1
|
Zhao X, Li J, Fan Q, Dai J, Long Y, Liu R, Zhai J, Pan Q, Li Y. Composite Hedges Nanopores codec system for rapid and portable DNA data readout with high INDEL-Correction. Nat Commun 2024; 15:9395. [PMID: 39477940 PMCID: PMC11525716 DOI: 10.1038/s41467-024-53455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
Reading digital information from highly dense but lightweight DNA medium nowadays relies on time-consuming next-generation sequencing. Nanopore sequencing holds the promise to overcome the efficiency problem, but high indel error rates lead to the requirement of large amount of high quality data for accurate readout. Here we introduce Composite Hedges Nanopores, capable of handling indel rates up to 15.9% and substitution rates up to 7.8%. The overall information density can be doubled from 0.59 to 1.17 by utilizing a degenerated eight-letter alphabet. We demonstrate that sequencing times of 20 and 120 minutes are sufficient for processing representative text and image files, respectively. Moreover, to achieve complete data recovery, it is estimated that text and image data require 4× and 8× physical redundancy of composite strands, respectively. Our codec system excels on both molecular design and equalized dictionary usage, laying a solid foundation approaching to real-time DNA data retrieval and encoding.
Collapse
Affiliation(s)
- Xuyang Zhao
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, China
| | - Junyao Li
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, China
| | - Qingyuan Fan
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, China
| | - Jing Dai
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, China
| | - Yanping Long
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ronghui Liu
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Qing Pan
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China.
| | - Yi Li
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Vidal A, Wijekoon VB, Viterbo E. Concatenated Nanopore DNA Codes. IEEE Trans Nanobioscience 2024; 23:310-318. [PMID: 38546987 DOI: 10.1109/tnb.2024.3350001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
In nanopore sequencers, single-stranded DNA molecules (or k-mers) enter a small opening in a membrane called a nanopore and modulate the ionic current through the pore, producing a channel output in the form of a noisy piecewise constant signal. An important problem in DNA-based data storage is finding a set of k-mers, i.e. a DNA code, that is robust against noisy sample duplication introduced by nanopore sequencers. Good DNA codes should contain as many k-mers as possible that produce distinguishable current signals (squiggles) as measured by the sequencer. The dissimilarity between squiggles can be estimated using a bound on their pairwise error probability, which is used as a metric for code design. Unfortunately, code construction using the union bound is limited to small k's due to the difficulty of finding maximum cliques in large graphs. In this paper, we construct large codes by concatenating codewords from a base code, thereby packing more information in a single strand while retaining the storage efficiency of the base code. To facilitate decoding, we include a circumfix in the base code to reduce the effect of the nanopore channel memory. We show that the decoding complexity scales as [Formula: see text], where m is the number of concatenated k-mers. Simulations show that the base code error rate is stable as m increases.
Collapse
|
3
|
Akash A, Bencurova E, Dandekar T. How to make DNA data storage more applicable. Trends Biotechnol 2024; 42:17-30. [PMID: 37591721 DOI: 10.1016/j.tibtech.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
The storage of digital data is becoming a worldwide problem. DNA has been recognized as a biological solution due to its ability to store genetic information without alteration over long periods. The first demonstrations of high-capacity long-lasting DNA digital data storage have been shown. However, high storage costs and slow retrieval of the data must be overcome to make DNA data storage more applicable and marketable. Herein, we discuss the issues and recent advances in DNA data storage methods and highlight pathways to make this technology more applicable to real-world digital data storage. We envision that a combination of molecular biology, nanotechnology, novel polymers, electronics, and automation with systematic development will allow DNA data storage sufficient for everyday use.
Collapse
Affiliation(s)
- Aman Akash
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Elena Bencurova
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
4
|
Reichstein J, Müssig S, Wintzheimer S, Mandel K. Communicating Supraparticles to Enable Perceptual, Information-Providing Matter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306728. [PMID: 37786273 DOI: 10.1002/adma.202306728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Indexed: 10/04/2023]
Abstract
Materials are the fundament of the physical world, whereas information and its exchange are the centerpieces of the digital world. Their fruitful synergy offers countless opportunities for realizing desired digital transformation processes in the physical world of materials. Yet, to date, a perfect connection between these worlds is missing. From the perspective, this can be achieved by overcoming the paradigm of considering materials as passive objects and turning them into perceptual, information-providing matter. This matter is capable of communicating associated digitally stored information, for example, its origin, fate, and material type as well as its intactness on demand. Herein, the concept of realizing perceptual, information-providing matter by integrating customizable (sub-)micrometer-sized communicating supraparticles (CSPs) is presented. They are assembled from individual nanoparticulate and/or (macro)molecular building blocks with spectrally differentiable signals that are either robust or stimuli-susceptible. Their combination yields functional signal characteristics that provide an identification signature and one or multiple stimuli-recorder features. This enables CSPs to communicate associated digital information on the tagged material and its encountered stimuli histories upon signal readout anywhere across its life cycle. Ultimately, CSPs link the materials and digital worlds with numerous use cases thereof, in particular fostering the transition into an age of sustainability.
Collapse
Affiliation(s)
- Jakob Reichstein
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Stephan Müssig
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| |
Collapse
|
5
|
Kuzdraliński A, Miśkiewicz M, Szczerba H, Mazurczyk W, Nivala J, Księżopolski B. Unlocking the potential of DNA-based tagging: current market solutions and expanding horizons. Nat Commun 2023; 14:6052. [PMID: 37770439 PMCID: PMC10539344 DOI: 10.1038/s41467-023-41728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Affiliation(s)
- Adam Kuzdraliński
- Department of Cybersecurity and Cybereducation, Faculty of Information Technology, Polish-Japanese Academy of Information Technology, Warsaw, Mazowieckie, 02-008, Poland.
| | - Marek Miśkiewicz
- Institute of Computer Science, University of Maria Curie-Skłodowska, Akademicka 9, 20-033, Lublin, Poland
| | - Hubert Szczerba
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna St., 20-704, Lublin, Poland.
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Wojciech Mazurczyk
- Institute of Computer Science, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Nowowiejska 15/19, 00-665, Warsaw, Poland
- Parallelism and VLSI Group, Faculty of Mathematics and Computer Science, FernUniversität in Hagen, Universitätsstr. 1, 58097, Hagen, Germany
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Bogdan Księżopolski
- Department of Cybersecurity and Cybereducation, Faculty of Information Technology, Polish-Japanese Academy of Information Technology, Warsaw, Mazowieckie, 02-008, Poland
| |
Collapse
|
6
|
Lau B, Chandak S, Roy S, Tatwawadi K, Wootters M, Weissman T, Ji HP. Magnetic DNA random access memory with nanopore readouts and exponentially-scaled combinatorial addressing. Sci Rep 2023; 13:8514. [PMID: 37231057 PMCID: PMC10213054 DOI: 10.1038/s41598-023-29575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/07/2023] [Indexed: 05/27/2023] Open
Abstract
The storage of data in DNA typically involves encoding and synthesizing data into short oligonucleotides, followed by reading with a sequencing instrument. Major challenges include the molecular consumption of synthesized DNA, basecalling errors, and limitations with scaling up read operations for individual data elements. Addressing these challenges, we describe a DNA storage system called MDRAM (Magnetic DNA-based Random Access Memory) that enables repetitive and efficient readouts of targeted files with nanopore-based sequencing. By conjugating synthesized DNA to magnetic agarose beads, we enabled repeated data readouts while preserving the original DNA analyte and maintaining data readout quality. MDRAM utilizes an efficient convolutional coding scheme that leverages soft information in raw nanopore sequencing signals to achieve information reading costs comparable to Illumina sequencing despite higher error rates. Finally, we demonstrate a proof-of-concept DNA-based proto-filesystem that enables an exponentially-scalable data address space using only small numbers of targeting primers for assembly and readout.
Collapse
Affiliation(s)
- Billy Lau
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, 94304, USA
| | - Shubham Chandak
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sharmili Roy
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kedar Tatwawadi
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Mary Wootters
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Tsachy Weissman
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, 94304, USA.
| |
Collapse
|
7
|
Sun F, Dong Y, Ni M, Ping Z, Sun Y, Ouyang Q, Qian L. Mobile and Self-Sustained Data Storage in an Extremophile Genomic DNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206201. [PMID: 36737843 PMCID: PMC10074078 DOI: 10.1002/advs.202206201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
DNA has been pursued as a novel biomaterial for digital data storage. While large-scale data storage and random access have been achieved in DNA oligonucleotide pools, repeated data accessing requires constant data replenishment, and these implementations are confined in professional facilities. Here, a mobile data storage system in the genome of the extremophile Halomonas bluephagenesis, which enables dual-mode storage, dynamic data maintenance, rapid readout, and robust recovery. The system relies on two key components: A versatile genetic toolbox for the integration of 10-100 kb scale synthetic DNA into H. bluephagenesis genome and an efficient error correction coding scheme targeting noisy nanopore sequencing reads. The storage and repeated retrieval of 5 KB data under non-laboratory conditions are demonstrated. The work highlights the potential of DNA data storage in domestic and field scenarios, and expands its application domain from archival data to frequently accessed data.
Collapse
Affiliation(s)
- Fajia Sun
- Center for Quantitative BiologyPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
| | - Yiming Dong
- Center for Quantitative BiologyPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
| | - Ming Ni
- Academician Workstation of BGI Synthetic GenomicsBGI‐ShenzhenHuada Comprehensive ParkYantian DistrictShenzhen518083P. R. China
| | - Zhi Ping
- Academician Workstation of BGI Synthetic GenomicsBGI‐ShenzhenHuada Comprehensive ParkYantian DistrictShenzhen518083P. R. China
| | - Yuhui Sun
- Academician Workstation of BGI Synthetic GenomicsBGI‐ShenzhenHuada Comprehensive ParkYantian DistrictShenzhen518083P. R. China
| | - Qi Ouyang
- Center for Quantitative BiologyPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic PhysicsPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
| | - Long Qian
- Center for Quantitative BiologyPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
| |
Collapse
|
8
|
Noordijk B, Nijland R, Carrion VJ, Raaijmakers JM, de Ridder D, de Lannoy C. baseLess: lightweight detection of sequences in raw MinION data. BIOINFORMATICS ADVANCES 2023; 3:vbad017. [PMID: 36818730 PMCID: PMC9936955 DOI: 10.1093/bioadv/vbad017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Summary With its candybar form factor and low initial investment cost, the MinION brought affordable portable nucleic acid analysis within reach. However, translating the electrical signal it outputs into a sequence of bases still requires mid-tier computer hardware, which remains a caveat when aiming for deployment of many devices at once or usage in remote areas. For applications focusing on detection of a target sequence, such as infectious disease monitoring or species identification, the computational cost of analysis may be reduced by directly detecting the target sequence in the electrical signal instead. Here, we present baseLess, a computational tool that enables such target-detection-only analysis. BaseLess makes use of an array of small neural networks, each of which efficiently detects a fixed-size subsequence of the target sequence directly from the electrical signal. We show that baseLess can accurately determine the identity of reads between three closely related fish species and can classify sequences in mixtures of 20 bacterial species, on an inexpensive single-board computer. Availability and implementation baseLess and all code used in data preparation and validation are available on Github at https://github.com/cvdelannoy/baseLess, under an MIT license. Used validation data and scripts can be found at https://doi.org/10.4121/20261392, under an MIT license. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Ben Noordijk
- Bioinformatics Group, Wageningen University, Wageningen 6700AH, The Netherlands
| | - Reindert Nijland
- Marine Animal Ecology, Wageningen University, Wageningen 6700AP, The Netherlands
| | - Victor J Carrion
- Institute of Biology, Leiden University, Leiden 2300RA, The Netherlands,Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen 6700AB, The Netherlands,Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga 29010, Spain
| | - Jos M Raaijmakers
- Institute of Biology, Leiden University, Leiden 2300RA, The Netherlands,Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen 6700AB, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Wageningen 6700AH, The Netherlands
| | | |
Collapse
|
9
|
Liu K, Xing R, Sun R, Ge Y, Chen Y. An Accurate and Rapid Way for Identifying Food Geographical Origin and Authenticity: Editable DNA-Traceable Barcode. Foods 2022; 12:17. [PMID: 36613233 PMCID: PMC9818171 DOI: 10.3390/foods12010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
DNA offers significant advantages in information density, durability, and replication efficiency compared with information labeling solutions using electronic, magnetic, or optical devices. Synthetic DNA containing specific information via gene editing techniques is a promising identifying approach. We developed a new traceability approach to convert traditional digitized information into DNA sequence information. We used encapsulation to make it stable for storage and to enable reading and detection by DNA sequencing and PCR-capillary electrophoresis (PCR-CE). The synthesized fragment consisted of a short fragment of the mitochondrial cytochrome oxidase subunit I (COI) gene from the Holothuria fuscogilva (ID: LC593268.1), inserted geographical origin information (18 bp), and authenticity information from Citrus sinensis (20 bp). The obtained DNA-traceable barcodes were cloned into vector PMD19-T. Sanger sequencing of the DNA-traceable barcode vector was 100% accurate and provided a complete readout of the traceability information. Using selected recognition primers CAI-B, DNA-traceable barcodes were identified rapidly by PCR amplification. We encapsulated the DNA-traceable barcodes into amorphous silica spheres and improved the encapsulation procedure to ensure the durability of the DNA-traceable barcodes. To demonstrate the applicability of DNA-traceable barcodes as product labels, we selected Citrus sinensis as an example. We found that the recovered and purified DNA-traceable barcode can be analyzed by standard techniques (PCR-CE for DNA-traceable barcode identification and DNA sequencing for readout). This study provides an accurate and rapid approach to identifying and certifying products' authenticity and traceability.
Collapse
Affiliation(s)
- Kehan Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Ranran Xing
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Ruixue Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yiqiang Ge
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- China Rural Technology Development Center, Beijing 100045, China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
10
|
Roy S, Sen S, Saha S, Deb SK, Singh B, Biswas G. Design, synthesis and molecular docking studies of 5-fluoro 1-aryl/alkyl sulfonyl benzimidazole derivatives for treatment of Parkinson’s disease. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2150852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Subarna Roy
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Subhadeep Sen
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Samiran Saha
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Sandip Kumar Deb
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Bhagat Singh
- Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, NC, USA
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| |
Collapse
|
11
|
Zhu J, Kong J, Keyser UF, Wang E. Parallel DNA circuits by autocatalytic strand displacement and nanopore readout. NANOSCALE 2022; 14:15507-15515. [PMID: 36227155 DOI: 10.1039/d2nr04048d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DNA nanotechnology provides a unique opportunity for molecular computation, with strand displacement reactions enabling controllable reorganization of nanostructures. Additional DNA strand exchange strategies with high selectivity for input will enable novel complex systems including biosensing applications. Herein, we propose an autocatalytic strand displacement (ACSD) circuit: initiated by DNA breathing and accelerated by a seesaw catalytic reaction, ACSD ensures that only the correct base sequence starts the catalytic cycle. Analogous to an electronic circuit with a variable resistor, two ACSD reactions with different rates are connected in parallel to mimic a parallel circuit containing branches with different resistances. Finally, we introduce a multiplexed nanopore sensing platform to report the output results of a parallel path selection system at the single-molecule level. By combining the ACSD strategy with fast and sensitive single-molecule nanopore readout, a new generation of DNA-based computing tools is established.
Collapse
Affiliation(s)
- Jinbo Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, UK.
| | - Jinglin Kong
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, UK.
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, UK.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| |
Collapse
|
12
|
Song Z, Liang Y, Yang J. Nanopore Detection Assisted DNA Information Processing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183135. [PMID: 36144924 PMCID: PMC9504103 DOI: 10.3390/nano12183135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 05/27/2023]
Abstract
The deoxyribonucleotide (DNA) molecule is a stable carrier for large amounts of genetic information and provides an ideal storage medium for next-generation information processing technologies. Technologies that process DNA information, representing a cross-disciplinary integration of biology and computer techniques, have become attractive substitutes for technologies that process electronic information alone. The detailed applications of DNA technologies can be divided into three components: storage, computing, and self-assembly. The quality of DNA information processing relies on the accuracy of DNA reading. Nanopore detection allows researchers to accurately sequence nucleotides and is thus widely used to read DNA. In this paper, we introduce the principles and development history of nanopore detection and conduct a systematic review of recent developments and specific applications in DNA information processing involving nanopore detection and nanopore-based storage. We also discuss the potential of artificial intelligence in nanopore detection and DNA information processing. This work not only provides new avenues for future nanopore detection development, but also offers a foundation for the construction of more advanced DNA information processing technologies.
Collapse
Affiliation(s)
- Zichen Song
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuan Liang
- Department of Computer Science and Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
13
|
Lin T, Tian C, Sun Y, Liu S, Wang D, Hou L, Zhao S. Information encryption with a high information-carrying capacity based on a stimulus-responsive hydrogen-bonded organic framework and a smartphone. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Zhang S, Cao Z, Fan P, Wang Y, Jia W, Wang L, Wang K, Liu Y, Du X, Hu C, Zhang P, Chen HY, Huang S. A Nanopore‐Based Saccharide Sensor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Yao Liu
- Nanjing University Chemistry CHINA
| | | | | | | | | | - Shuo Huang
- Nanjing University Chemistry 163 Xianlin AveSchool of Chemistry and Chemical EngineeringXixia District 210023 Nanjing CHINA
| |
Collapse
|
15
|
Zhang S, Cao Z, Fan P, Wang Y, Jia W, Wang L, Wang K, Liu Y, Du X, Hu C, Zhang P, Chen HY, Huang S. A Nanopore-Based Saccharide Sensor. Angew Chem Int Ed Engl 2022; 61:e202203769. [PMID: 35718742 DOI: 10.1002/anie.202203769] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Indexed: 12/19/2022]
Abstract
Saccharides play critical roles in many forms of cellular activities. Saccharide structures are however complicated and similar, setting a technical hurdle for direct identification. Nanopores, which are emerging single molecule tools sensitive to minor structural differences between analytes, can be engineered to identity saccharides. A hetero-octameric Mycobacterium smegmatis porin A nanopore containing a phenylboronic acid was prepared, and was able to clearly identify nine monosaccharide types, including D-fructose, D-galactose, D-mannose, D-glucose, L-sorbose, D-ribose, D-xylose, L-rhamnose and N-acetyl-D-galactosamine. Minor structural differences between saccharide epimers can also be distinguished. To assist automatic event classification, a machine learning algorithm was developed, with which a general accuracy score of 0.96 was achieved. This sensing strategy is generally suitable for other saccharide types and may bring new insights to nanopore saccharide sequencing.
Collapse
Affiliation(s)
- Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Zhenyuan Cao
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Chengzhen Hu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| |
Collapse
|
16
|
Kretschmer J, David T, Dračínský M, Socha O, Jirak D, Vít M, Jurok R, Kuchař M, Císařová I, Polasek M. Paramagnetic encoding of molecules. Nat Commun 2022; 13:3179. [PMID: 35676253 PMCID: PMC9177614 DOI: 10.1038/s41467-022-30811-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractContactless digital tags are increasingly penetrating into many areas of human activities. Digitalization of our environment requires an ever growing number of objects to be identified and tracked with machine-readable labels. Molecules offer immense potential to serve for this purpose, but our ability to write, read, and communicate molecular code with current technology remains limited. Here we show that magnetic patterns can be synthetically encoded into stable molecular scaffolds with paramagnetic lanthanide ions to write digital code into molecules and their mixtures. Owing to the directional character of magnetic susceptibility tensors, each sequence of lanthanides built into one molecule produces a unique magnetic outcome. Multiplexing of the encoded molecules provides a high number of codes that grows double-exponentially with the number of available paramagnetic ions. The codes are readable by nuclear magnetic resonance in the radiofrequency (RF) spectrum, analogously to the macroscopic technology of RF identification. A prototype molecular system capable of 16-bit (65,535 codes) encoding is presented. Future optimized systems can conceivably provide 64-bit (~10^19 codes) or higher encoding to cover the labelling needs in drug discovery, anti-counterfeiting and other areas.
Collapse
|
17
|
Microbial spore genetic marker technology, a potential technology for traditional Chinese medicine traceability system. Chin Med 2022; 17:61. [PMID: 35643582 PMCID: PMC9148530 DOI: 10.1186/s13020-022-00620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
Traditional Chinese medicine (TCM) has a long history, rich clinical experience, and unique advantages in the prevention and treatment of diseases. The quality and safety of Chinese medicinal materials (CMMs) directly affect the clinical efficacy and development of the TCM industry. However, confused provenance, counterfeiting and adulteration of CMMs hinder the acceptance of its therapeutic benefits in modern society. Therefore, the establishment and improvement of a TCM traceability system would be conducive to the transparency of the CMMs production, distribution, and circulation, thereby improving drug safety and promoting industry development. This review discusses the challenges faced in the development of TCM traceability system, the technologies currently available for tracing CMMs, and the potential application of Barcoded Microbial Spores (BMS) to improve CMMs origin traceability and TCM traceability systems.
Collapse
|
18
|
Yan S, Wang L, Wang Y, Cao Z, Zhang S, Du X, Fan P, Zhang P, Chen HY, Huang S. Non-binary Encoded Nucleic Acid Barcodes Directly Readable by a Nanopore. Angew Chem Int Ed Engl 2022; 61:e202116482. [PMID: 35261129 DOI: 10.1002/anie.202116482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 01/13/2023]
Abstract
A large collection of unique molecular barcodes is useful in the simultaneous sensing or screening of molecular analytes. Though the sequence of DNA has been widely applied to encode for molecular barcodes, decoding of these barcodes is normally assisted by sequencing. We here demonstrate a barcode system based solely on self-assembly of synthetic nucleic acids and direct nanopore decoding. Each molecular barcode is composed of "n" distinct information nodes in a non-binary manner and can be sequentially scanned and decoded by a Mycobacterium smegmatis porin A (MspA) nanopore. Nanopore events containing step-shaped features were consistently reported. 14 unique information nodes were developed which in principle could encode for 14n unique molecular barcodes in a barcode containing "n" information nodes. These barcode probes were adapted to detect different antibody proteins or cancer-related microRNAs, suggesting their immediate application in a wide variety of sensing applications.
Collapse
Affiliation(s)
- Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Zhenyuan Cao
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| |
Collapse
|
19
|
Ezekannagha C, Becker A, Heider D, Hattab G. Design considerations for advancing data storage with synthetic DNA for long-term archiving. Mater Today Bio 2022; 15:100306. [PMID: 35677811 PMCID: PMC9167972 DOI: 10.1016/j.mtbio.2022.100306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/05/2022] [Accepted: 05/22/2022] [Indexed: 11/22/2022]
Abstract
Deoxyribonucleic acid (DNA) is increasingly emerging as a serious medium for long-term archival data storage because of its remarkable high-capacity, high-storage-density characteristics and its lasting ability to store data for thousands of years. Various encoding algorithms are generally required to store digital information in DNA and to maintain data integrity. Indeed, since DNA is the information carrier, its performance under different processing and storage conditions significantly impacts the capabilities of the data storage system. Therefore, the design of a DNA storage system must meet specific design considerations to be less error-prone, robust and reliable. In this work, we summarize the general processes and technologies employed when using synthetic DNA as a storage medium. We also share the design considerations for sustainable engineering to include viability. We expect this work to provide insight into how sustainable design can be used to develop an efficient and robust synthetic DNA-based storage system for long-term archiving.
Collapse
Affiliation(s)
- Chisom Ezekannagha
- Department of Mathematics and Computer Science, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, D-35043, Marburg, Germany
- Corresponding author.
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany
| | - Dominik Heider
- Department of Mathematics and Computer Science, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, D-35043, Marburg, Germany
| | - Georges Hattab
- Department of Mathematics and Computer Science, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, D-35043, Marburg, Germany
| |
Collapse
|
20
|
Abstract
Evolution has found countless ways to transport material across cells and cellular compartments separated by membranes. Protein assemblies are the cornerstone for the formation of channels and pores that enable this regulated passage of molecules in and out of cells, contributing to maintaining most of the fundamental processes that sustain living organisms. As in several other occasions, we have borrowed from the natural properties of these biological systems to push technology forward and have been able to hijack these nano-scale proteinaceous pores to learn about the physical and chemical features of molecules passing through them. Today, a large repertoire of biological pores is exploited as molecular sensors for characterizing biomolecules that are relevant for the advancement of life sciences and application to medicine. Although the technology has quickly matured to enable nucleic acid sensing with transformative implications for genomics, biological pores stand as some of the most promising candidates to drive the next developments in single-molecule proteomics.
Collapse
Affiliation(s)
- Simon Finn Mayer
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Chan Cao
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Yan S, Wang L, Wang Y, Cao Z, Zhang S, Du X, Fan P, Zhang P, Chen H, Huang S. Non‐binary Encoded Nucleic Acid Barcodes Directly Readable by a Nanopore. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Zhenyuan Cao
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| |
Collapse
|
22
|
Meiser LC, Nguyen BH, Chen YJ, Nivala J, Strauss K, Ceze L, Grass RN. Synthetic DNA applications in information technology. Nat Commun 2022; 13:352. [PMID: 35039502 PMCID: PMC8763860 DOI: 10.1038/s41467-021-27846-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/13/2021] [Indexed: 02/08/2023] Open
Abstract
Synthetic DNA is a growing alternative to electronic-based technologies in fields such as data storage, product tagging, or signal processing. Its value lies in its characteristic attributes, namely Watson-Crick base pairing, array synthesis, sequencing, toehold displacement and polymerase chain reaction (PCR) capabilities. In this review, we provide an overview of the most prevalent applications of synthetic DNA that could shape the future of information technology. We emphasize the reasons why the biomolecule can be a valuable alternative for conventional electronic-based media, and give insights on where the DNA-analog technology stands with respect to its electronic counterparts.
Collapse
Affiliation(s)
- Linda C Meiser
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| | | | | | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | | | - Luis Ceze
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - Robert N Grass
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland.
| |
Collapse
|
23
|
Ding T, Yang J, Wang J, Pan V, Lu Z, Ke Y, Zhang C. Shaped DNA origami carrier nanopore translocation influenced by aptamer based surface modification. Biosens Bioelectron 2022; 195:113658. [PMID: 34706323 DOI: 10.1016/j.bios.2021.113658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 01/19/2023]
Abstract
DNA origami is widely used as a translocation carrier to assist solid-state nanopore analysis, e.g., soft linear origami carrier and special-shaped origami structures. In the linear origami carriers based nanopore sensing, molecular modifications induced tiny structural and charge changes, can result in significant variations on translocation signals to facilitating single-molecule sensing. However, an understanding on the influences of surface modifications on special-shaped DNA origami structures during solid-state (SS) nanopores translocation is still far elusive. Herein, we reported a surface modification strategy using aptamer/target-binding to influence the translocation of the shaped origami ribbon carrier through SS-nanopore. Our measurements indicate that the translocation signal variations can respond to ATP/aptamer binding on the carrier surface, even to the surface modifications induced by spatial distributions and enzyme catalysis. Meanwhile, the results also suggest a possibility to identify small spatial and electronic changes on DNA origami by using SS-nanopore. We envision that the surface aptamer-binding influenced origami translocation strategy could find more applications in origami carrier assisted SS-nanopore sensing and detection.
Collapse
Affiliation(s)
- Taoli Ding
- Key Lab of High Confidence Software Technologies, Department of Computer Science and Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Juan Wang
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China; Bio-evidence Sciences Academy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Victor Pan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Zuhong Lu
- The State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China, 211189.
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Chemistry, Emory University, Atlanta, GA 30322, United States.
| | - Cheng Zhang
- Key Lab of High Confidence Software Technologies, Department of Computer Science and Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China.
| |
Collapse
|
24
|
Bennet D, Vo‐Dinh T, Zenhausern F. Current and emerging opportunities in biological medium‐based computing and digital data storage. NANO SELECT 2021. [DOI: 10.1002/nano.202100275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Devasier Bennet
- Center for Applied NanoBioscience and Medicine College of Medicine Phoenix The University of Arizona Phoenix USA
| | - Tuan Vo‐Dinh
- Department of Biomedical Engineering Department of Chemistry Fitzpatrick Institute for Photonics Duke University Durham North Carolina USA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine College of Medicine Phoenix The University of Arizona Phoenix USA
- Department of Basic Medical Sciences College of Medicine Phoenix The University of Arizona Phoenix Arizona USA
- Department of Biomedical Engineering; and BIO5 Institute College of Engineering The University of Arizona Tucson Arizona USA
- School of Pharmaceutical Sciences University of Geneva Geneva Switzerland
| |
Collapse
|
25
|
Zhu J, Ermann N, Chen K, Keyser UF. Image Encoding Using Multi-Level DNA Barcodes with Nanopore Readout. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100711. [PMID: 34133074 DOI: 10.1002/smll.202100711] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Indexed: 05/25/2023]
Abstract
Deoxyribonucleic acid (DNA) nanostructure-based data encoding is an emerging information storage mode, offering rewritable, editable, and secure data storage. Herein, a DNA nanostructure-based storage method established on a solid-state nanopore sensing platform to save and encrypt a 2D grayscale image is proposed. DNA multi-way junctions of different sizes are attached to a double strand of DNA carriers, resulting in distinct levels of current blockades when passing through a glass nanopore with diameters around 14 nm. The resulting quaternary encoding doubles the capacity relative to a classical binary system. Through toehold-mediated strand displacement reactions, the DNA nanostructures can be precisely added to and removed from the DNA carrier. By encoding the image into 16 DNA carriers using the quaternary barcodes and reading them in one simultaneous measurement, the image is successfully saved, encrypted, and recovered. Avoiding any proteins or enzymatic reactions, the authors thus realize a pure DNA storage system on a nanopore platform with increased capacity and programmability.
Collapse
Affiliation(s)
- Jinbo Zhu
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, UK
| | - Niklas Ermann
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, UK
| | - Kaikai Chen
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, UK
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, UK
| |
Collapse
|
26
|
Berk KL, Blum SM, Funk VL, Sun Y, Yang IY, Gostomski MV, Roth PA, Liem AT, Emanuel PA, Hogan ME, Miklos AE, Lux MW. Rapid Visual Authentication Based on DNA Strand Displacement. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19476-19486. [PMID: 33852293 DOI: 10.1021/acsami.1c02429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Novel ways to track and verify items of a high value or security is an ever-present need. Taggants made from deoxyribonucleic acid (DNA) have several advantageous properties, such as high information density and robust synthesis; however, existing methods require laboratory techniques to verify, limiting applications. Here, we leverage DNA nanotechnology to create DNA taggants that can be validated in the field in seconds to minutes with a simple equipment. The system is driven by toehold-mediated strand-displacement reactions where matching oligonucleotide sequences drive the generation of a fluorescent signal through the potential energy of base pairing. By pooling different "input" oligonucleotide sequences in a taggant and spatially separating "reporter" oligonucleotide sequences on a paper ticket, unique, sequence-driven patterns emerge for different taggant formulations. Algorithmically generated oligonucleotide sequences show no crosstalk and ink-embedded taggants maintain activity for at least 99 days at 60 °C (equivalent to nearly 2 years at room temperature). The resulting fluorescent signals can be analyzed by the eye or a smartphone when paired with a UV flashlight and filtered glasses.
Collapse
Affiliation(s)
- Kimberly L Berk
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| | - Steven M Blum
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| | - Vanessa L Funk
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| | - Yuhua Sun
- Applied DNA Sciences, Stony Brook, New York 11790, United States
| | - In-Young Yang
- Applied DNA Sciences, Stony Brook, New York 11790, United States
| | - Mark V Gostomski
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| | - Pierce A Roth
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
- DCS Corporation, Belcamp, Maryland 21017, United States
| | - Alvin T Liem
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
- DCS Corporation, Belcamp, Maryland 21017, United States
| | - Peter A Emanuel
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| | - Michael E Hogan
- Applied DNA Sciences, Stony Brook, New York 11790, United States
| | - Aleksandr E Miklos
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| | - Matthew W Lux
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| |
Collapse
|
27
|
Lim CK, Nirantar S, Yew WS, Poh CL. Novel Modalities in DNA Data Storage. Trends Biotechnol 2021; 39:990-1003. [PMID: 33455842 DOI: 10.1016/j.tibtech.2020.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
The field of storing information in DNA has expanded exponentially. Most common modalities involve encoding information from bits into synthesized nucleotides, storage in liquid or dry media, and decoding via sequencing. However, limitations to this paradigm include the cost of DNA synthesis and sequencing, along with low throughput. Further unresolved questions include the appropriate media of storage and the scalability of such approaches for commercial viability. In this review, we examine various storage modalities involving the use of DNA from a systems-level perspective. We compare novel methods that draw inspiration from molecular biology techniques that have been devised to overcome the difficulties posed by standard workflows and conceptualize potential applications that can arise from these advances.
Collapse
Affiliation(s)
- Cheng Kai Lim
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | | | - Wen Shan Yew
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|