1
|
Pozhydaiev V, Paparesta A, Moran J, Lebœuf D. Iron(II)-Catalyzed 1,2-Diamination of Styrenes Installing a Terminal NH 2 Group Alongside Unprotected Amines. Angew Chem Int Ed Engl 2024; 63:e202411992. [PMID: 39016034 DOI: 10.1002/anie.202411992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
1,2-Diamination of alkenes represents an attractive way to generate differentiated vicinal diamines, which are prevalent motifs in biologically active compounds and catalysts. However, existing methods are usually limited in scope and produce diamines where one or both nitrogens are protected, adding synthetic steps for deprotection and further N-functionalization to reach a desired target. Furthermore, the range of amino groups that can be introduced at the internal position is fairly limited. Here we describe a 1,2-diamination of styrenes that directly installs a free amino group at the terminal position and a wide variety of unprotected nitrogen nucleophiles (primary or secondary alkyl or aromatic amines, sulfoximines, N-heterocycles, and ammonia surrogate) at the internal position. Two complementary sets of conditions encompass electronically activated and deactivated styrenes with diverse substitution patterns and functional groups. Moreover, this strategy can be extended to the 1,2-aminothiolation of styrenes.
Collapse
Affiliation(s)
- Valentyn Pozhydaiev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Antonio Paparesta
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Institut Universitaire de France (IUF), 75005, Paris, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
2
|
Guan Y, Buivydas TA, Lalisse RF, Laybourn KB, Stern C, Richins M, Burns SM, Shelby A, Hadad CM, Mattson AE. Highly Enantioselective Catalytic Alkynylation of Quinolones: Substrate Scope, Mechanistic Studies, and Applications in the Syntheses of Chiral N-Heterocyclic Alkaloids and Diamines. ACS Catal 2023; 13:7661-7668. [PMID: 37288090 PMCID: PMC10243307 DOI: 10.1021/acscatal.3c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Indexed: 06/09/2023]
Abstract
The alkynylation of 4-siloxyquinolinium triflates has been achieved under the influence of copper bis(oxazoline) catalysis. The identification of the optimal bis(oxazoline) ligand was informed through a computational approach that enabled the dihydroquinoline products to be produced with up to 96% enantiomeric excess. The conversions of the dihydroquinoline products to biologically relevant and diverse targets are reported.
Collapse
Affiliation(s)
- Yong Guan
- Department
of Chemistry and Biochemistry, Worcester
Polytechnic Institute, 60 Prescott Street, Worcester, Massachusetts 01609, United States
| | - Tadas A. Buivydas
- Department
of Chemistry and Biochemistry, Worcester
Polytechnic Institute, 60 Prescott Street, Worcester, Massachusetts 01609, United States
| | - Remy F. Lalisse
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Kalen B. Laybourn
- Department
of Chemistry and Biochemistry, Worcester
Polytechnic Institute, 60 Prescott Street, Worcester, Massachusetts 01609, United States
| | - Charlotte Stern
- Integrated
Molecular Structure Education and Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Margaret Richins
- Department
of Chemistry and Biochemistry, Worcester
Polytechnic Institute, 60 Prescott Street, Worcester, Massachusetts 01609, United States
| | - Sean M. Burns
- Department
of Chemistry and Biochemistry, Worcester
Polytechnic Institute, 60 Prescott Street, Worcester, Massachusetts 01609, United States
| | - Arielle Shelby
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Christopher M. Hadad
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Anita E. Mattson
- Department
of Chemistry and Biochemistry, Worcester
Polytechnic Institute, 60 Prescott Street, Worcester, Massachusetts 01609, United States
| |
Collapse
|
3
|
Han XL, Hu B, Fei C, Li Z, Yu Y, Cheng C, Foxman B, Luo J, Deng L. Catalytic Asymmetric Imine Cross-Coupling Reaction. J Am Chem Soc 2023; 145:4400-4407. [PMID: 36800284 DOI: 10.1021/jacs.3c00051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Catalytic asymmetric cross-coupling of imines constitutes a particularly desirable method for the synthesis of chiral vicinal diamines directly from readily available achiral precursors. The potential of this method lies in the possibility of utilizing a variety of imines as reacting partners. However, the realization of highly stereoselective cross-coupling of two different imines proved to be a formidable challenge. Herein we report an unprecedented catalytic asymmetric cross-coupling reaction that tolerates a variety of ketimines and aldimines as nucleophiles and electrophiles, respectively. The realization of this reaction resulted from the development of a new chiral ammonium catalyst, which was guided by insights from studies of catalyst-substrate interactions. With a 0.5 mol % loading of an organocatalyst, this reaction proceeded in a highly diastereo- and enantioselective manner to afford a diverse range of chiral vicinal diamines as nearly single stereoisomers. This catalytic reaction establishes a new approach for the asymmetric synthesis of chiral vicinal diamines.
Collapse
Affiliation(s)
- Xiang-Lei Han
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China
| | - Bin Hu
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Chao Fei
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Zhe Li
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Yang Yu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China
| | - Cheng Cheng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China
| | - Bruce Foxman
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Jisheng Luo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China
| | - Li Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China
| |
Collapse
|
4
|
Fang Z, Gong Y, Liu B, Zhang J, Han X, Liu Z, Ning Y. Rh-Catalyzed Coupling Reactions of Fluoroalkyl N-Sulfonylhydrazones with Azides Leading to α-Trifluoroethylated Imines. Org Lett 2022; 24:8920-8924. [DOI: 10.1021/acs.orglett.2c03773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhongxue Fang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu 224007, People’s Republic of China
| | - Yanmei Gong
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu 224007, People’s Republic of China
| | - Binbin Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jin Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xinyue Han
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhaohong Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
5
|
Zhou J, Yang Q, Lee CS, Wang J(J. Enantio‐ and Regioselective Construction of 1,4‐Diamines via Cascade Hydroamination of Methylene Cyclopropanes. Angew Chem Int Ed Engl 2022; 61:e202202160. [DOI: 10.1002/anie.202202160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Jian Zhou
- Department of Chemistry Hong Kong Baptist University Kowloon, Hong Kong China
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong, 518055 China
| | - Qingjing Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong, 518055 China
| | - Chi Sing Lee
- Department of Chemistry Hong Kong Baptist University Kowloon, Hong Kong China
| | - Jun (Joelle) Wang
- Department of Chemistry Hong Kong Baptist University Kowloon, Hong Kong China
| |
Collapse
|
6
|
Zhou J, Yang Q, Lee CS, WANG J. Enantio‐ and Regioselective Construction of 1,4‐diamines via Cascade Hydroamination of Methylene Cyclopropanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jian Zhou
- Hong Kong Baptist University Department of Chemistry HONG KONG
| | - Qingjing Yang
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Chi Sing Lee
- Hong Kong Baptist University Department of Chemistry HONG KONG
| | - Jun WANG
- Hong Kong Baptist University Department of Chemistry Ho Sin Hang Campus 000000 Hong Kong HONG KONG
| |
Collapse
|
7
|
Liu ZC, Yue WJ, Yin L. Copper(I)-Catalyzed Asymmetric Synthesis of Unnatural α-Amino Acid Derivatives and Related Peptides Containing γ-(aza)Aryls. J Org Chem 2021; 87:399-405. [PMID: 34908422 DOI: 10.1021/acs.joc.1c02426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chiral α-amino acids are indispensable compounds in organic chemistry, biochemistry, and medicinal chemistry. Herein, by means of copper(I)-catalyzed asymmetric conjugate addition of derivatives of glycine, serine, cysteine, and β-amino-alanine to electron-deficient vinyl(aza)arenes, an array of novel unnatural chiral α-amino acid derivatives bearing a γ-(aza)aryl is prepared in moderate to high yields with high enantioselectivity. Various azaarenes, such as pyrimidine, 1,3,5-triazine, pyridine, pyridine-N-oxide, quinoline, quinoxaline, purine, benzo[d]imidazole, benzothiazole, and 1,2,4-oxadiazole, are well tolerated. Moreover, the electrophiles are nicely extended to (Z)/(E) mixtures of electron-deficient butadienylpyridine and benzene, which are transformed to the corresponding chiral α-amino acid derivatives in high (E)/(Z) ratio and high enantioselectivity. More importantly, the present methodology is successfully applied in the catalytic asymmetric functionalization of Schiff bases derived from peptides, which finally afforded a new chiral tripeptide bearing two electron-deficient azaaryls and one electron-deficient aryl in high total yield with high diastereo- and excellent enantioselectivities.
Collapse
Affiliation(s)
- Zong-Ci Liu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen-Jun Yue
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
8
|
Akhtar R, Zahoor AF, Rasool N, Ahmad M, Ali KG. Recent trends in the chemistry of Sandmeyer reaction: a review. Mol Divers 2021; 26:1837-1873. [PMID: 34417715 PMCID: PMC8378299 DOI: 10.1007/s11030-021-10295-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022]
Abstract
Metal-catalyzed reactions play a vital part to construct a variety of pharmaceutically important scaffolds from past few decades. To carry out these reactions under mild conditions with low-cost easily available precursors, various new methodologies have been reported day by day. Sandmeyer reaction is one of these, first discovered by Sandmeyer in 1884. It is a well-known reaction mainly used for the conversion of an aryl amine to an aryl halide in the presence of Cu(I) halide via formation of diazonium salt intermediate. This reaction can be processed with or without copper catalysts for the formation of C-X (X = Cl, Br, I, etc.), C-CF3/CF2, C-CN, C-S, etc., linkages. As a result, corresponding aryl halides, trifluoromethylated compounds, aryl nitriles and aryl thioethers can be obtained which are effectively used for the construction of biologically active compounds. This review article discloses various literature reports about Sandmeyer-related transformations developed during 2000-2021 which give different ideas to synthetic chemists about further development of new and efficient protocols for Sandmeyer reaction. An updated compilation of new approaches for Sandmeyer reaction is described in this review to construct a variety of carbon-halogen, carbon-phosphorous, carbon-sulfur, carbon-boron etc. linkages.
Collapse
Affiliation(s)
- Rabia Akhtar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|