1
|
Bischof K, Holth A, Bassarova A, Davidson B. Expression of PRAME in high-grade serous carcinoma is associated with higher residual disease volume and Occludin expression. Pathol Res Pract 2024; 266:155787. [PMID: 39709875 DOI: 10.1016/j.prp.2024.155787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Patients with high-grade serous carcinoma (HGSC) are commonly diagnosed at late disease stages and after primary tumors have disseminated in the peritoneum. The overexpression of tight junction proteins has been associated with poor prognosis in this setting, potentially reflecting the tumor´s adaptive changes in the disease cascade. METHODS By performing immunohistochemistry in a large single-center cohort of a total of 705 HGSC, we test the hypothesis that the protein expression of PReferentially expressed Antigen of MElanoma (PRAME) contains prognostic, predictive or clinically translatable information. We further examine its co-expression with tight junction proteins. RESULTS We confirmed the nuclear expression of PRAME in 442 (63 %) of specimens with comparable expression levels in peritoneal and pleural effusions (p = 0.72), and in effusions versus surgical specimens (p = 0.339). In effusions, any degree of expression of PRAME was significantly associated with suboptimal debulking surgery during primary treatment (p = 0.034). In surgical specimens, higher expression of PRAME was significantly linked to more advanced FIGO stage (p = 0.021). PRAME expression was not associated with other clinico-pathologic factors as age, CA125 levels, chemoresistance or survival, but correlated with PRAME mRNA levels. Significant correlation was found between expression levels of PRAME and the tight junction protein Occludin (p = 0.002). CONCLUSION Taken together, our study confirms PRAME to be expressed in the majority of HGSC effusions and surgical samples. The association of high levels of PRAME expression with incomplete surgical resection status and advanced stage disease may suggest PRAME expression as adaptative mechanism during disease dissemination. This finding warrants confirmation in independent series.
Collapse
Affiliation(s)
- Katharina Bischof
- Department of Cancer Immunology, Institute for Cancer Research, University of Oslo, Oslo, Norway; Department of Surgical Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | - Arild Holth
- Department of Pathology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Assia Bassarova
- Department of Pathology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Camarda F, Mastrantoni L, Parrillo C, Minucci A, Persiani F, Giannarelli D, Pasciuto T, Giacomini F, De Paolis E, Manfredelli M, Marchetti C, Zannoni GF, Fagotti A, Scambia G, Nero C. Actionable mutations in early-stage ovarian cancer according to the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT): a descriptive analysis on a large prospective cohort. ESMO Open 2024; 10:104090. [PMID: 39705839 DOI: 10.1016/j.esmoop.2024.104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND According to the European Society for Clinical Oncology (ESMO) guidelines, the therapeutic algorithm for early-stage epithelial ovarian carcinoma (EOC) is primarily based on grading and histotype. Adjuvant chemotherapy is usually recommended for high-grade tumors and for the International Federation of Gynecology and Obstetrics (FIGO) stage IB-IC; however, overtreatment remains a concern. Conversely, patients truly at higher risk of recurrence currently lack access to additional therapeutic strategies. PATIENTS AND METHODS This study presents a descriptive analysis of early-stage EOC patients who were prospectively sequenced and stratified into high-, intermediate-, and low-risk groups based on clinicopathological features. Oncogenic alterations were identified using OncoKB and classified according to the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT) Tier I-III. The prevalence of molecular findings was first reported for each risk subgroup, followed by an analysis on the cohort of patients who experienced relapse. RESULTS A total of 180 patients with FIGO stage I-II EOC were enrolled between January 2022 and December 2023; 126 patients (70%) had at least one ESCAT Tier I-III alteration (including 51% high risk, 35% intermediate risk, and 14% low risk); among them, approximately one-quarter (26%, 95% confidence interval 19% to 35%) had an ESCAT Tier I alteration. BRCA1 and BRCA2 alterations were observed in about one-quarter of patients, with BRCA2 often co-altered with POLE mutations (55%, P = 2.1 × 10-4). Notably, almost all BRCA1 variants were found in high-risk patients. BRAF V600E mutation (ESCAT IC) was found in 2.4% of patients. PIK3CA variants were the most common Tier IIIA alterations found in 59% of patients. Among those who experienced recurrence, 60% had at least one ESCAT Tier I-III alteration, with PIK3CA mutations being the most frequent. CONCLUSIONS These findings highlight the potential for actionable alterations in most early-stage EOC patients and support the exploration of chemotherapy-free regimens for low- to intermediate-risk groups, as well as targeted maintenance therapy for high-risk individuals.
Collapse
Affiliation(s)
- F Camarda
- Unit of Oncological Gynecology, Women's Children's and Public Health Department, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy. https://twitter.com/FlorianaCamarda
| | - L Mastrantoni
- Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - C Parrillo
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (G-STeP), IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - A Minucci
- Departmental Unit of Molecular and Genomic Diagnostics, Genomics Core Facility, Gemelli Science and Technology Park (G-STeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - F Persiani
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (G-STeP), IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - D Giannarelli
- Epidemiology and Biostatistics Facility G-STeP Generator Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - T Pasciuto
- Università Cattolica del Sacro Cuore, Rome, Italy; Data Collection Research Core Facility Gemelli Science and Technology Park (G-STeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - F Giacomini
- Scientific Directorate, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - E De Paolis
- Departmental Unit of Molecular and Genomic Diagnostics, Genomics Core Facility, Gemelli Science and Technology Park (G-STeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - M Manfredelli
- Scientific Directorate, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - C Marchetti
- Unit of Oncological Gynecology, Women's Children's and Public Health Department, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - G F Zannoni
- Gynecopathology and Breast Pathology Unit, Dipartimento di Scienze Della Salute Della Donna, Del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - A Fagotti
- Unit of Oncological Gynecology, Women's Children's and Public Health Department, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - G Scambia
- Unit of Oncological Gynecology, Women's Children's and Public Health Department, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - C Nero
- Unit of Oncological Gynecology, Women's Children's and Public Health Department, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy. https://twitter.com/CamillaNero
| |
Collapse
|
3
|
Hollis RL, van Gent MDJM. Editorial: Advances toward improved understanding and treatment of uncommon ovarian cancer types and subtypes. Front Oncol 2024; 14:1519252. [PMID: 39717746 PMCID: PMC11663878 DOI: 10.3389/fonc.2024.1519252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Affiliation(s)
- Robert L. Hollis
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Mignon D. J. M. van Gent
- Department of Gynaecologic Oncology, Center for Gynaecologic Oncology Amsterdam, Cancer Center Amsterdam, Amsterdam University Medical Centres, Amsterdam, Netherlands
| |
Collapse
|
4
|
Lehrich BM, Tao J, Liu S, Hirsch TZ, Yasaka TM, Cao C, Delgado ER, Guan X, Lu S, Pan L, Liu Y, Singh S, Poddar M, Bell A, Singhi AD, Zucman-Rossi J, Wang Y, Monga SP. Development of mutated β-catenin gene signature to identify CTNNB1 mutations from whole and spatial transcriptomic data in patients with HCC. JHEP Rep 2024; 6:101186. [PMID: 39583094 PMCID: PMC11582745 DOI: 10.1016/j.jhepr.2024.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 11/26/2024] Open
Abstract
Background & Aims Patients with β-catenin (encoded by CTNNB1)-mutated hepatocellular carcinoma (HCC) demonstrate heterogenous responses to first-line immune checkpoint inhibitors (ICIs). Precision-medicine based treatments for this subclass are currently in clinical development. Here, we report derivation of the Mutated β-catenin Gene Signature (MBGS) to predict CTNNB1-mutational status in patients with HCC for future application in personalized medicine treatment regimens. Methods Co-expression of mutant-Nrf2 and hMet ± mutant-β-catenin in murine livers in mice led to HCC development. The MBGS was derived using bulk RNA-seq and intersectional transcriptomic analysis of β-catenin-mutated and non-mutated HCC models. Integrated RNA/whole-exome-sequencing and spatial transcriptomic data from multiple cohorts of patients with HCC was assessed to address the ability of MBGS to detect CTNNB1 mutation, the tumor immune microenvironment, and/or predict therapeutic responses. Results Bulk RNA-seq comparing HCC specimens in mutant β-catenin-Nrf2, β-catenin-Met and β-catenin-Nrf2-Met to Nrf2-Met HCC model yielded 95 common upregulated genes. In The Cancer Genome Atlas (TCGA)-LIHC dataset, differential gene expression analysis with false discovery rate (FDR) = 0.05 and log2(fold change) >1.5 on the 95 common genes comparing CTNNB1-mutated vs. wild-type patients narrowed the gene panel to a 13-gene MBGS. MBGS predicted CTNNB1-mutations in TCGA (n = 374) and French (n = 398) patient cohorts with AUCs of 0.90 and 0.94, respectively. Additionally, a higher MBGS expression score was associated with lack of significant improvement in overall survival or progression-free survival in the atezolizumab-bevacizumab arm vs. the sorafenib arm in the IMbrave150 cohort. MBGS performed comparable or superior to other CTNNB1-mutant classifiers. MBGS overlapped with Hoshida S3, Boyault G5/G6, and Chiang CTNNB1 subclass tumors in TCGA and in HCC spatial transcriptomic datasets visually depicting these tumors to be situated in an immune excluded tumor microenvironment. Conclusions MBGS will aid in patient stratification to guide precision medicine therapeutics for CTNNB1-mutated HCC subclass as a companion diagnostic, as anti-β-catenin therapies become available. Impact and implications As precision medicine for liver cancer treatment becomes a reality, diagnostic tools are needed to help classify patients into groups for the best treatment choices. We have developed a molecular signature that could serve as a companion diagnostic and uses bulk or spatial transcriptomic data to identify a unique subclass of liver tumors. This subgroup of liver cancer patients derive limited benefit from the current standard of care and are expected to benefit from specialized directed therapies that are on the horizon.
Collapse
Affiliation(s)
- Brandon M. Lehrich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junyan Tao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Theo Z. Hirsch
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Tyler M. Yasaka
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Catherine Cao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Evan R. Delgado
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xiangnan Guan
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Shan Lu
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Long Pan
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Yuqing Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sucha Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minakshi Poddar
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron Bell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Aatur D. Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Yulei Wang
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Satdarshan P. Monga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Takamatsu S, Hillman RT, Yoshihara K, Baba T, Shimada M, Yoshida H, Kajiyama H, Oda K, Mandai M, Okamoto A, Enomoto T, Matsumura N. Molecular classification of ovarian high-grade serous/endometrioid carcinomas through multi-omics analysis: JGOG3025-TR2 study. Br J Cancer 2024; 131:1340-1349. [PMID: 39215190 PMCID: PMC11473812 DOI: 10.1038/s41416-024-02837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Considerable interobserver variability exists in diagnosis of ovarian high-grade endometrioid carcinoma (HGEC) and high-grade serous carcinoma (HGSC) due to histopathological similarities. While homologous recombination deficiency (HRD) correlates with drug sensitivity in HGSC, the molecular features of HGEC are unclear. METHODS Fresh-frozen samples from 15 ovarian HGECs and 274 ovarian HGSCs in the JGOG-TR2 cohort were submitted to targeted DNA sequencing, RNA sequencing, DNA methylation array, and SNP array. We additionally analyzed 555 ovarian HGSCs from TCGA-OV and 287 endometrial high-grade carcinomas from TCGA-UCEC. RESULTS Unsupervised clustering using copy number signatures identified four distinct tumor groups (C1, C2, C3 and C4). C1 (n = 41) showed CCNE1 amplification and poor survival. C2 (n = 160) and C3 (n = 59) showed high BRCA1/2 alteration frequency with low and moderate ploidy, respectively. C4 (n = 22) was characterized by favorable outcome, higher HGEC proportion, no BRCA1/2 alteration or CCNE1 amplification, and low levels of HRD score, ploidy, intra-tumoral heterogeneity, cell proliferation rate, and WT1 gene expression. Notably, C4 exhibited a normal endometrium-like DNA methylation profile, thus, defined as "HGEC-type" tumors, which were also identified in TCGA-OV and TCGA-UCEC. CONCLUSIONS Ovarian "HGEC-type" tumors present a non-HRD status, favorable prognosis, and endometrial differentiation, possibly constituting a subset of clinically diagnosed HGSCs.
Collapse
Affiliation(s)
- Shiro Takamatsu
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Tyler Hillman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- CPRIT Scholar in Cancer Research, Houston, TX, USA
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University, Morioka, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Yoshida
- Department of Obstetrics and Gynecology, Tokai University Graduate School of Medicine, Isehara, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, The University of Tokyo, Tokyo, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.
| |
Collapse
|
6
|
Vu TH, Nakamura K, Shigeyasu K, Kashino C, Okamoto K, Kubo K, Kamada Y, Masuyama H. Apolipoprotein-B mRNA-editing complex 3B could be a new potential therapeutic target in endometriosis. Sci Rep 2024; 14:24968. [PMID: 39443671 PMCID: PMC11499600 DOI: 10.1038/s41598-024-76589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
This study investigated the correlation of Apolipoprotein-B mRNA-editing complex 3B (APOBEC3B) expression with hypoxia inducible factor 1α (HIF-1α), Kirsten rat sarcoma virus (KRAS) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) in endometriosis patients, and the inhibitory effects of APOBEC3B knockdown in a human endometriotic cell line. Here, APOBEC3B, HIF-1α, KRAS, and PIK3CA were examined in patients with and without endometriosis using reverse transcription polymerase chain reaction (RT-PCR). The apoptosis, cell proliferation, invasion, migration, and biological function of APOBEC3B knockdown were explored in 12Z immortalized human endometriotic cell line. We observed APOBEC3B, HIF-1α, KRAS and PIK3CA expressions were significantly higher in endometriosis patients (p < 0.001, p < 0.001, p = 0.029, p = 0.001). Knockdown of APOBEC3B increased apoptosis, which was 28.03% and 22.27% higher than in mock and control siRNA samples, respectively. APOBEC3B knockdown also decreased PIK3CA expression and increased Caspase 8 expression, suggesting a potential role in the regulation of apoptosis. Furthermore, knockdown of APOBEC3B significantly inhibited cell proliferation, invasion, and migration compared to mock and control siRNA. (Cell proliferation: mock: p < 0.001 and control siRNA: p = 0.049. Cell invasion: mock: p < 0.001 and control siRNA: p = 0.029. Cell migration: mock: p = 0.004, and control siRNA: p = 0.014). In conclusion, this study suggests that APOBEC3B may be a new potential therapeutic target for endometriosis.
Collapse
Affiliation(s)
- Thuy Ha Vu
- Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700- 8558, Japan
- Department of Histopathology, Haiphong University of Medicine and Pharmacy, 72A Nguyen Binh Khiem St, Ngo Quyen Dist, Hai Phong, 180000, Vietnam
| | - Keiichiro Nakamura
- Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700- 8558, Japan.
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700- 8558, Japan
| | - Chiaki Kashino
- Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700- 8558, Japan
| | - Kazuhiro Okamoto
- Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700- 8558, Japan
| | - Kotaro Kubo
- Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700- 8558, Japan
| | - Yasuhiko Kamada
- Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700- 8558, Japan
| | - Hisashi Masuyama
- Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700- 8558, Japan
| |
Collapse
|
7
|
de Nonneville A, Kalbacher E, Cannone F, Guille A, Adelaïde J, Finetti P, Cappiello M, Lambaudie E, Ettore G, Charafe E, Mamessier E, Provansal M, Bertucci F, Sabatier R. Endometrioid ovarian carcinoma landscape: pathological and molecular characterization. Mol Oncol 2024; 18:2586-2600. [PMID: 38923749 PMCID: PMC11459045 DOI: 10.1002/1878-0261.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Endometrioid ovarian cancers (EOvC) are usually managed as serous tumors. In this study, we conducted a comprehensive molecular investigation to uncover the distinct biological characteristics of EOvC. This retrospective multicenter study involved patients from three European centers. We collected clinical data and formalin-fixed paraffin-embedded (FFPE) samples for analysis at the DNA level using panel-based next-generation sequencing and array-comparative genomic hybridization. Additionally, we examined mRNA expression using NanoString nCounter® and protein expression through tissue microarray. We compared EOvC with other ovarian subtypes and uterine endometrioid tumors. Furthermore, we assessed the impact of molecular alterations on patient outcomes, including progression-free survival (PFS) and overall survival (OS). Preliminary analysis of clinical data from 668 patients, including 86 (12.9%) EOvC, revealed more favorable prognosis for EOvC compared with serous ovarian carcinoma (5-year OS of 60% versus 45%; P = 0.001) driven by diagnosis at an earlier stage. Immunohistochemistry and copy number alteration (CNA) profiles of 43 cases with clinical data and FFPE samples available indicated that EOvC protein expression and CNA profiles were more similar to endometrioid endometrial tumors than to serous ovarian carcinomas. EOvC exhibited specific alterations, such as lower rates of PTEN loss, mutations in DNA repair genes, and P53 abnormalities. Survival analysis showed that patients with tumors harboring loss of PTEN expression had worse outcomes (median PFS 19.6 months vs. not reached; P = 0.034). Gene expression profile analysis confirmed that EOvC differed from serous tumors. However, comparison to other rare subtypes of ovarian cancer suggested that the EOvC transcriptomic profile was close to that of ovarian clear cell carcinoma. Downregulation of genes involved in the PI3K pathway and DNA methylation was observed in EOvC. In conclusion, EOvC represents a distinct biological entity and should be regarded as such in the development of specific clinical approaches.
Collapse
Affiliation(s)
- Alexandre de Nonneville
- Department of Medical OncologyAix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐CalmettesMarseilleFrance
- Aix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, CRCM—Predictive Oncology LaboratoryMarseilleFrance
| | - Elsa Kalbacher
- Department of Medical OncologyCHRU Jean MinjozBesançonFrance
| | | | - Arnaud Guille
- Aix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, CRCM—Predictive Oncology LaboratoryMarseilleFrance
| | - José Adelaïde
- Aix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, CRCM—Predictive Oncology LaboratoryMarseilleFrance
| | - Pascal Finetti
- Aix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, CRCM—Predictive Oncology LaboratoryMarseilleFrance
| | - Maria Cappiello
- Department of Medical OncologyAix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐CalmettesMarseilleFrance
| | - Eric Lambaudie
- Department of Surgical OncologyAix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐CalmettesMarseilleFrance
| | - Giuseppe Ettore
- Department of Obstetrics and GynecologyARNAS GaribaldiCataniaItaly
| | - Emmanuelle Charafe
- Department of BiopathologyAix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, ICEP platform, CRCMMarseilleFrance
| | - Emilie Mamessier
- Aix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, CRCM—Predictive Oncology LaboratoryMarseilleFrance
| | - Magali Provansal
- Department of Medical OncologyAix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐CalmettesMarseilleFrance
| | - François Bertucci
- Department of Medical OncologyAix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐CalmettesMarseilleFrance
- Aix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, CRCM—Predictive Oncology LaboratoryMarseilleFrance
| | - Renaud Sabatier
- Department of Medical OncologyAix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐CalmettesMarseilleFrance
- Aix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, CRCM—Predictive Oncology LaboratoryMarseilleFrance
- ARCAGY‐GINECO, GINEGEPS GroupParisFrance
| |
Collapse
|
8
|
Southworth E, Thomson JP, Croy I, Churchman M, Arends MJ, Hollis RL, Gourley C, Herrington CS. Whole exome sequencing reveals diverse genomic relatedness between paired concurrent endometrial and ovarian carcinomas. Eur J Cancer 2024; 208:114205. [PMID: 38986422 DOI: 10.1016/j.ejca.2024.114205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Concurrent non-serous endometrial and ovarian tumours are often managed clinically as two separate primary tumours, but almost all exhibit evidence of a genomic relationship. METHODOLOGY This study investigates the extent of relatedness using whole exome sequencing, which was performed on paired non-serous endometrial and ovarian carcinomas from 27 patients with concurrent tumours in a cohort with detailed clinicopathological annotation. Four whole exome sequencing-derived parameters (mutation, mutational burden, mutational signatures and mutant allele tumour heterogeneity scores) were used to develop a novel unsupervised model for the assessment of genomic similarity to infer genomic relatedness of paired tumours. RESULTS This novel model demonstrated genomic relatedness across all four parameters in all tumour pairs. Mutations in PTEN, ARID1A, CTNNB1, KMT2D and PIK3CA occurred most frequently and 24 of 27 (89 %) tumour pairs shared identical mutations in at least one of these genes, with all pairs sharing mutations in a number of other genes. Ovarian endometriosis, CTNNB1 exon 3 mutation, and progression and death from disease were present across the similarity ranking. Mismatch repair deficiency was associated with less genomically similar pairs. DISCUSSION Although there was diversity across the cohort, the presence of genomic similarity in all paired tumours supports the hypothesis that concurrent non-serous endometrial and ovarian carcinomas are genomically related and may have arisen from a common origin.
Collapse
Affiliation(s)
- Emily Southworth
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - John P Thomson
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ian Croy
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Michael Churchman
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Mark J Arends
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Robert L Hollis
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - C Simon Herrington
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
9
|
Dave D, Page HE, Carrubba AR. Clinical Management of Endometriosis in Menopause: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1341. [PMID: 39202622 PMCID: PMC11356548 DOI: 10.3390/medicina60081341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024]
Abstract
Endometriosis, an inflammatory disease primarily affecting the pelvis and peritoneum, manifests with pelvic pain, dysmenorrhea, dyschezia, dyspareunia, and infertility. Despite its ubiquity, the management of endometriosis is challenging due to its heterogeneous presentation, limitations in diagnostic methods, variable therapeutic responses, and personal and socio-cultural impact on quality of life. This review attempts to consolidate the current literature on endometriosis occurring during and beyond menopause, and to present details regarding management strategies that take into account individual outcomes and goals when managing this condition. The topics included in this review are the clinical features and differential diagnosis of pelvic pain in postmenopausal patients, imaging considerations, serum and laboratory biomarkers, indications for surgery, the principles of hormone replacement therapy, the de novo development of endometriosis after menopause, and malignant transformation. Each topic includes a summary of the current literature, utilizing clinical research, case reports, and expert opinion. Despite a better understanding of the impact of endometriosis beyond menopause, there are many limitations to this condition, specifically with regard to cancer risk and indications for surgery. The existing evidence supports the use of shared decision making and the incorporation of patient preferences in guiding clinical management. Future research endeavors must shed light on the natural history of postmenopausal endometriosis through longitudinal studies in order to foster a deeper understanding of its complicated disease course across women's lifespans.
Collapse
Affiliation(s)
- Dhruva Dave
- Gujarat Medical Education and Research Society (GMERS), Medical College and Hospital, Vadodara 390021, India
| | - Heidi E. Page
- Department of Medical and Surgical Gynecology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Aakriti R. Carrubba
- Department of Medical and Surgical Gynecology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
10
|
Saner FA, Takahashi K, Budden T, Pandey A, Ariyaratne D, Zwimpfer TA, Meagher NS, Fereday S, Twomey L, Pishas KI, Hoang T, Bolithon A, Traficante N, Alsop K, Christie EL, Kang EY, Nelson GS, Ghatage P, Lee CH, Riggan MJ, Alsop J, Beckmann MW, Boros J, Brand AH, Brooks-Wilson A, Carney ME, Coulson P, Courtney-Brooks M, Cushing-Haugen KL, Cybulski C, El-Bahrawy MA, Elishaev E, Erber R, Gayther SA, Gentry-Maharaj A, Gilks CB, Harnett PR, Harris HR, Hartmann A, Hein A, Hendley J, Hernandez BY, Jakubowska A, Jimenez-Linan M, Jones ME, Kaufmann SH, Kennedy CJ, Kluz T, Koziak JM, Kristjansdottir B, Le ND, Lener M, Lester J, Lubiński J, Mateoiu C, Orsulic S, Ruebner M, Schoemaker MJ, Shah M, Sharma R, Sherman ME, Shvetsov YB, Soong TR, Steed H, Sukumvanich P, Talhouk A, Taylor SE, Vierkant RA, Wang C, Widschwendter M, Wilkens LR, Winham SJ, Anglesio MS, Berchuck A, Brenton JD, Campbell I, Cook LS, Doherty JA, Fasching PA, Fortner RT, Goodman MT, Gronwald J, Huntsman DG, Karlan BY, Kelemen LE, Menon U, Modugno F, Pharoah PD, Schildkraut JM, Sundfeldt K, Swerdlow AJ, Goode EL, DeFazio A, Köbel M, Ramus SJ, Bowtell DD, Garsed DW. Concurrent RB1 Loss and BRCA Deficiency Predicts Enhanced Immunologic Response and Long-term Survival in Tubo-ovarian High-grade Serous Carcinoma. Clin Cancer Res 2024; 30:3481-3498. [PMID: 38837893 PMCID: PMC11325151 DOI: 10.1158/1078-0432.ccr-23-3552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE The purpose of this study was to evaluate RB1 expression and survival across ovarian carcinoma histotypes and how co-occurrence of BRCA1 or BRCA2 (BRCA) alterations and RB1 loss influences survival in tubo-ovarian high-grade serous carcinoma (HGSC). EXPERIMENTAL DESIGN RB1 protein expression was classified by immunohistochemistry in ovarian carcinomas of 7,436 patients from the Ovarian Tumor Tissue Analysis consortium. We examined RB1 expression and germline BRCA status in a subset of 1,134 HGSC, and related genotype to overall survival (OS), tumor-infiltrating CD8+ lymphocytes, and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cells with and without BRCA1 alterations to model co-loss with treatment response. We performed whole-genome and transcriptome data analyses on 126 patients with primary HGSC to characterize tumors with concurrent BRCA deficiency and RB1 loss. RESULTS RB1 loss was associated with longer OS in HGSC but with poorer prognosis in endometrioid ovarian carcinoma. Patients with HGSC harboring both RB1 loss and pathogenic germline BRCA variants had superior OS compared with patients with either alteration alone, and their median OS was three times longer than those without pathogenic BRCA variants and retained RB1 expression (9.3 vs. 3.1 years). Enhanced sensitivity to cisplatin and paclitaxel was seen in BRCA1-altered cells with RB1 knockout. Combined RB1 loss and BRCA deficiency correlated with transcriptional markers of enhanced IFN response, cell-cycle deregulation, and reduced epithelial-mesenchymal transition. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. CONCLUSIONS Co-occurrence of RB1 loss and BRCA deficiency was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.
Collapse
Affiliation(s)
- Flurina A.M. Saner
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Department of Obstetrics and Gynecology, Bern University Hospital and University of Bern, Bern, Switzerland.
| | - Kazuaki Takahashi
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Timothy Budden
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Skin Cancer and Ageing Lab, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom.
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | | | - Nicola S. Meagher
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Sydney, Australia.
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Laura Twomey
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Kathleen I. Pishas
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Therese Hoang
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Adelyn Bolithon
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, Australia.
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | | | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Eun-Young Kang
- Department of Pathology and Laboratory Medicine, Foothills Medical Center, University of Calgary, Calgary, Canada.
| | - Gregg S. Nelson
- Division of Gynecologic Oncology, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Prafull Ghatage
- Division of Gynecologic Oncology, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Cheng-Han Lee
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada.
| | - Marjorie J. Riggan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina.
| | - Jennifer Alsop
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Jessica Boros
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Alison H. Brand
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | | | - Michael E. Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii.
| | - Penny Coulson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Madeleine Courtney-Brooks
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Kara L. Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington.
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - Mona A. El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, United Kingdom.
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom.
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom.
| | - C. Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| | - Paul R. Harnett
- The University of Sydney, Sydney, Australia.
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia.
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington.
- Department of Epidemiology, University of Washington, Seattle, Washington.
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | | | - Michael E. Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Scott H. Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Catherine J. Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland.
| | | | - Björg Kristjansdottir
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, Canada.
| | - Marcin Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Jenny Lester
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | | | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Minouk J. Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Mitul Shah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
| | - Raghwa Sharma
- Tissue Pathology and Diagnostic Oncology, Westmead Hospital, Sydney, Australia.
| | - Mark E. Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida.
| | - Yurii B. Shvetsov
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | - T. Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada.
- Section of Gynecologic Oncology Surgery, North Zone, Alberta Health Services, Edmonton, Canada.
| | - Paniti Sukumvanich
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Aline Talhouk
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
| | - Sarah E. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Robert A. Vierkant
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota.
| | - Chen Wang
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | | | - Lynne R. Wilkens
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | - Stacey J. Winham
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | - Michael S. Anglesio
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
| | - Andrew Berchuck
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina.
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Ian Campbell
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Linda S. Cook
- Department of Epidemiology, School of Public Health, University of Colorado, Aurora, Colorado.
- Community Health Sciences, University of Calgary, Calgary, Canada.
| | - Jennifer A. Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
| | - Marc T. Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - David G. Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, Canada.
| | - Beth Y. Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Linda E. Kelemen
- Division of Acute Disease Epidemiology, South Carolina Department of Health & Environmental Control, Columbia, South Carolina.
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom.
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania.
- Women’s Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, Pennsylvania.
| | - Paul D.P. Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, California.
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.
| | - Karin Sundfeldt
- Cancer Control Research, BC Cancer Agency, Vancouver, Canada.
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom.
| | - Ellen L. Goode
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Sydney, Australia.
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, Foothills Medical Center, University of Calgary, Calgary, Canada.
| | - Susan J. Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, Australia.
| | - David D.L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
11
|
Porter JM, McFarlane I, Bartos C, Churchman M, May J, Herrington CS, Connolly KC, Ryan NAJ, Hollis RL. The survival benefit associated with complete macroscopic resection in epithelial ovarian cancer is histotype specific. JNCI Cancer Spectr 2024; 8:pkae049. [PMID: 38902938 PMCID: PMC11233146 DOI: 10.1093/jncics/pkae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Complete macroscopic resection is a key factor associated with prolonged survival in ovarian cancer. However, most evidence derives from high-grade serous ovarian carcinoma, and the benefit of complete macroscopic resection in other histotypes is poorly characterized. We sought to determine which histotypes derive the greatest benefit from complete macroscopic resection to better inform future decisions on radical cytoreductive efforts. METHODS We performed multivariable analysis of disease-specific survival across 2 independent patient cohorts to determine the magnitude of benefit associated with complete macroscopic resection within each histotype. RESULTS Across both cohorts (Scottish: n = 1622; Surveillance, Epidemiology, and End Results [SEER]: n = 18 947), complete macroscopic resection was associated with prolonged disease-specific survival; this was more marked in the Scottish cohort (multivariable hazard ratio [HR] = 0.44, 95% confidence interval [CI] = 0.37 to 0.52 vs HR = 0.59, 95% CI = 0.57 to 0.62 in SEER). In both cohorts, clear cell ovarian carcinoma was among the histotypes to benefit most from complete macroscopic resection (multivariable HR = 0.23 and HR = 0.50 in Scottish and SEER cohorts, respectively); high-grade serous ovarian carcinoma patients demonstrated highly statistically significant and clinically meaningful survival benefit, but this was of lower magnitude than in clear cell ovarian carcinoma and endometrioid ovarian carcinoma across both cohorts. The benefit derived in low-grade serous ovarian carcinoma is also high (multivariable HR = 0.27 in Scottish cohort). Complete macroscopic resection was associated with prolonged survival in mucinous ovarian carcinoma patients in the SEER cohort (multivariable HR = 0.65), but the association failed to reach statistical significance in the Scottish cohort. CONCLUSIONS The overall ovarian cancer patient population demonstrates clinically significant survival benefit associated with complete macroscopic resection; however, the magnitude of benefit differs between histotypes.
Collapse
MESH Headings
- Humans
- Female
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/surgery
- Ovarian Neoplasms/pathology
- SEER Program
- Middle Aged
- Aged
- Carcinoma, Ovarian Epithelial/mortality
- Carcinoma, Ovarian Epithelial/surgery
- Carcinoma, Ovarian Epithelial/pathology
- Scotland/epidemiology
- Adenocarcinoma, Clear Cell/surgery
- Adenocarcinoma, Clear Cell/mortality
- Adenocarcinoma, Clear Cell/pathology
- Carcinoma, Endometrioid/mortality
- Carcinoma, Endometrioid/surgery
- Carcinoma, Endometrioid/pathology
- Cytoreduction Surgical Procedures/mortality
- Cystadenocarcinoma, Serous/surgery
- Cystadenocarcinoma, Serous/mortality
- Cystadenocarcinoma, Serous/pathology
- Adenocarcinoma, Mucinous/surgery
- Adenocarcinoma, Mucinous/mortality
- Adenocarcinoma, Mucinous/pathology
- Adult
- Neoplasms, Glandular and Epithelial/surgery
- Neoplasms, Glandular and Epithelial/mortality
- Neoplasms, Glandular and Epithelial/pathology
- Proportional Hazards Models
- Multivariate Analysis
- United States/epidemiology
Collapse
Affiliation(s)
- Joanna M Porter
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Iona McFarlane
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Clare Bartos
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Michael Churchman
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - James May
- The Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, UK
| | - C Simon Herrington
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- The Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, UK
| | - Kathryn C Connolly
- Edinburgh Cancer Centre, Western General Hospital, NHS Lothian, Edinburgh, UK
| | - Neil A J Ryan
- The Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, UK
| | - Robert L Hollis
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Ordulu Z, Watkins J, Ritterhouse LL. Molecular Pathology of Ovarian Epithelial Neoplasms: Predictive, Prognostic, and Emerging Biomarkers. Clin Lab Med 2024; 44:199-219. [PMID: 38821641 DOI: 10.1016/j.cll.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
This review focuses on the diagnostic, prognostic, and predictive molecular biomarkers in ovarian epithelial neoplasms in the context of their morphologic classifications. Currently, most clinically actionable molecular findings are reported in high-grade serous carcinomas; however, the data on less common tumor types are rapidly accelerating. Overall, the advances in genomic knowledge over the last decade highlight the significance of integrating molecular findings with morphology in ovarian epithelial tumors for a wide-range of clinical applications, from assistance in diagnosis to predicting response to therapy.
Collapse
Affiliation(s)
- Zehra Ordulu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02124, USA
| | - Jaclyn Watkins
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02124, USA
| | | |
Collapse
|
13
|
McFarlane I, Porter JM, Brownsell E, Ghaoui N, Connolly KC, Herrington CS, Hollis RL. Ovarian carcinosarcoma is highly aggressive compared to other ovarian cancer histotypes. Front Oncol 2024; 14:1399979. [PMID: 38854725 PMCID: PMC11157229 DOI: 10.3389/fonc.2024.1399979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/24/2024] [Indexed: 06/11/2024] Open
Abstract
Background Ovarian carcinosarcoma (OCS) is an unusual ovarian cancer type characterized by distinct carcinomatous and sarcomatous components. OCS has been excluded from many of the pan-histotype studies of ovarian carcinoma, limiting our understanding of its behavior. Methods We performed a multi-cohort cross-sectional study of characteristics and outcomes in ovarian cancer patients from Scotland (n=2082) and the Surveillance, Epidemiology and End Results Program (SEER, n=44946) diagnosed with OCS or one of the other major histotypes: high grade serous (HGSOC), endometrioid (EnOC), clear cell (CCOC), mucinous (MOC) or low grade serous ovarian carcinoma (LGSOC). Differences in overall survival were quantified using Cox regression models to calculate hazard ratios (HR). Results Across both cohorts, OCS patients were significantly older at diagnosis compared to all other histotypes (median age at diagnosis 69 and 67 in Scottish and SEER cohorts) and demonstrated the shortest survival time upon univariable analysis. Within the Scottish cohort, 59.3% and 16.9% of OCS patients presented with FIGO stage III and IV disease, respectively; this was significantly higher than in EnOC, CCOC or MOC (P<0.0001 for all), but lower than in HGSOC (P=0.004). Multivariable analysis accounting for other prognostic factors identified OCS as independently associated with significantly shorter survival time compared to HGSOC, EnOC, LGSOC and MOC in both the Scottish (multivariable HR vs OCS: HGSOC 0.45, EnOC 0.39, LGSOC 0.26, MOC 0.43) and SEER cohorts (multivariable HR vs OCS: HGSOC 0.59, EnOC 0.34, LGSOC 0.30, MOC 0.81). Within the SEER cohort, OCS also demonstrated shorter survival compared to CCOC (multivariable HR 0.63, 95% CI 0.58-0.68), but this was not replicated within the Scottish cohort (multivariable HR for CCOC: 1.05, 95% CI 0.74-1.51). Within early-stage disease specifically (FIGO I-II or SEER localized stage), OCS was associated with the poorest survival of all histotypes across both cohorts. In the context of late-stage disease (FIGO III-IV or SEER distant stage), OCS, MOC and CCOC represented the histotypes with poorest survival. Conclusion OCS is a unique ovarian cancer type that affects older women and is associated with exceptionally poor outcome, even when diagnosed at earlier stage. New therapeutic options are urgently required to improve outcomes.
Collapse
Affiliation(s)
- Iona McFarlane
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna M. Porter
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Elizabeth Brownsell
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Nidal Ghaoui
- The Simpson Centre for Reproductive Health, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Kathryn C. Connolly
- Edinburgh Cancer Centre, Western General Hospital, NHS Lothian, Edinburgh, United Kingdom
| | - C. Simon Herrington
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert L. Hollis
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Herrington CS, Oswald AJ, Stillie LJ, Croy I, Churchman M, Hollis RL. Compartment-specific multiomic profiling identifies SRC and GNAS as candidate drivers of epithelial-to-mesenchymal transition in ovarian carcinosarcoma. Br J Cancer 2024; 130:327-335. [PMID: 38097740 PMCID: PMC10803731 DOI: 10.1038/s41416-023-02508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Ovarian carcinosarcoma (OCS) is an exceptionally aggressive and understudied ovarian cancer type harbouring distinct carcinomatous and sarcomatous compartments. Here, we seek to identify shared and compartment-specific events that may represent potential therapeutic targets and candidate drivers of sarcomatous compartment formation through epithelial-to-mesenchymal transition (EMT). METHODS We performed multiomic profiling (exome sequencing, RNA-sequencing, microRNA profiling) of paired carcinomatous and sarcomatous components in 12 OCS cases. RESULTS While paired sarcomatous and carcinomatous compartments demonstrate substantial genomic similarities, multiple loci are recurrently copy number-altered between components; regions containing GNAS and SRC are recurrently gained within the sarcomatous compartment. CCNE1 gain is a common event in OCS, occurring more frequently than in high grade serous ovarian carcinoma (HGSOC). Transcriptomic analysis suggests increased MAPK activity and subtype switching toward poor prognosis HGSOC-derived transcriptomic subtypes within the sarcomatous component. The two compartments show global differences in microRNA profiles, with differentially expressed microRNAs targeting EMT-related genes (SIRT1, ZEB2) and regulators of pro-tumourigenic pathways (TGFβ, NOTCH); chrX is a highly enriched target of these microRNAs and is also frequently deleted across samples. The sarcomatous component harbours significantly fewer CD8-positive cells, suggesting poorer immune engagement. CONCLUSION CCNE1 gain and chrX loss are frequent in OCS. SRC gain, increased GNAS expression and microRNA dysregulation represent potential mechanisms driving sarcomatous compartment formation.
Collapse
Affiliation(s)
- C Simon Herrington
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ailsa J Oswald
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Lorna J Stillie
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scotland Centre and Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ian Croy
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Michael Churchman
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Robert L Hollis
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
15
|
Wang Y, Duval AJ, Adli M, Matei D. Biology-driven therapy advances in high-grade serous ovarian cancer. J Clin Invest 2024; 134:e174013. [PMID: 38165032 PMCID: PMC10760962 DOI: 10.1172/jci174013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Following a period of slow progress, the completion of genome sequencing and the paradigm shift relative to the cell of origin for high grade serous ovarian cancer (HGSOC) led to a new perspective on the biology and therapeutic solutions for this deadly cancer. Experimental models were revisited to address old questions, and improved tools were generated. Additional pathways emerging as drivers of ovarian tumorigenesis and key dependencies for therapeutic targeting, in particular, VEGF-driven angiogenesis and homologous recombination deficiency, were discovered. Molecular profiling of histological subtypes of ovarian cancer defined distinct genetic events for each entity, enabling the first attempts toward personalized treatment. Armed with this knowledge, HGSOC treatment was revised to include new agents. Among them, PARP inhibitors (PARPis) were shown to induce unprecedented improvement in clinical benefit for selected subsets of patients. Research on mechanisms of resistance to PARPis is beginning to discover vulnerabilities and point to new treatment possibilities. This Review highlights these advances, the remaining challenges, and unsolved problems in the field.
Collapse
Affiliation(s)
- Yinu Wang
- Department of Obstetrics and Gynecology and
| | - Alexander James Duval
- Department of Obstetrics and Gynecology and
- Driskill Graduate Program, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mazhar Adli
- Department of Obstetrics and Gynecology and
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology and
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
- Jesse Brown Veteran Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
16
|
Mehrotra M, Phadte P, Shenoy P, Chakraborty S, Gupta S, Ray P. Drug-Resistant Epithelial Ovarian Cancer: Current and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:65-96. [PMID: 38805125 DOI: 10.1007/978-3-031-58311-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Epithelial ovarian cancer (EOC) is a complex disease with diverse histological subtypes, which, based on the aggressiveness and course of disease progression, have recently been broadly grouped into type I (low-grade serous, endometrioid, clear cell, and mucinous) and type II (high-grade serous, high-grade endometrioid, and undifferentiated carcinomas) categories. Despite substantial differences in pathogenesis, genetics, prognosis, and treatment response, clinical diagnosis and management of EOC remain similar across the subtypes. Debulking surgery combined with platinum-taxol-based chemotherapy serves as the initial treatment for High Grade Serous Ovarian Carcinoma (HGSOC), the most prevalent one, and for other subtypes, but most patients exhibit intrinsic or acquired resistance and recur in short duration. Targeted therapies, such as anti-angiogenics (e.g., bevacizumab) and PARP inhibitors (for BRCA-mutated cancers), offer some success, but therapy resistance, through various mechanisms, poses a significant challenge. This comprehensive chapter delves into emerging strategies to address these challenges, highlighting factors like aberrant miRNAs, metabolism, apoptosis evasion, cancer stem cells, and autophagy, which play pivotal roles in mediating resistance and disease relapse in EOC. Beyond standard treatments, the focus of this study extends to alternate targeted agents, including immunotherapies like checkpoint inhibitors, CAR T cells, and vaccines, as well as inhibitors targeting key oncogenic pathways in EOC. Additionally, this chapter covers disease classification, diagnosis, resistance pathways, standard treatments, and clinical data on various emerging approaches, and advocates for a nuanced and personalized approach tailored to individual subtypes and resistance mechanisms, aiming to enhance therapeutic outcomes across the spectrum of EOC subtypes.
Collapse
Affiliation(s)
- Megha Mehrotra
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Pratham Phadte
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Priti Shenoy
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sourav Chakraborty
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sudeep Gupta
- Homi Bhabha National Institute, Mumbai, India
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Pritha Ray
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
17
|
Li JJ, Lee CS. The Role of the AT-Rich Interaction Domain 1A Gene ( ARID1A) in Human Carcinogenesis. Genes (Basel) 2023; 15:5. [PMID: 38275587 PMCID: PMC10815128 DOI: 10.3390/genes15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) (SWI/SNF) complex uses energy from ATP hydrolysis to mobilise nucleosomes on chromatin. Components of SWI/SNF are mutated in 20% of all human cancers, of which mutations in AT-rich binding domain protein 1A (ARID1A) are the most common. ARID1A is mutated in nearly half of ovarian clear cell carcinoma and around one-third of endometrial and ovarian carcinomas of the endometrioid type. This review will examine in detail the molecular functions of ARID1A, including its role in cell cycle control, enhancer regulation, and the prevention of telomerase activity. ARID1A has key roles in the maintenance of genomic integrity, including DNA double-stranded break repair, DNA decatenation, integrity of the cohesin complex, and reduction in replication stress, and is also involved in mismatch repair. The role of ARID1A loss in the pathogenesis of some of the most common human cancers is discussed, with a particular emphasis on gynaecological cancers. Finally, several promising synthetic lethal strategies, which exploit the specific vulnerabilities of ARID1A-deficient cancer cells, are briefly mentioned.
Collapse
Affiliation(s)
- Jing Jing Li
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Cheok Soon Lee
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2010, Australia
| |
Collapse
|
18
|
Bizzarri N, Imterat M, Fruscio R, Giannarelli D, Perrone AM, Mancari R, Traut A, Rosati A, du Bois A, Ferrari D, De Iaco P, Ergasti R, Ataseven B, Bianchi T, Di Stanislao M, Perri MT, Heitz F, Concin N, Fanfani F, Vizza E, Scambia G, Harter P, Fagotti A. Lymph node staging in grade 1-2 endometrioid ovarian carcinoma apparently confined to the ovary: Is it worth? Eur J Cancer 2023; 195:113398. [PMID: 37890354 DOI: 10.1016/j.ejca.2023.113398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVE The aim of this study was to assess the disease-free survival (DFS) and overall survival (OS) of patients with grade 1-2 endometrioid ovarian carcinoma apparently confined to the ovary, according to surgical staging. METHODS Multicenter, retrospective, observational cohort study. Patients with endometrioid ovarian carcinoma, surgical procedure performed between May 1985 and December 2019, stage pT1 N0/N1/Nx, grade 1-2 were included. Patients were stratified according to lymphadenectomy (defined as removal of any lymph node versus no lymph node assessment), and subgroup analyses according to tumor grade were performed. Kaplan-Meier curves and cox regression analyses were used to perform survival analyses. RESULTS 298 patients were included. 199 (66.8 %) patients underwent lymph node assessment. Of these, 166 (83.4 %) had unilateral/bilateral pelvic and para-aortic/caval lymphadenectomy. Eleven (5.5 %) patients of those who underwent lymph node assessment showed pathologic metastatic lymph nodes (FIGO stage IIIA1). Twenty-seven patients (9.1 %) had synchronous endometrioid endometrial cancer. After a median follow up of 45 months (95 %CI:37.5-52.5), 5-year DFS and OS of the entire cohort were 89.8 % and 96.2 %, respectively. Age ≤ 51 years (HR=0.24, 95 %CI:0.06-0.91; p = 0.036) and performance of lymphadenectomy (HR=0.25, 95 %CI: 0.07-0.82; p = 0.022) represented independent protective factors toward risk of death. Patients undergoing lymphadenectomy had better 5-year DFS and OS compared to those not receiving lymphadenectomy, 92.0 % versus 85.6 % (p = 0.016) and 97.7 % versus 92.8 % (p = 0.013), respectively. This result was confirmed after exclusion of node-positive patients. When stratifying according to tumor grade (node-positive excluded), patients with grade 2 who underwent lymphadenectomy had better 5-year DFS and OS than those without lymphadenectomy (93.0 % versus 83.1 %, p = 0.040 % and 96.5 % versus 90.6 %, p = 0.037, respectively). CONCLUSION Staging lymphadenectomy in grade 2 endometrioid ovarian carcinoma patients was associated with improved DFS and OS. Grade 1 and grade 2 might be considered as two different entities, which could benefit from different approach in terms of surgical staging. Prospective studies, including molecular profiles are needed to confirm the survival drivers in this rare setting.
Collapse
Affiliation(s)
- Nicolò Bizzarri
- UOC Ginecologia Oncologica, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.
| | - Majdi Imterat
- Department of Gynecology and Gynecologic Oncology, Ev. Kliniken Essen-Mitte, Essen, Germany; Department of Gynaecologic Oncology, Hadassah Medical Centers, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Robert Fruscio
- Fondazione IRCCS San Gerardo dei Tintori, UOC Ginecologia, Università di Milano-Bicocca, Milano, Italy
| | - Diana Giannarelli
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Facility of Epidemiology and Biostatistics, Rome, Italy
| | - Anna Myriam Perrone
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Rosanna Mancari
- Gynecologic Oncology Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Alexander Traut
- Department of Gynecology and Gynecologic Oncology, Ev. Kliniken Essen-Mitte, Essen, Germany
| | - Andrea Rosati
- UOC Ginecologia Oncologica, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Andreas du Bois
- Department of Gynecology and Gynecologic Oncology, Ev. Kliniken Essen-Mitte, Essen, Germany
| | - Debora Ferrari
- Fondazione IRCCS San Gerardo dei Tintori, UOC Ginecologia, Università di Milano-Bicocca, Milano, Italy
| | - Pierandrea De Iaco
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Raffaella Ergasti
- UOC Ginecologia Oncologica, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Beyhan Ataseven
- Bielefeld University, Medical School and University Medical Center East Westphalia-Lippe, Klinikum Lippe, Academic Department of Gynecology, Gynecologic Oncology and Obstetrics, Detmold, Germany
| | - Tommaso Bianchi
- Fondazione IRCCS San Gerardo dei Tintori, UOC Ginecologia, Università di Milano-Bicocca, Milano, Italy
| | - Marco Di Stanislao
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maria Teresa Perri
- UOC Ginecologia Oncologica, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Ev. Kliniken Essen-Mitte, Essen, Germany; Department for Gynecology with the Center for Oncologic Surgery Charité Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nicole Concin
- Department of Gynecology and Gynecologic Oncology, Ev. Kliniken Essen-Mitte, Essen, Germany
| | - Francesco Fanfani
- UOC Ginecologia Oncologica, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Enrico Vizza
- Gynecologic Oncology Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Scambia
- UOC Ginecologia Oncologica, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Ev. Kliniken Essen-Mitte, Essen, Germany
| | - Anna Fagotti
- UOC Ginecologia Oncologica, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
19
|
Saner FAM, Takahashi K, Budden T, Pandey A, Ariyaratne D, Zwimpfer TA, Meagher NS, Fereday S, Twomey L, Pishas KI, Hoang T, Bolithon A, Traficante N, Alsop K, Christie EL, Kang EY, Nelson GS, Ghatage P, Lee CH, Riggan MJ, Alsop J, Beckmann MW, Boros J, Brand AH, Brooks-Wilson A, Carney ME, Coulson P, Courtney-Brooks M, Cushing-Haugen KL, Cybulski C, El-Bahrawy MA, Elishaev E, Erber R, Gayther SA, Gentry-Maharaj A, Blake Gilks C, Harnett PR, Harris HR, Hartmann A, Hein A, Hendley J, Hernandez BY, Jakubowska A, Jimenez-Linan M, Jones ME, Kaufmann SH, Kennedy CJ, Kluz T, Koziak JM, Kristjansdottir B, Le ND, Lener M, Lester J, Lubiński J, Mateoiu C, Orsulic S, Ruebner M, Schoemaker MJ, Shah M, Sharma R, Sherman ME, Shvetsov YB, Singh N, Rinda Soong T, Steed H, Sukumvanich P, Talhouk A, Taylor SE, Vierkant RA, Wang C, Widschwendter M, Wilkens LR, Winham SJ, Anglesio MS, Berchuck A, Brenton JD, Campbell I, Cook LS, Doherty JA, Fasching PA, Fortner RT, Goodman MT, Gronwald J, Huntsman DG, Karlan BY, Kelemen LE, Menon U, Modugno F, Pharoah PD, Schildkraut JM, Sundfeldt K, Swerdlow AJ, Goode EL, DeFazio A, Köbel M, Ramus SJ, Bowtell DDL, Garsed DW. Concurrent RB1 loss and BRCA-deficiency predicts enhanced immunological response and long-term survival in tubo-ovarian high-grade serous carcinoma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.09.23298321. [PMID: 37986741 PMCID: PMC10659507 DOI: 10.1101/2023.11.09.23298321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Somatic loss of the tumour suppressor RB1 is a common event in tubo-ovarian high-grade serous carcinoma (HGSC), which frequently co-occurs with alterations in homologous recombination DNA repair genes including BRCA1 and BRCA2 (BRCA). We examined whether tumour expression of RB1 was associated with survival across ovarian cancer histotypes (HGSC, endometrioid (ENOC), clear cell (CCOC), mucinous (MOC), low-grade serous carcinoma (LGSC)), and how co-occurrence of germline BRCA pathogenic variants and RB1 loss influences long-term survival in a large series of HGSC. Patients and methods RB1 protein expression patterns were classified by immunohistochemistry in epithelial ovarian carcinomas of 7436 patients from 20 studies participating in the Ovarian Tumor Tissue Analysis consortium and assessed for associations with overall survival (OS), accounting for patient age at diagnosis and FIGO stage. We examined RB1 expression and germline BRCA status in a subset of 1134 HGSC, and related genotype to survival, tumour infiltrating CD8+ lymphocyte counts and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cell lines with and without BRCA1 mutations to model co-loss with treatment response. We also performed genomic analyses on 126 primary HGSC to explore the molecular characteristics of concurrent homologous recombination deficiency and RB1 loss. Results RB1 protein loss was most frequent in HGSC (16.4%) and was highly correlated with RB1 mRNA expression. RB1 loss was associated with longer OS in HGSC (hazard ratio [HR] 0.74, 95% confidence interval [CI] 0.66-0.83, P = 6.8 ×10-7), but with poorer prognosis in ENOC (HR 2.17, 95% CI 1.17-4.03, P = 0.0140). Germline BRCA mutations and RB1 loss co-occurred in HGSC (P < 0.0001). Patients with both RB1 loss and germline BRCA mutations had a superior OS (HR 0.38, 95% CI 0.25-0.58, P = 5.2 ×10-6) compared to patients with either alteration alone, and their median OS was three times longer than non-carriers whose tumours retained RB1 expression (9.3 years vs. 3.1 years). Enhanced sensitivity to cisplatin (P < 0.01) and paclitaxel (P < 0.05) was seen in BRCA1 mutated cell lines with RB1 knockout. Among 126 patients with whole-genome and transcriptome sequence data, combined RB1 loss and genomic evidence of homologous recombination deficiency was correlated with transcriptional markers of enhanced interferon response, cell cycle deregulation, and reduced epithelial-mesenchymal transition in primary HGSC. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. Conclusions Co-occurrence of RB1 loss and BRCA mutation was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.
Collapse
Affiliation(s)
- Flurina A. M. Saner
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynecology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Kazuaki Takahashi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Timothy Budden
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Skin Cancer and Ageing Lab, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, UK
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | - Nicola S. Meagher
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura Twomey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kathleen I. Pishas
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Therese Hoang
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Adelyn Bolithon
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Eun-Young Kang
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Gregg S. Nelson
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Prafull Ghatage
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cheng-Han Lee
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Marjorie J. Riggan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Jessica Boros
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Alison H. Brand
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | | | - Michael E. Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Penny Coulson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Madeleine Courtney-Brooks
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kara L. Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Mona A. El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, UK
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
| | - C. Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul R. Harnett
- The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - AOCS Group
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | | | - Michael E. Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Scott H. Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Catherine J. Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland
| | | | - Björg Kristjansdottir
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Marcin Lener
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | | | - Sandra Orsulic
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Minouk J. Schoemaker
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Raghwa Sharma
- Tissue Pathology and Diagnostic Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Mark E. Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | | - Naveena Singh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - T. Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Section of Gynecologic Oncology Surgery, North Zone, Alberta Health Services, Edmonton, Alberta, Canada
| | - Paniti Sukumvanich
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aline Talhouk
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah E. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert A. Vierkant
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Chen Wang
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Stacey J. Winham
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Michael S. Anglesio
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ian Campbell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda S. Cook
- Epidemiology, School of Public Health, University of Colorado, Aurora, CO, USA
- Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Jennifer A. Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Marc T. Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - David G. Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Beth Y. Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Linda E. Kelemen
- Division of Acute Disease Epidemiology, South Carolina Department of Health & Environmental Control, Columbia, SC, USA
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
| | - Paul D.P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Ellen L. Goode
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Susan J. Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - David D. L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Watanabe T, Soeda S, Okoshi C, Fukuda T, Yasuda S, Fujimori K. Landscape of somatic mutated genes and inherited susceptibility genes in gynecological cancer. J Obstet Gynaecol Res 2023; 49:2629-2643. [PMID: 37632362 DOI: 10.1111/jog.15766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/26/2023] [Indexed: 08/28/2023]
Abstract
Traditionally, gynecological cancers have been classified based on histology. Since remarkable advancements in next-generation sequencing technology have enabled the exploration of somatic mutations in various cancer types, comprehensive sequencing efforts have revealed the genomic landscapes of some common forms of human cancer. The genomic features of various gynecological malignancies have been reported by several studies of large-scale genomic cohorts, including The Cancer Genome Atlas. Although recent comprehensive genomic profiling tests, which can detect hundreds of genetic mutations at a time from cancer tissues or blood samples, have been increasingly used as diagnostic clinical biomarkers and in therapeutic management decisions, germline pathogenic variants associated with hereditary cancers can also be detected using this test. Gynecological cancers are closely related to genetic factors, with approximately 5% of endometrial cancer cases and 20% of ovarian cancer cases being caused by germline pathogenic variants. Hereditary breast and ovarian cancer syndrome and Lynch syndrome are the two major cancer susceptibility syndromes among gynecological cancers. In addition, several other hereditary syndromes have been reported to be associated with gynecological cancers. In this review, we highlight the genes for somatic mutation and germline pathogenic variants commonly seen in gynecological cancers. We first describe the relationship between clinicopathological attributes and somatic mutated genes. Subsequently, we discuss the characteristics and clinical management of inherited cancer syndromes resulting from pathogenic germline variants in gynecological malignancies.
Collapse
Affiliation(s)
- Takafumi Watanabe
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Shu Soeda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Chihiro Okoshi
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Toma Fukuda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Shun Yasuda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
21
|
Chao A, Chen SJ, Chen HC, Tan KT, Hsiao W, Jung SM, Yang LY, Huang KG, Chou HH, Huang HJ, Chang TC, Chao AS, Lee YH, Wu RC, Lai CH. Mutations in circulating tumor DNA detected in the postoperative period predict poor survival in patients with ovarian cancer. Biomed J 2023; 46:100563. [PMID: 36208860 PMCID: PMC10498401 DOI: 10.1016/j.bj.2022.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/01/2022] [Accepted: 09/30/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND We investigated whether mutations in plasma circulating tumor DNA (ctDNA) can provide prognostic insight in patients with different histological types of ovarian carcinoma. We also examined the concordance of mutations detected in ctDNA samples with those identified in the corresponding formalin-fixed paraffin-embedded (FFPE) tumor specimens. METHODS Between July 2016 and December 2017, 29 patients with ovarian carcinoma were prospectively enrolled. FFPE tumor specimens were obtained from all participants. A total of 187 blood samples for ctDNA analysis were collected before surgery (C0), immediate after surgery before adjuvant chemotherapy (C1), and at six-month intervals. Progression-free survival (PFS) and overall survival (OS) served as the main outcome measures. RESULTS The study cohort consisted of 13 (44.8%) patients with high-grade serous carcinomas (HGSC), 9 (31.0%) with clear cell carcinoma, 2 (6.9%) with mucinous carcinomas, 4 (13.8%) with low-grade serous carcinomas, and 1 (3.4%) with endometrioid carcinoma. Twenty-four (82.8%) patients had at least one detectable ctDNA variant. The concordance rate between mutations identified in pretreatment ctDNA and corresponding FFPE tumor specimens was 92.3% for patients with HGSC and 58.6% for the entire cohort. The median follow-up time was 33.15 months (range: 0.79-46.13 months). Patients with an advanced stage disease more likely had detectable ctDNA mutations before surgery (C0) and after surgery at C1, while those with HGSC more likely had ctDNA mutations detected before surgery. The presence of ctDNA mutations at C1 was an independent predictor of worse OS with a hazard ratio of 6.56 (95% confidence interval, (1.07-40.17) for detectable versus undetectable C1 ctDNA variants, p = 0.042). CONCLUSIONS ctDNA mutations are common in patients with ovarian carcinoma. The presence of ctDNA mutations after surgery was an independent predictor of less favorable PFS and OS.
Collapse
Affiliation(s)
- Angel Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | | | | | | | - Wen Hsiao
- ACT Genomics, Co. Ltd, Taipei, Taiwan
| | - Shih-Ming Jung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Lan-Yan Yang
- Biostatistics Unit, Clinical Trial Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kuan-Gen Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hung-Hsueh Chou
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Huei-Jean Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ting-Chang Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - An-Shine Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Obstetrics and Gynecology, New Taipei City Municipal Tu Cheng Hospital, New Taipei, Taiwan
| | - Yun-Hsien Lee
- Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan; Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ren-Chin Wu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
22
|
Morgan RD, Burghel GJ, Flaum N, Bulman M, Smith P, Clamp AR, Hasan J, Mitchell C, Salih Z, Woodward ER, Lalloo F, Shaw J, Desai S, Crosbie EJ, Edmondson RJ, Schlecht H, Wallace AJ, Jayson GC, Evans DGR. Predicting the likelihood of a BRCA1/2 pathogenic variant being somatic by testing only tumour DNA in non-mucinous high-grade epithelial ovarian cancer. J Clin Pathol 2023; 76:684-689. [PMID: 35738887 DOI: 10.1136/jcp-2022-208369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022]
Abstract
AIMS Clinical guidelines recommend testing both germline and tumour DNA for BRCA1/2 pathogenic variants (PVs) in non-mucinous high-grade epithelial ovarian cancer (NMEOC). In this study, we show that some tumour BRCA1/2 PVs are highly likely to be somatic based on certain clinical and variant characteristics, meaning it may not be necessary to test all NMEOC cases for germline BRCA1/2 PVs. METHODS An observational study that included all tumour BRCA1/2 PVs detected in cases of NMEOC in the Northwest of England between July 2017 and February 2022. All tumour BRCA1/2 PVs were compared with PVs recorded in a prospectively gathered pan-cancer germline BRCA1/2 (gBRCA) testing database for the same geographical region (gBRCA1 PVs=910 and gBRCA2 PVs=922). Tumour BRCA1/2 PVs were categorised as common (≥1%), uncommon (<1%) or absent from the germline database. RESULTS One hundred and thirteen tumour BRCA1/2 PVs were detected in 111 NMEOC cases. There were 69 germline and 44 somatic variants. The mean age at diagnosis for gBRCA and somatic BRCA1/2 (sBRCA) PVs was 56.9 and 68.5 years, respectively (Student's t-test p<0.0001). All sBRCA PVs were detected in non-familial cases. All tumour BRCA1/2 PVs with a variant allele frequency (VAF) <35% in non-familial cases were somatic variants. Eighty-one per cent of germline-tumour BRCA1/2 PVs were present (common=31, uncommon=25) in the gBRCA testing database, while 89% of somatic-tumour BRCA1/2 PVs were absent (n=39). CONCLUSIONS We predict the likelihood of a tumour BRCA1/2 PV being somatic is 99.8% in non-familial cases of NMEOC diagnosed aged ≥75, where the VAF is ≤30% and there is no regional germline commonality.
Collapse
Affiliation(s)
- Robert D Morgan
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - George J Burghel
- North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, Manchester, UK
| | - Nicola Flaum
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester, UK
| | - Michael Bulman
- North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, Manchester, UK
| | - Philip Smith
- North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, Manchester, UK
| | - Andrew R Clamp
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Jurjees Hasan
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Claire Mitchell
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Zena Salih
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Emma R Woodward
- North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, Manchester, UK
- Department of Clinical Genetics, Manchester University NHS Foundation Trust, Manchester, UK
| | - Fiona Lalloo
- North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, Manchester, UK
- Department of Clinical Genetics, Manchester University NHS Foundation Trust, Manchester, UK
| | - Joseph Shaw
- Department of Histopathology, Manchester University NHS Foundation Trust, Manchester, UK
| | - Sudha Desai
- Department of Histopathology, The Christie NHS Foundation Trust, Manchester, UK
| | - Emma J Crosbie
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Department of Gynaecological Surgery, Manchester University NHS Foundation Trust, Manchester, UK
| | - Richard J Edmondson
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Department of Gynaecological Surgery, Manchester University NHS Foundation Trust, Manchester, UK
| | - Helene Schlecht
- North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, Manchester, UK
| | - Andrew J Wallace
- North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, Manchester, UK
| | - Gordon C Jayson
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - D Gareth R Evans
- North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester, UK
- Department of Clinical Genetics, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
23
|
Konstantinopoulos PA, Matulonis UA. Clinical and translational advances in ovarian cancer therapy. NATURE CANCER 2023; 4:1239-1257. [PMID: 37653142 DOI: 10.1038/s43018-023-00617-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Ovarian cancer is an aggressive disease that is frequently detected at advanced stages and is initially very responsive to platinum-based chemotherapy. However, the majority of patients relapse following initial surgery and chemotherapy, highlighting the urgent need to develop new therapeutic strategies. In this Review, we outline the main therapeutic principles behind the management of newly diagnosed and recurrent epithelial ovarian cancer and discuss the current landscape of targeted and immune-based approaches.
Collapse
|
24
|
Driva TS, Schatz C, Haybaeck J. Endometriosis-Associated Ovarian Carcinomas: How PI3K/AKT/mTOR Pathway Affects Their Pathogenesis. Biomolecules 2023; 13:1253. [PMID: 37627318 PMCID: PMC10452661 DOI: 10.3390/biom13081253] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Ovarian clear cell (OCCC) and endometrioid (EnOC) carcinomas are often subsumed under the umbrella term "endometriosis-associated ovarian cancer" (EAOC), since they frequently arise from ectopic endometrium settled in the ovaries. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is known to be aberrantly activated both in endometriosis and EAOC; however, its role in the progression of endometriosis to ovarian cancer remains unclear. In fact, cancer-associated alterations in the mTOR pathway may be found in normal uterine epithelium, likely acting as a first step towards ovarian cancer, through the intermediary stage of endometriosis. This review aims to summarize the current knowledge regarding mTOR signaling dysregulation in the uterine endometrium, endometriosis, and EAOC while focusing on the interconnections between the PI3K/AKT/mTOR pathway and other signaling molecules that give rise to synergistic molecular mechanisms triggering ovarian cancer development in the presence of endometriosis.
Collapse
Affiliation(s)
- Tatiana S. Driva
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christoph Schatz
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
25
|
Morgan RD, Clamp AR, Barnes BM, Timms K, Schlecht H, Yarram-Smith L, Wallis Y, Valganon-Petrizan M, MacMahon S, White R, Morgan S, McKenna S, Hudson E, Tookman L, George A, Manchanda R, Sundar SS, Nicum S, Brenton JD, Kristeleit RS, Banerjee S, McNeish IA, Ledermann JA, Taylor SS, Evans DGR, Jayson GC. Homologous recombination deficiency in newly diagnosed FIGO stage III/IV high-grade epithelial ovarian cancer: a multi-national observational study. Int J Gynecol Cancer 2023; 33:1253-1259. [PMID: 37072323 DOI: 10.1136/ijgc-2022-004211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
OBJECTIVE Olaparib plus bevacizumab maintenance therapy improves survival outcomes in women with newly diagnosed, advanced, high-grade ovarian cancer with a deficiency in homologous recombination. We report data from the first year of routine homologous recombination deficiency testing in the National Health Service (NHS) in England, Wales, and Northern Ireland between April 2021 and April 2022. METHODS The Myriad myChoice companion diagnostic was used to test DNA extracted from formalin-fixed, paraffin-embedded tumor tissue in women with newly diagnosed International Federation of Gynecology and Obstetrics (FIGO) stage III/IV high-grade epithelial ovarian, fallopian tube, or primary peritoneal cancer. Tumors with homologous recombination deficiency were those with a BRCA1/2 mutation and/or a Genomic Instability Score (GIS) ≥42. Testing was coordinated by the NHS Genomic Laboratory Hub network. RESULTS The myChoice assay was performed on 2829 tumors. Of these, 2474 (87%) and 2178 (77%) successfully underwent BRCA1/2 and GIS testing, respectively. All complete and partial assay failures occurred due to low tumor cellularity and/or low tumor DNA yield. 385 tumors (16%) contained a BRCA1/2 mutation and 814 (37%) had a GIS ≥42. Tumors with a GIS ≥42 were more likely to be BRCA1/2 wild-type (n=510) than BRCA1/2 mutant (n=304). The distribution of GIS was bimodal, with BRCA1/2 mutant tumors having a higher mean score than BRCA1/2 wild-type tumors (61 vs 33, respectively, χ2 test p<0.0001). CONCLUSION This is the largest real-world evaluation of homologous recombination deficiency testing in newly diagnosed FIGO stage III/IV high-grade epithelial ovarian, fallopian tube, or primary peritoneal cancer. It is important to select tumor tissue with adequate tumor content and quality to reduce the risk of assay failure. The rapid uptake of testing across England, Wales, and Northern Ireland demonstrates the power of centralized NHS funding, center specialization, and the NHS Genomic Laboratory Hub network.
Collapse
Affiliation(s)
- Robert D Morgan
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew R Clamp
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Bethany M Barnes
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Helene Schlecht
- North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Yvonne Wallis
- Central and South Genomic Laboratory Hub, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Mikel Valganon-Petrizan
- North Thames Genomic Laboratory Hub, The Royal Marsden Hospital NHS Foundation Trust, Surrey, UK
| | - Suzanne MacMahon
- North Thames Genomic Laboratory Hub, The Royal Marsden Hospital NHS Foundation Trust, Surrey, UK
| | - Rhian White
- All Wales Genomics Laboratory, Institute of Medical Genetics, University Hospital Wales, Cardiff, UK
| | - Sian Morgan
- All Wales Genomics Laboratory, Institute of Medical Genetics, University Hospital Wales, Cardiff, UK
| | | | | | | | - Angela George
- The Royal Marsden NHS Foundation Trust, London, UK
- The Institute of Cancer Research, London, UK
| | - Ranjit Manchanda
- Barts Health NHS Trust, London, UK
- Department of Health Services Research, The Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK
- Wolfson Institute of Population Health, Queen Mary's University of London, London, UK
| | - Sudha S Sundar
- Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Shibani Nicum
- University College London Hospitals NHS Foundation Trust, London, UK
- UCL Cancer Institute, London, UK
| | - James D Brenton
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Susana Banerjee
- The Royal Marsden NHS Foundation Trust, London, UK
- The Institute of Cancer Research, London, UK
| | - Iain A McNeish
- Imperial College Healthcare NHS Trust, London, UK
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jonathan A Ledermann
- University College London Hospitals NHS Foundation Trust, London, UK
- UCL Cancer Institute, London, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - D Gareth R Evans
- Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gordon C Jayson
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
26
|
Fernández-Serra A, López-Reig R, Márquez R, Gallego A, de Sande LM, Yubero A, Pérez-Segura C, Ramchandani-Vaswani A, Barretina-Ginesta MP, Mendizábal E, Esteban C, Gálvez F, Sánchez-Heras AB, Guerra-Alía EM, Gaba L, Quindós M, Palacio I, Alarcón J, Oaknin A, Aliaga J, Ramírez-Calvo M, García-Casado Z, Romero I, López-Guerrero JA. The Scarface Score: Deciphering Response to DNA Damage Agents in High-Grade Serous Ovarian Cancer-A GEICO Study. Cancers (Basel) 2023; 15:cancers15113030. [PMID: 37296992 DOI: 10.3390/cancers15113030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Genomic Instability (GI) is a transversal phenomenon shared by several tumor types that provide both prognostic and predictive information. In the context of high-grade serous ovarian cancer (HGSOC), response to DNA-damaging agents such as platinum-based and poly(ADP-ribose) polymerase inhibitors (PARPi) has been closely linked to deficiencies in the DNA repair machinery by homologous recombination repair (HRR) and GI. In this study, we have developed the Scarface score, an integrative algorithm based on genomic and transcriptomic data obtained from the NGS analysis of a prospective GEICO cohort of 190 formalin-fixed paraffin-embedded (FFPE) tumor samples from patients diagnosed with HGSOC with a median follow up of 31.03 months (5.87-159.27 months). In the first step, three single-source models, including the SNP-based model (accuracy = 0.8077), analyzing 8 SNPs distributed along the genome; the GI-based model (accuracy = 0.9038) interrogating 28 parameters of GI; and the HTG-based model (accuracy = 0.8077), evaluating the expression of 7 genes related with tumor biology; were proved to predict response. Then, an ensemble model called the Scarface score was found to predict response to DNA-damaging agents with an accuracy of 0.9615 and a kappa index of 0.9128 (p < 0.0001). The Scarface Score approaches the routine establishment of GI in the clinical setting, enabling its incorporation as a predictive and prognostic tool in the management of HGSOC.
Collapse
Affiliation(s)
- Antonio Fernández-Serra
- Molecular Biology Lab, Molecular Biology Department, Instituto Valenciano de Oncologia, 46009 Valencia, Spain
- Joint IVO-CIPF Cancer Research Unit, 46012 Valencia, Spain
| | - Raquel López-Reig
- Molecular Biology Lab, Molecular Biology Department, Instituto Valenciano de Oncologia, 46009 Valencia, Spain
- Joint IVO-CIPF Cancer Research Unit, 46012 Valencia, Spain
| | - Raúl Márquez
- Medical Oncology Department, MD Anderson Cancer Center, 28033 Madrid, Spain
| | - Alejandro Gallego
- Medical Oncology Department, Hospital Universitario La Paz, 28046 Madrid, Spain
| | | | - Alfonso Yubero
- Medical Oncology Department, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - Cristina Pérez-Segura
- Medical Oncology Department, Hospital de Sant Pau i Santa Tecla, 08025 Barcelona, Spain
| | | | | | - Elsa Mendizábal
- Medical Oncology Department, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Carmen Esteban
- Medical Oncology Department, Hospital Virgen de la Salud, 45005 Toledo, Spain
| | - Fernando Gálvez
- Medical Oncology Department, Complejo Hospitalario de Jaén, 23007 Jaén, Spain
| | | | - Eva María Guerra-Alía
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Lydia Gaba
- Medical Oncology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - María Quindós
- Medical Oncology Department, Complejo Hospitalario Universitario A Coruña, 15006 A Coruña, Spain
| | - Isabel Palacio
- Medical Oncology Department, Hospital Central Asturias, 33011 Oviedo, Spain
| | - Jesús Alarcón
- Medical Oncology Department, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Ana Oaknin
- Medical Oncology Department, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Jessica Aliaga
- Pathology Department, Instituto Valenciano de Oncologia, 46009 Valencia, Spain
| | - Marta Ramírez-Calvo
- Molecular Biology Lab, Molecular Biology Department, Instituto Valenciano de Oncologia, 46009 Valencia, Spain
| | - Zaida García-Casado
- Molecular Biology Lab, Molecular Biology Department, Instituto Valenciano de Oncologia, 46009 Valencia, Spain
| | - Ignacio Romero
- Medical Oncology Department, Instituto Valenciano de Oncología, 46010 Valencia, Spain
| | - José Antonio López-Guerrero
- Molecular Biology Lab, Molecular Biology Department, Instituto Valenciano de Oncologia, 46009 Valencia, Spain
- Joint IVO-CIPF Cancer Research Unit, 46012 Valencia, Spain
- Department of Pathology, Catholic University of Valencia, 46001 Valencia, Spain
| |
Collapse
|
27
|
Köbel M, Kang E, Weir A, Rambau PF, Lee C, Nelson GS, Ghatage P, Meagher NS, Riggan MJ, Alsop J, Anglesio MS, Beckmann MW, Bisinotto C, Boisen M, Boros J, Brand AH, Brooks‐Wilson A, Carney ME, Coulson P, Courtney‐Brooks M, Cushing‐Haugen KL, Cybulski C, Deen S, El‐Bahrawy MA, Elishaev E, Erber R, Fereday S, Fischer A, Gayther SA, Barquin‐Garcia A, Gentry‐Maharaj A, Gilks CB, Gronwald H, Grube M, Harnett PR, Harris HR, Hartkopf AD, Hartmann A, Hein A, Hendley J, Hernandez BY, Huang Y, Jakubowska A, Jimenez‐Linan M, Jones ME, Kennedy CJ, Kluz T, Koziak JM, Lesnock J, Lester J, Lubiński J, Longacre TA, Lycke M, Mateoiu C, McCauley BM, McGuire V, Ney B, Olawaiye A, Orsulic S, Osorio A, Paz‐Ares L, Ramón y Cajal T, Rothstein JH, Ruebner M, Schoemaker MJ, Shah M, Sharma R, Sherman ME, Shvetsov YB, Singh N, Steed H, Storr SJ, Talhouk A, Traficante N, Wang C, Whittemore AS, Widschwendter M, Wilkens LR, Winham SJ, Benitez J, Berchuck A, Bowtell DD, Candido dos Reis FJ, Campbell I, Cook LS, DeFazio A, Doherty JA, Fasching PA, Fortner RT, García MJ, Goodman MT, Goode EL, Gronwald J, Huntsman DG, Karlan BY, Kelemen LE, Kommoss S, Le ND, Martin SG, Menon U, Modugno F, Pharoah PDP, Schildkraut JM, Sieh W, Staebler A, Sundfeldt K, Swerdlow AJ, Ramus SJ, Brenton JD. p53 and ovarian carcinoma survival: an Ovarian Tumor Tissue Analysis consortium study. J Pathol Clin Res 2023; 9:208-222. [PMID: 36948887 PMCID: PMC10073933 DOI: 10.1002/cjp2.311] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 03/24/2023]
Abstract
Our objective was to test whether p53 expression status is associated with survival for women diagnosed with the most common ovarian carcinoma histotypes (high-grade serous carcinoma [HGSC], endometrioid carcinoma [EC], and clear cell carcinoma [CCC]) using a large multi-institutional cohort from the Ovarian Tumor Tissue Analysis (OTTA) consortium. p53 expression was assessed on 6,678 cases represented on tissue microarrays from 25 participating OTTA study sites using a previously validated immunohistochemical (IHC) assay as a surrogate for the presence and functional effect of TP53 mutations. Three abnormal expression patterns (overexpression, complete absence, and cytoplasmic) and the normal (wild type) pattern were recorded. Survival analyses were performed by histotype. The frequency of abnormal p53 expression was 93.4% (4,630/4,957) in HGSC compared to 11.9% (116/973) in EC and 11.5% (86/748) in CCC. In HGSC, there were no differences in overall survival across the abnormal p53 expression patterns. However, in EC and CCC, abnormal p53 expression was associated with an increased risk of death for women diagnosed with EC in multivariate analysis compared to normal p53 as the reference (hazard ratio [HR] = 2.18, 95% confidence interval [CI] 1.36-3.47, p = 0.0011) and with CCC (HR = 1.57, 95% CI 1.11-2.22, p = 0.012). Abnormal p53 was also associated with shorter overall survival in The International Federation of Gynecology and Obstetrics stage I/II EC and CCC. Our study provides further evidence that functional groups of TP53 mutations assessed by abnormal surrogate p53 IHC patterns are not associated with survival in HGSC. In contrast, we validate that abnormal p53 IHC is a strong independent prognostic marker for EC and demonstrate for the first time an independent prognostic association of abnormal p53 IHC with overall survival in patients with CCC.
Collapse
Affiliation(s)
- Martin Köbel
- Department of Pathology and Laboratory MedicineUniversity of Calgary, Foothills Medical CenterCalgaryABCanada
| | - Eun‐Young Kang
- Department of Pathology and Laboratory MedicineUniversity of Calgary, Foothills Medical CenterCalgaryABCanada
| | - Ashley Weir
- School of Clinical MedicineUNSW Medicine and Health, University of NSW SydneySydneyNew South WalesAustralia
- Adult Cancer Program, Lowy Cancer Research CentreUniversity of NSW SydneySydneyNew South WalesAustralia
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Peter F Rambau
- Department of Pathology and Laboratory MedicineUniversity of Calgary, Foothills Medical CenterCalgaryABCanada
- Pathology DepartmentCatholic University of Health and Allied Sciences‐BugandoMwanzaTanzania
| | - Cheng‐Han Lee
- Department of Pathology and Laboratory MedicineUniversity of AlbertaEdmontonABCanada
| | - Gregg S Nelson
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - Prafull Ghatage
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - Nicola S Meagher
- School of Clinical MedicineUNSW Medicine and Health, University of NSW SydneySydneyNew South WalesAustralia
- The Daffodil CentreThe University of Sydney, a Joint Venture with Cancer Council NSWSydneyNew South WalesAustralia
| | - Marjorie J Riggan
- Department of Obstetrics and Gynecology, Division of Gynecologic OncologyDuke University Medical CenterDurhamNCUSA
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of OncologyUniversity of CambridgeCambridgeUK
| | - Michael S Anglesio
- Department of Obstetrics and GynecologyUniversity of British ColumbiaVancouverBCCanada
- British Columbia's Gynecological Cancer Research Team (OVCARE)University of British Columbia, BC Cancer, and Vancouver General HospitalVancouverBCCanada
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen‐EMNFriedrich‐Alexander University Erlangen‐Nuremberg, University Hospital ErlangenErlangenGermany
| | - Christiani Bisinotto
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
| | - Michelle Boisen
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Jessica Boros
- Centre for Cancer ResearchThe Westmead Institute for Medical Research, University of SydneySydneyNew South WalesAustralia
- Department of Gynaecological OncologyWestmead HospitalSydneyNew South WalesAustralia
- Discipline of Obstetrics and GynaecologyThe University of SydneySydneyNew South WalesAustralia
| | - Alison H Brand
- Department of Gynaecological OncologyWestmead HospitalSydneyNew South WalesAustralia
- Discipline of Obstetrics and GynaecologyThe University of SydneySydneyNew South WalesAustralia
| | | | - Michael E Carney
- Department of Obstetrics and Gynecology, John A. Burns School of MedicineUniversity of HawaiiHonoluluHIUSA
| | - Penny Coulson
- Division of Genetics and EpidemiologyThe Institute of Cancer ResearchLondonUK
| | - Madeleine Courtney‐Brooks
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Kara L Cushing‐Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer CenterPomeranian Medical UniversitySzczecinPoland
| | - Suha Deen
- Department of HistopathologyNottingham University Hospitals NHS Trust, Queen's Medical CentreNottinghamUK
| | - Mona A El‐Bahrawy
- Department of Metabolism, Digestion and ReproductionImperial College London, Hammersmith HospitalLondonUK
| | - Esther Elishaev
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center Erlangen‐EMN, Friedrich‐Alexander University Erlangen‐Nuremberg, University Hospital ErlangenErlangenGermany
| | - Sian Fereday
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVictoriaAustralia
| | - AOCS Group
- Centre for Cancer ResearchThe Westmead Institute for Medical Research, University of SydneySydneyNew South WalesAustralia
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Anna Fischer
- Institute of Pathology and Neuropathology, Tuebingen University HospitalTuebingenGermany
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | | | - Aleksandra Gentry‐Maharaj
- MRC Clinical Trials UnitInstitute of Clinical Trials & Methodology, University College LondonLondonUK
| | - C Blake Gilks
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Helena Gronwald
- Department of Propaedeutics, Physical Diagnostics and Dental PhysiotherapyPomeranian Medical UniversitySzczecinPoland
| | - Marcel Grube
- Department of Women's HealthTuebingen University HospitalTuebingenGermany
| | - Paul R Harnett
- Discipline of Obstetrics and GynaecologyThe University of SydneySydneyNew South WalesAustralia
- Crown Princess Mary Cancer CentreWestmead HospitalSydneyNew South WalesAustralia
| | - Holly R Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research CenterSeattleWAUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
| | - Andreas D Hartkopf
- Department of Women's HealthTuebingen University HospitalTuebingenGermany
- Department of Gynecology and ObstetricsUniversity Hospital of UlmUlmGermany
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center Erlangen‐EMN, Friedrich‐Alexander University Erlangen‐Nuremberg, University Hospital ErlangenErlangenGermany
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen‐EMNFriedrich‐Alexander University Erlangen‐Nuremberg, University Hospital ErlangenErlangenGermany
| | - Joy Hendley
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Brenda Y Hernandez
- Cancer Epidemiology ProgramUniversity of Hawaii Cancer CenterHonoluluHIUSA
| | - Yajue Huang
- Department of Laboratory Medicine and Pathology, Mayo ClinicRochesterMNUSA
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer CenterPomeranian Medical UniversitySzczecinPoland
- Independent Laboratory of Molecular Biology and Genetic DiagnosticsPomeranian Medical UniversitySzczecinPoland
| | | | - Michael E Jones
- Division of Genetics and EpidemiologyThe Institute of Cancer ResearchLondonUK
| | - Catherine J Kennedy
- Centre for Cancer ResearchThe Westmead Institute for Medical Research, University of SydneySydneyNew South WalesAustralia
- Department of Gynaecological OncologyWestmead HospitalSydneyNew South WalesAustralia
- Discipline of Obstetrics and GynaecologyThe University of SydneySydneyNew South WalesAustralia
| | - Tomasz Kluz
- Department of Gynecology and ObstetricsInstitute of Medical Sciences, Medical College of Rzeszow UniversityRzeszówPoland
| | | | - Jaime Lesnock
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and GynecologyUniversity of California at Los AngelesLos AngelesCAUSA
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer CenterPomeranian Medical UniversitySzczecinPoland
| | - Teri A Longacre
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Maria Lycke
- Department of Obstetrics and GynecologyInstitute of Clinical Science, Sahlgrenska University Hospital, University of GothenburgGothenburgSweden
| | | | - Bryan M McCauley
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo ClinicRochesterMNUSA
| | - Valerie McGuire
- Department of Epidemiology and Population HealthStanford University School of MedicineStanfordCAUSA
| | - Britta Ney
- Institute of Pathology and Neuropathology, Tuebingen University HospitalTuebingenGermany
| | - Alexander Olawaiye
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Sandra Orsulic
- David Geffen School of Medicine, Department of Obstetrics and GynecologyUniversity of California at Los AngelesLos AngelesCAUSA
| | - Ana Osorio
- Genetics Service, Fundación Jiménez DíazMadridSpain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| | - Luis Paz‐Ares
- H12O‐CNIO Lung Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO)MadridSpain
- Oncology DepartmentHospital Universitario 12 de OctubreMadridSpain
| | | | - Joseph H Rothstein
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of Population Health Science and PolicyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen‐EMNFriedrich‐Alexander University Erlangen‐Nuremberg, University Hospital ErlangenErlangenGermany
| | - Minouk J Schoemaker
- Division of Genetics and EpidemiologyThe Institute of Cancer ResearchLondonUK
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of OncologyUniversity of CambridgeCambridgeUK
| | - Raghwa Sharma
- Tissue Pathology and Diagnostic OncologyWestmead HospitalSydneyNew South WalesAustralia
| | - Mark E Sherman
- Department of Health Sciences Research, Mayo ClinicJacksonvilleFLUSA
| | - Yurii B Shvetsov
- Cancer Epidemiology ProgramUniversity of Hawaii Cancer CenterHonoluluHIUSA
| | - Naveena Singh
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyUniversity of AlbertaEdmontonABCanada
- Section of Gynecologic Oncology Surgery, North Zone, Alberta Health ServicesEdmontonABCanada
| | - Sarah J Storr
- Nottingham Breast Cancer Research CentreBiodiscovery Institute, University of NottinghamNottinghamUK
| | - Aline Talhouk
- Department of Obstetrics and GynecologyUniversity of British ColumbiaVancouverBCCanada
- British Columbia's Gynecological Cancer Research Team (OVCARE)University of British Columbia, BC Cancer, and Vancouver General HospitalVancouverBCCanada
| | - Nadia Traficante
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Chen Wang
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo ClinicRochesterMNUSA
| | - Alice S Whittemore
- Department of Epidemiology and Population HealthStanford University School of MedicineStanfordCAUSA
- Department of Biomedical Data ScienceStanford University School of MedicineStanfordCAUSA
| | | | - Lynne R Wilkens
- Cancer Epidemiology ProgramUniversity of Hawaii Cancer CenterHonoluluHIUSA
| | - Stacey J Winham
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo ClinicRochesterMNUSA
| | - Javier Benitez
- Centre for Biomedical Network Research on Rare Diseases (CIBERER)Instituto de Salud Carlos IIIMadridSpain
- Human Genetics Group, Spanish National Cancer Research Centre (CNIO)MadridSpain
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Division of Gynecologic OncologyDuke University Medical CenterDurhamNCUSA
| | - David D Bowtell
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Francisco J Candido dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
| | - Ian Campbell
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Linda S Cook
- Epidemiology, School of Public HealthUniversity of ColoradoAuroraCOUSA
- Community Health Sciences, University of CalgaryCalgaryABCanada
| | - Anna DeFazio
- The Daffodil CentreThe University of Sydney, a Joint Venture with Cancer Council NSWSydneyNew South WalesAustralia
- Centre for Cancer ResearchThe Westmead Institute for Medical Research, University of SydneySydneyNew South WalesAustralia
- Department of Gynaecological OncologyWestmead HospitalSydneyNew South WalesAustralia
- Discipline of Obstetrics and GynaecologyThe University of SydneySydneyNew South WalesAustralia
| | - Jennifer A Doherty
- Huntsman Cancer Institute, Department of Population Health SciencesUniversity of UtahSalt Lake CityUTUSA
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen‐EMNFriedrich‐Alexander University Erlangen‐Nuremberg, University Hospital ErlangenErlangenGermany
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Research, Cancer Registry of NorwayOsloNorway
| | - María J García
- Computational Oncology Group, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO)MadridSpain
| | - Marc T Goodman
- Cancer Prevention and Control Program, Cedars‐Sinai Cancer, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Ellen L Goode
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo ClinicRochesterMNUSA
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer CenterPomeranian Medical UniversitySzczecinPoland
| | - David G Huntsman
- Department of Obstetrics and GynecologyUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancer Research CentreVancouverBCCanada
| | - Beth Y Karlan
- David Geffen School of Medicine, Department of Obstetrics and GynecologyUniversity of California at Los AngelesLos AngelesCAUSA
| | - Linda E Kelemen
- Division of Acute Disease Epidemiology, South Carolina Department of Health & Environmental ControlColumbiaSCUSA
| | - Stefan Kommoss
- Department of Women's HealthTuebingen University HospitalTuebingenGermany
| | - Nhu D Le
- Cancer Control Research, BC Cancer AgencyVancouverBCCanada
| | - Stewart G Martin
- Nottingham Breast Cancer Research CentreBiodiscovery Institute, University of NottinghamNottinghamUK
| | - Usha Menon
- MRC Clinical Trials UnitInstitute of Clinical Trials & Methodology, University College LondonLondonUK
| | - Francesmary Modugno
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of EpidemiologyUniversity of Pittsburgh School of Public HealthPittsburghPAUSA
- Women's Cancer Research CenterMagee‐Womens Research Institute and Hillman Cancer CenterPittsburghPAUSA
| | - Paul DP Pharoah
- Centre for Cancer Genetic Epidemiology, Department of OncologyUniversity of CambridgeCambridgeUK
- Department of Computational Biomedicine, Cedars‐Sinai Medical CenterWest HollywoodCAUSA
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Joellen M Schildkraut
- Department of Epidemiology, Rollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Weiva Sieh
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of Population Health Science and PolicyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Annette Staebler
- Institute of Pathology and Neuropathology, Tuebingen University HospitalTuebingenGermany
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Institute of Clinical ScienceSahlgrenska Center for Cancer Research, University of GothenburgGothenburgSweden
| | - Anthony J Swerdlow
- Division of Genetics and EpidemiologyThe Institute of Cancer ResearchLondonUK
- Division of Breast Cancer ResearchThe Institute of Cancer ResearchLondonUK
| | - Susan J Ramus
- School of Clinical MedicineUNSW Medicine and Health, University of NSW SydneySydneyNew South WalesAustralia
- Adult Cancer Program, Lowy Cancer Research CentreUniversity of NSW SydneySydneyNew South WalesAustralia
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUK
| |
Collapse
|
28
|
Mhatre A, Koroth J, Manjunath M, Kumar S S, Gawari R, Choudhary B. Multi-omics analysis of the Indian ovarian cancer cohort revealed histotype-specific mutation and gene expression patterns. Front Genet 2023; 14:1102114. [PMID: 37091785 PMCID: PMC10117685 DOI: 10.3389/fgene.2023.1102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction: In India, OVCa is women’s third most common and lethal cancer type, accounting for 6.7% of observed cancer incidences. The contribution of somatic mutations, aberrant expression of gene and splice forms in determining the cell fate, gene networks, tumour-specific variants, and the role of immune fraction infiltration have been proven essential in understanding tumorigenesis. However, their interplay in OVCa in a histotype-specific manner remains unclear in the Indian context. In the present study, we aimed to unravel the Indian population histotype-specific exome variants, differentially expressed gene modules, splice events and immune profiles of OVCa samples.Methods: We analysed 10 tumour samples across 4 ovarian cancer histotypes along with 2 normal patient samples. This included BCFtool utilities and CNVkit for exome, WGCNA and DESeq2 for obtaining differential module hub genes and dysregulated miRNA targets, CIBERSORTx for individual immune profiles and rMATS for tumour specific splice variants.Result: We identified population-specific novel mutations in Cancer Gene Census Tier1 and Tier2 genes. MUC16, MUC4, CIITA, and NCOR2 were among the most mutated genes, along with TP53. Transcriptome analysis showed significant overexpression of mutated genes MUC16, MUC4, and CIITA, whereas NCOR2 was downregulated. WGCNA revealed histotype-specific gene hubs and networks. Among the significant pathways, alteration in the immune system was one of the pathways, and immune profiling using CIBERSORTx revealed histotype-specific immune cell fraction. miRNA analysis revealed miR-200 family, miR-200a and miR-429 were upregulated in HGSOCs.Splice factor abrasion caused splicing perturbations, with the most abundant alternative splice event being exon skipping and the most spliced gene, SNHG17. Pathway analysis of spliced genes revealed translational elongation and Base excision repair as the pathways altered in OVCa.Conclusion: Integrated exome, transcriptome, and splicing patterns revealed different population-specific molecular signatures of ovarian cancer histotypes in the Indian Cohort.
Collapse
Affiliation(s)
- Anisha Mhatre
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Jinsha Koroth
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Meghana Manjunath
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
- Graduate Student Registered Under Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Ramesh Gawari
- Kidwai Cancer Institute of Oncology, Bangalore, India
| | - Bibha Choudhary
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
- *Correspondence: Bibha Choudhary,
| |
Collapse
|
29
|
Talia KL, McCluggage WG. The diverse morphology and immunophenotype of ovarian endometrioid carcinomas. Pathology 2023; 55:269-286. [PMID: 36759286 DOI: 10.1016/j.pathol.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/02/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Endometrioid carcinoma (EC) accounts for approximately 10-12% of ovarian epithelial malignancies but compared to its relative frequency, results in a disproportionate number of diagnostically difficult cases with potential for misdiagnosis. In this review the protean and diverse morphologies of ovarian EC are discussed, including 'metaplastic' changes, EC with spindle cell differentiation/corded and hyalinised features and EC with sex cord-like formations. The propensity for 'transdifferentiation' in ovarian ECs is also discussed, one example being the association with a somatically derived yolk sac tumour. Although immunohistochemistry may be extremely useful in diagnosing EC and in distinguishing between EC and other ovarian epithelial malignancies, metastatic neoplasms and sex cord-stromal tumours, this review also discusses the propensity for ovarian EC to exhibit an aberrant immunophenotype which may compound diagnostic uncertainty. The genomic characteristics of these tumours and the recent 'incorporation' of seromucinous carcinoma into the EC category are also discussed.
Collapse
Affiliation(s)
- Karen L Talia
- Royal Children's Hospital, Royal Women's Hospital and Australian Centre for the Prevention of Cervical Cancer, Melbourne, Vic, Australia.
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
30
|
Sun D, Feng F, Teng F, Xie T, Wang J, Xing P, Qian H, Li J. Multiomics analysis revealed the mechanisms related to the enhancement of proliferation, metastasis and EGFR-TKI resistance in EGFR-mutant LUAD with ARID1A deficiency. Cell Commun Signal 2023; 21:48. [PMID: 36869329 PMCID: PMC9985251 DOI: 10.1186/s12964-023-01065-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/04/2023] [Indexed: 03/05/2023] Open
Abstract
INTRODUCTION Dysregulated ARID1A expression is frequently detected in lung adenocarcinoma (LUAD) and mediates significant changes in cancer behaviors and a poor prognosis. ARID1A deficiency in LUAD enhances proliferation and metastasis, which could be induced by activation of the Akt signaling pathway. However, no further exploration of the mechanisms has been performed. METHODS Lentivirus was used for the establishment of the ARID1A knockdown (ARID1A-KD) cell line. MTS and migration/invasion assays were used to examine changes in cell behaviors. RNA-seq and proteomics methods were applied. ARID1A expression in tissue samples was determined by IHC. R software was used to construct a nomogram. RESULTS ARID1A KD significantly promoted the cell cycle and accelerated cell division. In addition, ARID1A KD increased the phosphorylation level of a series of oncogenic proteins, such as EGFR, ErbB2 and RAF1, activated the corresponding pathways and resulted in disease progression. In addition, the bypass activation of the ErbB pathway, the activation of the VEGF pathway and the expression level changes in epithelial-mesenchymal transformation biomarkers induced by ARID1A KD contributed to the insensitivity to EGFR-TKIs. The relationship between ARID1A and the sensitivity to EGFR-TKIs was also determined using tissue samples from LUAD patients. CONCLUSION Loss of ARID1A expression influences the cell cycle, accelerates cell division, and promotes metastasis. EGFR-mutant LUAD patients with low ARID1A expression had poor overall survival. In addition, low ARID1A expression was associated with a poor prognosis in EGFR-mutant LUAD patients who received first-generation EGFR-TKI treatment. Video abstract.
Collapse
Affiliation(s)
- Dantong Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Feiyue Feng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Fei Teng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Jinsong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| |
Collapse
|
31
|
Chibbar R, Foerstner S, Suresh J, Chibbar R, Piche A, Kundapur D, Kanthan R, Kundapur V, Lee CH, Agrawal A, Lai R. Estrogen/Progesterone Receptor Loss, CTNNB1 and KRAS Mutations Are Associated With Local Recurrence or Distant Metastasis in Low-Grade Endometrial Endometrioid Carcinoma. Appl Immunohistochem Mol Morphol 2023; 31:181-188. [PMID: 36695555 PMCID: PMC9988232 DOI: 10.1097/pai.0000000000001102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023]
Abstract
A subset of endometrial endometrioid carcinomas (EECs) with low-grade histology recur with poor outcomes. Published evidence suggests that poor outcomes may be associated with loss of expression of ER-alpha (ER-α) as well as with β-Catenin-1 ( CTNNB1 ) and Kirsten rat sarcoma viral oncogene homolog ( KRAS ) mutations. This study reports on institutional experience with the incidence of recurrence in low-grade EEC and their association with CTNNB1 and KRAS mutations as well as estrogen/progesterone receptor (ER/PR) expression. Forty-eight (8.5%) out of 568 cases of low-grade EEC with biopsy-proven recurrence were identified; and were analyzed by immunohistochemistry for ER, PR, p53, MMR protein, and mutation analysis for exon 3 of the CTNNB1 and exon 2 of KRAS in relation to recurrence type, local or distant metastasis/recurrence. Twenty-three patients (4%) developed local, and 25 patients (4.4%) developed distant metastases/recurrence. Decreased expression or loss of ER/PR was found in 17/44 (38.6%) patients with recurrence. Eighty-four percent of patients with low-grade EEC and local recurrence had CTNNB1 mutations. Seventy-three percent of patients with distant metastasis/recurrence had KRAS mutations. The association of these mutations with the type of recurrence was statistically significant for both. Five cases with the morphology of low-grade EEC were reclassified as mesonephric-like carcinoma and were universally characterized by distant metastasis/recurrence, loss of ER/PR expression, large tumor size, absence of CTNNB1 mutations, and the presence of KRAS mutations. In low-grade EEC, CTNNB1 and KRAS mutations are associated with local recurrence and distant metastasis/recurrence, respectively, suggesting that these 2 different progression types may be conditioned by tumor genotype. ER/PR immunohistochemistry may be helpful in identifying poor performers in low-grade EEC. Furthermore, identification of the decreased expression or loss of ER/PR in tumors with low-grade histology should prompt consideration of mesonephric-like carcinoma, which is a more aggressive tumor than the low-grade EEC. KRAS mutations were associated with distant metastasis/recurrence in tumors with and without mesonephric-like phenotype.
Collapse
Affiliation(s)
- Rajni Chibbar
- Department of Laboratory Medicine and Pathology, University of Saskatchewan, Saskatoon, SK
| | - Sabrina Foerstner
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB
| | - Janarathnee Suresh
- Department of Laboratory Medicine and Pathology, University of Saskatchewan, Saskatoon, SK
| | | | - Alexandre Piche
- Department of Laboratory Medicine and Pathology, University of Saskatchewan, Saskatoon, SK
| | | | - Rani Kanthan
- Department of Laboratory Medicine and Pathology, University of Saskatchewan, Saskatoon, SK
| | | | - Cheng Han Lee
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB
| | - Anita Agrawal
- Department of Obstetrics and Gynecology, Queen’s University, Kingston, ON
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB
| |
Collapse
|
32
|
Hollis RL. Molecular characteristics and clinical behaviour of epithelial ovarian cancers. Cancer Lett 2023; 555:216057. [PMID: 36627048 DOI: 10.1016/j.canlet.2023.216057] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Ovarian carcinoma (OC) is an umbrella term for multiple distinct diseases (histotypes), each with their own developmental origins, clinical behaviour and molecular profile. Accordingly, OC management is progressing away from a one-size-fits all approach, toward more molecularly-driven, histotype-specific management strategies. Our knowledge of driver events in high grade serous OC, the most common histotype, has led to major advances in treatments, including PARP inhibitor use. However, these agents are not suitable for all patients, most notably for many of those with rare OC histotypes. Identification of additional targeted therapeutic strategies will require a detailed understanding of the molecular landscape in each OC histotype. Until recently, tumour profiling studies in rare histotypes were sparse; however, significant advances have been made over the last decade. In particular, reports of genomic characterisation in endometrioid, clear cell, mucinous and low grade serous OC have significantly expanded our understanding of mutational events in these tumour types. Nonetheless, substantial knowledge gaps remain. This review summarises our current understanding of each histotype, highlighting recent advances in these unique diseases and outlining immediate research priorities for accelerating progress toward improving patient outcomes.
Collapse
Affiliation(s)
- Robert L Hollis
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, UK.
| |
Collapse
|
33
|
Liu Y, Ni M, Huang F, Gu Q, Xiao Y, Du X. Neoadjuvant chemotherapy in advanced epithelial ovarian cancer by histology: A SEER based survival analysis. Medicine (Baltimore) 2023; 102:e32774. [PMID: 36705377 PMCID: PMC9875958 DOI: 10.1097/md.0000000000032774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To evaluate the prognostic effect of neoadjuvant chemotherapy (NACT) in advanced epithelial ovarian cancer (EOC) patients with different histological subtype. Stage III/IV EOC patients diagnosed between 2010 and 2018 were identified from the surveillance, epidemiology, and end results database (SEER) database and stratified by histological subtype. Kaplan-Meier analysis was used for the assessment of overall survival (OS) cause-specific survival (CSS) before and after matching for baseline characteristics between NACT and primary debulking surgery (PDS) groups. Cox proportional risk model was conducted to identify independent prognostic factors. A total of 13,582 patients were included in the analysis. Of them, 9505 (74.50%) received PDS and 3253 (25.50%) received NACT. Overall, an inferior OS and CSS was observed among patients with high-grade serous carcinoma (HGSC) receiving NACT, while NACT served as a protective factor in clear cell carcinoma and carcinosarcoma in both original cohorts and adjusted cohorts. For other histo-subtypes, PDS showed survival benefit over NACT in certain cohorts of models. Prognostic effect of NACT in advanced EOC differed from pathological subtypes. Although it served as a risk factor for HGSC, patients with less common subtypes may benefit from NACT.
Collapse
Affiliation(s)
- Yuexi Liu
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yuexi Liu, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China (e-mail: )
| | - Meng Ni
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Fanfan Huang
- Department of Ophthalmology, The first Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuying Gu
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Xiao
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyue Du
- Department of Cardiovascular medicine, The first Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Pecorino B, Laganà AS, Chiantera V, Ferrara M, Di Stefano AB, Di Donna MC, Sorrentino F, Nappi L, Mikuš M, Scollo P. Progression Free Survival, Overall Survival, and Relapse Rate in Endometrioid Ovarian Cancer and Synchronous Endometrial-Ovarian Endometrioid Cancer (SEO-EC): Results from a Large Retrospective Analysis. Medicina (B Aires) 2022; 58:medicina58121706. [PMID: 36556908 PMCID: PMC9784653 DOI: 10.3390/medicina58121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Objectives: We aimed to evaluate Progression Free Survival (PFS), Overall Survival (OS), and relapse rate in women affected by endometrioid ovarian cancer and synchronous endometrial-ovarian endometrioid cancer (SEO-EC). As secondary outcome, we assessed whether systematic pelvic and para-aortic lymphadenectomy could be considered a determinant of relapse rate in this population. Materials and Methods: We performed a retrospective analysis of women with diagnosis of endometrioid ovarian cancer or SEO-EC between January 2010 to September 2020, and calculated PFS, OS and relapse rate. Results: In almost all the patients (97.6%) who underwent systematic pelvic and para-aortic lymphadenectomy, there were no lymph node metastases confirmed by histology. We did not find a significant difference (p = 0.6570) for the rate of relapse in the group of women who underwent systematic pelvic and para-aortic lymphadenectomy (4/42; 9.5%) compared with the group of women who did not undergo the same procedure (1/21; 4.8%). During a median follow-up was 23 months, both PFS and OS were excellent. Conclusions: Women affected by early-stage low-grade endometrioid cancer and SEO-EC without apparent lymph node involvement at pre-operative imaging showed a very low rate of lymph node metastasis and similar relapse rate with or without lymphadenectomy.
Collapse
Affiliation(s)
- Basilio Pecorino
- Maternal and Child Department, Obstetrics and Gynecology Cannizzaro Hospital, University of Enna “Kore”, 95126 Catania, Italy
| | - Antonio Simone Laganà
- Unit of Gynecologic Oncology, ARNAS “Civico-Di Cristina-Benfratelli”, 90127 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy
- Correspondence:
| | - Vito Chiantera
- Unit of Gynecologic Oncology, ARNAS “Civico-Di Cristina-Benfratelli”, 90127 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy
| | - Martina Ferrara
- Maternal and Child Department, Obstetrics and Gynecology Cannizzaro Hospital, University of Enna “Kore”, 95126 Catania, Italy
| | - Andrea Benedetto Di Stefano
- Maternal and Child Department, Obstetrics and Gynecology Cannizzaro Hospital, University of Enna “Kore”, 95126 Catania, Italy
| | - Mariano Catello Di Donna
- Unit of Gynecologic Oncology, ARNAS “Civico-Di Cristina-Benfratelli”, 90127 Palermo, Italy
- Department of Surgical, Oncological and Oral Sciences (Di. Chir. On. S.), University of Palermo, 90133 Palermo, Italy
| | - Felice Sorrentino
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynaecology, University of Foggia, 71121 Foggia, Italy
| | - Luigi Nappi
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynaecology, University of Foggia, 71121 Foggia, Italy
| | - Mislav Mikuš
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia
| | - Paolo Scollo
- Maternal and Child Department, Obstetrics and Gynecology Cannizzaro Hospital, University of Enna “Kore”, 95126 Catania, Italy
| |
Collapse
|
35
|
Vaicekauskaitė I, Sabaliauskaitė R, Lazutka JR, Jarmalaitė S. The Emerging Role of Chromatin Remodeling Complexes in Ovarian Cancer. Int J Mol Sci 2022; 23:ijms232213670. [PMID: 36430148 PMCID: PMC9697406 DOI: 10.3390/ijms232213670] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Ovarian cancer (OC) is the fifth leading cause of women's death from cancers. The high mortality rate is attributed to the late presence of the disease and the lack of modern diagnostic tools, including molecular biomarkers. Moreover, OC is a highly heterogeneous disease, which contributes to early treatment failure. Thus, exploring OC molecular mechanisms could significantly enhance our understanding of the disease and provide new treatment options. Chromatin remodeling complexes (CRCs) are ATP-dependent molecular machines responsible for chromatin reorganization and involved in many DNA-related processes, including transcriptional regulation, replication, and reparation. Dysregulation of chromatin remodeling machinery may be related to cancer development and chemoresistance in OC. Some forms of OC and other gynecologic diseases have been associated with mutations in specific CRC genes. Most notably, ARID1A in endometriosis-related OC, SMARCA4, and SMARCB1 in hypercalcemic type small cell ovarian carcinoma (SCCOHT), ACTL6A, CHRAC1, RSF1 amplification in high-grade serous OC. Here we review the available literature on CRCs' involvement in OC to improve our understanding of its development and investigate CRCs as possible biomarkers and treatment targets for OC.
Collapse
Affiliation(s)
- Ieva Vaicekauskaitė
- Laboratory of Genetic Diagnostic, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
| | - Rasa Sabaliauskaitė
- Laboratory of Genetic Diagnostic, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
| | - Juozas Rimantas Lazutka
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
| | - Sonata Jarmalaitė
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
- Laboratory of Clinical Oncology, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
- Correspondence:
| |
Collapse
|
36
|
Colic E, Patel PU, Kent OA. Aberrant MAPK Signaling Offers Therapeutic Potential for Treatment of Ovarian Carcinoma. Onco Targets Ther 2022; 15:1331-1346. [PMID: 36388156 PMCID: PMC9645123 DOI: 10.2147/ott.s361512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/01/2022] [Indexed: 08/22/2023] Open
Abstract
Ovarian cancer remains the most lethal gynecological malignancy worldwide due to lack of effective screening, vague early symptoms, poor description of biomarkers, and absence of effective treatment regimes. Epithelial ovarian carcinoma (EOC) is categorized into five distinct disease subtypes which collectively account for ~90% of ovarian carcinomas. Most women present at advanced stages contributing to a poor overall 5-year survival rate. Standard treatment for EOC is cytoreductive surgery and platinum-based chemotherapy; however, most patients suffer from recurrence and platinum-resistant disease, which highlights an urgent need for targeted therapy. The high frequency of molecular alterations affecting gain-of-function signaling through the RAS mitogen-activated protein kinase (MAPK) pathway in EOC has prompted pre-clinical and clinical efforts toward research into the effectiveness of MAPK pathway inhibition as a second-line treatment. The RAS/MAPK pathway is a highly conserved signal transduction cascade, often disrupted in cancer, that regulates tumorigenic phenotypes including cellular proliferation, survival, migration, apoptosis, and differentiation. Herein, the role of the MAPK pathway in EOC with emphasis on targetability of the pathway is described. Pre-clinical and clinical efforts to target MAPK signaling in EOC have identified several MAPK pathway inhibitors that offer efficacious potential for monotherapy and in combination with other compounds. Thus, inhibition of the RAS/MAPK pathway is emerging as a tractable strategy for treatment of ovarian cancer that may permit development of personalized therapy and improved prognosis for women challenged by this disease.
Collapse
Affiliation(s)
- Eva Colic
- Department of Pharmacology, adMare BioInnovations, Montreal, Quebec, Canada
| | - Preya U Patel
- Department of Pharmacology, adMare BioInnovations, Montreal, Quebec, Canada
| | - Oliver A Kent
- Department of Pharmacology, adMare BioInnovations, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Abstract
The RAS family of proteins is among the most frequently mutated genes in human malignancies. In ovarian cancer (OC), the most lethal gynecological malignancy, RAS, especially KRAS mutational status at codons 12, 13, and 61, ranges from 6-65% spanning different histo-types. Normally RAS regulates several signaling pathways involved in a myriad of cellular signaling cascades mediating numerous cellular processes like cell proliferation, differentiation, invasion, and death. Aberrant activation of RAS leads to uncontrolled induction of several downstream signaling pathways such as RAF-1/MAPK (mitogen-activated protein kinase), PI3K phosphoinositide-3 kinase (PI3K)/AKT, RalGEFs, Rac/Rho, BRAF (v-Raf murine sarcoma viral oncogene homolog B), MEK1 (mitogen-activated protein kinase kinase 1), ERK (extracellular signal-regulated kinase), PKB (protein kinase B) and PKC (protein kinase C) involved in cell proliferation as well as maintenance pathways thereby driving tumorigenesis and cancer cell propagation. KRAS mutation is also known to be a biomarker for poor outcome and chemoresistance in OC. As a malignancy with several histotypes showing varying histopathological characteristics, we focus on reviewing recent literature showcasing the involvement of oncogenic RAS in mediating carcinogenesis and chemoresistance in OC and its subtypes.
Collapse
Affiliation(s)
- Lubna Therachiyil
- Hamad Medical Corporation, Doha, Qatar, 3050, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, 2713, Qatar
| | - Anjana Anand
- Hamad Medical Corporation, Doha, Qatar, 3050, Qatar
| | | | | | - Hesham M. Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, 2713, Qatar
| | - Shahab Uddin
- Hamad Medical Corporation, Doha, Qatar, 3050, Qatar
| |
Collapse
|
38
|
Gilks CB, Selinger CI, Davidson B, Köbel M, Ledermann JA, Lim D, Malpica A, Mikami Y, Singh N, Srinivasan R, Vang R, Lax SF, McCluggage WG. Data Set for the Reporting of Ovarian, Fallopian Tube and Primary Peritoneal Carcinoma: Recommendations From the International Collaboration on Cancer Reporting (ICCR). Int J Gynecol Pathol 2022; 41:S119-S142. [PMID: 36305537 DOI: 10.1097/pgp.0000000000000908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The move toward consistent and comprehensive surgical pathology reports for cancer resection specimens has been a key development in supporting evidence-based patient management and consistent cancer staging. The International Collaboration on Cancer Reporting (ICCR) previously developed a data set for reporting of the ovarian, fallopian tube and primary peritoneal carcinomas which was published in 2015. In this paper, we provide an update on this data set, as a second edition, that reflects changes in the 2020 World Health Organization (WHO) Classification of Female Genital Tumours as well as some other minor modifications. The data set has been developed by a panel of internationally recognized expert pathologists and a clinician and consists of "core" and "noncore" elements to be included in surgical pathology reports, with detailed commentary to guide users, including references. This data set replaces the widely used first edition, and will facilitate consistent and accurate case reporting, data collection for quality assurance and research, and allow for comparison of epidemiological and pathologic parameters between different populations.
Collapse
|
39
|
Barnes D, Mohammad N, Hoang L, Anglesio M, Hollis RL, Gourley C, Stuart HC, Carey MS, Stuart GC. Multisite gynecologic endometrioid adenocarcinomas: Can mutation profiling be used to distinguish synchronous primary cancers from metastases? Gynecol Oncol Rep 2022; 44:101076. [PMID: 36299398 PMCID: PMC9589011 DOI: 10.1016/j.gore.2022.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
It is well recognized that some patients with endometrioid gynecological cancers have tumors arising in multiple sites (ovary, endometrium, and endometriosis) at the time of diagnosis. Molecular analysis has helped discern whether these multisite cancers represent synchronous primary tumors or alternatively metastatic disease. We present a complex case of a patient with endometrioid carcinomas arising in multiple sites. We discuss the use of mutation profiling to discern clonality and highlight how this information may inform the clinical management of such cases.
Collapse
Affiliation(s)
- Dominique Barnes
- Department of Obstetrics and Gynecology, University of British Columbia, Canada,Corresponding author at: Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of British Columbia, 2775 Laurel Street, 6th Floor, DHCC, Vancouver, BC V5Z 1M9, Canada.
| | - Nissreen Mohammad
- Department of Pathology, Vancouver General Hospital and the University of British Columbia, Canada
| | - Lien Hoang
- Department of Pathology, Vancouver General Hospital and the University of British Columbia, Canada
| | - Michael Anglesio
- Department of Obstetrics and Gynecology, University of British Columbia, Canada
| | - Robert L. Hollis
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, UK
| | - Charlie Gourley
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, UK
| | - Heather C. Stuart
- Department of Surgery, Vancouver General Hospital, and the University of British Columbia, Canada
| | - Mark S. Carey
- Department of Obstetrics and Gynecology, University of British Columbia, Canada
| | - Gavin C.E. Stuart
- Department of Obstetrics and Gynecology, University of British Columbia, Canada
| |
Collapse
|
40
|
Hollis RL, Meynert AM, Michie CO, Rye T, Churchman M, Hallas-Potts A, Croy I, McCluggage WG, Williams AR, Bartos C, Iida Y, Okamoto A, Dougherty B, Barrett JC, March R, Matakidou A, Roxburgh P, Semple CA, Harkin DP, Kennedy R, Herrington CS, Gourley C. Multiomic Characterization of High-Grade Serous Ovarian Carcinoma Enables High-Resolution Patient Stratification. Clin Cancer Res 2022; 28:3546-3556. [PMID: 35696721 PMCID: PMC9662902 DOI: 10.1158/1078-0432.ccr-22-0368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/13/2022] [Accepted: 06/09/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE High-grade serous ovarian carcinoma (HGSOC) is the most common ovarian cancer type; most patients experience disease recurrence that accumulates chemoresistance, leading to treatment failure. Genomic and transcriptomic features have been associated with differential outcome and treatment response. However, the relationship between events at the gene sequence, copy number, and gene-expression levels remains poorly defined. EXPERIMENTAL DESIGN We perform multiomic characterization of a large HGSOC cohort (n = 362) with detailed clinical annotation to interrogate the relationship between patient subgroups defined by specific molecular events. RESULTS BRCA2-mutant (BRCA2m) and EMSY-overexpressing cases demonstrated prolonged survival [multivariable hazard ratios (HR) 0.40 and 0.51] and significantly higher first- and second-line chemotherapy response rate. CCNE1-gained (CCNE1g) cases demonstrated underrepresentation of FIGO stage IV cases, with shorter survival but no significant difference in treatment response. We demonstrate marked overlap between the TCGA- and Tothill-derived subtypes. IMR/C2 cases displayed higher BRCA1/2m frequency (25.5%, 32.5%) and significantly greater immune cell infiltration, whereas PRO/C5 cases had the highest CCNE1g rate (23.9%, 22.2%) and were uniformly low in immune cell infiltration. The survival benefit for cases with aberrations in homologous recombination repair (HRR) genes was apparent across all transcriptomic subtypes (HR range, 0.48-0.68). There was significant co-occurrence of RB loss and HRR gene aberrations; RB loss was further associated with favorable survival within HRR-aberrant cases (multivariable HR, 0.50). CONCLUSIONS These data paint a high-resolution picture of the molecular landscape in HGSOC, better defining patients who may benefit most from specific molecular therapeutics and highlighting those for whom novel treatment strategies are needed to improve outcomes.
Collapse
Affiliation(s)
- Robert L. Hollis
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Corresponding Author: Robb L. Hollis, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, Scotland, UK. E-mail:
| | - Alison M. Meynert
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Caroline O. Michie
- Edinburgh Cancer Centre, Western General Hospital, NHS Lothian, Edinburgh, UK
| | - Tzyvia Rye
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Michael Churchman
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Amelia Hallas-Potts
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ian Croy
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | | | - Clare Bartos
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Yasushi Iida
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- The Jikei University School of Medicine, Tokyo, Japan
| | - Aikou Okamoto
- The Jikei University School of Medicine, Tokyo, Japan
| | - Brian Dougherty
- Translational Medicine, Oncology R&D, AstraZeneca, Waltham, Massachusetts
| | - J. Carl Barrett
- Translational Medicine, Oncology R&D, AstraZeneca, Waltham, Massachusetts
| | - Ruth March
- Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Athena Matakidou
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Patricia Roxburgh
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Belfast, UK
- Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Colin A. Semple
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - D. Paul Harkin
- Almac Diagnostics, Craigavon, UK
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Richard Kennedy
- Almac Diagnostics, Craigavon, UK
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - C. Simon Herrington
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
41
|
Vergote I, Gonzalez-Martin A, Lorusso D, Gourley C, Mirza MR, Kurtz JE, Okamoto A, Moore K, Kridelka F, McNeish I, Reuss A, Votan B, du Bois A, Mahner S, Ray-Coquard I, Kohn EC, Berek JS, Tan DSP, Colombo N, Zang R, Concin N, O'Donnell D, Rauh-Hain A, Herrington CS, Marth C, Poveda A, Fujiwara K, Stuart GCE, Oza AM, Bookman MA. Clinical research in ovarian cancer: consensus recommendations from the Gynecologic Cancer InterGroup. Lancet Oncol 2022; 23:e374-e384. [PMID: 35901833 PMCID: PMC9465953 DOI: 10.1016/s1470-2045(22)00139-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
The Gynecologic Cancer InterGroup (GCIG) sixth Ovarian Cancer Conference on Clinical Research was held virtually in October, 2021, following published consensus guidelines. The goal of the consensus meeting was to achieve harmonisation on the design elements of upcoming trials in ovarian cancer, to select important questions for future study, and to identify unmet needs. All 33 GCIG member groups participated in the development, refinement, and adoption of 20 statements within four topic groups on clinical research in ovarian cancer including first line treatment, recurrent disease, disease subgroups, and future trials. Unanimous consensus was obtained for 14 of 20 statements, with greater than 90% concordance in the remaining six statements. The high acceptance rate following active deliberation among the GCIG groups confirmed that a consensus process could be applied in a virtual setting. Together with detailed categorisation of unmet needs, these consensus statements will promote the harmonisation of international clinical research in ovarian cancer.
Collapse
Affiliation(s)
- Ignace Vergote
- Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Leuven, Belgium; University Hospitals Leuven, Leuven, Belgium.
| | - Antonio Gonzalez-Martin
- Grupo Español de Cáncer de Ovario (GEICO), Madrid, Spain; Clinica Universidad de Navarra, Madrid, Spain; Program for Solid Tumors at Madrid, and Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Domenica Lorusso
- Multicenter Italian Trials in Ovarian Cancer and Gynecologic Malignancies (MITO), Naples, Italy; Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Charlie Gourley
- Scottish Gynaecological Cancer Trials Group (SGCTG), Cancer Research UK, Edinburgh, UK; Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Mansoor Raza Mirza
- Nordic Society of Gynecologic Oncology Clinical Trial Unit (NSGO-CTU), Copenhagen, Denmark; Rigshospitalet, Copenhagen, Denmark
| | - Jean-Emmanuel Kurtz
- Groupe d'Investigateurs National des Etudes des Cancers Ovariens et du Sein (GINECO), Paris, France; Strasbourg Cancer Institute, Strasbourg, France
| | - Aikou Okamoto
- Japanese Gynecologic Oncology Group (JGOG), Tokyo, Japan; The Jikei University School of Medicine, Tokyo, Japan
| | - Kathleen Moore
- Gynecologic Oncology Group-Foundation (GOG-F), Philadelphia, PA, USA; OU Health Stephenson Cancer Center, Oklahoma City, OH, USA
| | - Frédéric Kridelka
- Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Leuven, Belgium; Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Iain McNeish
- National Cancer Research Institute (NCRI), London, UK; Department of Surgery and Cancer, Imperial College London, London, UK
| | - Alexander Reuss
- Arbeitsgemeinschaft Gynäkologische Onkologie (AGO) Study Group, Munich, Germany; Coordinating Center for Clinical Trials, Philipps University, Marburg, Germany
| | - Bénédicte Votan
- Association de Recherche Cancers Gynécologiques (ARCAGY)-GINECO, Paris, France
| | - Andreas du Bois
- Arbeitsgemeinschaft Gynäkologische Onkologie (AGO) Study Group, Munich, Germany; Kliniken Essen Mitte (KEM), Essen, Germany
| | - Sven Mahner
- Arbeitsgemeinschaft Gynäkologische Onkologie (AGO) Study Group, Munich, Germany; University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Isabelle Ray-Coquard
- Groupe d'Investigateurs National des Etudes des Cancers Ovariens et du Sein (GINECO), Paris, France; Centre Leon Berard and University Claude Bernard Lyon I, Lyon, France
| | - Elise C Kohn
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan S Berek
- Women's Cancer Research Network-Cooperative Gynecologic Oncology Investigators (WCRN-COGI), Fresno, CA; Stanford Cancer Institute, Stanford, CA, USA
| | - David S P Tan
- Asia Pacific Gynecologic Oncology Trials Group (APGOT), Seoul, South Korea; Gynecologic Cancer Group Singapore (GCGS), Singapore; Cancer Science Institute, National University of Singapore, Singapore
| | - Nicoletta Colombo
- Mario Negri Gynecologic Oncology (MaNGO), Milan, Italy; European Institute of Oncology, Milan, Italy; University of Milano-Bicocca, Milan, Italy
| | - Rongyu Zang
- Shanghai Gynecologic Oncology Group (SGOG), Shanghai, China; Zhongshan Hospital, Fudan University, Shanghai, China
| | - Nicole Concin
- AGO -Austria, Innsbruck, Austria; Kliniken Essen Mitte (KEM), Essen, Germany; Medical University of Innsbruck, Innsbruck, Austria
| | - Dearbhaile O'Donnell
- Cancer Trials Ireland (CTI), Dublin, Ireland; St James's Hospital, Dublin, Ireland
| | - Alejandro Rauh-Hain
- Global Gynecologic Oncology Consortium (G-GOC), Houston, TX, USA; MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - C Simon Herrington
- Scottish Gynaecological Cancer Trials Group (SGCTG), Cancer Research UK, Edinburgh, UK; Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Christian Marth
- AGO -Austria, Innsbruck, Austria; Medical University of Innsbruck, Innsbruck, Austria
| | - Andres Poveda
- Grupo Español de Cáncer de Ovario (GEICO), Madrid, Spain; Hospital Quironsalud, Valencia, Spain
| | - Keiichi Fujiwara
- Gynecologic Cancer Clinical Trials and Investigation Consortium (GOTIC), North Kanto, Japan; Saitama Medical University International Medical Center, Saitama, Japan
| | - Gavin C E Stuart
- Canadian Cancer Trials Group (CCTG), Kingston, ON, Canada; University of British Columbia, Vancouver, BC, Canada
| | - Amit M Oza
- Princess Margaret Hospital Consortium (PMHC), Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Michael A Bookman
- Gynecologic Oncology Group-Foundation (GOG-F), Philadelphia, PA, USA; San Francisco Medical Center, San Francisco, CA, USA
| |
Collapse
|
42
|
Sabatier R, Garnier S, Guille A, Carbuccia N, Pakradouni J, Adelaide J, Provansal M, Cappiello M, Rousseau F, Chaffanet M, Birnbaum D, Mamessier E, Gonçalves A, Bertucci F. Whole-genome/exome analysis of circulating tumor DNA and comparison to tumor genomics from patients with heavily pre-treated ovarian cancer: subset analysis of the PERMED-01 trial. Front Oncol 2022; 12:946257. [PMID: 35965534 PMCID: PMC9373051 DOI: 10.3389/fonc.2022.946257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionThe poor prognosis of ovarian carcinoma (OvC) is due to the advanced stage at diagnosis, a high risk of relapse after first-line therapies, and the lack of efficient treatments in the recurrence setting. Circulating tumor DNA (ctDNA) analysis is a promising tool to assess treatment-resistant OvC and may avoid iterative tissue biopsies. We aimed to evaluate the genomic profile of recurrent heavily pre-treated OvC.MethodsWe performed tumor panel-based sequencing as well as low-coverage whole-genome sequencing (LC-WGS) of tumor and plasma collected in patients with ovarian cancer included in the PERMED-01 trial. Whole-exome sequencing (WES) data of plasma samples were also analyzed and compared to mutation and copy number alteration (CNA) tumor profiles. The prognostic value [progression-free survival (PFS)] of these alterations was assessed in an exploratory analysis.ResultsTumor and plasma genomic analyses were done for 24 patients with heavily pretreated OvC [67% high-grade serous carcinoma (HGSC)]. Tumor mutation burden was low (median 2.04 mutations/Mb) and the most frequent mutated gene was TP53 (94% of HGSC). Tumor CNAs were frequent with a median of 50% of genome altered fraction. Plasma LC-WGS and WES detected ctDNA in 21/24 cases (88%) with a median tumor fraction of 12.7%. We observed a low correlation between plasma and tumor CNA profiles. However, this correlation was significant in cases with the highest circulating tumor fraction. Plasma genome altered fraction and plasma mutation burden (p = 0.011 and p = 0.041, respectively, log-rank tests) were associated with PFS.ConclusionsCombination of LC-WGS and WES can detect ctDNA in most pre-treated OvCs. Some ctDNA characteristics, such as genome altered fraction and plasma mutation burden, showed prognostic value. ctDNA assessment with LC-WGS may be a promising and non-expansive tool to evaluate disease evolution in this disease with high genomic instability.Clinical Trial Registrationhttps://clinicaltrials.gov/ct2/show/NCT02342158, identifier NCT02342158.
Collapse
Affiliation(s)
- Renaud Sabatier
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes—Department of Medical Oncology, CRCM, Marseille, France
- *Correspondence: Renaud Sabatier,
| | - Séverine Garnier
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Arnaud Guille
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Nadine Carbuccia
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Jihane Pakradouni
- Department of Clinical Research and Innovation, Institut Paoli-Calmettes, Marseille, France
| | - José Adelaide
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Magali Provansal
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes—Department of Medical Oncology, CRCM, Marseille, France
| | - Maria Cappiello
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes—Department of Medical Oncology, CRCM, Marseille, France
| | - Frédérique Rousseau
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes—Department of Medical Oncology, CRCM, Marseille, France
| | - Max Chaffanet
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Daniel Birnbaum
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Emilie Mamessier
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Anthony Gonçalves
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes—Department of Medical Oncology, CRCM, Marseille, France
| | - François Bertucci
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes—Department of Medical Oncology, CRCM, Marseille, France
| |
Collapse
|
43
|
PTEN Dual Lipid- and Protein-Phosphatase Function in Tumor Progression. Cancers (Basel) 2022; 14:cancers14153666. [PMID: 35954330 PMCID: PMC9367293 DOI: 10.3390/cancers14153666] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a multifunctional tumor suppressor with protein- and lipid-phosphatase activities. The inactivation of PTEN is commonly found in all human cancers and is correlated with tumor progression. PTEN-lipid-phosphatase activity has been well documented to dephosphorylate phosphatidylinositol-3, 4, 5-phosphate (PIP3), which hinders cell growth and survival by dampening the PI3K and AKT signaling activity. PTEN-protein-phosphatase activity is less well studied and understood. Recent studies have reported that PTEN-protein-phosphatase activity dephosphorylates the different proteins and acts in various cell functions. We here review the PTEN mutations and protein-phosphatase substrates in tumor progression. We aim to address the gap in our understanding as to how PTEN protein phosphatase contributes to its tumor-suppression functions. Abstract PTEN is the second most highly mutated tumor suppressor in cancer, following only p53. The PTEN protein functions as a phosphatase with lipid- and protein-phosphatase activity. PTEN-lipid-phosphatase activity dephosphorylates PIP3 to form PIP2, and it then antagonizes PI3K and blocks the activation of AKT, while its protein-phosphatase activity dephosphorylates different protein substrates and plays various roles in tumorigenesis. Here, we review the PTEN mutations and protein-phosphatase substrates in tumorigenesis and metastasis. Our purpose is to clarify how PTEN protein phosphatase contributes to its tumor-suppressive functions through PI3K-independent activities.
Collapse
|
44
|
Hollis RL, Croy I, Churchman M, Bartos C, Rye T, Gourley C, Herrington CS. Ovarian carcinosarcoma is a distinct form of ovarian cancer with poorer survival compared to tubo-ovarian high-grade serous carcinoma. Br J Cancer 2022; 127:1034-1042. [PMID: 35715633 PMCID: PMC9470739 DOI: 10.1038/s41416-022-01874-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
Background Ovarian carcinosarcoma (OCS) is an uncommon, biphasic and highly aggressive ovarian cancer type, which has received relatively little research attention. Methods We curated the largest pathologically confirmed OCS cohort to date, performing detailed histopathological characterisation, analysis of features associated with survival and comparison against high-grade serous ovarian carcinoma (HGSOC). Results Eighty-two OCS patients were identified; overall survival was poor (median 12.7 months). In all, 79% demonstrated epithelial components of high-grade serous (HGS) type, while 21% were endometrioid. Heterologous elements were common (chondrosarcoma in 32%, rhabdomyosarcoma in 21%, liposarcoma in 2%); chondrosarcoma was more frequent in OCS with endometrioid carcinomatous components. Earlier stage, complete resection and platinum-containing adjuvant chemotherapy were associated with prolonged survival; however, risk of relapse and mortality was high across all patient groups. Histological subclassification did not identify subgroups with distinct survival. Compared to HGSOC, OCS patients were older (P < 0.0001), more likely to be FIGO stage I (P = 0.025), demonstrated lower chemotherapy response rate (P = 0.001) and had significantly poorer survival (P < 0.0001). Conclusion OCS represents a distinct, highly lethal form of ovarian cancer for which new treatment strategies are urgently needed. Histological subclassification does not identify patient subgroups with distinct survival. Aggressive adjuvant chemotherapy should be considered for all cases, including those with early-stage disease.
Collapse
Affiliation(s)
- Robert L Hollis
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK.
| | - Ian Croy
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | - Michael Churchman
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | - Clare Bartos
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | - Tzyvia Rye
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | - Charlie Gourley
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | - C Simon Herrington
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
45
|
Genomic and TCR profiling data reveal the distinct molecular traits in epithelial ovarian cancer histotypes. Oncogene 2022; 41:3093-3103. [PMID: 35468938 DOI: 10.1038/s41388-022-02277-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/08/2022]
Abstract
Epithelial ovarian cancer (EOC) is classified into five major histotypes: high-grade serous (HGSOC), low-grade serous (LGSOC), clear cell (CCOC), endometrioid (ENOC), and mucinous (MOC). However, the landscape of molecular and immunological alterations in these histotypes, especially LGSOC, CCOC, ENOC, and MOC, is largely uncharacterized. We collected 101 treatment-naive EOC patients. The resected tumor tissues and paired preoperative peripheral blood samples were collected and subjected to target sequencing of 1021 cancer-associated genes and T cell repertoire sequencing. Distinct characteristics of mutations were identified among the five histotypes. Furthermore, tumor mutation burden (TMB) was found to be higher in CCOC and ENOC, but lower in LGSOC and HGSOC. Alterations associated with DNA damage repair (DDR) pathways and homologous recombination deficiencies (HRD) were prevalent in five histotypes. CCOC demonstrated increased level of T cell clonality compared with HSGOC. Interestingly, the proportion of the 100 most common T cell clones was associated with TMB and tumor neoantigen burden in CCOC, highlighting more sensitive anti-tumor responses in this histotype, which was also evidenced by the enhanced convergent recombination of T cell clones. These findings shed light on the molecular traits of genomic alteration and T cell repertoire in the five major EOC histotypes and may help optimize clinical management of EOC with different histotypes.
Collapse
|
46
|
Liu J, Cui G, Ye J, Wang Y, Wang C, Bai J. Comprehensive Analysis of the Prognostic Signature of Mutation-Derived Genome Instability-Related lncRNAs for Patients With Endometrial Cancer. Front Cell Dev Biol 2022; 10:753957. [PMID: 35433686 PMCID: PMC9012522 DOI: 10.3389/fcell.2022.753957] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/21/2022] [Indexed: 01/18/2023] Open
Abstract
Background: Emerging evidence shows that genome instability-related long non-coding RNAs (lncRNAs) contribute to tumor–cell proliferation, differentiation, and metastasis. However, the biological functions and molecular mechanisms of genome instability-related lncRNAs in endometrial cancer (EC) are underexplored.Methods: EC RNA sequencing and corresponding clinical data obtained from The Cancer Genome Atlas (TCGA) database were used to screen prognostic lncRNAs associated with genomic instability via univariate and multivariate Cox regression analysis. The genomic instability-related lncRNA signature (GILncSig) was developed to assess the prognostic risk of high- and low-risk groups. The prediction performance was analyzed using receiver operating characteristic (ROC) curves. The immune status and mutational loading of different risk groups were compared. The Genomics of Drug Sensitivity in Cancer (GDSC) and the CellMiner database were used to elucidate the relationship between the correlation of prognostic lncRNAs and drug sensitivity. Finally, we used quantitative real-time PCR (qRT-PCR) to detect the expression levels of genomic instability-related lncRNAs in clinical samples.Results: GILncSig was built using five lncRNAs (AC007389.3, PIK3CD-AS2, LINC01224, AC129507.4, and GLIS3-AS1) associated with genomic instability, and their expression levels were verified using qRT-PCR. Further analysis revealed that risk score was negatively correlated with prognosis, and the ROC curve demonstrated the higher accuracy of GILncSig. Patients with a lower risk score had higher immune cell infiltration, a higher immune score, lower tumor purity, higher immunophenoscores (IPSs), lower mismatch repair protein expression, higher microsatellite instability (MSI), and a higher tumor mutation burden (TMB). Furthermore, the level of expression of prognostic lncRNAs was significantly related to the sensitivity of cancer cells to anti-tumor drugs.Conclusion: A novel signature composed of five prognostic lncRNAs associated with genome instability can be used to predict prognosis, influence immune status, and chemotherapeutic drug sensitivity in EC.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoliang Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Ye
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Yutong Wang
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Can Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianling Bai
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
- *Correspondence: Jianling Bai,
| |
Collapse
|
47
|
Similä-Maarala J, Soovares P, Pasanen A, Ahvenainen T, Vahteristo P, Bützow R, Lassus H. TCGA molecular classification in endometriosis-associated ovarian carcinomas: Novel data on clear cell carcinoma. Gynecol Oncol 2022; 165:577-584. [DOI: 10.1016/j.ygyno.2022.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 02/02/2023]
|
48
|
Ovarian Clear Cell Carcinoma and Mature Cystic Teratoma Transformed to PNET and Carcinosarcoma: A Case Report with an Immunohistochemical Investigation. Biomedicines 2022; 10:biomedicines10030547. [PMID: 35327349 PMCID: PMC8945758 DOI: 10.3390/biomedicines10030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/07/2022] Open
Abstract
Ovarian tumors include neoplasms derived from somatic cells and germ cells, including teratoma. Sometimes, tumors of the somatic cell type may develop from teratoma, causing diagnostic perturbation. We experienced a case of a tumor composed of several types of tissue in the ovary with a teratoma. When findings of teratoma and somatic tumor coexist in an ovary, it is difficult to differentiate whether a somatic tumor was mixed with a teratoma or a teratoma unitarily caused transformation to a somatic cell tumor. A 72-year-old Japanese woman (gravida, 3; para, 1) presented to our hospital with severe constipation and frequent urination, and a large intrapelvic tumor was detected by computed tomography (CT). Soon after admission, ultrasonography (US) and magnetic resonance imaging (MRI) revealed a large multilocular cystic tumor on her left ovary. Based on the clinical diagnosis of ovarian cancer, she underwent a left ovariectomy, appendectomy, and partial omentectomy. We observed an ovarian tumor consisting of teratoma, primitive neuroectodermal tumor (PNET), adenocarcinoma, various types of sarcomas, and clear cell carcinoma on the H and E-stained sections. The component of clear cell carcinoma showed a nuclear positive reaction against PAX8 and napsin A, as well as a loss of ARID1A, suggesting typical endometriosis-derived clear cell carcinoma. On the other hand, the expression of ARID1A was maintained in teratoma, PNET, non-specific adenocarcinoma, and various types of sarcomas, suggesting that these tumors had an origin different from that of clear cell carcinoma. These findings indicated that the ovarian tumor of this patient contained a clear cell carcinoma derived from a somatic cell and a teratoma that transformed to a wide variety of somatic cell types of tumors, which coexisted on one ovary. The appropriate use of immunohistochemistry was diagnostically effective in this case.
Collapse
|
49
|
Yee C, Dickson KA, Muntasir MN, Ma Y, Marsh DJ. Three-Dimensional Modelling of Ovarian Cancer: From Cell Lines to Organoids for Discovery and Personalized Medicine. Front Bioeng Biotechnol 2022; 10:836984. [PMID: 35223797 PMCID: PMC8866972 DOI: 10.3389/fbioe.2022.836984] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer has the highest mortality of all of the gynecological malignancies. There are several distinct histotypes of this malignancy characterized by specific molecular events and clinical behavior. These histotypes have differing responses to platinum-based drugs that have been the mainstay of therapy for ovarian cancer for decades. For histotypes that initially respond to a chemotherapeutic regime of carboplatin and paclitaxel such as high-grade serous ovarian cancer, the development of chemoresistance is common and underpins incurable disease. Recent discoveries have led to the clinical use of PARP (poly ADP ribose polymerase) inhibitors for ovarian cancers defective in homologous recombination repair, as well as the anti-angiogenic bevacizumab. While predictive molecular testing involving identification of a genomic scar and/or the presence of germline or somatic BRCA1 or BRCA2 mutation are in clinical use to inform the likely success of a PARP inhibitor, no similar tests are available to identify women likely to respond to bevacizumab. Functional tests to predict patient response to any drug are, in fact, essentially absent from clinical care. New drugs are needed to treat ovarian cancer. In this review, we discuss applications to address the currently unmet need of developing physiologically relevant in vitro and ex vivo models of ovarian cancer for fundamental discovery science, and personalized medicine approaches. Traditional two-dimensional (2D) in vitro cell culture of ovarian cancer lacks critical cell-to-cell interactions afforded by culture in three-dimensions. Additionally, modelling interactions with the tumor microenvironment, including the surface of organs in the peritoneal cavity that support metastatic growth of ovarian cancer, will improve the power of these models. Being able to reliably grow primary tumoroid cultures of ovarian cancer will improve the ability to recapitulate tumor heterogeneity. Three-dimensional (3D) modelling systems, from cell lines to organoid or tumoroid cultures, represent enhanced starting points from which improved translational outcomes for women with ovarian cancer will emerge.
Collapse
Affiliation(s)
- Christine Yee
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mohammed N. Muntasir
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Deborah J. Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
50
|
Gaitskell K, Hermon C, Barnes I, Pirie K, Floud S, Green J, Beral V, Reeves GK. Ovarian cancer survival by stage, histotype, and pre-diagnostic lifestyle factors, in the prospective UK Million Women Study. Cancer Epidemiol 2022; 76:102074. [PMID: 34942490 PMCID: PMC8785125 DOI: 10.1016/j.canep.2021.102074] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/13/2021] [Accepted: 11/16/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Ovarian cancer is the fifth leading cause of cancer mortality in UK women. Ovarian cancer survival varies by disease stage at diagnosis, but evidence is mixed on the effect of tumour histological type (histotype) and other factors. METHODS 1.3 million UK women completed a detailed health questionnaire in 1996-2001 and were followed for incident cancers and deaths via linkage to national databases. Using Cox regression models, we estimated adjusted relative risks (RRs) of death from ovarian cancer, by stage at diagnosis, tumour histotype, and 16 other personal characteristics of the women. RESULTS During 17.7 years' average follow-up, 13,222 women were diagnosed with ovarian cancer, and 8697 of them died from the disease. Stage at diagnosis was a major determinant of survival (stage IV vs I, RR=10.54, 95% CI: 9.16-12.13). Histotype remained a significant predictor after adjustment for stage and other factors, but associations varied over the follow-up period. Histotype-specific survival was worse for high-grade than low-grade tumours. Survival appeared worse with older age at diagnosis (per 5 years: RR=1.19, 95% CI: 1.15-1.22), higher BMI (per 5-unit increase: RR=1.06, 95% CI: 1.02-1.11), and smoking (current vs never: RR=1.17, 95% CI: 1.07-1.27), but there was little association with 13 other pre-diagnostic reproductive, anthropometric, and lifestyle factors. CONCLUSION Stage at diagnosis is a strong predictor of ovarian cancer survival, but tumour histotype and grade remain predictors of survival even after adjustment for stage and other factors, contributing further evidence of biological dissimilarity between the ovarian cancer histotypes. Obesity and smoking represent potentially-modifiable determinants of survival, but the stronger association with stage suggests that improving earlier diagnosis would have a greater impact on increasing ovarian cancer survival.
Collapse
Affiliation(s)
- Kezia Gaitskell
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK; Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Department of Histopathology, John Radcliffe Hospital, Oxford, UK.
| | - Carol Hermon
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Isobel Barnes
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Kirstin Pirie
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Sarah Floud
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Jane Green
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Valerie Beral
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Gillian K Reeves
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| |
Collapse
|