bordetella pertussis infection. SCIENCE ADVANCES 2022; 8:eade8971. [PMID: 36542710 PMCID: PMC9770993 DOI: 10.1126/sciadv.ade8971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Bacterial small RNAs (sRNAs) posttranscriptionally regulate gene expressions involved in various biological processes, including pathogenicity. Our previous study identified sRNAs, the expression of which was up-regulated in Bordetella pertussis, the causative agent of whooping cough, upon tracheal colonization of the bacteria; however, their roles in bacterial infection remain unknown. Here, we found that one sRNA, Bpr4, contributes to B. pertussis infection by posttranscriptionally up-regulating filamentous hemagglutinin (FHA), a major adhesin of the bacteria. Bpr4 bound to the 5' untranslated region of fhaB mRNA encoding FHA and inhibited its degradation mediated by RNaseE. Our results demonstrated that Bpr4 up-regulation was triggered by the interference of flagellar rotation, which caused the disengagement of MotA, a flagellar stator. Subsequently, MotA activated a diguanylate cyclase to generate cyclic di-GMP, which plays a role in Bpr4 up-regulation through the RisK/RisA two-component system. Our findings indicate that a flagellum-triggered sensory system contributes to B. pertussis infection.
Collapse
Affiliation(s)
- Yukihiro Hiramatsu
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takashi Nishida
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Dendi Krisna Nugraha
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Mayuko Osada-Oka
- Food Hygiene and Environmental Health, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
A system for transposon mutagenesis of Bartonella bacilliformis. J Microbiol Methods 2022; 203:106623. [PMID: 36400246 DOI: 10.1016/j.mimet.2022.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Bartonella bacilliformis is the etiologic agent of Carrión's disease in South America. Lack of a system for random mutagenesis has significantly hampered research on the pathogen's molecular biology. Here, we describe a transposon (Tn)-based mutagenesis strategy for B. bacilliformis using pSAM_Rl; a Tn-mariner delivery vector originally constructed for members of the Rhizobiaceae family. Following electroporation of the vector, five candidate mutant strains were selected based on aberrant colony morphologies, and four mutations confirmed and identified using arbitrarily-primed PCR coupled with Sanger sequencing. One mutant strain, 4B2, was found to have a disrupted flgI gene, encoding the P-ring component of the flagellar motor. We therefore investigated the flgI strain's motility phenotype in a novel motility medium and found that insertional mutagenesis produced a non-motile mutant. Taken as a whole, the results show that: 1) pSAM_R1 is a practical Tn delivery vector for B. bacilliformis, 2) the plasmid can be used to create random Tn mariner mutants, 3) arbitrarily-primed PCR coupled with Sanger sequencing is a rapid and simple method for identifying and locating mutations generated by this Tn, and 4) in silico-predicted mutant phenotypes can be verified in vitro following mutagenesis. This system of Tn mutagenesis and mutation identification provides a novel and straightforward approach to investigate the molecular biology of B. bacilliformis.
Collapse
|
14
|
Taber R, Pankowski A, Ludwig AL, Jensen M, Magsamen V, Lashnits E. Bartonellosis in Dogs and Cats, an Update. Vet Clin North Am Small Anim Pract 2022; 52:1163-1192. [DOI: 10.1016/j.cvsm.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
The Passenger Domain of Bartonella bacilliformis BafA Promotes Endothelial Cell Angiogenesis via the VEGF Receptor Signaling Pathway. mSphere 2022; 7:e0008122. [PMID: 35379004 PMCID: PMC9044958 DOI: 10.1128/msphere.00081-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bartonella bacilliformis is a Gram-negative bacterial pathogen that provokes pathological angiogenesis and causes Carrion’s disease, a neglected tropical disease restricted to South America. Little is known about how B. bacilliformis facilitates vasoproliferation resulting in hemangioma in the skin in verruga peruana, the chronic phase of Carrion’s disease. Here, we demonstrate that B. bacilliformis extracellularly secrets a passenger domain of the autotransporter BafA exhibiting proangiogenic activity. The B. bacilliformis-derived BafA passenger domain (BafABba) increased the number of human umbilical endothelial cells (HUVECs) and promoted tube-like morphogenesis. Neutralizing antibody against BafABba detected the BafA derivatives from the culture supernatant of B. bacilliformis and inhibited the infection-mediated hyperproliferation of HUVECs. Moreover, stimulation with BafABba promoted phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) and extracellular-signal-regulated kinase 1/2 in HUVECs. Suppression of VEGFR2 by anti-VEGFR2 antibody or RNA interference reduced the sensitivity of cells to BafABba. In addition, surface plasmon resonance analysis confirmed that BafABba directly interacts with VEGFR2 with lower affinity than VEGF or Bartonella henselae-derived BafA. These findings indicate that BafABba acts as a VEGFR2 agonist analogous to the previously identified B. henselae- and Bartonella quintana-derived BafA proteins despite the low sequence similarity. The identification of a proangiogenic factor produced by B. bacilliformis that directly stimulates endothelial cells provides an important insight into the pathophysiology of verruga peruana. IMPORTANCEBartonella bacilliformis causes life-threatening bacteremia or dermal eruption known as Carrion’s disease in South America. During infection, B. bacilliformis promotes endothelial cell proliferation and the angiogenic process, but the underlying molecular mechanism has not been well understood. We show that B. bacilliformis induces vasoproliferation and angiogenesis by producing the proangiogenic autotransporter BafA. As the cellular/molecular basis for angiogenesis, BafA stimulates the signaling pathway of vascular endothelial growth factor receptor 2 (VEGFR2). Identification of functional BafA protein from B. bacilliformis in addition to B. henselae and B. quintana, the causes of cat scratch disease and trench fever, raises the possibility that BafA is a common virulence factor for human-pathogenic Bartonella.
Collapse
|
16
|
Wang Y, Kankala RK, Ou C, Chen A, Yang Z. Advances in hydrogel-based vascularized tissues for tissue repair and drug screening. Bioact Mater 2022; 9:198-220. [PMID: 34820566 PMCID: PMC8586021 DOI: 10.1016/j.bioactmat.2021.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The construction of biomimetic vasculatures within the artificial tissue models or organs is highly required for conveying nutrients, oxygen, and waste products, for improving the survival of engineered tissues in vitro. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular biology have enabled the creation of three-dimensional (3D) tissues and organs composed of highly complex vascular systems. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the vascularization of tissues. Initially, the significance of vascular elements and the regeneration mechanisms of vascularization, including angiogenesis and vasculogenesis, are briefly introduced. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments in fabricating vascularized tissues or organs, in terms of tunable physical properties, high similarity in physiological environments, and alternative shaping mechanisms, among others. Furthermore, we discuss the utilization of such hydrogels-based vascularized tissues in various applications, including tissue regeneration, drug screening, and organ-on-chips. Finally, we put forward the key challenges, including multifunctionalities of hydrogels, selection of suitable cell phenotype, sophisticated engineering techniques, and clinical translation behind the development of the tissues with complex vasculatures towards their future development.
Collapse
Affiliation(s)
- Ying Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Caiwen Ou
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Zhilu Yang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| |
Collapse
|
17
|
Tran PM, Tang SS, Salgado-Pabón W. Staphylococcus aureus β-Toxin Exerts Anti-angiogenic Effects by Inhibiting Re-endothelialization and Neovessel Formation. Front Microbiol 2022; 13:840236. [PMID: 35185854 PMCID: PMC8851161 DOI: 10.3389/fmicb.2022.840236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus causes severe, life-threatening infections that often are complicated by severe local and systemic pathologies with non-healing lesions. A classic example is S. aureus infective endocarditis (IE), where the secreted hemolysin β-toxin potentiates the disease via its sphingomyelinase and biofilm ligase activities. Although these activities dysregulate human aortic endothelial cell activation, β-toxin effect on endothelial cell function in wound healing has not been addressed. With the use of the ex vivo rabbit aortic ring model, we provide evidence that β-toxin prevents branching microvessel formation, highlighting its ability to interfere with tissue re-vascularization and vascular repair. We show that β-toxin specifically targets both human aortic endothelial cell proliferation and cell migration and inhibits human umbilical vein endothelial cell rearrangement into capillary-like networks in vitro. Proteome arrays specific for angiogenesis-related molecules provided evidence that β-toxin promotes an inhibitory profile in endothelial cell monolayers, specifically targeting production of TIMP-1, TIMP-4, and IGFBP-3 to counter the effect of a pro-angiogenic environment. Dysregulation in the production of these molecules is known to result in sprouting defects (including deficient cell proliferation, migration, and survival), vessel instability and/or vascular regression. When endothelial cells are grown under re-endothelialization/wound healing conditions, β-toxin decreases the pro-angiogenic molecule MMP-8 and increases the anti-angiogenic molecule endostatin. Altogether, the data indicate that β-toxin is an anti-angiogenic virulence factor and highlight a mechanism where β-toxin exacerbates S. aureus invasive infections by interfering with tissue re-vascularization and vascular repair.
Collapse
Affiliation(s)
- Phuong M. Tran
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Sharon S. Tang
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Wilmara Salgado-Pabón
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
18
|
Melanin Produced by Bordetella parapertussis Confers a Survival Advantage to the Bacterium during Host Infection. mSphere 2021; 6:e0081921. [PMID: 34643424 PMCID: PMC8513678 DOI: 10.1128/msphere.00819-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bordetella parapertussis causes respiratory infection in humans, with a mild pertussis (whooping cough)-like disease. The organism produces a brown pigment, the nature and biological significance of which have not been elucidated. Here, by screening a transposon library, we demonstrate that the gene encoding 4-hydroxyphenylpyruvate dioxygenase (HppD) is responsible for production of this pigment. Our results also indicate that the brown pigment produced by the bacterium is melanin, because HppD is involved in the biosynthesis of a type of melanin called pyomelanin, and homogentisic acid, the monomeric precursor of pyomelanin, was detected by high-performance liquid chromatography-mass spectrometry analyses. In an infection assay using macrophages, the hppD-deficient mutant was internalized by THP-1 macrophage-like cells, similar to the wild-type strain, but was less able to survive within the cells, indicating that melanin protects B. parapertussis from intracellular killing in macrophages. Mouse infection experiments also showed that the hppD-deficient mutant was eliminated from the respiratory tract more rapidly than the wild-type strain, although the initial colonization levels were comparable between the two strains. In addition, melanin production by B. parapertussis was not regulated by the BvgAS two-component system, which is the master regulator for the expression of genes contributing to the bacterial infection. Taken together, our findings indicate that melanin produced by B. parapertussis in a BvgAS-independent manner confers a survival advantage to the bacterium during host infection. IMPORTANCE In addition to the Gram-negative bacterium Bordetella pertussis, the etiological agent of pertussis, Bordetella parapertussis also causes respiratory infection in humans, with a mild pertussis-like disease. These bacteria are genetically closely related and share many virulence factors, including adhesins and toxins. However, B. parapertussis is clearly distinguished from B. pertussis by its brown pigment production, the bacteriological significance of which remains unclear. Here, we demonstrate that this pigment is melanin, which is known to be produced by a wide range of organisms from prokaryotes to humans and helps the organisms to survive under various environmental stress conditions. Our results show that melanin confers a survival advantage to B. parapertussis within human macrophages through its protective effect against reactive oxygen species and eventually contributes to respiratory infection of the bacterium in mice. This study proposes melanin as a virulence factor involved in the increased survival of B. parapertussis during host infection.
Collapse
|
19
|
Albert DM, Salman AR, Winthrop KL, Bartley GB. The Continuing Ophthalmic Challenge of Bartonella henselae. OPHTHALMOLOGY SCIENCE 2021; 1:100048. [PMID: 36247815 PMCID: PMC9559971 DOI: 10.1016/j.xops.2021.100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/02/2022]
Abstract
Purpose Methods Results Conclusions
Collapse
|
20
|
Bartonella henselae Persistence within Mesenchymal Stromal Cells Enhances Endothelial Cell Activation and Infectibility That Amplifies the Angiogenic Process. Infect Immun 2021; 89:e0014121. [PMID: 34031126 DOI: 10.1128/iai.00141-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some bacterial pathogens can manipulate the angiogenic response, suppressing or inducing it for their own ends. In humans, Bartonella henselae is associated with cat-scratch disease and vasculoproliferative disorders such as bacillary angiomatosis and bacillary peliosis. Although endothelial cells (ECs) support the pathogenesis of B. henselae, the mechanisms by which B. henselae induces EC activation are not completely clear, as well as the possible contributions of other cells recruited at the site of infection. Mesenchymal stromal cells (MSCs) are endowed with angiogenic potential and play a dual role in infections, exerting antimicrobial properties but also acting as a shelter for pathogens. Here, we delved into the role of MSCs as a reservoir of B. henselae and modulator of EC functions. B. henselae readily infected MSCs and survived in perinuclearly bound vacuoles for up to 8 days. Infection enhanced MSC proliferation and the expression of epidermal growth factor receptor (EGFR), Toll-like receptor 2 (TLR2), and nucleotide-binding oligomerization domain-containing protein 1 (NOD1), proteins that are involved in bacterial internalization and cytokine production. Secretome analysis revealed that infected MSCs secreted higher levels of the proangiogenic factors vascular endothelial growth factor (VEGF), fibroblast growth factor 7 (FGF-7), matrix metallopeptidase 9 (MMP-9), placental growth factor (PIGF), serpin E1, thrombospondin 1 (TSP-1), urokinase-type plasminogen activator (uPA), interleukin 6 (IL-6), platelet-derived growth factor D (PDGF-D), chemokine ligand 5 (CCL5), and C-X-C motif chemokine ligand 8 (CXCL8). Supernatants from B. henselae-infected MSCs increased the susceptibility of ECs to B. henselae infection and enhanced EC proliferation, invasion, and reorganization in tube-like structures. Altogether, these results indicate MSCs as a still underestimated niche for persistent B. henselae infection and reveal MSC-EC cross talk that may contribute to exacerbate bacterium-induced angiogenesis and granuloma formation.
Collapse
|
21
|
Lashnits E, Neupane P, Bradley JM, Richardson T, Maggi RG, Breitschwerdt EB. Comparison of Serological and Molecular Assays for Bartonella Species in Dogs with Hemangiosarcoma. Pathogens 2021; 10:pathogens10070794. [PMID: 34201572 PMCID: PMC8308881 DOI: 10.3390/pathogens10070794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
Currently, a gold standard diagnostic test for Bartonella infection in dogs is lacking. This represents a critical limitation for the development and evaluation of new diagnostic tests, as well as for the diagnosis of, and research on, bartonellosis in dogs. This retrospective observational study aims to compare the results of commonly performed and newly-reported Bartonella spp. diagnostic tests in banked clinical specimens from 90 dogs with hemangiosarcoma (HSA) using composite reference standard (CRS) and random effects latent class analysis (RE-LCA) techniques. Samples from each dog were tested using six serological or molecular diagnostic assays, including indirect fluorescent antibody (IFA) and Western blot (WB) for the detection of antibodies in serum, and qPCR and droplet digital PCR (ddPCR) in blood and fresh frozen tissue biopsy samples (mainly splenic HSA tumors and histopathologically normal spleen or skin/adipose tissue). Bartonella infection prevalence was estimated to be 78% based on the CRS (parallel testing with all six assays), and 64% based on the RE-LCA model. The assay with the highest diagnostic accuracy was qPCR performed on fresh frozen tissue biopsy samples (sensitivity: 94% by RE-LCA and 80% by CRS; specificity: 100%). When comparing newly-reported to traditional Bartonella diagnostic assays, ddPCR was more sensitive for the detection of Bartonella DNA than qPCR when testing blood samples (36% vs. 0%, p < 0.0001). Dogs that were positive on serological assays alone with negative molecular assays were highly unlikely (<3%) to be classified as infected by the RE-LCA model. These data indicate that Bartonella spp. DNA can be PCR amplified from fresh frozen tissues from a majority of dogs with HSA using both qPCR and ddPCR, supporting the use of these methods for future controlled studies comparing the prevalence of Bartonella spp. DNA in the tissue of dogs with HSA to that of unaffected controls.
Collapse
Affiliation(s)
- Erin Lashnits
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53713, USA;
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (P.N.); (J.M.B.); (T.R.); (R.G.M.)
| | - Pradeep Neupane
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (P.N.); (J.M.B.); (T.R.); (R.G.M.)
| | - Julie M. Bradley
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (P.N.); (J.M.B.); (T.R.); (R.G.M.)
| | - Toni Richardson
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (P.N.); (J.M.B.); (T.R.); (R.G.M.)
| | - Ricardo G. Maggi
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (P.N.); (J.M.B.); (T.R.); (R.G.M.)
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Edward B. Breitschwerdt
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (P.N.); (J.M.B.); (T.R.); (R.G.M.)
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
- Correspondence:
| |
Collapse
|
22
|
Lashnits E, Maggi R, Jarskog F, Bradley J, Breitschwerdt E, Frohlich F. Schizophrenia and Bartonella spp. Infection: A Pilot Case-Control Study. Vector Borne Zoonotic Dis 2021; 21:413-421. [PMID: 33728987 PMCID: PMC8170724 DOI: 10.1089/vbz.2020.2729] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recently, infections with emerging zoonotic bacteria of the genus Bartonella have been reported in association with a range of central nervous system (CNS) symptoms. Currently, it remains unknown if Bartonella spp. infection is associated with symptoms of schizophrenia/schizoaffective disorder (SCZ/SAD). The objective of this study was to determine if there is an association between Bartonella species infection and SCZ/SAD. A secondary objective was to determine if SCZ/SAD symptoms were more severe among participants with documented Bartonella spp. infection. Using a case-control study design, 17 cases and 13 controls were evaluated with a series of clinical and cognitive assessments. Blood samples were collected and tested for Bartonella spp. infection using serological, microbiological, and molecular techniques. People with SCZ/SAD were more likely than healthy volunteers to have Bartonella spp. DNA in their bloodstream, with 11 of 17 cases (65%) positive by Bartonella spp. droplet digital PCR (ddPCR). In comparison, only one healthy volunteer was Bartonella spp. ddPCR positive (8%, p = 0.0024). Based on serology, Bartonella spp. exposure was common among people with SCZ/SAD (12 of 17) as well as among healthy volunteers (12 of 13), with no significant difference between the groups (p = 0.196). Within the case group of people with SCZ/SAD, there was no significant difference in SCZ/SAD severity scores between people with and without ddPCR evidence of Bartonella spp. infection. This pilot study provides preliminary evidence in support of future investigations that should examine a potential contribution of Bartonella spp. infection to SCZ/SAD.
Collapse
Affiliation(s)
- Erin Lashnits
- Comparative Medicine Institute, Department of Clinical Sciences, Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Ricardo Maggi
- Comparative Medicine Institute, Department of Clinical Sciences, Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Fredrik Jarskog
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Julie Bradley
- Comparative Medicine Institute, Department of Clinical Sciences, Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Edward Breitschwerdt
- Comparative Medicine Institute, Department of Clinical Sciences, Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Center for Neurostimulation and Neuroscience Center, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Neurology and University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|