1
|
Yang X, Ma X, Zhao T, Croucher DR, Nguyen EV, Clark KC, Hu C, Latham SL, Bayly-Jones C, Nguyen BV, Budnar S, Shin SY, Nguyen LK, Cotton TR, Chüeh AC, Lim Kam Sian TCC, Stratton MM, Ellisdon AM, Daly RJ. Activation of CAMK2 by pseudokinase PEAK1 represents a targetable pathway in triple negative breast cancer. Nat Commun 2025; 16:1871. [PMID: 39984440 PMCID: PMC11845518 DOI: 10.1038/s41467-025-57046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025] Open
Abstract
The PEAK family of pseudokinases, comprising PEAK1-3, play oncogenic roles in several poor prognosis human cancers, including triple negative breast cancer (TNBC). However, therapeutic targeting of pseudokinases is challenging due to their lack of catalytic activity. To address this, we screen for PEAK1 effectors and identify calcium/calmodulin-dependent protein kinase 2 (CAMK2)D and CAMK2G. PEAK1 promotes CAMK2 activation in TNBC cells via PLCγ1/Ca2+ signalling and direct binding to CAMK2. In turn, CAMK2 phosphorylates PEAK1 to enhance association with PEAK2, which is critical for PEAK1 oncogenic signalling. To achieve pharmacologic targeting of PEAK1/CAMK2, we repurpose RA306, a second generation CAMK2 inhibitor. RA306 inhibits PEAK1-enhanced migration and invasion of TNBC cells in vitro and significantly attenuates TNBC xenograft growth and metastasis in a manner mirrored by PEAK1 ablation. Overall, these studies establish PEAK1 as a critical cell signalling nexus that integrates Ca2+ and tyrosine kinase signals and identify CAMK2 as a therapeutically 'actionable' target downstream of PEAK1.
Collapse
Affiliation(s)
- Xue Yang
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Xiuquan Ma
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Tianyue Zhao
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - David R Croucher
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Elizabeth V Nguyen
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Kimberley C Clark
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Changyuan Hu
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Sharissa L Latham
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Charles Bayly-Jones
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Bao V Nguyen
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Srikanth Budnar
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Sung-Young Shin
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Lan K Nguyen
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, Australia
| | - Thomas R Cotton
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Anderly C Chüeh
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Terry C C Lim Kam Sian
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Andrew M Ellisdon
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Roger J Daly
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Alavi M, Roudi R, D'Angelo A, Sobhani N, Safari F. Current understanding of PEAK family members in regulation of cellular signaling pathways and cancer therapy. Mol Cell Biochem 2025:10.1007/s11010-025-05219-w. [PMID: 39922936 DOI: 10.1007/s11010-025-05219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/26/2025] [Indexed: 02/10/2025]
Abstract
Cancer evades therapy by multiple mechanisms, leading to uncontrolled cell growth and metastasis. Targeted therapies have shown promise in treating cancer by focusing on pathways within cancer cells. The PEAK family, comprising PEAK1 (SgK269), PEAK2 (SgK223/Pragmin), and the latest addition, PEAK3 (C19orf35), plays a crucial role in modulating cellular processes. Dysregulation and hyperactivity of these proteins, through overexpression or mutations, are associated with a wide range of cancers. This review delves into the different roles of the PEAK family members in regulating cell signaling pathways and highlights their potential in cancer therapy.
Collapse
Affiliation(s)
- Mana Alavi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | | | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| |
Collapse
|
3
|
Liu J, Luo D, Chen X, Liu J, Chen J, Shi M, Dong H, Xu Y, Wang X, Yu Z, Liu H, Feng Y. 4'-Demethylpodophyllotoxin functions as a mechanism-driven therapy by targeting the PI3K-AKT pathway in Colorectal cancer. Transl Oncol 2025; 51:102199. [PMID: 39631206 DOI: 10.1016/j.tranon.2024.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/24/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
The treatment of colorectal cancer (CRC) poses significant challenges in terms of drug resistance and poor prognosis, necessitating the exploration of effective therapeutic strategies. In this study, high-throughput drug screening was utilized to identify Chinese herbal medicines with notable therapeutic effects on CRC. Among the compounds identified, 4'-demethylpodophyllotoxin (DOP), a derivative of podophyllotoxin, emerged as a potent anti-cancer compound. DOP exhibited time- and dose-dependent growth inhibition on CRC cell lines and tumor organoids derived from patients. RNA-seq revealed that DOP activated the PI3K-AKT pathway, leading to tumor cell apoptosis and cell cycle arrest at the G2/M phase. Additionally, DOP induced DNA damage in CRC cells. To further validate its therapeutic efficacy in CRC, the DLD1-derived xenograft model demonstrated that DOP effectively suppressed CRC growth in vivo. In conclusion, these findings highlight the significant therapeutic potential of DOP as an anti-tumor drug for treating CRC, thereby opening new avenues for investigating Podophyllotoxin derivatives in this specific field.
Collapse
Affiliation(s)
- Jun Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Dandong Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Department of General Surgery (Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Xiaochuan Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Jiaqi Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Junxiong Chen
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Mengchen Shi
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Haiyan Dong
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Yucheng Xu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Department of General Surgery (Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Xinyou Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Department of General Surgery (Stomach Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Zhaoliang Yu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China.
| | - Yanchun Feng
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China.
| |
Collapse
|
4
|
Brock K, Alpha KM, Brennan G, De Jong EP, Luke E, Turner CE. A comparative analysis of paxillin and Hic-5 proximity interactomes. Cytoskeleton (Hoboken) 2025; 82:12-31. [PMID: 38801098 PMCID: PMC11599474 DOI: 10.1002/cm.21878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Focal adhesions serve as structural and signaling hubs, facilitating bidirectional communication at the cell-extracellular matrix interface. Paxillin and the related Hic-5 (TGFβ1i1) are adaptor/scaffold proteins that recruit numerous structural and regulatory proteins to focal adhesions, where they perform both overlapping and discrete functions. In this study, paxillin and Hic-5 were expressed in U2OS osteosarcoma cells as biotin ligase (BioID2) fusion proteins and used as bait proteins for proximity-dependent biotinylation in order to directly compare their respective interactomes. The fusion proteins localized to both focal adhesions and the centrosome, resulting in biotinylation of components of each of these structures. Biotinylated proteins were purified and analyzed by mass spectrometry. The list of proximity interactors for paxillin and Hic-5 comprised numerous shared core focal adhesion proteins that likely contribute to their similar functions in cell adhesion and migration, as well as proteins unique to paxillin and Hic-5 that have been previously localized to focal adhesions, the centrosome, or the nucleus. Western blotting confirmed biotinylation and enrichment of FAK and vinculin, known interactors of Hic-5 and paxillin, as well as several potentially unique proximity interactors of Hic-5 and paxillin, including septin 7 and ponsin, respectively. Further investigation into the functional relationship between the unique interactors and Hic-5 or paxillin may yield novel insights into their distinct roles in cell migration.
Collapse
Affiliation(s)
- Katia Brock
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Kyle M. Alpha
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Grant Brennan
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Ebbing P. De Jong
- Proteomics Core facility, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Elizabeth Luke
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Christopher E. Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
5
|
Zhao X, Li Y, Yang S, Chen Y, Wu K, Geng J, Liu P, Wang Z, Dai H, Wang C. Orderly Regulation of Macrophages and Fibroblasts by Axl in Bleomycin-Induced Pulmonary Fibrosis in Mice. J Cell Mol Med 2025; 29:e70321. [PMID: 39779468 PMCID: PMC11710931 DOI: 10.1111/jcmm.70321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Pulmonary fibrosis is a pathological manifestation that occurs upon lung injury and subsequence aberrant repair with poor prognosis. However, current treatment is limited and does not distinguish different disease stages. Here, we aimed to study the differential functions of Axl, a receptor tyrosine kinase expressing on both macrophages and fibroblasts, in the whole course of pulmonary fibrosis. We used mice with Axl total knockout, conditionally knockout in macrophages or fibroblasts, or treating with Axl inhibitors in inflammation or fibrosis stages to examine the effect of temporary dysfunction of Axl on bleomycin (BLM)-induced pulmonary fibrosis. Primary bone marrow-derived monocytes and primary fibroblasts from mice were used for cell-type-specific studies. Lung tissue and plasma samples were collected from idiopathic pulmonary fibrosis (IPF) patients and healthy controls to assess the Axl levels. We found that Axl inhibited the M1 polarisation of macrophages; inhibition of Axl during acute phase exacerbated inflammatory response and subsequent pulmonary fibrosis. On the other hand, Axl promoted the proliferation and invasion of the fibroblasts, partially by accelerating the focal adhesion turnover; inhibiting Axl during the fibrotic phase significantly alleviated pulmonary fibrosis. Consistently, phosphorylated Axl levels increased in fibrotic foci in the lung sample of IPF patients. In contrast, the soluble Axl (sAxl) level decreased in their plasma as compared to healthy controls. These results indicate that Axl may sequentially and differentially regulate macrophages and fibroblasts in acute and fibrosis phases, implying the necessity of a stage-specific treatment for pulmonary fibrosis. In addition, the activated Axl on fibroblasts may be reflected by the lowered plasma sAxl level, which may act as a biomarker for IPF. Trial Registration: ClinicalTrials.gov identifier: NCT03730337.
Collapse
Affiliation(s)
- Xinyu Zhao
- The Second Affiliated Hospital of Harbin Medical UniversityHeilongjiangChina
| | - Yupeng Li
- The Second Affiliated Hospital of Harbin Medical UniversityHeilongjiangChina
| | - Shengnan Yang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory DiseasesChina‐Japan Friendship HospitalBeijingChina
- National Center for Respiratory Medicine, Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Department of Respiratory and Critical Care MedicineTianjin Chest HospitalChina
| | | | - Kaiwei Wu
- Peking Union Medical CollegeBeijingChina
| | - Jing Geng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory DiseasesChina‐Japan Friendship HospitalBeijingChina
- National Center for Respiratory Medicine, Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
| | - Peipei Liu
- Department of Medicine and Women's Guild Lung InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Zai Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory DiseasesChina‐Japan Friendship HospitalBeijingChina
- National Center for Respiratory Medicine, Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Institute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijingChina
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory DiseasesChina‐Japan Friendship HospitalBeijingChina
- National Center for Respiratory Medicine, Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
| | - Chen Wang
- The Second Affiliated Hospital of Harbin Medical UniversityHeilongjiangChina
| |
Collapse
|
6
|
Rotti PG, Yi Y, Gasser G, Yuan F, Sun X, Apak-Evans I, Wu P, Liu G, Choi S, Reeves R, Scioneaux AE, Zhang Y, Winter M, Liang B, Cunicelli N, Uc A, Norris AW, Sussel L, Wells KL, Engelhardt JF. CFTR represses a PDX1 axis to govern pancreatic ductal cell fate. iScience 2024; 27:111393. [PMID: 39687022 PMCID: PMC11647141 DOI: 10.1016/j.isci.2024.111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammation, acinar atrophy, and ductal hyperplasia drive pancreatic remodeling in newborn cystic fibrosis (CF) ferrets lacking a functional cystic fibrosis conductance regulator (CFTR) channel. These changes are associated with a transient phase of glucose intolerance that involves islet destruction and subsequent regeneration near hyperplastic ducts. The phenotypic changes in CF ductal epithelium and their impact on islet function are unknown. Using bulk RNA sequencing (RNA-seq), single-cell RNA sequencing (scRNA-seq), and assay for transposase-accessible chromatin using sequencing (ATAC-seq) on CF ferret models, we demonstrate that ductal CFTR protein constrains PDX1 expression by maintaining PTEN and GSK3β activation. In the absence of CFTR protein, centroacinar cells adopted a bipotent progenitor-like state associated with enhanced WNT/β-Catenin, transforming growth factor β (TGF-β), and AKT signaling. We show that the level of CFTR protein, not its channel function, regulates PDX1 expression. Thus, this study has discovered a cell-autonomous CFTR-dependent mechanism by which CFTR mutations that produced little to no protein could impact pancreatic exocrine/endocrine remodeling in people with CF.
Collapse
Affiliation(s)
| | - Yaling Yi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Grace Gasser
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Feng Yuan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Idil Apak-Evans
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Peipei Wu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Guangming Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Soon Choi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rosie Reeves
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Attilina E. Scioneaux
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yulong Zhang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael Winter
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Bo Liang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nathan Cunicelli
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Aliye Uc
- Stead Family Department of Pediatrics, Carver College of Medicine, Iowa City, IA, USA
| | - Andrew W. Norris
- Center for Gene Therapy, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lori Sussel
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz, Medical Campus, Aurora, CO, USA
| | - Kristen L. Wells
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz, Medical Campus, Aurora, CO, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
7
|
Zuidema A, Atherton P, van der Poel S, Kreft M, Song JY, Bierbooms M, Verhoeven S, Papagianni C, Kroese L, Ali RB, Huijbers I, Carvalho B, Sonnenberg A. Colorectal carcinoma progression is not influenced by the pseudokinase PEAK1. Sci Rep 2024; 14:27663. [PMID: 39532961 PMCID: PMC11557890 DOI: 10.1038/s41598-024-78776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The scaffold protein PEAK1 acts downstream of integrin adhesion complexes and the epidermal growth factor receptor, orchestrating signaling events that control cell proliferation and cytoskeletal remodeling. In this study we investigated the role of PEAK1 in colorectal carcinoma (CRC) progression using various in vitro and in vivo models to replicate the stepwise pathogenesis of CRC. While we observed a cell-type specific role for PEAK1 in the proliferation and in human CRC cell lines in vitro, our in vivo experiments using different CRC mouse models driven by loss of Apc, with or without oncogenic Kras or Pten loss suggest that PEAK1 does not significantly contribute to tumor formation in vivo. However, the survival time of Peak1-/- mice in the Apcfl/+ model appeared to be slightly increased. Furthermore, PEAK1 promotes EGF-induced Caco-2 cell proliferation and regulates spheroid polarization and lumenization. Given that the Caco-2 cells harbor mutations in the tumor suppressors APC and β-CATENIN, but not in other tumor suppressors or in proto-oncogenes, we conclude that the PEAK1's impact on colon carcinogenesis is limited, potentially playing a role in the initial stage of the adenoma to carcinoma progression.
Collapse
Affiliation(s)
- Alba Zuidema
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Oncological Urology and Laboratory Translational Oncology, Division of Imaging and Oncology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Paul Atherton
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Molecular and Clinical Cancer Medicine Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, L69 7BE, Liverpool, UK
| | - Sabine van der Poel
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Maaike Kreft
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Martine Bierbooms
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Sophie Verhoeven
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Chrysoula Papagianni
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Lona Kroese
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Rahmen Bin Ali
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ivo Huijbers
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Beatriz Carvalho
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Vandewalle N, De Beule N, De Becker A, De Bruyne E, Menu E, Vanderkerken K, Breckpot K, Devoogdt N, De Veirman K. AXL as immune regulator and therapeutic target in Acute Myeloid Leukemia: from current progress to novel strategies. Exp Hematol Oncol 2024; 13:99. [PMID: 39367387 PMCID: PMC11453060 DOI: 10.1186/s40164-024-00566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Until recently, treatment options for patients diagnosed with Acute Myeloid Leukemia (AML) were limited and predominantly relied on various combinations, dosages, or schedules of traditional chemotherapeutic agents. Patients with advanced age, relapsed/refractory disease or comorbidities were often left without effective treatment options. Novel advances in the understanding of leukemogenesis at the molecular and genetic levels, alongside recent progress in drug development, have resulted in the emergence of novel therapeutic agents and strategies for AML patients. Among these innovations, the receptor tyrosine kinase AXL has been established as a promising therapeutic target for AML. AXL is a key regulator of several cellular functions, including epithelial-to-mesenchymal transition in tumor cells, immune regulation, apoptosis, angiogenesis and the development of chemoresistance. Clinical studies of AXL inhibitors, as single agents and in combination therapy, have demonstrated promising efficacy in treating AML. Additionally, novel AXL-targeted therapies, such as AXL-specific antibodies or antibody fragments, present potential solutions to overcome the limitations associated with traditional small-molecule AXL inhibitors or multikinase inhibitors. This review provides a comprehensive overview of the structure and biological functions of AXL under normal physiological conditions, including its role in immune regulation. We also summarize AXL's involvement in cancer, with a specific emphasis on its role in the pathogenesis of AML, its contribution to immune evasion and drug resistance. Moreover, we discuss the AXL inhibitors currently undergoing (pre)clinical evaluation for the treatment of AML.
Collapse
Affiliation(s)
- Niels Vandewalle
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Nathan De Beule
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Hematology Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Ann De Becker
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Hematology Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Eline Menu
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Karin Vanderkerken
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center (TORC), Team Laboratory of Cellular and Molecular Therapy (LMCT), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Nick Devoogdt
- Laboratory of Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Kim De Veirman
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium.
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Hematology Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, 1090, Belgium.
| |
Collapse
|
9
|
Schott C, Germain A, Lacombe J, Pata M, Faubert D, Boulais J, Carmeliet P, Côté JF, Ferron M. GAS6 and AXL Promote Insulin Resistance by Rewiring Insulin Signaling and Increasing Insulin Receptor Trafficking to Endosomes. Diabetes 2024; 73:1648-1661. [PMID: 39046834 DOI: 10.2337/db23-0802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Growth arrest-specific 6 (GAS6) is a secreted protein that acts as a ligand for TAM receptors (TYRO3, AXL, and MERTK). In humans, GAS6 circulating levels and genetic variations in GAS6 are associated with hyperglycemia and increased risk of type 2 diabetes. However, the mechanisms by which GAS6 influences glucose metabolism are not understood. Here, we show that Gas6 deficiency in mice increases insulin sensitivity and protects from diet-induced insulin resistance. Conversely, increasing GAS6 circulating levels is sufficient to reduce insulin sensitivity in vivo. GAS6 inhibits the activation of the insulin receptor (IR) and reduces insulin response in muscle cells in vitro and in vivo. Mechanistically, AXL and IR form a complex, while GAS6 reprograms signaling pathways downstream of IR. This results in increased IR endocytosis following insulin treatment. This study contributes to a better understanding of the cellular and molecular mechanisms by which GAS6 and AXL influence insulin sensitivity. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Céline Schott
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Programme de Biologie Moléculaire, Université de Montréal, Montreal, Quebec, Canada
| | - Amélie Germain
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Programme de Biologie Moléculaire, Université de Montréal, Montreal, Quebec, Canada
| | - Julie Lacombe
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Monica Pata
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Denis Faubert
- Mass Spectrometry and Proteomics Platform, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Jonathan Boulais
- Cytoskeletal Organization and Cell Migration Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute, KU Leuven, VIB Center for Cancer Biology, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jean-François Côté
- Programme de Biologie Moléculaire, Université de Montréal, Montreal, Quebec, Canada
- Cytoskeletal Organization and Cell Migration Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Département de Médicine, Université de Montréal, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Mathieu Ferron
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Programme de Biologie Moléculaire, Université de Montréal, Montreal, Quebec, Canada
- Département de Médicine, Université de Montréal, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Wu Y, Xue L, Xiong W, Li H, Wu J, Xie W, Long Y, Liu Y, Luo C. MicroRNA-505-3p mediates cell motility of epithelial ovarian cancer via suppressing PEAK1 expression. J Biochem Mol Toxicol 2024; 38:e23767. [PMID: 39003575 DOI: 10.1002/jbt.23767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
MicroRNAs (miRNAs) are a class of small RNA genes with important roles in cancer biology regulation. There are considerable studies regarding the roles of microRNA-505-3p (miR-505-3p) in cancer development and progression, but the function of miR-505-3p in epithelial ovarian cancer (EOC) has not been fully clarified. Comparative analysis of miRNA expression data set was used to select differentially expressed miRNAs. Quantitative real-time polymerase chain reaction was applied to detect expression levels of RNAs, while western blot and immunofluorescence staining were performed to detect expression levels of proteins of interest. The motility of EOC cells was assessed by wound healing and transwell assays. The binding and regulating relationship between miRNA and its direct target gene was investigated by dual-luciferase assay. Our results show that miR-505-3p was upregulated in recurrent EOC, which significantly inhibits EOC cell motility via modulating cell epithelial-mesenchymal transition. Furthermore, our results indicated that PEAK1 expression was inhibited by direct binding of miR-505-3p into its 3'-URT in EOC cells. Importantly, knockdown of PEAK1 attenuated the effect of mi-505-3p inhibitor on EOC cell migration and invasion. In conclusion, our findings indicate that miRNA-505-3p inhibits EOC cell motility by targeting PEAK1.
Collapse
Affiliation(s)
- Yanni Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lei Xue
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Haiyang Li
- Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Jiao Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Xie
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ying Long
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ying Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chenhui Luo
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Yu L, Deng Y, Wang X, Santos C, Davis IJ, Earp HS, Liu P. Co-targeting JAK1/STAT6/GAS6/TAM signaling improves chemotherapy efficacy in Ewing sarcoma. Nat Commun 2024; 15:5292. [PMID: 38906855 PMCID: PMC11192891 DOI: 10.1038/s41467-024-49667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Ewing sarcoma is a pediatric bone and soft tissue tumor treated with chemotherapy, radiation, and surgery. Despite intensive multimodality therapy, ~50% patients eventually relapse and die of the disease due to chemoresistance. Here, using phospho-profiling, we find Ewing sarcoma cells treated with chemotherapeutic agents activate TAM (TYRO3, AXL, MERTK) kinases to augment Akt and ERK signaling facilitating chemoresistance. Mechanistically, chemotherapy-induced JAK1-SQ phosphorylation releases JAK1 pseudokinase domain inhibition allowing for JAK1 activation. This alternative JAK1 activation mechanism leads to STAT6 nuclear translocation triggering transcription and secretion of the TAM kinase ligand GAS6 with autocrine/paracrine consequences. Importantly, pharmacological inhibition of either JAK1 by filgotinib or TAM kinases by UNC2025 sensitizes Ewing sarcoma to chemotherapy in vitro and in vivo. Excitingly, the TAM kinase inhibitor MRX-2843 currently in human clinical trials to treat AML and advanced solid tumors, enhances chemotherapy efficacy to further suppress Ewing sarcoma tumor growth in vivo. Our findings reveal an Ewing sarcoma chemoresistance mechanism with an immediate translational value.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yu Deng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaodong Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Charlene Santos
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Medicine and Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
12
|
Safari F, Ansari Dogaheh F, Dadashi H. Evaluation of SgK269 expression in colon cancer patients and the effects of hAMSCs secretome on tumor invasion through SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2 signaling pathway in HT-29 colon cancer cells. 3 Biotech 2023; 13:346. [PMID: 37744286 PMCID: PMC10516828 DOI: 10.1007/s13205-023-03763-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 08/31/2023] [Indexed: 09/26/2023] Open
Abstract
Colon cancer is the fifth leading cause of cancer-related deaths worldwide. Stem cells have unique characteristics and are considered as a novel therapeutic platform for cancer. Sugen Kinase 269 (SgK269) is considered as an oncogenic scaffolding pseudo kinase which governs the rearranging of the cytoskeleton, cellular motility, and invasion. The aim of this study is to evaluate the expression of SgK269 in colon cancer patients and explore the therapeutic effects of human amniotic mesenchymal stromal cells (hAMSCs) on invasion and proliferation of colon cancer cells (HT-29) through analyzing SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2 signaling pathway. In this regard, we collected 30 samples from colon cancer patients and evaluated SgK269 expression using quantitative real-time PCR (qRT-PCR). Next, we employed a co-culture system using Transwell 6-well plates and after 72 h, tumor growth promotion and invasion were analyzed in hAMSCs-treated HT-29 cells through SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2/Rac signaling pathway using qRT-PCR, western blot method, MTT assay, wound healing assay, and DAPI staining. Our results showed upregulation of SgK269 in colon cancer patients. Treatment of HT-29 colon cancer cells with hAMSCs secretome can inhibit SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2/Rac signaling pathway and the resulting suppression of cell invasion and proliferation. Our results suggest that SgK269 is an important target in colon cancer therapy and MSCs secretome may be an effective therapeutic approach to inhibit colon cancer cell invasion and proliferation through SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2/Rac signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | | | - Haniyeh Dadashi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
13
|
Zhou M, Ma Y, Rock EC, Chiang CC, Luker KE, Luker GD, Chen YC. Microfluidic single-cell migration chip reveals insights into the impact of extracellular matrices on cell movement. LAB ON A CHIP 2023; 23:4619-4635. [PMID: 37750357 PMCID: PMC10615797 DOI: 10.1039/d3lc00651d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cell migration is a complex process that plays a crucial role in normal physiology and pathologies such as cancer, autoimmune diseases, and mental disorders. Conventional cell migration assays face limitations in tracking a large number of individual migrating cells. To address this challenge, we have developed a high-throughput microfluidic cell migration chip, which seamlessly integrates robotic liquid handling and computer vision to swiftly monitor the movement of 3200 individual cells, providing unparalleled single-cell resolution for discerning distinct behaviors of the fast-moving cell population. This study focuses on the ECM's role in regulating cellular migration, utilizing this cutting-edge microfluidic technology to investigate the impact of ten different ECMs on triple-negative breast cancer cell lines. We found that collagen IV, collagen III, and collagen I coatings were the top enhancers of cell movement. Combining these ECMs increased cell motility, but the effect was sub-additive. Furthermore, we examined 87 compounds and found that while some compounds inhibited migration on all substrates, significantly distinct effects on differently coated substrates were observed, underscoring the importance of considering ECM coating. We also utilized cells expressing a fluorescent actin reporter and observed distinct actin structures in ECM-interacting cells. ScRNA-Seq analysis revealed that ECM coatings induced EMT and enhanced cell migration. Finally, we identified genes that were particularly up-regulated by collagen IV and the selective inhibitors successfully blocked cell migration on collagen IV. Overall, the study provides insights into the impact of various ECMs on cell migration and dynamics of cell movement with implications for developing therapeutic strategies to combat diseases related to cell motility.
Collapse
Affiliation(s)
- Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Edwin C Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Gary D Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI 48109-2099, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
14
|
Creixell M, Taylor SD, Gerritsen J, Bae SY, Jiang M, Augustin T, Loui M, Boixo C, Creixell P, White FM, Meyer AS. Dissecting signaling regulators driving AXL-mediated bypass resistance and associated phenotypes by phosphosite perturbations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563266. [PMID: 37961516 PMCID: PMC10634689 DOI: 10.1101/2023.10.20.563266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Receptor tyrosine kinase (RTK)-targeted therapies are often effective but invariably limited by drug resistance. A major mechanism of acquired resistance involves "bypass" switching to alternative pathways driven by non-targeted RTKs that restore proliferation. One such RTK is AXL whose overexpression, frequently observed in bypass resistant tumors, drives both cell survival and associated malignant phenotypes such as epithelial-to-mesenchymal (EMT) transition and migration. However, the signaling molecules and pathways eliciting these responses have remained elusive. To explore these coordinated effects, we generated a panel of mutant lung adenocarcinoma PC9 cell lines in which each AXL intracellular tyrosine residue was mutated to phenylalanine. By integrating measurements of phosphorylation signaling and other phenotypic changes associated with resistance through multivariate modeling, we mapped signaling perturbations to specific resistant phenotypes. Our results suggest that AXL signaling can be summarized into two clusters associated with progressive disease and poor clinical outcomes in lung cancer patients. These clusters displayed favorable Abl1 and SFK motifs and their phosphorylation was consistently decreased by dasatinib. High-throughput kinase specificity profiling showed that AXL likely activates the SFK cluster through FAK1 which is known to complex with Src. Moreover, the SFK cluster overlapped with a previously established focal adhesion kinase (FAK1) signature conferring EMT-mediated erlotinib resistance in lung cancer cells. Finally, we show that downstream of this kinase signaling, AXL and YAP form a positive feedback loop that sustains drug tolerant persister cells. Altogether, this work demonstrates an approach for dissecting signaling regulators by which AXL drives erlotinib resistance-associated phenotypic changes.
Collapse
Affiliation(s)
- Marc Creixell
- Department of Bioengineering, University of California Los Angeles; Jonsson Comprehensive Cancer Center, University of California Los Angeles
| | - Scott D. Taylor
- Department of Bioengineering, University of California Los Angeles; Jonsson Comprehensive Cancer Center, University of California Los Angeles
| | - Jacqueline Gerritsen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Song Yi Bae
- Department of Bioengineering, University of California Los Angeles; Jonsson Comprehensive Cancer Center, University of California Los Angeles
| | - Mingxuan Jiang
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, United Kingdom
| | - Teresa Augustin
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, United Kingdom
| | - Michelle Loui
- Department of Bioengineering, University of California Los Angeles; Jonsson Comprehensive Cancer Center, University of California Los Angeles
| | - Carmen Boixo
- Department of Bioengineering, University of California Los Angeles; Jonsson Comprehensive Cancer Center, University of California Los Angeles
| | - Pau Creixell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, United Kingdom
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Aaron S Meyer
- Department of Bioengineering, University of California Los Angeles; Jonsson Comprehensive Cancer Center, University of California Los Angeles
| |
Collapse
|
15
|
Roy MJ, Surudoi MG, Kropp A, Hou J, Dai W, Hardy JM, Liang LY, Cotton TR, Lechtenberg BC, Dite TA, Ma X, Daly RJ, Patel O, Lucet IS. Structural mapping of PEAK pseudokinase interactions identifies 14-3-3 as a molecular switch for PEAK3 signaling. Nat Commun 2023; 14:3542. [PMID: 37336884 DOI: 10.1038/s41467-023-38869-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/16/2023] [Indexed: 06/21/2023] Open
Abstract
PEAK pseudokinases regulate cell migration, invasion and proliferation by recruiting key signaling proteins to the cytoskeleton. Despite lacking catalytic activity, alteration in their expression level is associated with several aggressive cancers. Here, we elucidate the molecular details of key PEAK signaling interactions with the adapter proteins CrkII and Grb2 and the scaffold protein 14-3-3. Our findings rationalize why the dimerization of PEAK proteins has a crucial function in signal transduction and provide biophysical and structural data to unravel binding specificity within the PEAK interactome. We identify a conserved high affinity 14-3-3 motif on PEAK3 and demonstrate its role as a molecular switch to regulate CrkII binding and signaling via Grb2. Together, our studies provide a detailed structural snapshot of PEAK interaction networks and further elucidate how PEAK proteins, especially PEAK3, act as dynamic scaffolds that exploit adapter proteins to control signal transduction in cell growth/motility and cancer.
Collapse
Affiliation(s)
- Michael J Roy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Minglyanna G Surudoi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ashleigh Kropp
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jianmei Hou
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Weiwen Dai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Joshua M Hardy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Lung-Yu Liang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Thomas R Cotton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Bernhard C Lechtenberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Toby A Dite
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Xiuquan Ma
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Onisha Patel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
16
|
Serwe G, Kachaner D, Gagnon J, Plutoni C, Lajoie D, Duramé E, Sahmi M, Garrido D, Lefrançois M, Arseneault G, Saba-El-Leil MK, Meloche S, Emery G, Therrien M. CNK2 promotes cancer cell motility by mediating ARF6 activation downstream of AXL signalling. Nat Commun 2023; 14:3560. [PMID: 37322019 PMCID: PMC10272126 DOI: 10.1038/s41467-023-39281-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Cell motility is a critical feature of invasive tumour cells that is governed by complex signal transduction events. Particularly, the underlying mechanisms that bridge extracellular stimuli to the molecular machinery driving motility remain partially understood. Here, we show that the scaffold protein CNK2 promotes cancer cell migration by coupling the pro-metastatic receptor tyrosine kinase AXL to downstream activation of ARF6 GTPase. Mechanistically, AXL signalling induces PI3K-dependent recruitment of CNK2 to the plasma membrane. In turn, CNK2 stimulates ARF6 by associating with cytohesin ARF GEFs and with a novel adaptor protein called SAMD12. ARF6-GTP then controls motile forces by coordinating the respective activation and inhibition of RAC1 and RHOA GTPases. Significantly, genetic ablation of CNK2 or SAMD12 reduces metastasis in a mouse xenograft model. Together, this work identifies CNK2 and its partner SAMD12 as key components of a novel pro-motility pathway in cancer cells, which could be targeted in metastasis.
Collapse
Affiliation(s)
- Guillaume Serwe
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - David Kachaner
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jessica Gagnon
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Cédric Plutoni
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Driss Lajoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Eloïse Duramé
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Malha Sahmi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Damien Garrido
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Martin Lefrançois
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Geneviève Arseneault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Marc K Saba-El-Leil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Gregory Emery
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
17
|
Turkalj S, Radtke FA, Vyas P. An Overview of Targeted Therapies in Acute Myeloid Leukemia. Hemasphere 2023; 7:e914. [PMID: 37304938 PMCID: PMC10256410 DOI: 10.1097/hs9.0000000000000914] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 06/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most aggressive adult leukemia, characterized by clonal differentiation arrest of progenitor or precursor hematopoietic cells. Intense preclinical and clinical research has led to regulatory approval of several targeted therapeutics, administered either as single agents or as combination therapies. However, the majority of patients still face a poor prognosis and disease relapse frequently occurs due to selection of therapy-resistant clones. Hence, more effective novel therapies, most likely as innovative, rational combination therapies, are urgently needed. Chromosomal aberrations, gene mutations, and epigenetic alterations drive AML pathogenesis but concurrently provide vulnerabilities to specifically target leukemic cells. Other molecules, either aberrantly active and/or overexpressed in leukemic stem cells, may also be leveraged for therapeutic benefit. This concise review of targeted therapies for AML treatment, which are either approved or are being actively investigated in clinical trials or recent preclinical studies, provides a flavor of the direction of travel, but also highlights the current challenges in AML treatment.
Collapse
Affiliation(s)
- Sven Turkalj
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Felix A. Radtke
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Paresh Vyas
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Hematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
18
|
Banushi B, Joseph SR, Lum B, Lee JJ, Simpson F. Endocytosis in cancer and cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00574-6. [PMID: 37217781 DOI: 10.1038/s41568-023-00574-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Endocytosis is a complex process whereby cell surface proteins, lipids and fluid from the extracellular environment are packaged, sorted and internalized into cells. Endocytosis is also a mechanism of drug internalization into cells. There are multiple routes of endocytosis that determine the fate of molecules, from degradation in the lysosomes to recycling back to the plasma membrane. The overall rates of endocytosis and temporal regulation of molecules transiting through endocytic pathways are also intricately linked with signalling outcomes. This process relies on an array of factors, such as intrinsic amino acid motifs and post-translational modifications. Endocytosis is frequently disrupted in cancer. These disruptions lead to inappropriate retention of receptor tyrosine kinases on the tumour cell membrane, changes in the recycling of oncogenic molecules, defective signalling feedback loops and loss of cell polarity. In the past decade, endocytosis has emerged as a pivotal regulator of nutrient scavenging, response to and regulation of immune surveillance and tumour immune evasion, tumour metastasis and therapeutic drug delivery. This Review summarizes and integrates these advances into the understanding of endocytosis in cancer. The potential to regulate these pathways in the clinic to improve cancer therapy is also discussed.
Collapse
Affiliation(s)
- Blerida Banushi
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Shannon R Joseph
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Benedict Lum
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Jason J Lee
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Fiona Simpson
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
19
|
He R, Song Z, Bai Y, He S, Huang J, Wang Y, Zhou F, Huang W, Guo J, Wang Z, Tu ZC, Ren X, Zhang Z, Xu J, Ding K. Discovery of AXL Degraders with Improved Potencies in Triple-Negative Breast Cancer (TNBC) Cells. J Med Chem 2023; 66:1873-1891. [PMID: 36695404 DOI: 10.1021/acs.jmedchem.2c01682] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AXL kinase is heavily involved in tumorigenesis, metastasis, and drug resistance of many cancers, and several AXL inhibitors are in clinical investigations. Recent studies demonstrated that the N-terminal distal region of AXL plays more important roles in cell invasiveness than its C-terminal kinase domain. Therefore, degradation of AXL may present a novel superior therapeutic approach than the kinase inhibitor therapy. Herein, we report the discovery of a series of new AXL PROTAC degraders. One representative compound 6n potently depletes AXL with a DC50 value of 5 nM in MDA-MB-231 TNBC cells. It also demonstrates significantly improved potencies against the AXL signaling activation, cell proliferation, migration and invasion of TNBC cells comparing with the corresponding kinase inhibitor. Moreover, the compound exhibits promising therapeutic potential both in patient-derived organoids and a xenograft mouse model of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Rui He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Panyu District, Guangzhou 510632, China
| | - Zhiqiang Song
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yu Bai
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Sheng He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Panyu District, Guangzhou 510632, China
| | - Jing Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Panyu District, Guangzhou 510632, China
| | - Yongxing Wang
- Livzon Research Institute, Livzon Pharmaceutical Group Inc., 38 Chuangye North Road, Jinwan District, Zhuhai 519000, China
| | - Fengtao Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Panyu District, Guangzhou 510632, China
| | - Weixue Huang
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Panyu District, Guangzhou 510632, China
| | - Zhen Wang
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zheng-Chao Tu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Panyu District, Guangzhou 510632, China
| | - Xiaomei Ren
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Panyu District, Guangzhou 510632, China
| | - Jian Xu
- Livzon Research Institute, Livzon Pharmaceutical Group Inc., 38 Chuangye North Road, Jinwan District, Zhuhai 519000, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Panyu District, Guangzhou 510632, China.,State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
20
|
Decoding molecular programs in melanoma brain metastases. Nat Commun 2022; 13:7304. [PMID: 36435874 PMCID: PMC9701224 DOI: 10.1038/s41467-022-34899-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/07/2022] [Indexed: 11/28/2022] Open
Abstract
Melanoma brain metastases (MBM) variably respond to therapeutic interventions; thus determining patient's prognosis. However, the mechanisms that govern therapy response are poorly understood. Here, we use a multi-OMICS approach and targeted sequencing (TargetSeq) to unravel the programs that potentially control the development of progressive intracranial disease. Molecularly, the expression of E-cadherin (Ecad) or NGFR, the BRAF mutation state and level of immune cell infiltration subdivides tumors into proliferative/pigmented and invasive/stem-like/therapy-resistant irrespective of the intracranial location. The analysis of MAPK inhibitor-naive and refractory MBM reveals switching from Ecad-associated into NGFR-associated programs during progression. NGFR-associated programs control cell migration and proliferation via downstream transcription factors such as SOX4. Moreover, global methylome profiling uncovers 46 differentially methylated regions that discriminate BRAFmut and wildtype MBM. In summary, we propose that the expression of Ecad and NGFR sub- classifies MBM and suggest that the Ecad-to-NGFR phenotype switch is a rate-limiting process which potentially indicates drug-response and intracranial progression states in melanoma patients.
Collapse
|
21
|
Cifuentes-Bernal AM, Pham VVH, Li X, Liu L, Li J, Duy Le T. Dynamic cancer drivers: a causal approach for cancer driver discovery based on bio-pathological trajectories. Brief Funct Genomics 2022; 21:455-465. [PMID: 36124841 PMCID: PMC10467634 DOI: 10.1093/bfgp/elac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022] Open
Abstract
The traditional way for discovering genes which drive cancer (namely cancer drivers) neglects the dynamic information of cancer development, even though it is well known that cancer progresses dynamically. To enhance cancer driver discovery, we expand cancer driver concept to dynamic cancer driver as a gene driving one or more bio-pathological transitions during cancer progression. Our method refers to the fact that cancer should not be considered as a single process but a compendium of altered biological processes causing the disease to develop over time. Reciprocally, different drivers of cancer can potentially be discovered by analysing different bio-pathological pathways. We propose a novel approach for causal inference of genes driving one or more core processes during cancer development (i.e. dynamic cancer driver). We use the concept of pseudotime for inferring the latent progression of samples along a biological transition during cancer and identifying a critical event when such a process is significantly deviated from normal to carcinogenic. We infer driver genes by assessing the causal effect they have on the process after such a critical event. We have applied our method to single-cell and bulk sequencing datasets of breast cancer. The evaluation results show that our method outperforms well-recognized cancer driver inference methods. These results suggest that including information of the underlying dynamics of cancer improves the inference process (in comparison with using static data), and allows us to discover different sets of driver genes from different processes in cancer. R scripts and datasets can be found at https://github.com/AndresMCB/DynamicCancerDriver.
Collapse
Affiliation(s)
- Andres M Cifuentes-Bernal
- UniSA STEM Unit, University of South Australia,
Mawson Lakes Blvd, 5095, South Australia , Australia
| | - Vu V H Pham
- UniSA STEM Unit, University of South Australia,
Mawson Lakes Blvd, 5095, South Australia , Australia
| | - Xiaomei Li
- UniSA STEM Unit, University of South Australia,
Mawson Lakes Blvd, 5095, South Australia , Australia
| | - Lin Liu
- UniSA STEM Unit, University of South Australia,
Mawson Lakes Blvd, 5095, South Australia , Australia
| | - Jiuyong Li
- UniSA STEM Unit, University of South Australia,
Mawson Lakes Blvd, 5095, South Australia , Australia
| | - Thuc Duy Le
- UniSA STEM Unit, University of South Australia,
Mawson Lakes Blvd, 5095, South Australia , Australia
| |
Collapse
|
22
|
Zhu W, Qian W, Liao W, Huang X, Xu J, Qu W, Xue J, Feng F, Liu W, Liu F, Han L. Non-Invasive and Real-Time Monitoring of the Breast Cancer Metastasis Degree via Metabolomics. Cancers (Basel) 2022; 14:cancers14225589. [PMID: 36428687 PMCID: PMC9688400 DOI: 10.3390/cancers14225589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer (BC) is a serious threat to women's health and metastasis is the major cause of BC-associated mortality. Various techniques are currently used to preoperatively describe the metastatic status of tumors, based on which a comprehensive treatment protocol was determined. However, accurately staging a tumor before surgery remains a challenge, which may lead to the miss of optimal treatment options. More severely, the failure to detect and remove occult micrometastases often causes tumor recurrences. There is an urgent need to develop a more precise and non-invasive strategy for the detection of the tumor metastasis in lymph nodes and distant organs. Based on the facts that tumor metastasis is closely related to the primary tumor microenvironment (TME) evolutions and that metabolomics profiling of the circulatory system can precisely reflect subtle changes within TME, we suppose whether metabolomic technology can be used to achieve non-invasive and real-time monitoring of BC metastatic status. In this study, the metastasis status of BC mouse models with different tumor-bearing times was firstly depicted to mimic clinical anatomic TNM staging system. Metabolomic profiling together with metastasis-related changes in TME among tumor-bearing mice with different metastatic status was conducted. A range of differential metabolites reflecting tumor metastatic states were screened and in vivo experiments proved that two main metastasis-driving factors in TME, TGF-β and hypoxia, were closely related to the regular changes of these metabolites. The differential metabolites level changes were also preliminarily confirmed in a limited number of clinical BC samples. Metabolite lysoPC (16:0) was found to be useful for clinical N stage diagnosis and the possible cause of its changes was analyzed by bioinformatics techniques.
Collapse
Affiliation(s)
- Wanfang Zhu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Wenxin Qian
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Wenting Liao
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoxian Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jiawen Xu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jingwei Xue
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an 271000, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
- School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
- Zhejiang Center for Safety Study of Drug Substances (Industrial Technology Innovation Platform), Hangzhou 310018, China
| | - Fulei Liu
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an 271000, China
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an 271000, China
- Correspondence: (F.L.); (L.H.)
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (F.L.); (L.H.)
| |
Collapse
|
23
|
Welsh J, Bak MJ, Narvaez CJ. New insights into vitamin K biology with relevance to cancer. Trends Mol Med 2022; 28:864-881. [PMID: 36028390 PMCID: PMC9509427 DOI: 10.1016/j.molmed.2022.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/23/2022] [Accepted: 07/22/2022] [Indexed: 10/24/2022]
Abstract
Phylloquinone (vitamin K1) and menaquinones (vitamin K2 family) are essential for post-translational γ-carboxylation of a small number of proteins, including clotting factors. These modified proteins have now been implicated in diverse physiological and pathological processes including cancer. Vitamin K intake has been inversely associated with cancer incidence and mortality in observational studies. Newly discovered functions of vitamin K in cancer cells include activation of the steroid and xenobiotic receptor (SXR) and regulation of oxidative stress, apoptosis, and autophagy. We provide an update of vitamin K biology, non-canonical mechanisms of vitamin K actions, the potential functions of vitamin K-dependent proteins in cancer, and observational trials on vitamin K intake and cancer.
Collapse
Affiliation(s)
- JoEllen Welsh
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA.
| | - Min Ji Bak
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| | - Carmen J Narvaez
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
24
|
Li J, Wang X, Chen L, Zhang J, Zhang Y, Ren X, Sun J, Fan X, Fan J, Li T, Tong L, Yi L, Chen L, Liu J, Shang G, Ren X, Zhang H, Yu S, Ming H, Huang Q, Dong J, Zhang C, Yang X. TMEM158 promotes the proliferation and migration of glioma cells via STAT3 signaling in glioblastomas. Cancer Gene Ther 2022; 29:1117-1129. [PMID: 34992215 PMCID: PMC9395270 DOI: 10.1038/s41417-021-00414-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/20/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022]
Abstract
Glioblastoma is the most common primary intracranial malignant tumor in adults and has high morbidity and high mortality. TMEM158 has been reported to promote the progression of solid tumors. However, its potential role in glioma is still unclear. Here, we found that TMEM158 expression in human glioma cells in the tumor core was significantly higher than that in noncancerous cells at the tumor edge using bioinformatics analysis. Cancer cells in patients with primary GBMs harbored significantly higher expression of TMEM158 than those in patients with WHO grade II or III gliomas. Interestingly, regardless of tumor grading, human glioma samples that were IDH1-wild-type (IDH1-WT) exhibited higher expression of TMEM158 than those with IDH1-mutant (IDH1-Mut). We also illustrated that TMEM158 mRNA expression was correlated with poor overall survival in glioma patients. Furthermore, we demonstrated that silencing TMEM158 inhibited the proliferation of glioma cells and that TMEM158 overexpression promoted the migration and invasion of glioma cells by stimulating the EMT process. We found that the underlying mechanism involves STAT3 activation mediating TMEM158-driven glioma progression. In vivo results further confirmed the inhibitory effect of the TMEM158 downregulation on glioma growth. Collectively, these findings further our understanding of the oncogenic function of TMEM158 in gliomas, which represents a potential therapeutic target, especially for GBMs.
Collapse
Affiliation(s)
- Jiabo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xuya Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Lulu Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jinhao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Yiming Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xiao Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jinzhang Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xiaoguang Fan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jikang Fan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Luqing Tong
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jie Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Guanjie Shang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xiude Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Hao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Haolang Ming
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chen Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China.
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China.
| |
Collapse
|
25
|
Study on the Action Mechanism of the Yifei Jianpi Tongfu Formula in Treatment of Colorectal Cancer Lung Metastasis Based on Network Analysis, Molecular Docking, and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6229444. [PMID: 35942366 PMCID: PMC9356795 DOI: 10.1155/2022/6229444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
Abstract
Objective The lung is the second most common site of colorectal cancer (CRC) metastasis. This study aims to investigate the therapeutic effects and potential action mechanisms of Yifei Jianpi Tongfu formula (YJTF) in CRC lung metastasis in a comprehensive and systematic way by network analysis, molecular docking, and experimental verification. Methods The main ingredients in YJTF were screened from the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) and Traditional Chinese Medicine Integrated Database (TCMID), and the disease-related targets from the Online Mendelian Inheritance in Man (OMIM) and GeneCards and the compound-related targets from SwissTargetPrediction were collected. Then, Metascape was used for pathway annotation and enrichment analysis, and meanwhile, a protein-protein interaction (PPI) network was constructed. Molecular docking was carried out to investigate interactions between the active compounds and the potential targets. The in vivo effect of YJTF on CRC lung metastasis was observed in a tail vein injection mouse model. Results A total of 243 active compounds and 81 disease-related targets of YJTF were selected for analysis. The results of multiple network analysis showed that the core targets of YJTF were enriched onto various cancer-related pathways, especially focal adhesion and adherens junction. The results of molecular docking demonstrated that all core compounds (quercetin, kaempferol, luteolin, apigenin, and isorhamnetin) were capable of binding with AKT1, EGFR, SRC, ESR1, and PTGS2. Experimental validation in vivo demonstrated that YJTF combined with oxaliplatin could significantly reduce the number of lung metastases and improve the quality of life in mice. Further research suggested that YJTF inhibited CRC lung metastasis probably by modulating epithelial-to-mesenchymal transition (EMT). Conclusions According to the analysis, YJTF can be considered as an effective adjuvant therapy for CRC lung metastasis.
Collapse
|
26
|
Filhol O, Hesse AM, Bouin AP, Albigès-Rizo C, Jeanneret F, Battail C, Pflieger D, Cochet C. CK2β Is a Gatekeeper of Focal Adhesions Regulating Cell Spreading. Front Mol Biosci 2022; 9:900947. [PMID: 35847979 PMCID: PMC9280835 DOI: 10.3389/fmolb.2022.900947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
CK2 is a hetero-tetrameric serine/threonine protein kinase made up of two CK2α/αʹ catalytic subunits and two CK2β regulatory subunits. The free CK2α subunit and the tetrameric holoenzyme have distinct substrate specificity profiles, suggesting that the spatiotemporal organization of the individual CK2 subunits observed in living cells is crucial in the control of the many cellular processes that are governed by this pleiotropic kinase. Indeed, previous studies reported that the unbalanced expression of CK2 subunits is sufficient to drive epithelial to mesenchymal transition (EMT), a process involved in cancer invasion and metastasis. Moreover, sub-stoichiometric expression of CK2β compared to CK2α in a subset of breast cancer tumors was correlated with the induction of EMT markers and increased epithelial cell plasticity in breast carcinoma progression. Phenotypic changes of epithelial cells are often associated with the activation of phosphotyrosine signaling. Herein, using phosphotyrosine enrichment coupled with affinity capture and proteomic analysis, we show that decreased expression of CK2β in MCF10A mammary epithelial cells triggers the phosphorylation of a number of proteins on tyrosine residues and promotes the striking activation of the FAK1-Src-PAX1 signaling pathway. Moreover, morphometric analyses also reveal that CK2β loss increases the number and the spatial distribution of focal adhesion signaling complexes that coordinate the adhesive and migratory processes. Together, our findings allow positioning CK2β as a gatekeeper for cell spreading by restraining focal adhesion formation and invasion of mammary epithelial cells.
Collapse
Affiliation(s)
- Odile Filhol
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
| | - Anne-Marie Hesse
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté U1292, CNRS FR 2048, Grenoble, France
| | - Anne-Pascale Bouin
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Corinne Albigès-Rizo
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Florian Jeanneret
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
| | - Christophe Battail
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
| | - Delphine Pflieger
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté U1292, CNRS FR 2048, Grenoble, France
- *Correspondence: Claude Cochet, ; Delphine Pflieger,
| | - Claude Cochet
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
- *Correspondence: Claude Cochet, ; Delphine Pflieger,
| |
Collapse
|
27
|
Oncogenic Signalling of PEAK2 Pseudokinase in Colon Cancer. Cancers (Basel) 2022; 14:cancers14122981. [PMID: 35740644 PMCID: PMC9221080 DOI: 10.3390/cancers14122981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Catalytically inactive kinases, also named pseudokinases, play important roles in the regulation of cell growth and adhesion. While frequently deregulated in human cancer, their role in tumour development is partially elucidated. Here, we report an important tumour function for the pseudokinase PEAK2 in colorectal cancer (CRC) and propose that PEAK2 upregulation can affect cancer cell adhesive properties through an ABL-dependent mechanism to enable cancer progression. Therefore, targeting PEAK2 oncogenic activity with small tyrosine kinases (TK) inhibitors may be of therapeutic interest in colorectal cancer (CRC). Abstract The PEAK family pseudokinases are essential components of tyrosine kinase (TK) pathways that regulate cell growth and adhesion; however, their role in human cancer remains unclear. Here, we report an oncogenic activity of the pseudokinase PEAK2 in colorectal cancer (CRC). Notably, high PRAG1 expression, which encodes PEAK2, was associated with a bad prognosis in CRC patients. Functionally, PEAK2 depletion reduced CRC cell growth and invasion in vitro, while its overexpression increased these transforming effects. PEAK2 depletion also reduced CRC development in nude mice. Mechanistically, PEAK2 expression induced cellular protein tyrosine phosphorylation, despite its catalytic inactivity. Phosphoproteomic analysis identified regulators of cell adhesion and F-actin dynamics as PEAK2 targets. Additionally, PEAK2 was identified as a novel ABL TK activator. In line with this, PEAK2 expression localized at focal adhesions of CRC cells and induced ABL-dependent formation of actin-rich plasma membrane protrusions filopodia that function to drive cell invasion. Interestingly, all these PEAK2 transforming activities were regulated by its main phosphorylation site, Tyr413, which implicates the SRC oncogene. Thus, our results uncover a protumoural function of PEAK2 in CRC and suggest that its deregulation affects adhesive properties of CRC cells to enable cancer progression.
Collapse
|
28
|
Zuidema A, Atherton P, Kreft M, Hoekman L, Bleijerveld OB, Nagaraj N, Chen N, Fässler R, Sonnenberg A. PEAK1 Y635 phosphorylation regulates cell migration through association with Tensin3 and integrins. J Biophys Biochem Cytol 2022; 221:213273. [PMID: 35687021 PMCID: PMC9194829 DOI: 10.1083/jcb.202108027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/22/2022] [Accepted: 05/18/2022] [Indexed: 02/03/2023] Open
Abstract
Integrins mediate cell adhesion by connecting the extracellular matrix to the intracellular cytoskeleton and orchestrate signal transduction in response to chemical and mechanical stimuli by interacting with many cytoplasmic proteins. We used BioID to interrogate the interactomes of β1 and β3 integrins in epithelial cells and identified PEAK1 as an interactor of the RGD-binding integrins α5β1, αVβ3, and αVβ5 in focal adhesions. We demonstrate that the interaction between integrins and PEAK1 occurs indirectly through Tensin3, requiring both the membrane-proximal NPxY motif on the integrin β tail and binding of the SH2 domain of Tensin3 to phosphorylated Tyr-635 on PEAK1. Phosphorylation of Tyr-635 is mediated by Src and regulates cell migration. Additionally, we found that Shc1 localizes in focal adhesions in a PEAK1 phosphorylated Tyr-1188-dependent fashion. Besides binding Shc1, PEAK1 also associates with a protein cluster that mediates late EGFR/Shc1 signaling. We propose a model in which PEAK1 binds Tensin3 and Shc1 to converge integrin and growth factor receptor signal transduction.
Collapse
Affiliation(s)
- Alba Zuidema
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paul Atherton
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maaike Kreft
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Onno B. Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nagarjuna Nagaraj
- Mass Spectrometry Core Facility at the Max-Planck Institute of Biochemistry, Planegg, Germany
| | - Nanpeng Chen
- Department of Molecular Medicine, Max-Planck Institute of Biochemistry, Planegg, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max-Planck Institute of Biochemistry, Planegg, Germany
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands,Correspondence to Arnoud Sonnenberg:
| |
Collapse
|
29
|
Endocytic trafficking of GAS6-AXL complexes is associated with sustained AKT activation. Cell Mol Life Sci 2022; 79:316. [PMID: 35622156 PMCID: PMC9135597 DOI: 10.1007/s00018-022-04312-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/27/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
AXL, a TAM receptor tyrosine kinase (RTK), and its ligand growth arrest-specific 6 (GAS6) are implicated in cancer metastasis and drug resistance, and cellular entry of viruses. Given this, AXL is an attractive therapeutic target, and its inhibitors are being tested in cancer and COVID-19 clinical trials. Still, astonishingly little is known about intracellular mechanisms that control its function. Here, we characterized endocytosis of AXL, a process known to regulate intracellular functions of RTKs. Consistent with the notion that AXL is a primary receptor for GAS6, its depletion was sufficient to block GAS6 internalization. We discovered that upon receptor ligation, GAS6–AXL complexes were rapidly internalized via several endocytic pathways including both clathrin-mediated and clathrin-independent routes, among the latter the CLIC/GEEC pathway and macropinocytosis. The internalization of AXL was strictly dependent on its kinase activity. In comparison to other RTKs, AXL was endocytosed faster and the majority of the internalized receptor was not degraded but rather recycled via SNX1-positive endosomes. This trafficking pattern coincided with sustained AKT activation upon GAS6 stimulation. Specifically, reduced internalization of GAS6–AXL upon the CLIC/GEEC downregulation intensified, whereas impaired recycling due to depletion of SNX1 and SNX2 attenuated AKT signaling. Altogether, our data uncover the coupling between AXL endocytic trafficking and AKT signaling upon GAS6 stimulation. Moreover, our study provides a rationale for pharmacological inhibition of AXL in antiviral therapy as viruses utilize GAS6–AXL-triggered endocytosis to enter cells.
Collapse
|
30
|
Zhang M, Zheng J, Guo J, Zhang Q, Du J, Zhao X, Wang Z, Liao Q. SIA-IgG confers poor prognosis and represents a novel therapeutic target in breast cancer. Bioengineered 2022; 13:10072-10087. [PMID: 35473571 PMCID: PMC9208471 DOI: 10.1080/21655979.2022.2063593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The incidence rate of breast cancer is the highest in the world, and major problem in the clinical treatment is the therapy resistance of breast cancer stem cells (CSCs). Thus, new therapeutic approaches targeting breast CSCs are needed. Our previous study demonstrated cancer-derived sialylated IgG (SIA-IgG) is highly expressed in cancer cells with stem/progenitor features. Furthermore, a high frequency of SIA-IgG in breast cancer tissue predicted metastasis and correlated with poor prognosis factors, and depletion of IgG in breast cancer leads to lower malignancy of cancer cells, suggesting SIA-IgG could be a potential therapeutic target in breast cancer. In this study, we first investigated the relationship of SIA-IgG expression with the clinicopathological characteristics and clinical prognosis of breast carcinoma patients, and the data confirmed that the expression of SIA-IgG confers poor prognosis in breast cancer. Successively, by using a monoclonal antibody specifically against SIA-IgG, we targeted SIA-IgG on the surface of MDA-MB-231 cells and detected their functional changes, and the results suggested SIA-IgG to be a promising antibody therapeutic target in breast cancer. In addition, we explored the mechanism of action at the molecular level of SIA-IgG on breast cancer cell, the findings suggest that SIA-IgG promotes proliferation, metastasis, and invasion of breast cancer cells through the Wnt/β-catenin signaling pathway. Developing therapeutic antibody needs effective therapeutic target, and the antibody should better be a monoclonal antibody with high affinity and high specificity. This study provides a potential prognostic marker and a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Man Zhang
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Jinhua Zheng
- Department of Pathology, Guilin Medical University Affiliated Hospital, Guilin, Guangxi province, China
| | - Junying Guo
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Qiujin Zhang
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Juan Du
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Xiangfeng Zhao
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Zhihua Wang
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Qinyuan Liao
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| |
Collapse
|
31
|
Zdżalik-Bielecka D, Kozik K, Poświata A, Jastrzębski K, Jakubik M, Miączyńska M. Bemcentinib and Gilteritinib Inhibit Cell Growth and Impair the Endo-Lysosomal and Autophagy Systems in an AXL-Independent Manner. Mol Cancer Res 2022; 20:446-455. [PMID: 34782372 DOI: 10.1158/1541-7786.mcr-21-0444] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
AXL, a receptor tyrosine kinase from the TAM (TYRO3 AXL and MER) subfamily, and its ligand growth arrest-specific 6 (GAS6) are implicated in pathogenesis of a wide array of cancers, acquisition of resistance to diverse anticancer therapies and cellular entry of viruses. The continuous development of AXL inhibitors for treatment of patients with cancer and COVID-19 underscores the need to better characterize the cellular effects of AXL targeting. In the present study, we compared the cellular phenotypes of CRISPR-Cas9-induced depletion of AXL and its pharmacological inhibition with bemcentinib, LDC1267 and gilteritinib. Specifically, we evaluated GAS6-AXL signaling, cell viability and invasion, the endo-lysosomal system and autophagy in glioblastoma cells. We showed that depletion of AXL but not of TYRO3 inhibited GAS6-induced phosphorylation of downstream signaling effectors, AKT and ERK1/2, indicating that AXL is a primary receptor for GAS6. AXL was also specifically required for GAS6-dependent increase in cell viability but was dispensable for viability of cells grown without exogenous addition of GAS6. Furthermore, we revealed that LDC1267 is the most potent and specific inhibitor of AXL activation among the tested compounds. Finally, we found that, in contrast to AXL depletion and its inhibition with LDC1267, cell treatment with bemcentinib and gilteritinib impaired the endo-lysosomal and autophagy systems in an AXL-independent manner. IMPLICATIONS Altogether, our findings are of high clinical importance as we discovered that two clinically advanced AXL inhibitors, bemcentinib and gilteritinib, may display AXL-independent cellular effects and toxicity.
Collapse
Affiliation(s)
- Daria Zdżalik-Bielecka
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Kamila Kozik
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agata Poświata
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Kamil Jastrzębski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marta Jakubik
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
32
|
Hou J, Nguyen EV, Surudoi M, Roy MJ, Patel O, Lucet IS, Ma X, Daly RJ. Distinct PEAK3 interactors and outputs expand the signaling potential of the PEAK pseudokinase family. Sci Signal 2022; 15:eabj3554. [PMID: 35192416 DOI: 10.1126/scisignal.abj3554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pseudokinase scaffolds PEAK1 and PEAK2 are implicated in cancer cell migration and metastasis. We characterized the regulation and role of the third family member PEAK3 in cell signaling. Similar to PEAK1 and PEAK2, PEAK3 formed both homotypic and heterotypic complexes. In addition, like PEAK1, it bound to the adaptors Grb2 and CrkII. However, unlike PEAK1 and PEAK2, homodimerized PEAK3 also interacted with the ARF GTPase-activating protein ASAP1, the E3 ubiquitin ligase Cbl, and the kinase PYK2. Dimerization and subsequent phosphorylation on Tyr24, likely by a Src family kinase, were required for the binding of PEAK3 to Grb2 and ASAP1. Interactions with Grb2, CrkII, ASAP1, Cbl, and PYK2 exhibited contrasting dynamics upon cell stimulation with epidermal growth factor (EGF), in part due to PEAK3 dephosphorylation mediated by the phosphatase PTPN12. Overexpressing PEAK3 in mesenchymal-like MDA-MB-231 breast cancer cells enhanced cell elongation in a manner dependent on PEAK3 dimerization, and manipulation of PEAK3 expression demonstrated a positive role for this scaffold in regulating cell migration. Overexpressing PEAK3 in PEAK1/2 double-knockout MCF-10A breast epithelial cells enhanced acinar growth, impaired basement membrane integrity, and promoted invasion in three-dimensional cultures, with the latter two effects dependent on the binding of PEAK3 to Grb2 and ASAP1. PEAK1 and PEAK2 quantitatively and temporally influenced PEAK3 function. These findings characterize PEAK3 as an integral, signal-diversifying member of the PEAK family with scaffolding roles that promote cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Jianmei Hou
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Elizabeth V Nguyen
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Minglyanna Surudoi
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Michael J Roy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Onisha Patel
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Isabelle S Lucet
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Xiuquan Ma
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
33
|
AXL Receptor Tyrosine Kinase as a Promising Therapeutic Target Directing Multiple Aspects of Cancer Progression and Metastasis. Cancers (Basel) 2022; 14:cancers14030466. [PMID: 35158733 PMCID: PMC8833413 DOI: 10.3390/cancers14030466] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Metastasis is a complex process that requires the acquisition of certain traits by cancer cells as well as the cooperation of several non-neoplastic cells that populate the stroma. Cancer-related deaths are predominantly associated with complications arising from metastases. Limiting metastasis therefore represents an important clinical challenge. The receptor tyrosine kinase AXL is required at many steps of the metastatic cascade and contributes to tumor microenvironment deregulation. In this review, we describe how AXL contributes to metastatic progression by governing various biological processes in cancer cells and in stromal cells, highlighting the potential of its inhibition. Abstract The receptor tyrosine kinase AXL is emerging as a key player in tumor progression and metastasis and its expression correlates with poor survival in a plethora of cancers. While studies have shown the benefits of AXL inhibition for the treatment of metastatic cancers, additional roles for AXL in cancer progression are still being explored. This review discusses recent advances in understanding AXL’s functions in different tumor compartments including cancer, vascular, and immune cells. AXL is required at multiple steps of the metastatic cascade where its activation in cancer cells leads to EMT, invasion, survival, proliferation and therapy resistance. AXL activation in cancer cells and various stromal cells also results in tumor microenvironment deregulation, leading to modulation of angiogenesis, fibrosis, immune response and hypoxia. A better understanding of AXL’s role in these processes could lead to new therapeutic approaches that would benefit patients suffering from metastatic diseases.
Collapse
|
34
|
Sun LW, Kao SH, Yang SF, Jhang SW, Lin YC, Chen CM, Hsieh YH. Corosolic Acid Attenuates the Invasiveness of Glioblastoma Cells by Promoting CHIP-Mediated AXL Degradation and Inhibiting GAS6/AXL/JAK Axis. Cells 2021; 10:cells10112919. [PMID: 34831142 PMCID: PMC8616539 DOI: 10.3390/cells10112919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 12/21/2022] Open
Abstract
Corosolic acid (CA), a bioactive compound obtained from Actinidia chinensis, has potential anti-cancer activities. Glioblastoma (GBM) is a malignant brain tumor and whether CA exerts anti-cancer activity on GBM remains unclear. This study was aimed to explore the anticancer activity and its underlying mechanism of CA in GBM cells. Our findings showed that CA ≤ 20 μM did not affect cell viability and cell proliferative rate of normal astrocyte and four GBM cells. Notably, 10 or 20 μM CA significantly inhibited cell migration and invasion of three GBM cells, decreased the protein level of F-actin and disrupted F-actin polymerization in these GBM cells. Further investigation revealed that CA decreased AXL level by promoting ubiquitin-mediated proteasome degradation and upregulating the carboxyl terminus of Hsc70-interacting protein (CHIP), an inducer of AXL polyubiquitination. CHIP knock-down restored the CA-reduced AXL and invasiveness of GBM cells. Additionally, we observed that CA-reduced Growth arrest-specific protein 6 (GAS6) and inhibited JAK2/MEK/ERK activation, and GAS6 pre-treatment restored attenuated JAK2/MEK/ERK activation and invasiveness of GBM cells. Furthermore, molecular docking analysis revealed that CA might bind to GAS6 and AXL. These findings collectively indicate that CA attenuates the invasiveness of GBM cells, attributing to CHIP upregulation and binding to GAS6 and AXL and subsequently promoting AXL degradation and downregulating GAS6-mediated JAK2/MEK/ERK cascade. Conclusively, this suggests that CA has potential anti-metastatic activity on GBM cells by targeting the CHIP/GAS6/AXL axis.
Collapse
Affiliation(s)
- Li-Wei Sun
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (L.-W.S.); (S.-H.K.); (S.-F.Y.); (Y.-C.L.)
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Shao-Hsuan Kao
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (L.-W.S.); (S.-H.K.); (S.-F.Y.); (Y.-C.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (L.-W.S.); (S.-H.K.); (S.-F.Y.); (Y.-C.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shang-Wun Jhang
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan;
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40201, Taiwan
| | - Yi-Chen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (L.-W.S.); (S.-H.K.); (S.-F.Y.); (Y.-C.L.)
| | - Chien-Min Chen
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- College of Nursing and Health Sciences, Dayeh University, Changhua 51591, Taiwan
- Correspondence: (C.-M.C.); (Y.-H.H.)
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (L.-W.S.); (S.-H.K.); (S.-F.Y.); (Y.-C.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (C.-M.C.); (Y.-H.H.)
| |
Collapse
|
35
|
Khera L, Lev S. Accelerating AXL targeting for TNBC therapy. Int J Biochem Cell Biol 2021; 139:106057. [PMID: 34403827 DOI: 10.1016/j.biocel.2021.106057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022]
Abstract
The tyrosine kinase receptor AXL of the TAM (TYRO3, AXL and MERTK) family is considered as a promising therapeutic target for different hematological cancers and solid tumors. AXL is involved in multiple pro-tumorigenic processes including cell migration, invasion, epithelial-mesenchymal transition (EMT), and stemness, and recent studies demonstrated its impact on cancer metastasis and drug resistance. Extensive studies on AXL have highlighted its unique characteristics and physiological functions and suggest that targeting of AXL could be beneficial in combination with chemotherapy, radiotherapy, immunotherapy, and targeted therapy. In this mini review, we discuss possible outcomes of AXL targeting either alone or together with other therapeutic agents and emphasize its impact on triple negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Lohit Khera
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
36
|
AXL Receptor in Cancer Metastasis and Drug Resistance: When Normal Functions Go Askew. Cancers (Basel) 2021; 13:cancers13194864. [PMID: 34638349 PMCID: PMC8507788 DOI: 10.3390/cancers13194864] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary AXL is a member of the TAM (TYRO3, AXL, MER) family of receptor tyrosine kinases. In normal physiological conditions, AXL is involved in removing dead cells and their remains, and limiting the duration of immune responses. Both functions are utilized by cancers in the course of tumour progression. Cancer cells use the AXL pathway to detect toxic environments and to activate molecular mechanisms, thereby ensuring their survival or escape from the toxic zone. AXL is instrumental in controlling genetic programs of epithelial-mesenchymal and mesenchymal-epithelial transitions, enabling cancer cells to metastasize. Additionally, AXL signaling suppresses immune responses in tumour microenvironment and thereby helps cancer cells to evade immune surveillance. The broad role of AXL in tumour biology is the reason why its inhibition sensitizes tumours to a broad spectrum of anti-cancer drugs. In this review, we outline molecular mechanisms underlying AXL function in normal tissues, and discuss how these mechanisms are adopted by cancers to become metastatic and drug-resistant. Abstract The TAM proteins TYRO3, AXL, and MER are receptor tyrosine kinases implicated in the clearance of apoptotic debris and negative regulation of innate immune responses. AXL contributes to immunosuppression by terminating the Toll-like receptor signaling in dendritic cells, and suppressing natural killer cell activity. In recent years, AXL has been intensively studied in the context of cancer. Both molecules, the receptor, and its ligand GAS6, are commonly expressed in cancer cells, as well as stromal and infiltrating immune cells. In cancer cells, the activation of AXL signaling stimulates cell survival and increases migratory and invasive potential. In cells of the tumour microenvironment, AXL pathway potentiates immune evasion. AXL has been broadly implicated in the epithelial-mesenchymal plasticity of cancer cells, a key factor in drug resistance and metastasis. Several antibody-based and small molecule AXL inhibitors have been developed and used in preclinical studies. AXL inhibition in various mouse cancer models reduced metastatic spread and improved the survival of the animals. AXL inhibitors are currently being tested in several clinical trials as monotherapy or in combination with other drugs. Here, we give a brief overview of AXL structure and regulation and discuss the normal physiological functions of TAM receptors, focusing on AXL. We present a theory of how epithelial cancers exploit AXL signaling to resist cytotoxic insults, in order to disseminate and relapse.
Collapse
|
37
|
Wang X, Zheng Y, Wang Y. PEAK1 promotes invasion and metastasis and confers drug resistance in breast cancer. Clin Exp Med 2021; 22:393-402. [PMID: 34554318 PMCID: PMC9338157 DOI: 10.1007/s10238-021-00761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022]
Abstract
Pseudopodium-enriched atypical kinase 1 (PEAK1) has been reported to be upregulated in human malignancies and is correlated with a poor prognosis. Enhanced PEAK1 expression facilitates tumor cell survival, invasion, metastasis and chemoresistance. However, the role of PEAK1 in breast cancer is unclear. We investigated PEAK1 expression in breast cancer and analyzed the relationship with clinicopathological status and chemotherapy resistance. We also investigated the role of PEAK1 in breast cancer cells in vitro and in vivo. Immunohistochemistry for PEAK1 was performed in 112 surgically resected breast cancer tissues. The association between clinicopathological status, chemotherapy resistance and PEAK1 expression was determined. The effect of PEAK1 overexpression or downregulation on proliferation, colony formation, invasion, migration, metastasis and doxorubicin sensitivity in MCF-7 cells in vitro and in vivo was studied. PEAK1 was overexpressed in breast cancer tissues. High PEAK1 expression was correlated with tumor size, high tumor grade, tumor stage, lymph node metastasis, recurrence, Ki-67 expression, Her-2 expression and chemotherapy resistance. Inhibiting PEAK1 decreased cell growth, invasion, metastasis and reversed chemoresistance to doxorubicin in breast cancer cells both in vitro and in vivo. High PEAK1 expression was associated with the invasion, metastasis and chemoresistance of breast cancers. Furthermore, targeting PEAK1 inhibited cell growth and metastasis and reversed chemoresistance in breast cancer cells. Targeting PEAK1 could be an effective treatment strategy for breast cancer.
Collapse
Affiliation(s)
- Xingang Wang
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Yan Zheng
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Yu Wang
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
| |
Collapse
|
38
|
Therapeutic Targeting of the Gas6/Axl Signaling Pathway in Cancer. Int J Mol Sci 2021; 22:ijms22189953. [PMID: 34576116 PMCID: PMC8469858 DOI: 10.3390/ijms22189953] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/14/2022] Open
Abstract
Many signaling pathways are dysregulated in cancer cells and the host tumor microenvironment. Aberrant receptor tyrosine kinase (RTK) pathways promote cancer development, progression, and metastasis. Hence, numerous therapeutic interventions targeting RTKs have been actively pursued. Axl is an RTK that belongs to the Tyro3, Axl, MerTK (TAM) subfamily. Axl binds to a high affinity ligand growth arrest specific 6 (Gas6) that belongs to the vitamin K-dependent family of proteins. The Gas6/Axl signaling pathway has been implicated to promote progression, metastasis, immune evasion, and therapeutic resistance in many cancer types. Therapeutic agents targeting Gas6 and Axl have been developed, and promising results have been observed in both preclinical and clinical settings when such agents are used alone or in combination therapy. This review examines the current state of therapeutics targeting the Gas6/Axl pathway in cancer and discusses Gas6- and Axl-targeting agents that have been evaluated preclinically and clinically.
Collapse
|
39
|
Zdżalik-Bielecka D, Poświata A, Kozik K, Jastrzębski K, Schink KO, Brewińska-Olchowik M, Piwocka K, Stenmark H, Miączyńska M. The GAS6-AXL signaling pathway triggers actin remodeling that drives membrane ruffling, macropinocytosis, and cancer-cell invasion. Proc Natl Acad Sci U S A 2021; 118:e2024596118. [PMID: 34244439 PMCID: PMC8285903 DOI: 10.1073/pnas.2024596118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AXL, a member of the TAM (TYRO3, AXL, MER) receptor tyrosine kinase family, and its ligand, GAS6, are implicated in oncogenesis and metastasis of many cancer types. However, the exact cellular processes activated by GAS6-AXL remain largely unexplored. Here, we identified an interactome of AXL and revealed its associations with proteins regulating actin dynamics. Consistently, GAS6-mediated AXL activation triggered actin remodeling manifested by peripheral membrane ruffling and circular dorsal ruffles (CDRs). This further promoted macropinocytosis that mediated the internalization of GAS6-AXL complexes and sustained survival of glioblastoma cells grown under glutamine-deprived conditions. GAS6-induced CDRs contributed to focal adhesion turnover, cell spreading, and elongation. Consequently, AXL activation by GAS6 drove invasion of cancer cells in a spheroid model. All these processes required the kinase activity of AXL, but not TYRO3, and downstream activation of PI3K and RAC1. We propose that GAS6-AXL signaling induces multiple actin-driven cytoskeletal rearrangements that contribute to cancer-cell invasion.
Collapse
Affiliation(s)
- Daria Zdżalik-Bielecka
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland;
| | - Agata Poświata
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamila Kozik
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamil Jastrzębski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kay Oliver Schink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland;
| |
Collapse
|
40
|
Zhang H, Yi JK, Huang H, Park S, Kwon W, Kim E, Jang S, Kim SY, Choi SK, Yoon D, Kim SH, Liu K, Dong Z, Ryoo ZY, Kim MO. 20 (S)-ginsenoside Rh2 inhibits colorectal cancer cell growth by suppressing the Axl signaling pathway in vitro and in vivo. J Ginseng Res 2021; 46:396-407. [PMID: 35600769 PMCID: PMC9120647 DOI: 10.1016/j.jgr.2021.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
Background Colorectal cancer (CRC) has a high morbidity and mortality worldwide. 20 (S)-ginsenoside Rh2 (G-Rh2) is a natural compound extracted from ginseng, which exhibits anticancer effects in many cancer types. In this study, we demonstrated the effect and underlying molecular mechanism of G-Rh2 in CRC cells in vitro and in vivo. Methods Cell proliferation, migration, invasion, apoptosis, cell cycle, and western blot assays were performed to evaluate the effect of G-Rh2 on CRC cells. In vitro pull-down assay was used to verify the interaction between G-Rh2 and Axl. Transfection and infection experiments were used to explore the function of Axl in CRC cells. CRC xenograft models were used to further investigate the effect of Axl knockdown and G-Rh2 on tumor growth in vivo. Results G-Rh2 significantly inhibited proliferation, migration, and invasion, and induced apoptosis and G0/G1 phase cell cycle arrest in CRC cell lines. G-Rh2 directly binds to Axl and inhibits the Axl signaling pathway in CRC cells. Knockdown of Axl suppressed the growth, migration and invasion ability of CRC cells in vitro and xenograft tumor growth in vivo, whereas overexpression of Axl promoted the growth, migration, and invasion ability of CRC cells. Moreover, G-Rh2 significantly suppressed CRC xenograft tumor growth by inhibiting Axl signaling with no obvious toxicity to nude mice. Conclusion Our results indicate that G-Rh2 exerts anticancer activity in vitro and in vivo by suppressing the Axl signaling pathway. G-Rh2 is a promising candidate for CRC prevention and treatment.
Collapse
Affiliation(s)
- Haibo Zhang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, Republic of Korea
| | - Jun-Koo Yi
- Gyeongbuk Livestock Research Institute, Yeongju, Republic of Korea
| | - Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, Republic of Korea
| | - Sijun Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch, Kyungpook National University, Daegu, Republic of Korea
| | - Wookbong Kwon
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, Republic of Korea
| | - Soyoung Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch, Kyungpook National University, Daegu, Republic of Korea
| | - Si-Yong Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch, Kyungpook National University, Daegu, Republic of Korea
| | - Seong-kyoon Choi
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Duhak Yoon
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, Republic of Korea
| | - Sung-Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam, Republic of Korea
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch, Kyungpook National University, Daegu, Republic of Korea
- Corresponding author.
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, Republic of Korea
- Corresponding author. Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, Gyeongsangbukdo, 37224, Republic of Korea.
| |
Collapse
|
41
|
Mishra YG, Manavathi B. Focal adhesion dynamics in cellular function and disease. Cell Signal 2021; 85:110046. [PMID: 34004332 DOI: 10.1016/j.cellsig.2021.110046] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Acting as a bridge between the cytoskeleton of the cell and the extra cellular matrix (ECM), the cell-ECM adhesions with integrins at their core, play a major role in cell signalling to direct mechanotransduction, cell migration, cell cycle progression, proliferation, differentiation, growth and repair. Biochemically, these adhesions are composed of diverse, yet an organised group of structural proteins, receptors, adaptors, various enzymes including protein kinases, phosphatases, GTPases, proteases, etc. as well as scaffolding molecules. The major integrin adhesion complexes (IACs) characterised are focal adhesions (FAs), invadosomes (podosomes and invadopodia), hemidesmosomes (HDs) and reticular adhesions (RAs). The varied composition and regulation of the IACs and their signalling, apart from being an integral part of normal cell survival, has been shown to be of paramount importance in various developmental and pathological processes. This review per-illustrates the recent advancements in the research of IACs, their crucial roles in normal as well as diseased states. We have also touched on few of the various methods that have been developed over the years to visualise IACs, measure the forces they exert and study their signalling and molecular composition. Having such pertinent roles in the context of various pathologies, these IACs need to be understood and studied to develop therapeutical targets. We have given an update to the studies done in recent years and described various techniques which have been applied to study these structures, thereby, providing context in furthering research with respect to IAC targeted therapeutics.
Collapse
Affiliation(s)
- Yasaswi Gayatri Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
42
|
Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus MV, Nie Q. Inference and analysis of cell-cell communication using CellChat. Nat Commun 2021; 12:1088. [PMID: 33597522 PMCID: PMC7889871 DOI: 10.1038/s41467-021-21246-9] [Citation(s) in RCA: 3383] [Impact Index Per Article: 845.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
Understanding global communications among cells requires accurate representation of cell-cell signaling links and effective systems-level analyses of those links. We construct a database of interactions among ligands, receptors and their cofactors that accurately represent known heteromeric molecular complexes. We then develop CellChat, a tool that is able to quantitatively infer and analyze intercellular communication networks from single-cell RNA-sequencing (scRNA-seq) data. CellChat predicts major signaling inputs and outputs for cells and how those cells and signals coordinate for functions using network analysis and pattern recognition approaches. Through manifold learning and quantitative contrasts, CellChat classifies signaling pathways and delineates conserved and context-specific pathways across different datasets. Applying CellChat to mouse and human skin datasets shows its ability to extract complex signaling patterns. Our versatile and easy-to-use toolkit CellChat and a web-based Explorer ( http://www.cellchat.org/ ) will help discover novel intercellular communications and build cell-cell communication atlases in diverse tissues.
Collapse
Affiliation(s)
- Suoqin Jin
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Christian F Guerrero-Juarez
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Lihua Zhang
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Ivan Chang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Research Cyberinfrastructure Center, University of California, Irvine, Irvine, CA, USA
| | - Raul Ramos
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Chen-Hsiang Kuan
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Plastic Surgery, Department of Surgery, National Taiwan University, Taipei, Taiwan
| | - Peggy Myung
- Department of Dermatology, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Maksim V Plikus
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA.
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|