1
|
Angulo-Cánovas E, Bartual A, López-Igual R, Luque I, Radzinski NP, Shilova I, Anjur-Dietrich M, García-Jurado G, Úbeda B, González-Reyes JA, Díez J, Chisholm SW, García-Fernández JM, del Carmen Muñoz-Marín M. Direct interaction between marine cyanobacteria mediated by nanotubes. SCIENCE ADVANCES 2024; 10:eadj1539. [PMID: 38781331 PMCID: PMC11114229 DOI: 10.1126/sciadv.adj1539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Microbial associations and interactions drive and regulate nutrient fluxes in the ocean. However, physical contact between cells of marine cyanobacteria has not been studied thus far. Here, we show a mechanism of direct interaction between the marine cyanobacteria Prochlorococcus and Synechococcus, the intercellular membrane nanotubes. We present evidence of inter- and intra-genus exchange of cytoplasmic material between neighboring and distant cells of cyanobacteria mediated by nanotubes. We visualized and measured these structures in xenic and axenic cultures and in natural samples. We show that nanotubes are produced between living cells, suggesting that this is a relevant system of exchange material in vivo. The discovery of nanotubes acting as exchange bridges in the most abundant photosynthetic organisms in the ocean may have important implications for their interactions with other organisms and their population dynamics.
Collapse
Affiliation(s)
- Elisa Angulo-Cánovas
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| | - Ana Bartual
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Rocío López-Igual
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Nikolai P. Radzinski
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Maya Anjur-Dietrich
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gema García-Jurado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Bárbara Úbeda
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - José Antonio González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| | - Jesús Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| | - Sallie W. Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - José Manuel García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| | - María del Carmen Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| |
Collapse
|
2
|
Castañeda-Barba S, Top EM, Stalder T. Plasmids, a molecular cornerstone of antimicrobial resistance in the One Health era. Nat Rev Microbiol 2024; 22:18-32. [PMID: 37430173 DOI: 10.1038/s41579-023-00926-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/12/2023]
Abstract
Antimicrobial resistance (AMR) poses a substantial threat to human health. The widespread prevalence of AMR is, in part, due to the horizontal transfer of antibiotic resistance genes (ARGs), typically mediated by plasmids. Many of the plasmid-mediated resistance genes in pathogens originate from environmental, animal or human habitats. Despite evidence that plasmids mobilize ARGs between these habitats, we have a limited understanding of the ecological and evolutionary trajectories that facilitate the emergence of multidrug resistance (MDR) plasmids in clinical pathogens. One Health, a holistic framework, enables exploration of these knowledge gaps. In this Review, we provide an overview of how plasmids drive local and global AMR spread and link different habitats. We explore some of the emerging studies integrating an eco-evolutionary perspective, opening up a discussion about the factors that affect the ecology and evolution of plasmids in complex microbial communities. Specifically, we discuss how the emergence and persistence of MDR plasmids can be affected by varying selective conditions, spatial structure, environmental heterogeneity, temporal variation and coexistence with other members of the microbiome. These factors, along with others yet to be investigated, collectively determine the emergence and transfer of plasmid-mediated AMR within and between habitats at the local and global scale.
Collapse
Affiliation(s)
- Salvador Castañeda-Barba
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, ID, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Eva M Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, ID, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
- Institute for Modelling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA.
- Institute for Modelling Collaboration and Innovation, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
3
|
Boopathi S, Priya PS, Kesavan D, Meenatchi R, Murugan R, Sudhakaran G, Almutairi BO, Arokiyaraj S, Arockiaraj J. Unveiling nanotubes-mediated communication: Enterococcus faecalis countering Salmonella ser. Typhi - In vitro and In vivo insights. Microb Pathog 2023; 184:106387. [PMID: 37821050 DOI: 10.1016/j.micpath.2023.106387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
Bacteria communicate with each other through contact-dependent and contact-independent mechanisms. While certain contact-dependent mechanisms, such as Type IV and Type VI, have received considerable attention, nanotubes-mediated communication among gut bacteria remains largely unknown. The purpose of this study is to demonstrate the presence of nanotube production in both gut commensal and gut pathogenic bacteria. And also aims to show how Enterococcus faecalis utilizes nanotubes to combat Salmonella ser. Typhi (S. Typhi), a pathogen in the gut. The research findings suggest that the formation of nanotubes is an inherent trait observed in both Gram-positive and Gram-negative bacteria. Interestingly, bacteria generate nanotubes in dynamic environments, biofilms, and even within the gut of zebrafish. These nanotubes develops over time in accordance with the duration of incubation. Furthermore, E. faecalis effectively combats S. Typhi through mechanisms that depend on physical contact rather than indirect methods. Notably, E. faecalis protects zebrafish larvae from S. Typhi infections by reducing reactive oxygen species and cell death, and concurrently boosting the production of antioxidant enzymes. It is hypothesized that E. faecalis might eliminate S. Typhi by transferring toxic metabolites into the pathogen via nanotubes. Gene expression analysis highlights that proinflammatory markers such as TNF-α, IL-1β, and IL-6 are elevated in Salmonella-infected larvae. However, co-treatment with E. faecalis counters this effect. Findings of this study underscores the significance of nanotubes as a vital machinery for bacterial communication and distribution of virulence factors. Exploring nanotubes-mediated communication at a molecular level could pave the way for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - D Kesavan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Ramu Meenatchi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, South Korea
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
4
|
Kawai Y, Kawai M, Mackenzie ES, Dashti Y, Kepplinger B, Waldron KJ, Errington J. On the mechanisms of lysis triggered by perturbations of bacterial cell wall biosynthesis. Nat Commun 2023; 14:4123. [PMID: 37433811 DOI: 10.1038/s41467-023-39723-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
Inhibition of bacterial cell wall synthesis by antibiotics such as β-lactams is thought to cause explosive lysis through loss of cell wall integrity. However, recent studies on a wide range of bacteria have suggested that these antibiotics also perturb central carbon metabolism, contributing to death via oxidative damage. Here, we genetically dissect this connection in Bacillus subtilis perturbed for cell wall synthesis, and identify key enzymatic steps in upstream and downstream pathways that stimulate the generation of reactive oxygen species through cellular respiration. Our results also reveal the critical role of iron homeostasis for the oxidative damage-mediated lethal effects. We show that protection of cells from oxygen radicals via a recently discovered siderophore-like compound uncouples changes in cell morphology normally associated with cell death, from lysis as usually judged by a phase pale microscopic appearance. Phase paling appears to be closely associated with lipid peroxidation.
Collapse
Affiliation(s)
- Yoshikazu Kawai
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Maki Kawai
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Eilidh Sohini Mackenzie
- Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Yousef Dashti
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Bernhard Kepplinger
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, 50-383, Wrocław, Poland
| | - Kevin John Waldron
- Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
5
|
Baquero F, Martínez JL, Sánchez A, Fernández-de-Bobadilla MD, San-Millán A, Rodríguez-Beltrán J. Bacterial Subcellular Architecture, Structural Epistasis, and Antibiotic Resistance. BIOLOGY 2023; 12:640. [PMID: 37237454 PMCID: PMC10215332 DOI: 10.3390/biology12050640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Epistasis refers to the way in which genetic interactions between some genetic loci affect phenotypes and fitness. In this study, we propose the concept of "structural epistasis" to emphasize the role of the variable physical interactions between molecules located in particular spaces inside the bacterial cell in the emergence of novel phenotypes. The architecture of the bacterial cell (typically Gram-negative), which consists of concentrical layers of membranes, particles, and molecules with differing configurations and densities (from the outer membrane to the nucleoid) determines and is in turn determined by the cell shape and size, depending on the growth phases, exposure to toxic conditions, stress responses, and the bacterial environment. Antibiotics change the bacterial cell's internal molecular topology, producing unexpected interactions among molecules. In contrast, changes in shape and size may alter antibiotic action. The mechanisms of antibiotic resistance (and their vectors, as mobile genetic elements) also influence molecular connectivity in the bacterial cell and can produce unexpected phenotypes, influencing the action of other antimicrobial agents.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain; (M.D.F.-d.-B.); (J.R.-B.)
- CIBER en Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
| | - José-Luis Martínez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (J.-L.M.); (A.S.); (A.S.-M.)
| | - Alvaro Sánchez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (J.-L.M.); (A.S.); (A.S.-M.)
| | - Miguel D. Fernández-de-Bobadilla
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain; (M.D.F.-d.-B.); (J.R.-B.)
- CIBER en Enfermedades Infecciosas (CIBERINFECT), 28034 Madrid, Spain
| | - Alvaro San-Millán
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (J.-L.M.); (A.S.); (A.S.-M.)
- CIBER en Enfermedades Infecciosas (CIBERINFECT), 28034 Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain; (M.D.F.-d.-B.); (J.R.-B.)
- CIBER en Enfermedades Infecciosas (CIBERINFECT), 28034 Madrid, Spain
| |
Collapse
|
6
|
Rigolot V, Rossez Y, Biot C, Lion C. A bioorthogonal chemistry approach to detect the K1 polysialic acid capsule in Escherichia coli. RSC Chem Biol 2023; 4:173-183. [PMID: 36794016 PMCID: PMC9906323 DOI: 10.1039/d2cb00219a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Most Escherichia coli strains associated with neonatal meningitis express the K1 capsule, a sialic acid polysaccharide that is directly related to their pathogenicity. Metabolic oligosaccharide engineering (MOE) has mostly been developed in eukaryotes, but has also been successfully applied to the study of several oligosaccharides or polysaccharides constitutive of the bacterial cell wall. However, bacterial capsules are seldom targeted despite their important role as virulence factors, and the K1 polysialic acid (PSA) antigen that shields bacteria from the immune system still remains untackled. Herein, we report a fluorescence microplate assay that allows the fast and facile detection of K1 capsules with an approach that combines MOE and bioorthogonal chemistry. We exploit the incorporation of synthetic analogues of N-acetylmannosamine or N-acetylneuraminic acid, metabolic precursors of PSA, and copper-catalysed azide-alkyne cycloaddition (CuAAC) as the click chemistry reaction to specifically label the modified K1 antigen with a fluorophore. The method was optimized, validated by capsule purification and fluorescence microscopy, and applied to the detection of whole encapsulated bacteria in a miniaturized assay. We observe that analogues of ManNAc are readily incorporated into the capsule while those of Neu5Ac are less efficiently metabolized, which provides useful information regarding the capsule biosynthetic pathways and the promiscuity of the enzymes involved. Moreover, this microplate assay is transferable to screening approaches and may provide a platform to identify novel capsule-targeted antibiotics that would circumvent resistance issues.
Collapse
Affiliation(s)
- Vincent Rigolot
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle Lille France
| | - Yannick Rossez
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle Lille France
| | - Christophe Biot
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle Lille France
| | - Cédric Lion
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle Lille France
| |
Collapse
|
7
|
Spontaneous Prophage Induction Contributes to the Production of Membrane Vesicles by the Gram-Positive Bacterium Lacticaseibacillus casei BL23. mBio 2022; 13:e0237522. [PMID: 36200778 PMCID: PMC9600169 DOI: 10.1128/mbio.02375-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The formation of membrane vesicles (MVs) by Gram-positive bacteria has gained increasing attention over the last decade. Recently, models of vesicle formation have been proposed and involve the digestion of the cell wall by prophage-encoded or stress-induced peptidoglycan (PG) hydrolases and the inhibition of PG synthesis by β-lactam antibiotics. The impact of these mechanisms on vesicle formation is largely dependent on the strain and growth conditions. To date, no information on the production of vesicles by the lactobacilli family has been reported. Here, we aimed to characterize the MVs released by the Gram-positive bacteria Lacticaseibacillus casei BL23 and also investigated the mechanisms involved in vesicle formation. Using electron microscopy, we established that the size of the majority of L. casei BL23 vesicles ranged from 50 to 100 nm. Furthermore, we showed that the vesicles were released consistently throughout the growth of the bacteria in standard culture conditions. The protein composition of the vesicles released in the supernatant was identified and a significant number of prophage proteins was detected. Moreover, using a mutant strain harboring a defective PLE2 prophage, we were able to show that the spontaneous and mitomycin-triggered induction of the prophage PLE2 contribute to the production of MVs by L. casei BL23. Finally, we also demonstrated the influence of prophages on the membrane integrity of bacteria. Overall, our results suggest a key role of the prophage PLE2 in the production of MVs by L. casei BL23 in the absence or presence of genotoxic stress.
Collapse
|
8
|
Mao H, Guo J, Zhou J, Shi J, Cui H, Shi R, Yao J, Fang X, Wang B, Yan F. Antimicrobial poly(ionic liquid)-induced bacterial nanotube formation and drug-resistance spread. Biomater Sci 2022; 10:6460-6471. [PMID: 36155673 DOI: 10.1039/d2bm01130a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial nanotubes are tubular membranous structures bulging from the cell surface that can connect neighboring bacteria for the exchange of intercellular substances. However, little is known about the formation and function of bacterial nanotubes under the stress of antimicrobial materials. Herein, an imidazolium-type cationic poly(ionic liquid) (PIL) and corresponding PIL membranes with antimicrobial properties were synthesized. The effects of these cationic polymers on the formation of bacterial nanotubes between Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) or Vibrio fischeri (V. fischeri), followed by intraspecies and interspecies exchange of antibiotic resistance genes (ARGs) were investigated. The results showed that bacteria tend to produce more nanotubes accompanied by drug-resistance trade, which can even make the ARGs of pathogens spread to the environmental microbes of V. fischeri. Given the unique antimicrobial sustainability toward bacteria after they acquire ARGs via bacterial nanotubes, antimicrobial PILs demonstrate bright prospects in the battle against resistant bacteria.
Collapse
Affiliation(s)
- Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan, University, Shanghai 200032, China.
| | - Jiangna Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jiamei Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jie Shi
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Hengqing Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Rongwei Shi
- School of Material and Chemical Engineering, Tongren University, Tongren 554300, Guizhou, China
| | - Jieran Yao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan, University, Shanghai 200032, China.
| | - Xia Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Bin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Feng Yan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
9
|
Do Pham DD, Mojr V, Helusová M, Mikušová G, Pohl R, Dávidová E, Šanderová H, Vítovská D, Bogdanová K, Večeřová R, Sedláková MH, Fišer R, Sudzinová P, Pospíšil J, Benada O, Křížek T, Galandáková A, Kolář M, Krásný L, Rejman D. LEGO-Lipophosphonoxins: A Novel Approach in Designing Membrane Targeting Antimicrobials. J Med Chem 2022; 65:10045-10078. [PMID: 35839126 PMCID: PMC9580004 DOI: 10.1021/acs.jmedchem.2c00684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The alarming rise of bacterial antibiotic resistance
requires the
development of new compounds. Such compounds, lipophosphonoxins (LPPOs),
were previously reported to be active against numerous bacterial species,
but serum albumins abolished their activity. Here we describe the
synthesis and evaluation of novel antibacterial compounds termed LEGO-LPPOs,
loosely based on LPPOs, consisting of a central linker module with
two attached connector modules on either side. The connector modules
are then decorated with polar and hydrophobic modules. We performed
an extensive structure–activity relationship study by varying
the length of the linker and hydrophobic modules. The best compounds
were active against both Gram-negative and Gram-positive species including
multiresistant strains and persisters. LEGO-LPPOs act by first depleting
the membrane potential and then creating pores in the cytoplasmic
membrane. Importantly, their efficacy is not affected by the presence
of serum albumins. Low cytotoxicity and low propensity for resistance
development demonstrate their potential for therapeutic use.
Collapse
Affiliation(s)
- Duy Dinh Do Pham
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Viktor Mojr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Michaela Helusová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic
| | - Gabriela Mikušová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Eva Dávidová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Hana Šanderová
- Institute of Microbiology, Czech Academy of Sciences v.v.i., Vídečská 1083, 142 20 Prague 4, Czech Republic
| | - Dragana Vítovská
- Institute of Microbiology, Czech Academy of Sciences v.v.i., Vídečská 1083, 142 20 Prague 4, Czech Republic
| | - Kateřina Bogdanová
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Renata Večeřová
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Miroslava Htoutou Sedláková
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Radovan Fišer
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic
| | - Petra Sudzinová
- Institute of Microbiology, Czech Academy of Sciences v.v.i., Vídečská 1083, 142 20 Prague 4, Czech Republic
| | - Jiří Pospíšil
- Institute of Microbiology, Czech Academy of Sciences v.v.i., Vídečská 1083, 142 20 Prague 4, Czech Republic
| | - Oldřich Benada
- Institute of Microbiology, Czech Academy of Sciences v.v.i., Vídečská 1083, 142 20 Prague 4, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Adéla Galandáková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Libor Krásný
- Institute of Microbiology, Czech Academy of Sciences v.v.i., Vídečská 1083, 142 20 Prague 4, Czech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
10
|
Jing H, Saed B, Pálmai M, Gunasekara H, Snee PT, Hu YS. Fluorescent Artificial Antigens Revealed Extended Membrane Networks Utilized by Live Dendritic Cells for Antigen Uptake. NANO LETTERS 2022; 22:4020-4027. [PMID: 35499493 DOI: 10.1021/acs.nanolett.2c00629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Dendritic cells (DCs) can infiltrate tight junctions of the epithelium to collect remote antigens during immune surveillance. While elongated membrane structures represent a plausible structure to perform this task, their functional mechanisms remain elusive owing to the lack of high-resolution characterizations in live DCs. Here, we developed fluorescent artificial antigens (FAAs) based on quantum dots coated with polyacrylic acid. Single-particle tracking of FAAs enables us to superresolve the membrane fiber network responsible for the antigen uptake. Using the DC2.4 cell line as a model system, we discovered the extensive membrane network approaching 200 μm in length with tunnel-like cavities about 150 nm in width. The membrane fiber network also contained heterogeneous circular migrasomes. Disconnecting the membrane network from the cell body decreased the intracellular FAA density. Our study enables mechanistic investigations of DC membrane networks and nanocarriers that target this mechanism.
Collapse
Affiliation(s)
- Haoran Jing
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Marcell Pálmai
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Preston T Snee
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
11
|
Filloux A. Bacterial protein secretion systems: Game of types. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35536734 DOI: 10.1099/mic.0.001193] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein trafficking across the bacterial envelope is a process that contributes to the organisation and integrity of the cell. It is the foundation for establishing contact and exchange between the environment and the cytosol. It helps cells to communicate with one another, whether they establish symbiotic or competitive behaviours. It is instrumental for pathogenesis and for bacteria to subvert the host immune response. Understanding the formation of envelope conduits and the manifold strategies employed for moving macromolecules across these channels is a fascinating playground. The diversity of the nanomachines involved in this process logically resulted in an attempt to classify them, which is where the protein secretion system types emerged. As our knowledge grew, so did the number of types, and their rightful nomenclature started to be questioned. While this may seem a semantic or philosophical issue, it also reflects scientific rigour when it comes to assimilating findings into textbooks and science history. Here I give an overview on bacterial protein secretion systems, their history, their nomenclature and why it can be misleading for newcomers in the field. Note that I do not try to suggest a new nomenclature. Instead, I explore the reasons why naming could have escaped our control and I try to reiterate basic concepts that underlie protein trafficking cross membranes.
Collapse
Affiliation(s)
- Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
12
|
Gao Z, Zhang E, Zhao H, Xia S, Bai H, Huang Y, Lv F, Liu L, Wang S. Bacteria-Mediated Intracellular Click Reaction for Drug Enrichment and Selective Apoptosis of Drug-Resistant Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12106-12115. [PMID: 35257582 DOI: 10.1021/acsami.2c01493] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functionalized biocarriers that can perform bio-orthogonal reactions in tumor cells may provide solutions to overcome the efflux of the chemotherapeutic agent from drug-resistant tumor cells. Herein, we report the enrichment of therapeutic drugs in tumor cells through intracellular click reaction with functionalized bacteria. Specifically, an intracellular bioactive drug enrichment template (OPV@Escherichia coli) is constructed by combining positively charged oligo(phenylene-vinylene)-alkyne (OPV-C≡CH) with E. coli via electrostatic interaction. After the cell uptake of OPV@E. coli and Cu(II)-based complex, Cu(I) generated in situ can catalyze the bio-orthogonal click reaction to covalently anchor the azide-bearing molecules of cyanine 5 (Cy5-N3) and paclitaxel (PTX-N3) on OPV@E. coli. These molecules and their functions were retained and enriched inside the drug-resistant tumor cells A549T, which can label cells with fluorescent probes and selectively induce the apoptosis of drug-resistant tumor cells.
Collapse
Affiliation(s)
- Zhiqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Endong Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shengpeng Xia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Yasuda M, Yamamoto T, Nagakubo T, Morinaga K, Obana N, Nomura N, Toyofuku M. Phage Genes Induce Quorum Sensing Signal Release through Membrane Vesicle Formation. Microbes Environ 2022; 37. [PMID: 35082176 PMCID: PMC8958291 DOI: 10.1264/jsme2.me21067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Membrane vesicles (MVs) released from the bacterium Paracoccus denitrificans Pd1222 are enriched with the quorum sensing (QS) signaling molecule N-hexadecanoyl-l-homoserine lactone (C16-HSL). However, the biogenesis of MVs in Pd1222 remains unclear. Investigations on MV formation are crucial for obtaining a more detailed understanding of the dynamics of MV-assisted signaling. In the present study, live-cell imaging showed that P. denitrificans Pd1222 produced MVs through cell lysis under DNA-damaging conditions. DNA sequencing of MVs and a transcriptome ana-lysis of cells indicated that the expression of a prophage region was up-regulated at the onset of MV formation under DNA-damaging conditions. A further sequence ana-lysis identified a putative endolysin (Pden_0381) and holin (Pden_0382) in the prophage region. The expression of these genes was regulated by RecA. Using gene knockout mutants, we showed that prophage-encoded endolysin was critical for MV formation by P. denitrificans Pd1222 under DNA-damaging conditions. MV triggering by endolysin was dependent on the putative holin, which presumably transported endolysin to the periplasmic space. C16-HSL quantification revealed that more signals were released into the milieu as a consequence of the effects of endolysin. Using a QS reporter strain, we found that the QS response in P. denitrificans was stimulated by inducing the expression of endolysin. Collectively, these results provide novel insights into the mechanisms by which a bacterial cell-to-cell communication system is manipulated by phage genes.
Collapse
Affiliation(s)
- Marina Yasuda
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Tatsuya Yamamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Toshiki Nagakubo
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Kana Morinaga
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Nozomu Obana
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba.,Microbiology Research Center for Sustainability, University of Tsukuba
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Microbiology Research Center for Sustainability, University of Tsukuba
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Microbiology Research Center for Sustainability, University of Tsukuba.,Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE)
| |
Collapse
|
14
|
Tunneling nanotubes and related structures: molecular mechanisms of formation and function. Biochem J 2021; 478:3977-3998. [PMID: 34813650 DOI: 10.1042/bcj20210077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/12/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
Tunneling nanotubes (TNTs) are F-actin-based, membrane-enclosed tubular connections between animal cells that transport a variety of cellular cargo. Over the last 15 years since their discovery, TNTs have come to be recognized as key players in normal cell communication and organism development, and are also exploited for the spread of various microbial pathogens and major diseases like cancer and neurodegenerative disorders. TNTs have also been proposed as modalities for disseminating therapeutic drugs between cells. Despite the rapidly expanding and wide-ranging relevance of these structures in both health and disease, there is a glaring dearth of molecular mechanistic knowledge regarding the formation and function of these important but enigmatic structures. A series of fundamental steps are essential for the formation of functional nanotubes. The spatiotemporally controlled and directed modulation of cortical actin dynamics would be required to ensure outward F-actin polymerization. Local plasma membrane deformation to impart negative curvature and membrane addition at a rate commensurate with F-actin polymerization would enable outward TNT elongation. Extrinsic tactic cues, along with cognate intrinsic signaling, would be required to guide and stabilize the elongating TNT towards its intended target, followed by membrane fusion to create a functional TNT. Selected cargoes must be transported between connected cells through the action of molecular motors, before the TNT is retracted or destroyed. This review summarizes the current understanding of the molecular mechanisms regulating these steps, also highlighting areas that deserve future attention.
Collapse
|
15
|
Phillips DA, Zacharoff LA, Hampton CM, Chong GW, Malanoski AP, Metskas LA, Xu S, Bird LJ, Eddie BJ, Miklos AE, Jensen GJ, Drummy LF, El-Naggar MY, Glaven SM. A bacterial membrane sculpting protein with BAR domain-like activity. eLife 2021; 10:60049. [PMID: 34643180 PMCID: PMC8687657 DOI: 10.7554/elife.60049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Bin/Amphiphysin/RVS (BAR) domain proteins belong to a superfamily of coiled-coil proteins influencing membrane curvature in eukaryotes and are associated with vesicle biogenesis, vesicle-mediated protein trafficking, and intracellular signaling. Here, we report a bacterial protein with BAR domain-like activity, BdpA, from Shewanella oneidensis MR-1, known to produce redox-active membrane vesicles and micrometer-scale outer membrane extensions (OMEs). BdpA is required for uniform size distribution of membrane vesicles and influences scaffolding of OMEs into a consistent diameter and curvature. Cryo-TEM reveals that a strain lacking BdpA produces lobed, disordered OMEs rather than membrane tubules or narrow chains produced by the wild-type strain. Overexpression of BdpA promotes OME formation during planktonic growth of S. oneidensis where they are not typically observed. Heterologous expression results in OME production in Marinobacter atlanticus and Escherichia coli. Based on the ability of BdpA to alter membrane architecture in vivo, we propose that BdpA and its homologs comprise a newly identified class of bacterial BAR domain-like proteins.
Collapse
Affiliation(s)
- Daniel A Phillips
- Oak Ridge Institute for Science and Education / US Army DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, United States
| | - Lori A Zacharoff
- Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
| | - Cheri M Hampton
- Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, United States
| | - Grace W Chong
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Anthony P Malanoski
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| | - Lauren Ann Metskas
- Biological Sciences, Chemistry, California Institute of Technology, Pasadena, United States
| | - Shuai Xu
- Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
| | - Lina J Bird
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| | - Brian J Eddie
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| | - Aleksandr E Miklos
- BioSciences Division, BioChemistry Branch, US Army DEVCOM Chemical Biological Center, Aberdeen Proving Ground, United States
| | - Grant J Jensen
- Biology and Bioengineering, California Institute of Technology, Pasadena, United States
| | - Lawrence F Drummy
- Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, United States
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, Biological Sciences, and Chemistry, University of Southern California, Los Angeles, United States
| | - Sarah M Glaven
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| |
Collapse
|
16
|
Mieszkin S, Pouder E, Uroz S, Simon-Colin C, Alain K. Acidisoma silvae sp. nov. and Acidisomacellulosilytica sp. nov., Two Acidophilic Bacteria Isolated from Decaying Wood, Hydrolyzing Cellulose and Producing Poly-3-hydroxybutyrate. Microorganisms 2021; 9:microorganisms9102053. [PMID: 34683374 PMCID: PMC8537097 DOI: 10.3390/microorganisms9102053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 12/02/2022] Open
Abstract
Two novel strains, HW T2.11T and HW T5.17T, were isolated from decaying wood (forest of Champenoux, France). Study of the 16S rRNA sequence similarity indicated that the novel strains belong to the genus Acidisoma. The sequence similarity of the 16S rRNA gene of HW T2.11T with the corresponding sequences of A. tundrae and A. sibiricum was 97.30% and 97.25%, while for HW T5.17T it was 96.85% and 97.14%, respectively. The DNA G+C contents of the strains were 62.32–62.50%. Cells were Gram-negative coccobacilli that had intracellular storage granules (poly-3-hydroxybutyrate (P3HB)) that confer resistance to environmental stress conditions. They were mesophilic and acidophilic organisms growing at 8–25 °C, at a pH of 2.0–6.5, and were capable of using a wide range of organic compounds and complex biopolymers such as starch, fucoidan, laminarin, pectin and cellulose, the latter two being involved in wood composition. The major cellular fatty acid was cyclo C19:0ω8c and the major quinone was Q-10. Overall, genome relatedness indices between genomes of strains HW T2.11T and HW T5.17T (Orthologous Average Nucleotide Identity (OrthoANI) value = 83.73% and digital DNA-DNA hybridization score = 27.5%) confirmed that they belonged to two different species. Genetic predictions indicate that the cyclopropane fatty acid (CFA) pathway is present, conferring acid-resistance properties to the cells. The two novel strains might possess a class IV polyhydroxyalcanoate (PHA) synthase operon involved in the P3HB production pathway. Overall, the polyphasic taxonomic analysis shows that these two novel strains are adapted to harsh environments such as decaying wood where the organic matter is difficult to access, and can contribute to the degradation of dead wood. These strains represent novel species of the genus Acidisoma, for which the names Acidisoma silvae sp. nov. and Acidisomacellulosilytica sp. nov. are proposed. The type strains of Acidisoma silvae and Acidisomacellulosilytica are, respectively, HW T2.11T (DSM 111006T; UBOCC-M-3364T) and HW T5.17T (DSM 111007T; UBOCC-M-3365T).
Collapse
Affiliation(s)
- Sophie Mieszkin
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Université de Brest, CNRS, Ifremer, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (E.P.); (C.S.-C.); (K.A.)
- Centre INRAE-Grand Est-Nancy, Université de Lorraine, INRAE, UMR IAM, 54280 Champenoux, F-54000 Nancy, France;
- Correspondence:
| | - Eva Pouder
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Université de Brest, CNRS, Ifremer, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (E.P.); (C.S.-C.); (K.A.)
| | - Stéphane Uroz
- Centre INRAE-Grand Est-Nancy, Université de Lorraine, INRAE, UMR IAM, 54280 Champenoux, F-54000 Nancy, France;
| | - Christelle Simon-Colin
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Université de Brest, CNRS, Ifremer, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (E.P.); (C.S.-C.); (K.A.)
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Université de Brest, CNRS, Ifremer, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (E.P.); (C.S.-C.); (K.A.)
| |
Collapse
|
17
|
Kaplan M, Chreifi G, Metskas LA, Liedtke J, Wood CR, Oikonomou CM, Nicolas WJ, Subramanian P, Zacharoff LA, Wang Y, Chang YW, Beeby M, Dobro MJ, Zhu Y, McBride MJ, Briegel A, Shaffer CL, Jensen GJ. In situ imaging of bacterial outer membrane projections and associated protein complexes using electron cryo-tomography. eLife 2021; 10:73099. [PMID: 34468314 PMCID: PMC8455137 DOI: 10.7554/elife.73099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
The ability to produce outer membrane projections in the form of tubular membrane extensions (MEs) and membrane vesicles (MVs) is a widespread phenomenon among diderm bacteria. Despite this, our knowledge of the ultrastructure of these extensions and their associated protein complexes remains limited. Here, we surveyed the ultrastructure and formation of MEs and MVs, and their associated protein complexes, in tens of thousands of electron cryo-tomograms of ~90 bacterial species that we have collected for various projects over the past 15 years (Jensen lab database), in addition to data generated in the Briegel lab. We identified outer MEs and MVs in 13 diderm bacterial species and classified several major ultrastructures: (1) tubes with a uniform diameter (with or without an internal scaffold), (2) tubes with irregular diameter, (3) tubes with a vesicular dilation at their tip, (4) pearling tubes, (5) connected chains of vesicles (with or without neck-like connectors), (6) budding vesicles and nanopods. We also identified several protein complexes associated with these MEs and MVs which were distributed either randomly or exclusively at the tip. These complexes include a secretin-like structure and a novel crown-shaped structure observed primarily in vesicles from lysed cells. In total, this work helps to characterize the diversity of bacterial membrane projections and lays the groundwork for future research in this field.
Collapse
Affiliation(s)
- Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Georges Chreifi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Lauren Ann Metskas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Janine Liedtke
- Leiden University, Sylvius Laboratories, Leiden, Netherlands
| | - Cecily R Wood
- Department of Veterinary Science, University of Kentucky, Lexington, United States
| | - Catherine M Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - William J Nicolas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Poorna Subramanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Lori A Zacharoff
- Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
| | - Yuhang Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Yongtao Zhu
- Department of Biological Sciences, Minnesota State University, Mankato, United States
| | - Mark J McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, United States
| | - Ariane Briegel
- Leiden University, Sylvius Laboratories, Leiden, Netherlands
| | - Carrie L Shaffer
- Department of Veterinary Science, University of Kentucky, Lexington, United States.,Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, United States.,Department of Pharmaceutical Sciences, University of Kentucky, Lexington, United States
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Department of Chemistry and Biochemistry, Brigham Young University, Provo, United States
| |
Collapse
|
18
|
Wu H, Zhong D, Zhang Z, Wu Y, Li Y, Mao H, Luo K, Kong D, Gong Q, Gu Z. A Bacteria-Inspired Morphology Genetic Biomedical Material: Self-Propelled Artificial Microbots for Metastatic Triple Negative Breast Cancer Treatment. ACS NANO 2021; 15:4845-4860. [PMID: 33625212 DOI: 10.1021/acsnano.0c09594] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Morphology genetic biomedical materials (MGBMs), referring to fabricating materials by learning from the genetic morphologies and strategies of natural species, hold great potential for biomedical applications. Inspired by the cargo-carrying-bacterial therapy (microbots) for cancer treatment, a MGBM (artificial microbots, AMBs) was constructed. Rather than the inherent bacterial properties (cancerous chemotaxis, tumor invasion, cytotoxicity), AMBs also possessed ingenious nitric oxide (NO) generation strategy. Mimicking the bacterial construction, the hyaluronic acid (HA) polysaccharide was induced as a coating capsule of AMBs to achieve long circulation in blood and specific tissue preference (tumor tropism). Covered under the capsule-like polysaccharide was the combinatorial agent, the self-assembly constructed by the amphiphilic dendrons with abundant l-arginine residues peripherally (as endogenous NO donor) and hydrophobic chemotherapeutic drugs at the core stacking on the surface of SWNTs (the photothermal agent) for a robust chemo-photothermal therapy (chemo-PTT) and the elicited immune therapy. Subsequently, the classic inducible nitric oxide synthase (iNOS) pathway aroused by immune response was revolutionarily utilized to oxidize the l-arginine substrates for NO production, the process for which could also be promoted by the high reactive oxygen species level generated by chemo-PTT. The NO generated by AMBs was intended to regulate vasodilation and cause a dramatic invasion (as the microbots) to disperse the therapeutic agents throughout the solid tumor for a much more enhanced curative effect, which we defined as "self-propulsion". The self-propelled AMBs exhibiting impressive primary tumor ablation, as well as the distant metastasis regression to conquer the metastatic triple negative breast cancer, provided pioneering potential therapeutic opportunities, and enlightened broad prospects in biomedical application.
Collapse
Affiliation(s)
- Huayu Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dan Zhong
- Huaxi MR Research Center (HMRRC) Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University, Chengdu 610041, P. R. China
| | - Zhijun Zhang
- Huaxi MR Research Center (HMRRC) Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University, Chengdu 610041, P. R. China
| | - Yahui Wu
- Huaxi MR Research Center (HMRRC) Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University, Chengdu 610041, P. R. China
| | - Yunkun Li
- Huaxi MR Research Center (HMRRC) Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University, Chengdu 610041, P. R. China
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC) Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University, Chengdu 610041, P. R. China
| | - Deling Kong
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, P.R. China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC) Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University, Chengdu 610041, P. R. China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC) Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University, Chengdu 610041, P. R. China
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
19
|
Fritts RK, McCully AL, McKinlay JB. Extracellular Metabolism Sets the Table for Microbial Cross-Feeding. Microbiol Mol Biol Rev 2021; 85:e00135-20. [PMID: 33441489 PMCID: PMC7849352 DOI: 10.1128/mmbr.00135-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transfer of nutrients between cells, or cross-feeding, is a ubiquitous feature of microbial communities with emergent properties that influence our health and orchestrate global biogeochemical cycles. Cross-feeding inevitably involves the externalization of molecules. Some of these molecules directly serve as cross-fed nutrients, while others can facilitate cross-feeding. Altogether, externalized molecules that promote cross-feeding are diverse in structure, ranging from small molecules to macromolecules. The functions of these molecules are equally diverse, encompassing waste products, enzymes, toxins, signaling molecules, biofilm components, and nutrients of high value to most microbes, including the producer cell. As diverse as the externalized and transferred molecules are the cross-feeding relationships that can be derived from them. Many cross-feeding relationships can be summarized as cooperative but are also subject to exploitation. Even those relationships that appear to be cooperative exhibit some level of competition between partners. In this review, we summarize the major types of actively secreted, passively excreted, and directly transferred molecules that either form the basis of cross-feeding relationships or facilitate them. Drawing on examples from both natural and synthetic communities, we explore how the interplay between microbial physiology, environmental parameters, and the diverse functional attributes of extracellular molecules can influence cross-feeding dynamics. Though microbial cross-feeding interactions represent a burgeoning field of interest, we may have only begun to scratch the surface.
Collapse
Affiliation(s)
- Ryan K Fritts
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
20
|
Diender M, Parera Olm I, Sousa DZ. Synthetic co-cultures: novel avenues for bio-based processes. Curr Opin Biotechnol 2021; 67:72-79. [PMID: 33517194 DOI: 10.1016/j.copbio.2021.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
In nature, microorganisms live in multi-species communities allowing microbial interactions. These interactions are lost upon establishing a pure culture, increasing the metabolic burden and limiting the metabolic potential of the isolated microbe. In the past years, synthetic microbial co-cultivation, using well-defined consortia of two or more microbes, was increasingly explored for innovative applications in biotechnology. As such, interspecies interactions take place without the complexity of an open mixed culture, minimizing undesired side reactions. Ultimately, synthetic co-cultivation allows to take well-characterized microbes 'off-the-shelf' to create ecosystems with improved process capabilities. This review highlights some of the recent developments on co-cultivation, focusing on waste-to-chemicals conversions. It also addresses fundamental knowledge on microbial interactions deriving from these studies, which is important to further develop our ability to engineer functional co-cultures for bioproduction.
Collapse
Affiliation(s)
- Martijn Diender
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ivette Parera Olm
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
21
|
Bos J, Cisneros LH, Mazel D. Real-time tracking of bacterial membrane vesicles reveals enhanced membrane traffic upon antibiotic exposure. SCIENCE ADVANCES 2021; 7:7/4/eabd1033. [PMID: 33523924 PMCID: PMC7817102 DOI: 10.1126/sciadv.abd1033] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/01/2020] [Indexed: 05/03/2023]
Abstract
Membrane vesicles are ubiquitous carriers of molecular information. A broad understanding of the biological functions of membrane vesicles in bacteria remains elusive because of the imaging challenges during real-time in vivo experiments. Here, we provide a quantitative analysis of the motion of individual vesicles in living microbes using fluorescence microscopy, and we show that while vesicle free diffusion in the intercellular space is rare, vesicles mostly disperse along the bacterial surfaces. Most remarkably, when bacteria are challenged with low doses of antibiotics, vesicle production and traffic, quantified by instantaneous vesicle speeds and total traveled distance per unit time, are significantly enhanced. Furthermore, the enhanced vesicle movement is independent of cell clustering properties but rather is associated with a reduction of the density of surface appendages in response to antibiotics. Together, our results provide insights into the emerging field of spatial organization and dynamics of membrane vesicles in microcolonies.
Collapse
Affiliation(s)
- Julia Bos
- Unité Plasticité du Génome Bactérien, Institut Pasteur, UMR3525, CNRS, Paris 75015, France.
| | - Luis H Cisneros
- The Biodesign Center for Biocomputing, Security and Society, and BEYOND Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ, USA.
| | - Didier Mazel
- Unité Plasticité du Génome Bactérien, Institut Pasteur, UMR3525, CNRS, Paris 75015, France
| |
Collapse
|
22
|
Boopathi S, Liu D, Jia AQ. Molecular trafficking between bacteria determines the shape of gut microbial community. Gut Microbes 2021; 13:1959841. [PMID: 34455923 PMCID: PMC8432619 DOI: 10.1080/19490976.2021.1959841] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/04/2023] Open
Abstract
Complex inter-bacterial interactions largely influence the structure and function of the gut microbial community. Though several host-associated phenomena have often been shown to be involved in the stability, structure, and function of the gut microbial community, the implication of contact-dependent and contact-independent inter-bacterial interactions has been overlooked. Such interactions are tightly governed at multiple layers through several extracellular organelles, including contact-dependent inhibition (CDI), nanotubes, type VI secretion system (T6SS), and membrane vesicles (MVs). Recent advancements in molecular techniques have revealed that such extracellular organelles function beyond exhibiting competitive behavior and are also involved in manifesting cooperative behaviors. Cooperation between bacteria occurs through the sharing of several beneficial molecules including nucleic acids, proteins, metabolites, and nutrients among the members of the community, while competition occurs by means of multiple toxins. Intrinsic coordination between contact-dependent and contact-independent mechanisms collectively provides a fitness advantage and increased colonization resistance to the gut microbiota, where molecular trafficking plays a key role. This review is intended to provide a comprehensive view of the salient features of the different bacterial interactions and to highlight how microbiota deploy multifaceted organelles, for exerting both cooperative and competitive behaviors. We discuss the current knowledge of bacterial molecular trafficking and its impact on shaping the gut microbial community.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Danrui Liu
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Ai-Qun Jia
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
23
|
Rock Surface Fungi in Deep Continental Biosphere-Exploration of Microbial Community Formation with Subsurface In Situ Biofilm Trap. Microorganisms 2020; 9:microorganisms9010064. [PMID: 33383728 PMCID: PMC7824546 DOI: 10.3390/microorganisms9010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/16/2023] Open
Abstract
Fungi have an important role in nutrient cycling in most ecosystems on Earth, yet their ecology and functionality in deep continental subsurface remain unknown. Here, we report the first observations of active fungal colonization of mica schist in the deep continental biosphere and the ability of deep subsurface fungi to attach to rock surfaces under in situ conditions in groundwater at 500 and 967 m depth in Precambrian bedrock. We present an in situ subsurface biofilm trap, designed to reveal sessile microbial communities on rock surface in deep continental groundwater, using Outokumpu Deep Drill Hole, in eastern Finland, as a test site. The observed fungal phyla in Outokumpu subsurface were Basidiomycota, Ascomycota, and Mortierellomycota. In addition, significant proportion of the community represented unclassified Fungi. Sessile fungal communities on mica schist surfaces differed from the planktic fungal communities. The main bacterial phyla were Firmicutes, Proteobacteria, and Actinobacteriota. Biofilm formation on rock surfaces is a slow process and our results indicate that fungal and bacterial communities dominate the early surface attachment process, when pristine mineral surfaces are exposed to deep subsurface ecosystems. Various fungi showed statistically significant cross-kingdom correlation with both thiosulfate and sulfate reducing bacteria, e.g., SRB2 with fungi Debaryomyces hansenii.
Collapse
|
24
|
Milne-Davies B, Wimmi S, Diepold A. Adaptivity and dynamics in type III secretion systems. Mol Microbiol 2020; 115:395-411. [PMID: 33251695 DOI: 10.1111/mmi.14658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
The type III secretion system is the common core of two bacterial molecular machines: the flagellum and the injectisome. The flagellum is the most widely distributed prokaryotic locomotion device, whereas the injectisome is a syringe-like apparatus for inter-kingdom protein translocation, which is essential for virulence in important human pathogens. The successful concept of the type III secretion system has been modified for different bacterial needs. It can be adapted to changing conditions, and was found to be a dynamic complex constantly exchanging components. In this review, we highlight the flexibility, adaptivity, and dynamic nature of the type III secretion system.
Collapse
Affiliation(s)
- Bailey Milne-Davies
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Stephan Wimmi
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
25
|
Under pressure. Nat Rev Microbiol 2020; 18:675. [PMID: 33051606 DOI: 10.1038/s41579-020-00475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|