1
|
Rudà R, Pellerino A, Soffietti R. Blood and cerebrospinal fluid biomarkers in neuro-oncology. Curr Opin Neurol 2024; 37:693-701. [PMID: 39329301 DOI: 10.1097/wco.0000000000001317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the value of blood and CSF biomarkers in primary CNS tumors. RECENT FINDINGS Several analytes can be assessed with liquid biopsy techniques, including circulating tumor cells, circulating cell-free tumor DNA, circulating cell-free RNA, circulating proteins and metabolites, extracellular vesicles and tumor-educated platelets. Among diffuse gliomas of the adult, ctDNA in blood or CSF has represented the most used analyte, with the detection of molecular alterations such as MGMT promoter, PTEN, EGFRVIII, TERT promoter mutation and IDH R132H mutation. In general, CSF is enriched for ctDNA as compared with plasma. The use of MRI-guided focused ultrasounds to disrupt the blood-brain barrier could enhance the level of biomarkers in both blood and CSF. The detection of MYD88 L265P mutation with digital droplet PCR and the detection of ctDNA with next generation sequencing represent the best tools to diagnose and monitoring CNS lymphomas under treatment. In meningiomas, the low concentration of ctDNA is a limiting factor for the detection of driver mutations, such as NF2, AKTs, SMO, KLF4, TRAF7, SMARCB1, SMARCE1, PTEN, and TERT; an alternative approach could be the isolation of ctDNA through circulating extracellular vesicles. Liquid biopsies are being used extensively for diagnosis and surveillance of diffuse midline gliomas, in particular with the detection of the driver mutation H3K27M. Last, specific methylome patterns in CSF may allow the distinction of glioblastomas from CNS lymphomas or meningiomas. SUMMARY This review summarizes the current knowledge and future perspectives of liquid biopsy of blood and CSF for diagnosis and monitoring of primary CNS tumors.
Collapse
Affiliation(s)
- Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University and City of Health and Science Hospital
| | - Alessia Pellerino
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University and City of Health and Science Hospital
| | | |
Collapse
|
2
|
Berzero G, Pieri V, Palazzo L, Finocchiaro G, Filippi M. Liquid biopsy in brain tumors: moving on, slowly. Curr Opin Oncol 2024; 36:521-529. [PMID: 39011725 DOI: 10.1097/cco.0000000000001079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
PURPOSE OF REVIEW Due to limited access to the tumor, there is an obvious clinical potential for liquid biopsy in patients with primary brain tumors. Here, we review current approaches, present limitations to be dealt with, and new promising data that may impact the field. RECENT FINDINGS The value of circulating tumor cell-free DNA (ctDNA) in the cerebrospinal fluid (CSF) for the noninvasive diagnosis of primary brain tumors has been confirmed in several reports. The detection of ctDNA in the peripheral blood is desirable for patient follow-up but requires ultrasensitive methods to identify low mutant allelic frequencies. Digital PCR approaches and targeted gene panels have been used to identify recurrent hotspot mutations and copy number variations (CNVs) from CSF or plasma. Tumor classification from circulating methylomes in plasma has been actively pursued, although the need of advanced bioinformatics currently hampers clinical application. The use of focused ultrasounds to open the blood-brain barrier may represent a way to enrich of ctDNA the peripheral blood and enhance plasma-based liquid biopsy. SUMMARY Monitoring CNVs and hotspot mutations by liquid biopsy is a promising tool to detect minimal residual disease and strengthen response assessment in patients with primary brain tumors. Novel methods to increase the relative and/or absolute amount of ctDNA can improve the clinical potential of plasma-based liquid biopsies.
Collapse
Affiliation(s)
- Giulia Berzero
- Neurology Unit, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University
| | - Valentina Pieri
- Neurology Unit, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University
| | - Leonardo Palazzo
- Neurology Unit, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University
| | | | - Massimo Filippi
- Neurology Unit, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University
- Neurorehabilitation Unit, Neurophysiology Unit, Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
3
|
Giovino C, Subasri V, Telfer F, Malkin D. New Paradigms in the Clinical Management of Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med 2024; 14:a041584. [PMID: 38692744 PMCID: PMC11529854 DOI: 10.1101/cshperspect.a041584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Approximately 8.5%-16.2% of childhood cancers are associated with a pathogenic/likely pathogenic germline variant-a prevalence that is likely to rise with improvements in phenotype recognition, sequencing, and variant validation. One highly informative, classical hereditary cancer predisposition syndrome is Li-Fraumeni syndrome (LFS), associated with germline variants in the TP53 tumor suppressor gene, and a >90% cumulative lifetime cancer risk. In seeking to improve outcomes for young LFS patients, we must improve the specificity and sensitivity of existing cancer surveillance programs and explore how to complement early detection strategies with pharmacology-based risk-reduction interventions. Here, we describe novel precision screening technologies and clinical strategies for cancer risk reduction. In particular, we summarize the biomarkers for early diagnosis and risk stratification of LFS patients from birth, noninvasive and machine learning-based cancer screening, and drugs that have shown the potential to be repurposed for cancer prevention.
Collapse
Affiliation(s)
- Camilla Giovino
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Vallijah Subasri
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Frank Telfer
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - David Malkin
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Division of Hematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
4
|
Zhang YT, Jin XM, Zhong XD, Chang J. Monitoring pediatric CNS non-germinomatous germ cell tumors via cerebrospinal fluid circulating tumor DNA. Pediatr Blood Cancer 2024; 71:e31288. [PMID: 39189644 DOI: 10.1002/pbc.31288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Accurate molecular and clinical stratification of patients with central nervous system (CNS) non-germinomatous germ cell tumors (NGGCTs) remains challenging, impeding the development of personalized therapeutic approaches. Herein, we investigated the translational significance of cerebrospinal fluid (CSF) circulating tumor DNA (ctDNA) in pediatric NGGCTs to identify characteristic features of CNS NGGCTs and to identify a subset of patients for whom the presence of residual disease is a risk factor and an indicator of shorter progression-free survival (PFS) and overall survival (OS). METHODS Medical records of patients with CNS NGGCTs between January 1, 2018 and December 31, 2022 were reviewed retrospectively. RESULTS The cohort consisted of 11 male and six female patients. Tumor markers were elevated in four of the five people who underwent surgery. The remaining 12 patients were diagnosed with malignant NGGCTs according to elevated tumor markers. Among them, ctDNA before chemotherapy as well as ctDNA clearance were consistently associated with PFS and OS (p < .05). By setting a ctDNA positivity threshold of 6%, patients with high ctDNA (above the threshold) levels, which had limitation due to the selection based on optimal statistic from the survival analysis, had significantly inferior 5-year PFS and OS compared to those with low levels (below the threshold). ctDNA or ctDNA clearance combined with the presence of residual disease predicted significantly worse OS and PFS (p < .05). CONCLUSIONS CSF ctDNA might allow the study of genomic evolution and the characterization of tumors in pediatric NGGCTs. CSF ctDNA analysis may facilitate the clinical management of pediatric NGGCT patients, and aid in designing personalized therapeutic strategies.
Collapse
MESH Headings
- Humans
- Male
- Neoplasms, Germ Cell and Embryonal/cerebrospinal fluid
- Neoplasms, Germ Cell and Embryonal/blood
- Neoplasms, Germ Cell and Embryonal/mortality
- Neoplasms, Germ Cell and Embryonal/genetics
- Neoplasms, Germ Cell and Embryonal/pathology
- Female
- Circulating Tumor DNA/cerebrospinal fluid
- Circulating Tumor DNA/blood
- Circulating Tumor DNA/genetics
- Child
- Retrospective Studies
- Adolescent
- Biomarkers, Tumor/cerebrospinal fluid
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Child, Preschool
- Central Nervous System Neoplasms/cerebrospinal fluid
- Central Nervous System Neoplasms/blood
- Central Nervous System Neoplasms/mortality
- Central Nervous System Neoplasms/genetics
- Central Nervous System Neoplasms/diagnosis
- Prognosis
- Survival Rate
- Follow-Up Studies
- Infant
- Neoplasm, Residual/cerebrospinal fluid
- Testicular Neoplasms
Collapse
Affiliation(s)
- Yu-Tong Zhang
- Department of Pediatric Oncology, Children Hospital of the First Hospital of Jilin University, Changchun, Jilin, China
| | - Xian-Mei Jin
- Department of Pediatric Oncology, Children Hospital of the First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao-Dan Zhong
- Department of Pediatric Oncology, Children Hospital of the First Hospital of Jilin University, Changchun, Jilin, China
| | - Jian Chang
- Department of Pediatric Oncology, Children Hospital of the First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Wilcox JA, Chukwueke UN, Ahn MJ, Aizer AA, Bale TA, Brandsma D, Brastianos PK, Chang S, Daras M, Forsyth P, Garzia L, Glantz M, Oliva ICG, Kumthekar P, Le Rhun E, Nagpal S, O'Brien B, Pentsova E, Lee EQ, Remsik J, Rudà R, Smalley I, Taylor MD, Weller M, Wefel J, Yang JT, Young RJ, Wen PY, Boire AA. Leptomeningeal metastases from solid tumors: A Society for Neuro-Oncology and American Society of Clinical Oncology consensus review on clinical management and future directions. Neuro Oncol 2024; 26:1781-1804. [PMID: 38902944 PMCID: PMC11449070 DOI: 10.1093/neuonc/noae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Indexed: 06/22/2024] Open
Abstract
Leptomeningeal metastases (LM) are increasingly becoming recognized as a treatable, yet generally incurable, complication of advanced cancer. As modern cancer therapeutics have prolonged the lives of patients with metastatic cancer, specifically in patients with parenchymal brain metastases, treatment options, and clinical research protocols for patients with LM from solid tumors have similarly evolved to improve survival within specific populations. Recent expansions in clinical investigation, early diagnosis, and drug development have given rise to new unanswered questions. These include leptomeningeal metastasis biology and preferred animal modeling, epidemiology in the modern cancer population, ensuring validation and accessibility of newer leptomeningeal metastasis diagnostics, best clinical practices with multimodality treatment options, clinical trial design and standardization of response assessments, and avenues worthy of further research. An international group of multi-disciplinary experts in the research and management of LM, supported by the Society for Neuro-Oncology and American Society of Clinical Oncology, were assembled to reach a consensus opinion on these pressing topics and provide a roadmap for future directions. Our hope is that these recommendations will accelerate collaboration and progress in the field of LM and serve as a platform for further discussion and patient advocacy.
Collapse
Affiliation(s)
- Jessica A Wilcox
- Department of Neurology, Brain Tumor Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ugonma N Chukwueke
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ayal A Aizer
- Department of Radiation Oncology, Brigham and Women's Hospital / Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dieta Brandsma
- Department of Neuro-Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Priscilla K Brastianos
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Chang
- Division of Neuro-Oncology, Department of Neurosurgery, University of San Francisco California, San Francisco, California, USA
| | - Mariza Daras
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Peter Forsyth
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Livia Garzia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Glantz
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priya Kumthekar
- The Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Emilie Le Rhun
- Departments of Neurology and Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Seema Nagpal
- Division of Neuro-Oncology, Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - Barbara O'Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elena Pentsova
- Department of Neurology, Brain Tumor Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eudocia Quant Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jan Remsik
- Laboratory for Immunology of Metastatic Ecosystems, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, University and City of Health and Science Hospital, Turin, Italy
- Department of Neurology, Castelfranco Veneto and Treviso Hospitals, Castelfranco Veneto, Italy
| | - Inna Smalley
- Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Michael D Taylor
- Division of Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, USA
- Neuro-oncology Research Program, Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jeffrey Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan T Yang
- Department of Radiation Oncology, Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Adrienne A Boire
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Neurology, Brain Tumor Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
6
|
Cornelli L, Van Paemel R, Ferro Dos Santos MR, Roelandt S, Willems L, Vandersteene J, Baert E, Mus LM, Van Roy N, De Wilde B, De Preter K. Diagnosis of pediatric central nervous system tumors using methylation profiling of cfDNA from cerebrospinal fluid. Clin Epigenetics 2024; 16:87. [PMID: 38970137 PMCID: PMC11225235 DOI: 10.1186/s13148-024-01696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
Pediatric central nervous system tumors remain challenging to diagnose. Imaging approaches do not provide sufficient detail to discriminate between different tumor types, while the histopathological examination of tumor tissue shows high inter-observer variability. Recent studies have demonstrated the accurate classification of central nervous system tumors based on the DNA methylation profile of a tumor biopsy. However, a brain biopsy holds significant risk of bleeding and damaging the surrounding tissues. Liquid biopsy approaches analyzing circulating tumor DNA show high potential as an alternative and less invasive tool to study the DNA methylation pattern of tumors. Here, we explore the potential of classifying pediatric brain tumors based on methylation profiling of the circulating cell-free DNA (cfDNA) in cerebrospinal fluid (CSF). For this proof-of-concept study, we collected cerebrospinal fluid samples from 19 pediatric brain cancer patients via a ventricular drain placed for reasons of increased intracranial pressure. Analyses on the cfDNA showed high variability of cfDNA quantities across patients ranging from levels below the limit of quantification to 40 ng cfDNA per milliliter of CSF. Classification based on methylation profiling of cfDNA from CSF was correct for 7 out of 20 samples in our cohort. Accurate results were mostly observed in samples of high quality, more specifically those with limited high molecular weight DNA contamination. Interestingly, we show that centrifugation of the CSF prior to processing increases the fraction of fragmented cfDNA to high molecular weight DNA. In addition, classification was mostly correct for samples with high tumoral cfDNA fraction as estimated by computational deconvolution (> 40%). In summary, analysis of cfDNA in the CSF shows potential as a tool for diagnosing pediatric nervous system tumors especially in patients with high levels of tumoral cfDNA in the CSF. Further optimization of the collection procedure, experimental workflow and bioinformatic approach is required to also allow classification for patients with low tumoral fractions in the CSF.
Collapse
Affiliation(s)
- Lotte Cornelli
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB-UGent, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Ruben Van Paemel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Maísa R Ferro Dos Santos
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB-UGent, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Sofie Roelandt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB-UGent, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Leen Willems
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | | | - Edward Baert
- Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
| | - Liselot M Mus
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Nadine Van Roy
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Bram De Wilde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Biotechnology, VIB-UGent, Ghent, Belgium.
- Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
7
|
Ronsley R, Karvonen KA, Cole B, Paulson V, Stevens J, Crotty EE, Hauptman J, Lee A, Stasi SM, Lockwood CM, Leary SES. Detection of tumor-derived cell-free DNA in cerebrospinal fluid using a clinically validated targeted sequencing panel for pediatric brain tumors. J Neurooncol 2024; 168:215-224. [PMID: 38755519 DOI: 10.1007/s11060-024-04645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE Clinical sequencing of tumor DNA is necessary to render an integrated diagnosis and select therapy for children with primary central nervous system (CNS) tumors, but neurosurgical biopsy is not without risk. In this study, we describe cell-free DNA (cfDNA) in blood and cerebrospinal fluid (CSF) as sources for "liquid biopsy" in pediatric brain tumors. METHODS CSF samples were collected by lumbar puncture, ventriculostomy, or surgery from pediatric patients with CNS tumors. Following extraction, CSF-derived cfDNA was sequenced using UW-OncoPlex™, a clinically validated next-generation sequencing platform. CSF-derived cfDNA results and paired plasma and tumor samples concordance was also evaluated. RESULTS Seventeen CSF samples were obtained from 15 pediatric patients with primary CNS tumors. Tumor types included medulloblastoma (n = 7), atypical teratoid/rhabdoid tumor (n = 2), diffuse midline glioma with H3 K27 alteration (n = 4), pilocytic astrocytoma (n = 1), and pleomorphic xanthoastrocytoma (n = 1). CSF-derived cfDNA was detected in 9/17 (53%) of samples, and sufficient for sequencing in 8/10 (80%) of extracted samples. All somatic mutations and copy-number variants were also detected in matched tumor tissue, and tumor-derived cfDNA was absent in plasma samples and controls. Tumor-derived cfDNA alterations were detected in the absence of cytological evidence of malignant cells in as little as 200 µl of CSF. Several clinically relevant alterations, including a KIAA1549::BRAF fusion were detected. CONCLUSIONS Clinically relevant genomic alterations are detectable using CSF-derived cfDNA across a range of pediatric brain tumors. Next-generation sequencing platforms are capable of producing a high yield of DNA alterations with 100% concordance rate with tissue analysis.
Collapse
Affiliation(s)
- Rebecca Ronsley
- Division of Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, US.
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, US.
- Fred Hutchinson Cancer Research Center, Seattle, WA, US.
- Seattle Children's Hospital, Mail Stop MB.8.501, 4800 Sand Point Way NE, Seattle, WA, 98105, USA.
| | - Kristine A Karvonen
- Division of Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, US
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, US
- Fred Hutchinson Cancer Research Center, Seattle, WA, US
| | - Bonnie Cole
- Department of Laboratories, Seattle Children's Hospital, University of Washington, Seattle, WA, US
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, US
| | - Vera Paulson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, US
- Genetics and Solid Tumor Laboratory, Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jeff Stevens
- Division of Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, US
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, US
| | - Erin E Crotty
- Division of Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, US
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, US
- Fred Hutchinson Cancer Research Center, Seattle, WA, US
| | - Jason Hauptman
- Division of Neurosurgery, Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, WA, US
| | - Amy Lee
- Division of Neurosurgery, Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, WA, US
| | - Shannon M Stasi
- Department of Laboratories, Seattle Children's Hospital, University of Washington, Seattle, WA, US
| | - Christina M Lockwood
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, US
- Genetics and Solid Tumor Laboratory, Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Sarah E S Leary
- Division of Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, US
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, US
- Fred Hutchinson Cancer Research Center, Seattle, WA, US
| |
Collapse
|
8
|
Riviere-Cazaux C, Graser CJ, Warrington AE, Hoplin MD, Andersen KM, Malik N, Palmer EA, Carlstrom LP, Dasari S, Munoz-Casabella A, Ikram S, Ghadimi K, Himes BT, Jusue-Torres I, Sarkaria JN, Meyer FB, Van Gompel JJ, Kizilbash SH, Sener U, Michor F, Campian JL, Parney IF, Burns TC. The dynamic impact of location and resection on the glioma CSF proteome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307463. [PMID: 38798641 PMCID: PMC11118641 DOI: 10.1101/2024.05.15.24307463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
While serial sampling of glioma tissue is rarely performed prior to recurrence, cerebrospinal fluid (CSF) is an underutilized longitudinal source of candidate glioma biomarkers for understanding therapeutic impacts. However, the impact of key variables to consider in longitudinal CSF samples, including anatomical location and post-surgical changes, remains unknown. To that end, pre- versus post-resection intracranial CSF samples were obtained at early (1-16 days; n=20) or delayed (86-153 days; n=11) timepoints for patients with glioma. Paired lumbar-versus-intracranial glioma CSF samples were also obtained (n=14). Using aptamer-based proteomics, we identify significant differences in the CSF proteome between lumbar, subarachnoid, and ventricular CSF. Our analysis of serial intracranial CSF samples suggests the early potential for disease monitoring and evaluation of pharmacodynamic impact of targeted therapies. Importantly, we found that resection had a significant, evolving longitudinal impact on the CSF proteome. Proteomic data are provided with individual clinical annotations as a resource for the field. One Sentence Summary Glioma cerebrospinal fluid (CSF) accessed intra-operatively and longitudinally via devices can reveal impacts of treatment and anatomical location.
Collapse
|
9
|
Patel J, Aittaleb R, Doherty R, Gera A, Lau B, Messinger D, Wadden J, Franson A, Saratsis A, Koschmann C. Liquid biopsy in H3K27M diffuse midline glioma. Neuro Oncol 2024; 26:S101-S109. [PMID: 38096156 PMCID: PMC11066927 DOI: 10.1093/neuonc/noad229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 02/15/2024] Open
Abstract
Diffuse midline glioma (DMG) with H3K27M mutation is an aggressive and difficult to treat pediatric brain tumor. Recurrent gain of function mutations in H3.3 (H3.3A) and H3.1 (H3C2) at the 27th lysine to methionine (H3K27M) are seen in over 2/3 of DMGs, and are associated with a worse prognosis. Due to the anatomical location of DMG, traditional biopsy carries risk for neurologic injury as it requires penetration of vital midline structures. Further, radiographic (MRI) monitoring of DMG often shows nonspecific changes, which makes therapeutic monitoring difficult. This indicates a critical need for more minimally invasive methods, such as liquid biopsy, to understand, diagnose, and monitor H3K27M DMG. Here, we review the use of all modalities to date to detect biomarkers of H3K27M in cerebrospinal fluid (CSF), blood, and urine, and compare their effectiveness in detection, diagnosis, and monitoring treatment response. We provide specific detail of recent efforts to monitor CSF and plasma H3K27M cell-free DNA in patients undergoing therapy with the imipridone ONC201. Lastly, we discuss the future of therapeutic monitoring of H3K27M-DMG, including biomarkers such as mitochondrial DNA, mutant and modified histones, and novel sequencing-based approaches for improved detection methods.
Collapse
Affiliation(s)
- Jina Patel
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Rayan Aittaleb
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Robert Doherty
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Ananya Gera
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Benison Lau
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Dana Messinger
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Jack Wadden
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Andrea Franson
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | | | - Carl Koschmann
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Holmberg KO, Borgenvik A, Zhao M, Giraud G, Swartling FJ. Drivers Underlying Metastasis and Relapse in Medulloblastoma and Targeting Strategies. Cancers (Basel) 2024; 16:1752. [PMID: 38730706 PMCID: PMC11083189 DOI: 10.3390/cancers16091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Medulloblastomas comprise a molecularly diverse set of malignant pediatric brain tumors in which patients are stratified according to different prognostic risk groups that span from very good to very poor. Metastasis at diagnosis is most often a marker of poor prognosis and the relapse incidence is higher in these children. Medulloblastoma relapse is almost always fatal and recurring cells have, apart from resistance to standard of care, acquired genetic and epigenetic changes that correlate with an increased dormancy state, cell state reprogramming and immune escape. Here, we review means to carefully study metastasis and relapse in preclinical models, in light of recently described molecular subgroups. We will exemplify how therapy resistance develops at the cellular level, in a specific niche or from therapy-induced secondary mutations. We further describe underlying molecular mechanisms on how tumors acquire the ability to promote leptomeningeal dissemination and discuss how they can establish therapy-resistant cell clones. Finally, we describe some of the ongoing clinical trials of high-risk medulloblastoma and suggest or discuss more individualized treatments that could be of benefit to specific subgroups.
Collapse
Affiliation(s)
- Karl O. Holmberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (K.O.H.); (M.Z.); (G.G.)
| | - Anna Borgenvik
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Miao Zhao
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (K.O.H.); (M.Z.); (G.G.)
| | - Géraldine Giraud
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (K.O.H.); (M.Z.); (G.G.)
- Department of Women and Child Health, Uppsala University, 75124 Uppsala, Sweden
- Department of Pediatric Hematology and Oncology, Uppsala University Children’s Hospital, 75185 Uppsala, Sweden
| | - Fredrik J. Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (K.O.H.); (M.Z.); (G.G.)
| |
Collapse
|
11
|
Singhto N, Pongphitcha P, Jinawath N, Hongeng S, Chutipongtanate S. Extracellular Vesicles for Childhood Cancer Liquid Biopsy. Cancers (Basel) 2024; 16:1681. [PMID: 38730633 PMCID: PMC11083250 DOI: 10.3390/cancers16091681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Liquid biopsy involves the utilization of minimally invasive or noninvasive techniques to detect biomarkers in biofluids for disease diagnosis, monitoring, or guiding treatments. This approach is promising for the early diagnosis of childhood cancer, especially for brain tumors, where tissue biopsies are more challenging and cause late detection. Extracellular vesicles offer several characteristics that make them ideal resources for childhood cancer liquid biopsy. Extracellular vesicles are nanosized particles, primarily secreted by all cell types into body fluids such as blood and urine, and contain molecular cargos, i.e., lipids, proteins, and nucleic acids of original cells. Notably, the lipid bilayer-enclosed structure of extracellular vesicles protects their cargos from enzymatic degradation in the extracellular milieu. Proteins and nucleic acids of extracellular vesicles represent genetic alterations and molecular profiles of childhood cancer, thus serving as promising resources for precision medicine in cancer diagnosis, treatment monitoring, and prognosis prediction. This review evaluates the recent progress of extracellular vesicles as a liquid biopsy platform for various types of childhood cancer, discusses the mechanistic roles of molecular cargos in carcinogenesis and metastasis, and provides perspectives on extracellular vesicle-guided therapeutic intervention. Extracellular vesicle-based liquid biopsy for childhood cancer may ultimately contribute to improving patient outcomes.
Collapse
Affiliation(s)
- Nilubon Singhto
- Ramathibodi Comprehensive Cancer Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Pongpak Pongphitcha
- Bangkok Child Health Center, Bangkok Hospital Headquarters, Bangkok 10130, Thailand;
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
- Integrative Computational Biosciences Center, Mahidol University, Nakon Pathom 73170, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Somchai Chutipongtanate
- MILCH and Novel Therapeutics Laboratory, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
12
|
Zhou H, He X, Huang J, Zhong Y, Zhang L, Ao X, Zhao H, Hu S, Li H, Huang J, Huang H, Liang H. Single-cell sequencing reveals the immune landscape of breast cancer patients with brain metastasis. Thorac Cancer 2024; 15:702-714. [PMID: 38316626 PMCID: PMC10961220 DOI: 10.1111/1759-7714.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Breast cancer has the highest incidence rate of cancer worldwide, and brain metastases (BrM) are among the most malignant cases. While some patients have benefited from immune checkpoint inhibitors (ICIs), the complex anatomical structure of the brain and the heterogeneity of metastatic tumors have made it difficult to characterize the tumor immune microenvironment (TME) of metastatic tumors. METHODS To address this, we used single-cell RNA sequencing (scRNA-seq) to analyze immune cells in the cerebrospinal fluid (CSF) of BrM patients with breast cancer, thereby providing a comprehensive view of the immune microenvironment landscape of BrM. RESULTS Based on canonical marker genes, we identified nine cell types, and further identified their subtypes through differential expression gene (DEG) analysis. We compared the changes in cells and functions in the immune microenvironment of patients with different prognoses. Our analysis revealed a series of genes that promote tumor immune function (CCR5, LYZ, IGKC, MS4A1, etc.) and inhibit tumor immune function (SCGB2A2, CD24, etc.). CONCLUSIONS The scRNA-seq in CSF provides a noninvasive method to describe the TME of breast cancer patients and guide immunotherapy.
Collapse
Grants
- 202102080096, HL Liang, 201904010331, JQ Huang Guangzhou S&T Project
- 2023A03J0430, HL Liang Guangzhou S&T City and University United Project
- 2022A1515012376, JQ Huang Project Natural Science Foundation of Guangdong Province
- 2021KTSCX091, HL Liang, 2020KTSCX105, JQ Huang Guangdong Provincial Bureau of Education Project
- 20191A011097, HL Liang Guangzhou Health S&T Project
- 202005, HS Li Clinical Key Specialty Project of Guangzhou Medical University
Collapse
Affiliation(s)
- Huaping Zhou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Xiang He
- Key Laboratory of Molecular Radiation Oncology Hunan ProvinceXiangya Hospital, Central South UniversityChangshaChina
| | - Jia Huang
- School of Health ManagementGuangzhou Medical UniversityGuangzhouChina
| | - Yumin Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Leyao Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Xiang Ao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Hailin Zhao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Su Hu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Hongsheng Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Jianqing Huang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
- School of Health ManagementGuangzhou Medical UniversityGuangzhouChina
| | - Hongxin Huang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Hongling Liang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
13
|
Otsuji R, Fujioka Y, Hata N, Kuga D, Hatae R, Sangatsuda Y, Nakamizo A, Mizoguchi M, Yoshimoto K. Liquid Biopsy for Glioma Using Cell-Free DNA in Cerebrospinal Fluid. Cancers (Basel) 2024; 16:1009. [PMID: 38473369 PMCID: PMC10930790 DOI: 10.3390/cancers16051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Glioma is one of the most common primary central nervous system (CNS) tumors, and its molecular diagnosis is crucial. However, surgical resection or biopsy is risky when the tumor is located deep in the brain or brainstem. In such cases, a minimally invasive approach to liquid biopsy is beneficial. Cell-free DNA (cfDNA), which directly reflects tumor-specific genetic changes, has attracted attention as a target for liquid biopsy, and blood-based cfDNA monitoring has been demonstrated for other extra-cranial cancers. However, it is still challenging to fully detect CNS tumors derived from cfDNA in the blood, including gliomas, because of the unique structure of the blood-brain barrier. Alternatively, cerebrospinal fluid (CSF) is an ideal source of cfDNA and is expected to contribute significantly to the liquid biopsy of gliomas. Several successful studies have been conducted to detect tumor-specific genetic alterations in cfDNA from CSF using digital PCR and/or next-generation sequencing. This review summarizes the current status of CSF-based cfDNA-targeted liquid biopsy for gliomas. It highlights how the approaches differ from liquid biopsies of other extra-cranial cancers and discusses the current issues and prospects.
Collapse
Affiliation(s)
- Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Oita University Faculty of Medicine, Yufu 879-5593, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Neurosurgery, National Hospital Organization Kyushu Medical Center, Clinical Research Institute, Fukuoka 810-8563, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
14
|
Witz A, Dardare J, Betz M, Gilson P, Merlin JL, Harlé A. Tumor-derived cell-free DNA and circulating tumor cells: partners or rivals in metastasis formation? Clin Exp Med 2024; 24:2. [PMID: 38231464 PMCID: PMC10794481 DOI: 10.1007/s10238-023-01278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
The origin of metastases is a topic that has sparked controversy. Despite recent advancements, metastatic disease continues to pose challenges. The first admitted model of how metastases develop revolves around cells breaking away from the primary tumor, known as circulating tumor cells (CTCs). These cells survive while circulating through the bloodstream and subsequently establish themselves in secondary organs, a process often referred to as the "metastatic cascade". This intricate and dynamic process involves various steps, but all the mechanisms behind metastatic dissemination are not yet comprehensively elucidated. The "seed and soil" theory has shed light on the phenomenon of metastatic organotropism and the existence of pre-metastatic niches. It is now established that these niches can be primed by factors secreted by the primary tumor before the arrival of CTCs. In particular, exosomes have been identified as important contributors to this priming. Another concept then emerged, i.e. the "genometastasis" theory, which challenged all other postulates. It emphasizes the intriguing but promising role of cell-free DNA (cfDNA) in metastasis formation through oncogenic formation of recipient cells. However, it cannot be ruled out that all these theories are intertwined. This review outlines the primary theories regarding the metastases formation that involve CTCs, and depicts cfDNA, a potential second player in the metastasis formation. We discuss the potential interrelationships between CTCs and cfDNA, and propose both in vitro and in vivo experimental strategies to explore all plausible theories.
Collapse
Affiliation(s)
- Andréa Witz
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France.
| | - Julie Dardare
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| | - Margaux Betz
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| | - Pauline Gilson
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| | - Jean-Louis Merlin
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| | - Alexandre Harlé
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| |
Collapse
|
15
|
Afflerbach AK, Rohrandt C, Brändl B, Sönksen M, Hench J, Frank S, Börnigen D, Alawi M, Mynarek M, Winkler B, Ricklefs F, Synowitz M, Dührsen L, Rutkowski S, Wefers AK, Müller FJ, Schoof M, Schüller U. Classification of Brain Tumors by Nanopore Sequencing of Cell-Free DNA from Cerebrospinal Fluid. Clin Chem 2024; 70:250-260. [PMID: 37624932 DOI: 10.1093/clinchem/hvad115] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/28/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Molecular brain tumor diagnosis is usually dependent on tissue biopsies or resections. This can pose several risks associated with anesthesia or neurosurgery, especially for lesions in the brain stem or other difficult-to-reach anatomical sites. Apart from initial diagnosis, tumor progression, recurrence, or the acquisition of novel genetic alterations can only be proven by re-biopsies. METHODS We employed Nanopore sequencing on cell-free DNA (cfDNA) from cerebrospinal fluid (CSF) and analyzed copy number variations (CNV) and global DNA methylation using a random forest classifier. We sequenced 129 samples with sufficient DNA. These samples came from 99 patients and encompassed 22 entities. Results were compared to clinical diagnosis and molecular analysis of tumor tissue, if available. RESULTS 110/129 samples were technically successful, and 50 of these contained detectable circulating tumor DNA (ctDNA) by CNV or methylation profiling. ctDNA was detected in samples from patients with progressive disease but also from patients without known residual disease. CNV plots showed diagnostic and prognostic alterations, such as C19MC amplifications in embryonal tumors with multilayered rosettes or Chr.1q gains and Chr.6q losses in posterior fossa group A ependymoma, respectively. Most CNV profiles mirrored the profiles of the respective tumor tissue. DNA methylation allowed exact classification of the tumor in 22/110 cases and led to incorrect classification in 2/110 cases. Only 5/50 samples with detected ctDNA contained tumor cells detectable through microscopy. CONCLUSIONS Our results suggest that Nanopore sequencing data of cfDNA from CSF samples may be a promising approach for initial brain tumor diagnostics and an important tool for disease monitoring.
Collapse
Affiliation(s)
- Ann-Kristin Afflerbach
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Christian Rohrandt
- Institute for Communications Technologies and Embedded Systems, University of Applied Sciences Kiel, Kiel, Germany
| | - Björn Brändl
- Center for Integrative Psychiatry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marthe Sönksen
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen Hench
- Department of Pathology, University Hospital Basel, Basel, Switzerland
| | - Stephan Frank
- Department of Pathology, University Hospital Basel, Basel, Switzerland
| | - Daniela Börnigen
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Beate Winkler
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Franz-Josef Müller
- Center for Integrative Psychiatry, University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics Berlin, Berlin, Germany
| | - Melanie Schoof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Buccilli B, Rodriguez Molina MA, Redrovan Palomeque DP, Herrera Sabán CA, C Caliwag FM, Contreras Flores CJS, Abeysiriwardana CWJ, Diarte E, Arruarana VS, Calderon Martinez E. Liquid Biopsies for Monitoring Medulloblastoma: Circulating Tumor DNA as a Biomarker for Disease Progression and Treatment Response. Cureus 2024; 16:e51712. [PMID: 38313884 PMCID: PMC10838584 DOI: 10.7759/cureus.51712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Pediatric brain tumors, including medulloblastoma (MB), represent a significant challenge in clinical oncology. Early diagnosis, accurate monitoring of therapeutic response, and the detection of minimal residual disease (MRD) are crucial for improving outcomes in these patients. This review aims to explore recent advancements in liquid biopsy techniques for monitoring pediatric brain tumors, with a specific focus on medulloblastoma. The primary research question is how liquid biopsy techniques can be effectively utilized for these purposes. Liquid biopsies, particularly the analysis of circulating tumor DNA (ctDNA) in cerebrospinal fluid (CSF), are investigated as promising noninvasive tools. This comprehensive review examines the components of liquid biopsies, including ctDNA, cell-free DNA (cfDNA), and microRNA (miRNA). Their applications in diagnosis, prognosis, and MRD assessment are critically assessed. The review also discusses the role of liquid biopsies in categorizing medulloblastoma subgroups, risk stratification, and the identification of therapeutic targets. Liquid biopsies have shown promising applications in the pediatric brain tumor field, particularly in medulloblastoma. They offer noninvasive means of diagnosis, monitoring treatment response, and detecting MRD. These biopsies have played a pivotal role in subgroup classification and risk stratification of medulloblastoma patients, aiding in the identification of therapeutic targets. However, challenges related to sensitivity and specificity are noted. In conclusion, this review highlights the growing importance of liquid biopsies, specifically ctDNA analysis in CSF, in pediatric brain tumor management, with a primary focus on medulloblastoma. Liquid biopsies have the potential to revolutionize patient care by enabling early diagnosis, accurate monitoring, and MRD detection. Nevertheless, further research is essential to validate their clinical utility fully. The evolving landscape of liquid biopsy applications underscores their promise in improving outcomes for pediatric brain tumor patients.
Collapse
Affiliation(s)
- Barbara Buccilli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, ITA
- Department of Neurosurgery, Mount Sinai Hospital, New York, USA
| | | | | | - Cindy A Herrera Sabán
- Department of General Practice, Facultad de Ciencias Médicas, Universidad de San Carlos de Guatemala, San Carlos, GTM
| | - Fides M C Caliwag
- Department of General Practice, Ateneo School of Medicine and Public Health, Pasig City, PHL
| | | | | | - Edna Diarte
- Department of Medicine, Universidad Autónoma de Sinaloa, Culiacán, MEX
| | - Victor S Arruarana
- Department of Internal Medicine, Brookdale University Hospital Medical Center, New York, USA
| | | |
Collapse
|
17
|
Wijaya JH, Patel UD, Quintero-Consuegra MD, Aguilera-Peña MP, Madriñán-Navia HJ, Putra AW, July J, Kataria S. Liquid biopsy in the setting of leptomeningeal metastases: a systematic review and meta-analysis. J Neurooncol 2023; 165:431-438. [PMID: 38019327 DOI: 10.1007/s11060-023-04519-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE The blood-brain barrier can prevent circulating tumor DNA (ctDNA) derived from the central nervous system from entering the blood making it challenging to evaluate molecular features of leptomeningeal metastasis (LM). Accordingly, we sought to systematically compare the diagnostic power or significance of ctDNA derived from cerebrospinal fluid (CSF) compared to plasma ctDNA in patients with LM. METHODS A systematic review and meta-analysis was performed under the PRISMA guideline. We used PubMed, EMBASE, and the EuroPMC to search the literature using combinations of the following terms: circulating tumor DNA, ctDNA, circulating tumor cell, brain metastasis, leptomeningeal metastasis, outcome(s), and prognosis. We included all available English language studies that compared the diagnostic significance of CSF derived and serum ctDNA. All eligible studies level of bias was assessed using the New Castle Ottawa Scale (NOS). RESULTS Our meta-analysis from 6 included studies (n = 226) that confirmed the diagnostic power of liquid biopsies in detecting genomic alteration is better when taking a CSF-derived samples than from the plasma (RR 1.46 [0.93; 2.29]; I2 = 92%; p-value < 0.01). CONCLUSION CSF ctDNA is better at describing molecular landscape for LM; such an understanding may ultimately help inform patient treatment and responses to therapy.
Collapse
Affiliation(s)
- Jeremiah H Wijaya
- Department of Neurosurgery, Universitas Pelita Harapan, Tangerang, Banten, Indonesia.
| | | | | | | | - Humberto J Madriñán-Navia
- Center for Research and Training in Neurosurgery, Department of Neurosurgery, Hospital Universitario de la Samaritana, Bogota, Colombia
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Aulia W Putra
- Department of Medicine, Universitas Trisakti, Jakarta, Indonesia
| | - Julius July
- Department of Neurosurgery, Universitas Pelita Harapan, Tangerang, Banten, Indonesia
| | - Saurabh Kataria
- Department of Neurology, Louisiana State University Health Science Center at Shreveport, Los Angeles, CA, USA
| |
Collapse
|
18
|
Jackson K, Packer RJ. Recent Advances in Pediatric Medulloblastoma. Curr Neurol Neurosci Rep 2023; 23:841-848. [PMID: 37943476 PMCID: PMC10724301 DOI: 10.1007/s11910-023-01316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE OF REVIEW Review recent advances in the understanding of pediatric medulloblastoma including etiology, biology, radiology, and management of pediatric medulloblastoma. RECENT FINDINGS The classic four subgroups have been reclassified and further subdivided based on new molecular findings. Research is revealing the cell origins of the different subtypes of medulloblastoma. There has been continued personalization of management based on molecular parameters. While many advances have been made in the knowledge base of this most common malignant pediatric brain tumor, there has not yet been translation into more effective therapies to prolong survival in all subgroups with the possible exception of children with group 3 disease. Quality of life remains a major challenge for long-term survivors.
Collapse
Affiliation(s)
- Kasey Jackson
- Brain Tumor Institute, Children's National Hospital, Washington D C, USA.
- Division of Hematology and Oncology, Children's National Hospital, Washington D C, USA.
| | - Roger J Packer
- Brain Tumor Institute, Children's National Hospital, Washington D C, USA
- Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington D C, USA
| |
Collapse
|
19
|
Shuai Y, Ma Z, Ju J, Wei T, Gao S, Kang Y, Yang Z, Wang X, Yue J, Yuan P. Liquid-based biomarkers in breast cancer: looking beyond the blood. J Transl Med 2023; 21:809. [PMID: 37957623 PMCID: PMC10644618 DOI: 10.1186/s12967-023-04660-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
In recent decades, using circulating tumor cell (CTC), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), exosomes and etc. as liquid biomarkers has received enormous attention in various tumors, including breast cancer (BC). To date, efforts in the area of liquid biopsy predominantly focus on the analysis of blood-based markers. It is worth noting that the identifications of markers from non-blood sources provide unique advantages beyond the blood and these alternative sources may be of great significance in offering supplementary information in certain settings. Here, we outline the latest advances in the analysis of non-blood biomarkers, predominantly including urine, saliva, cerebrospinal fluid, pleural fluid, stool and etc. The unique advantages of such testings, their current limitations and the appropriate use of non-blood assays and blood assays in different settings are further discussed. Finally, we propose to highlight the challenges of these alternative assays from basic to clinical implementation and explore the areas where more investigations are warranted to elucidate its potential utility.
Collapse
Affiliation(s)
- You Shuai
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Endoscopy, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jie Ju
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tong Wei
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Songlin Gao
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yikun Kang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zixuan Yang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue Wang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian Yue
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
20
|
Khalili N, Shooli H, Hosseini N, Fathi Kazerooni A, Familiar A, Bagheri S, Anderson H, Bagley SJ, Nabavizadeh A. Adding Value to Liquid Biopsy for Brain Tumors: The Role of Imaging. Cancers (Basel) 2023; 15:5198. [PMID: 37958372 PMCID: PMC10650848 DOI: 10.3390/cancers15215198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Clinical management in neuro-oncology has changed to an integrative approach that incorporates molecular profiles alongside histopathology and imaging findings. While the World Health Organization (WHO) guideline recommends the genotyping of informative alterations as a routine clinical practice for central nervous system (CNS) tumors, the acquisition of tumor tissue in the CNS is invasive and not always possible. Liquid biopsy is a non-invasive approach that provides the opportunity to capture the complex molecular heterogeneity of the whole tumor through the detection of circulating tumor biomarkers in body fluids, such as blood or cerebrospinal fluid (CSF). Despite all of the advantages, the low abundance of tumor-derived biomarkers, particularly in CNS tumors, as well as their short half-life has limited the application of liquid biopsy in clinical practice. Thus, it is crucial to identify the factors associated with the presence of these biomarkers and explore possible strategies that can increase the shedding of these tumoral components into biological fluids. In this review, we first describe the clinical applications of liquid biopsy in CNS tumors, including its roles in the early detection of recurrence and monitoring of treatment response. We then discuss the utilization of imaging in identifying the factors that affect the detection of circulating biomarkers as well as how image-guided interventions such as focused ultrasound can help enhance the presence of tumor biomarkers through blood-brain barrier (BBB) disruption.
Collapse
Affiliation(s)
- Nastaran Khalili
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (N.K.); (A.F.K.); (A.F.)
| | - Hossein Shooli
- Department of Radiology, Bushehr University of Medical Sciences, Bushehr 75146-33196, Iran
| | - Nastaran Hosseini
- School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Anahita Fathi Kazerooni
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (N.K.); (A.F.K.); (A.F.)
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ariana Familiar
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (N.K.); (A.F.K.); (A.F.)
| | - Sina Bagheri
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (H.A.)
| | - Hannah Anderson
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (H.A.)
| | - Stephen J. Bagley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Ali Nabavizadeh
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (N.K.); (A.F.K.); (A.F.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (H.A.)
| |
Collapse
|
21
|
Berzero G, Pieri V, Mortini P, Filippi M, Finocchiaro G. The coming of age of liquid biopsy in neuro-oncology. Brain 2023; 146:4015-4024. [PMID: 37289981 PMCID: PMC10545511 DOI: 10.1093/brain/awad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
The clinical role of liquid biopsy in oncology is growing significantly. In gliomas and other brain tumours, targeted sequencing of cell-free DNA (cfDNA) from CSF may help differential diagnosis when surgery is not recommended and be more representative of tumour heterogeneity than surgical specimens, unveiling targetable genetic alterations. Given the invasive nature of lumbar puncture to obtain CSF, the quantitative analysis of cfDNA in plasma is a lively option for patient follow-up. Confounding factors may be represented by cfDNA variations due to concomitant pathologies (inflammatory diseases, seizures) or clonal haematopoiesis. Pilot studies suggest that methylome analysis of cfDNA from plasma and temporary opening of the blood-brain barrier by ultrasound have the potential to overcome some of these limitations. Together with this, an increased understanding of mechanisms modulating the shedding of cfDNA by the tumour may help to decrypt the meaning of cfDNA kinetics in blood or CSF.
Collapse
Affiliation(s)
- Giulia Berzero
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Valentina Pieri
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pietro Mortini
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neurorehabilitation Unit; Neurophysiology Unit; Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | |
Collapse
|
22
|
Chicard M, Iddir Y, Masliah Planchon J, Combaret V, Attignon V, Saint-Charles A, Frappaz D, Faure-Conter C, Beccaria K, Varlet P, Geoerger B, Baulande S, Pierron G, Bouchoucha Y, Doz F, Delattre O, Waterfall JJ, Bourdeaut F, Schleiermacher G. Cell-Free DNA Extracted from CSF for the Molecular Diagnosis of Pediatric Embryonal Brain Tumors. Cancers (Basel) 2023; 15:3532. [PMID: 37444642 DOI: 10.3390/cancers15133532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Liquid biopsies are revolutionary tools used to detect tumor-specific genetic alterations in body fluids, including the use of cell-free DNA (cfDNA) for molecular diagnosis in cancer patients. In brain tumors, cerebrospinal fluid (CSF) cfDNA might be more informative than plasma cfDNA. Here, we assess the use of CSF cfDNA in pediatric embryonal brain tumors (EBT) for molecular diagnosis. METHODS The CSF cfDNA of pediatric patients with medulloblastoma (n = 18), ATRT (n = 3), ETMR (n = 1), CNS NB FOXR2 (n = 2) and pediatric EBT NOS (n = 1) (mean cfDNA concentration 48 ng/mL; range 4-442 ng/mL) and matched tumor genomic DNA were sequenced by WES and/or a targeted sequencing approach to determine single-nucleotide variations (SNVs) and copy number alterations (CNA). A specific capture covering transcription start sites (TSS) of genes of interest was also used for nucleosome footprinting in CSF cfDNA. RESULTS 15/25 CSF cfDNA samples yielded informative results, with informative CNA and SNVs in 11 and 15 cases, respectively. For cases with paired tumor and CSF cfDNA WES (n = 15), a mean of 83 (range 1-160) shared SNVs were observed, including SNVs in classical medulloblastoma genes such as SMO and KMT2D. Interestingly, tumor-specific SNVs (mean 18; range 1-62) or CSF-specific SNVs (mean 5; range 0-25) were also observed, suggesting clonal heterogeneity. The TSS panel resulted in differential coverage profiles across all 112 studied genes in 7 cases, indicating distinct promoter accessibility. CONCLUSION CSF cfDNA sequencing yielded informative results in 60% (15/25) of all cases, with informative results in 83% (15/18) of all cases analyzed by WES. These results pave the way for the implementation of these novel approaches for molecular diagnosis and minimal residual disease monitoring.
Collapse
Affiliation(s)
- Mathieu Chicard
- Recherche Translationelle en Oncologie Pédiatrique (RTOP), INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, Department of Translational Research, Institut Curie Research Center, PSL Research University, 75005 Paris, France
| | - Yasmine Iddir
- Recherche Translationelle en Oncologie Pédiatrique (RTOP), INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, Department of Translational Research, Institut Curie Research Center, PSL Research University, 75005 Paris, France
| | - Julien Masliah Planchon
- Unité de Génétique Somatique, Service de Génétique, Institut Curie Hospital Group, 75005 Paris, France
| | - Valérie Combaret
- Plateforme de Génomique des Cancers, Centre Léon Bérard, 69008 Lyon, France
- Laboratoire de Recherche Translationnelle, Centre Léon-Bérard, 69373 Lyon, France
| | - Valéry Attignon
- Plateforme de Génomique des Cancers, Centre Léon Bérard, 69008 Lyon, France
- Laboratoire de Recherche Translationnelle, Centre Léon-Bérard, 69373 Lyon, France
| | - Alexandra Saint-Charles
- Recherche Translationelle en Oncologie Pédiatrique (RTOP), INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, Department of Translational Research, Institut Curie Research Center, PSL Research University, 75005 Paris, France
| | - Didier Frappaz
- Department of Pediatric Clinical Trials and Department of Pediatric Neuro-Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique, 69008 Lyon, France
| | - Cécile Faure-Conter
- Department of Pediatric Clinical Trials and Department of Pediatric Neuro-Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique, 69008 Lyon, France
| | - Kévin Beccaria
- Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris-Université Paris Cité, 75015 Paris, France
| | - Pascale Varlet
- GHU Psychiatrie et Neurosciences, Site Sainte-Anne, 75014 Paris, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, 94805 Villejuif, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, 75005 Paris, France
| | - Gaelle Pierron
- Unité de Génétique Somatique, Service de Génétique, Institut Curie Hospital Group, 75005 Paris, France
| | - Yassine Bouchoucha
- SIREDO Integrated Pediatric Oncology Center, Institut Curie Hospital Group, 75005 Paris, France
| | - François Doz
- SIREDO Integrated Pediatric Oncology Center, Institut Curie Hospital Group, 75005 Paris, France
- Faculty of Medicine, Université Paris Cité, 75005 Paris, France
| | - Olivier Delattre
- SIREDO Integrated Pediatric Oncology Center, Institut Curie Hospital Group, 75005 Paris, France
- Diversity and Plasticity of Childhood Tumors Laboratory, INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, Institut Curie Research Center, PSL Research University, 75005 Paris, France
| | - Joshua J Waterfall
- Integrative Functional Genomics of Cancer Laboratory, INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, PSL Research University, 75005 Paris, France
- Department of Translational Research, Institut Curie Research Center, PSL Research University, 75005 Paris, France
| | - Franck Bourdeaut
- Recherche Translationelle en Oncologie Pédiatrique (RTOP), INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, Department of Translational Research, Institut Curie Research Center, PSL Research University, 75005 Paris, France
- SIREDO Integrated Pediatric Oncology Center, Institut Curie Hospital Group, 75005 Paris, France
| | - Gudrun Schleiermacher
- Recherche Translationelle en Oncologie Pédiatrique (RTOP), INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, Department of Translational Research, Institut Curie Research Center, PSL Research University, 75005 Paris, France
- SIREDO Integrated Pediatric Oncology Center, Institut Curie Hospital Group, 75005 Paris, France
| |
Collapse
|
23
|
Semenkovich NP, Szymanski JJ, Earland N, Chauhan PS, Pellini B, Chaudhuri AA. Genomic approaches to cancer and minimal residual disease detection using circulating tumor DNA. J Immunother Cancer 2023; 11:e006284. [PMID: 37349125 PMCID: PMC10314661 DOI: 10.1136/jitc-2022-006284] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
Liquid biopsies using cell-free circulating tumor DNA (ctDNA) are being used frequently in both research and clinical settings. ctDNA can be used to identify actionable mutations to personalize systemic therapy, detect post-treatment minimal residual disease (MRD), and predict responses to immunotherapy. ctDNA can also be isolated from a range of different biofluids, with the possibility of detecting locoregional MRD with increased sensitivity if sampling more proximally than blood plasma. However, ctDNA detection remains challenging in early-stage and post-treatment MRD settings where ctDNA levels are minuscule giving a high risk for false negative results, which is balanced with the risk of false positive results from clonal hematopoiesis. To address these challenges, researchers have developed ever-more elegant approaches to lower the limit of detection (LOD) of ctDNA assays toward the part-per-million range and boost assay sensitivity and specificity by reducing sources of low-level technical and biological noise, and by harnessing specific genomic and epigenomic features of ctDNA. In this review, we highlight a range of modern assays for ctDNA analysis, including advancements made to improve the signal-to-noise ratio. We further highlight the challenge of detecting ultra-rare tumor-associated variants, overcoming which will improve the sensitivity of post-treatment MRD detection and open a new frontier of personalized adjuvant treatment decision-making.
Collapse
Affiliation(s)
- Nicholas P Semenkovich
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey J Szymanski
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Noah Earland
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pradeep S Chauhan
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bruna Pellini
- Department of Thoracic Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Aadel A Chaudhuri
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Foster JB, Alonso MM, Sayour E, Davidson TB, Persson ML, Dun MD, Kline C, Mueller S, Vitanza NA, van der Lugt J. Translational considerations for immunotherapy clinical trials in pediatric neuro-oncology. Neoplasia 2023; 42:100909. [PMID: 37244226 DOI: 10.1016/j.neo.2023.100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
While immunotherapy for pediatric cancer has made great strides in recent decades, including the FDA approval of agents such as dinutuximab and tisgenlecleucel, these successes have rarely impacted children with pediatric central nervous system (CNS) tumors. As our understanding of the biological underpinnings of these tumors evolves, new immunotherapeutics are undergoing rapid clinical translation specifically designed for children with CNS tumors. Most recently, there have been notable clinical successes with oncolytic viruses, vaccines, adoptive cellular therapy, and immune checkpoint inhibition. In this article, the immunotherapy working group of the Pacific Pediatric Neuro-Oncology Consortium (PNOC) reviews the current and future state of immunotherapeutic CNS clinical trials with a focus on clinical trial development. Based on recent therapeutic trials, we discuss unique immunotherapy clinical trial challenges, including toxicity considerations, disease assessment, and correlative studies. Combinatorial strategies and future directions will be addressed. Through internationally collaborative efforts and consortia, we aim to direct this promising field of immuno-oncology to the next frontier of successful application against pediatric CNS tumors.
Collapse
Affiliation(s)
- Jessica B Foster
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA.
| | - Marta M Alonso
- Department of Pediatrics, Program of Solid Tumors, University Clinic of Navarra, Center for the Applied Medical Research (CIMA), Pamplona, Spain
| | - Elias Sayour
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL USA
| | - Tom B Davidson
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Mark Hughes Foundation Centre for Brain Cancer Research, Paediatric Program, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Cassie Kline
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Sabine Mueller
- Department of Neurology, Department of Neurosurgery and Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
25
|
Hickman RA, Miller AM, Arcila ME. Cerebrospinal fluid: A unique source of circulating tumor DNA with broad clinical applications. Transl Oncol 2023; 33:101688. [PMID: 37196447 DOI: 10.1016/j.tranon.2023.101688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Malignancies involving the central nervous system present unique challenges for diagnosis and monitoring due to the difficulties and risks of direct biopsies and the low specificity and/or sensitivity of other techniques for assessment. In recent years, liquid biopsy of the cerebrospinal fluid (CSF) has emerged as a convenient alternative that combines minimal invasiveness with the ability to detect disease-defining or therapeutically actionable genetic alterations from circulating tumor DNA (ctDNA). Since CSF can be obtained by lumbar puncture, or an established ventricular access device at multiple time points, ctDNA analysis enables initial molecular characterization and longitudinal monitoring throughout a patient's disease course, promoting optimization of treatment regimens. This review outlines some of the key aspects of ctDNA from CSF as a highly suitable approach for clinical assessment, the benefits and drawbacks, testing methods, as well as potential future advancements in this field. We anticipate wider adoption of this practice as technologies and pipelines improve and envisage significant improvements for cancer care.
Collapse
Affiliation(s)
- Richard A Hickman
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, United States; Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Alexandra M Miller
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, United States; Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Maria E Arcila
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
26
|
Gaitsch H, Franklin RJM, Reich DS. Cell-free DNA-based liquid biopsies in neurology. Brain 2023; 146:1758-1774. [PMID: 36408894 PMCID: PMC10151188 DOI: 10.1093/brain/awac438] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
This article reviews recent developments in the application of cell-free DNA-based liquid biopsies to neurological diseases. Over the past few decades, an explosion of interest in the use of accessible biofluids to identify and track molecular disease has revolutionized the fields of oncology, prenatal medicine and others. More recently, technological advances in signal detection have allowed for informative analysis of biofluids that are typically sparse in cells and other circulating components, such as CSF. In parallel, advancements in epigenetic profiling have allowed for novel applications of liquid biopsies to diseases without characteristic mutational profiles, including many degenerative, autoimmune, inflammatory, ischaemic and infectious disorders. These events have paved the way for a wide array of neurological conditions to benefit from enhanced diagnostic, prognostic, and treatment abilities through the use of liquid biomarkers: a 'liquid biopsy' approach. This review includes an overview of types of liquid biopsy targets with a focus on circulating cell-free DNA, methods used to identify and probe potential liquid biomarkers, and recent applications of such biomarkers to a variety of complex neurological conditions including CNS tumours, stroke, traumatic brain injury, Alzheimer's disease, epilepsy, multiple sclerosis and neuroinfectious disease. Finally, the challenges of translating liquid biopsies to use in clinical neurology settings-and the opportunities for improvement in disease management that such translation may provide-are discussed.
Collapse
Affiliation(s)
- Hallie Gaitsch
- NIH-Oxford-Cambridge Scholars Program, Wellcome-MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | | | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Stepien N, Senfter D, Furtner J, Haberler C, Dorfer C, Czech T, Lötsch-Gojo D, Mayr L, Hedrich C, Baumgartner A, Aliotti-Lippolis M, Schned H, Holler J, Bruckner K, Slavc I, Azizi AA, Peyrl A, Müllauer L, Madlener S, Gojo J. Proof-of-Concept for Liquid Biopsy Disease Monitoring of MYC-Amplified Group 3 Medulloblastoma by Droplet Digital PCR. Cancers (Basel) 2023; 15:2525. [PMID: 37173990 PMCID: PMC10177279 DOI: 10.3390/cancers15092525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Liquid biopsy diagnostic methods are an emerging complementary tool to imaging and pathology techniques across various cancer types. However, there is still no established method for the detection of molecular alterations and disease monitoring in MB, the most common malignant CNS tumor in the pediatric population. In the presented study, we investigated droplet digital polymerase chain reaction (ddPCR) as a highly sensitive method for the detection of MYC amplification in bodily fluids of group 3 MB patients. METHODS We identified a cohort of five MYC-amplified MBs by methylation array and FISH. Predesigned and wet-lab validated probes for ddPCR were used to establish the detection method and were validated in two MYC-amplified MB cell lines as well as tumor tissue of the MYC-amplified cohort. Finally, a total of 49 longitudinal CSF samples were analyzed at multiple timepoints during the course of the disease. RESULTS Detection of MYC amplification by ddPCR in CSF showed a sensitivity and specificity of 90% and 100%, respectively. We observed a steep increase in amplification rate (AR) at disease progression in 3/5 cases. ddPCR was proven to be more sensitive than cytology for the detection of residual disease. In contrast to CSF, MYC amplification was not detectable by ddPCR in blood samples. CONCLUSIONS ddPCR proves to be a sensitive and specific method for the detection of MYC amplification in the CSF of MB patients. These results warrant implementation of liquid biopsy in future prospective clinical trials to validate the potential for improved diagnosis, disease staging and monitoring.
Collapse
Affiliation(s)
- Natalia Stepien
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Daniel Senfter
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Julia Furtner
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems-Stein, Austria
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Lötsch-Gojo
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Cora Hedrich
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Alicia Baumgartner
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Maria Aliotti-Lippolis
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Hannah Schned
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Johannes Holler
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Katharina Bruckner
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Amedeo A. Azizi
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (N.S.); (S.M.)
| |
Collapse
|
28
|
Arthur C, Jylhä C, de Ståhl TD, Shamikh A, Sandgren J, Rosenquist R, Nordenskjöld M, Harila A, Barbany G, Sandvik U, Tham E. Simultaneous Ultra-Sensitive Detection of Structural and Single Nucleotide Variants Using Multiplex Droplet Digital PCR in Liquid Biopsies from Children with Medulloblastoma. Cancers (Basel) 2023; 15:cancers15071972. [PMID: 37046633 PMCID: PMC10092983 DOI: 10.3390/cancers15071972] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Medulloblastoma is a malignant embryonal tumor of the central nervous system (CNS) that mainly affects infants and children. Prognosis is highly variable, and molecular biomarkers for measurable residual disease (MRD) detection are lacking. Analysis of cell-free DNA (cfDNA) in cerebrospinal fluid (CSF) using broad genomic approaches, such as low-coverage whole-genome sequencing, has shown promising prognostic value. However, more sensitive methods are needed for MRD analysis. Here, we show the technical feasibility of capturing medulloblastoma-associated structural variants and point mutations simultaneously in cfDNA using multiplexed droplet digital PCR (ddPCR). Assay sensitivity was assessed with a dilution series of tumor in normal genomic DNA, and the limit of detection was below 100 pg of input DNA for all assays. False positive rates were zero for structural variant assays. Liquid biopsies (CSF and plasma, n = 47) were analyzed from 12 children with medulloblastoma, all with negative CSF cytology. MRD was detected in 75% (9/12) of patients overall. In CSF samples taken before or within 21 days of surgery, MRD was detected in 88% (7/8) of patients with localized disease and in one patient with the metastasized disease. Our results suggest that this approach could expand the utility of ddPCR and complement broader analyses of cfDNA for MRD detection.
Collapse
|
29
|
Riviere-Cazaux C, Lacey JM, Carlstrom LP, Laxen WJ, Munoz-Casabella A, Hoplin MD, Ikram S, Zubair AB, Andersen KM, Warrington AE, Decker PA, Kaufmann TJ, Campian JL, Eckel-Passow JE, Kizilbash SH, Tortorelli S, Burns TC. Cerebrospinal fluid 2-hydroxyglutarate (2-HG) as a monitoring biomarker for IDH-mutant gliomas. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.01.23286412. [PMID: 36909488 PMCID: PMC10002776 DOI: 10.1101/2023.03.01.23286412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
D-2-hydroxyglutarate (D-2-HG) is a well-established oncometabolite of isocitrate dehydrogenase (IDH) mutant gliomas. While prior studies have demonstrated that D-2-HG is elevated in the cerebrospinal fluid (CSF) of patients with IDH-mutant gliomas 1,2 , no study has determined if CSF D-2-HG can provide a plausible method to evaluate therapeutic response. We are obtaining CSF samples from consenting patients during their disease course via intra-operative collection and Ommaya reservoirs. D-2-HG and D/L-2-HG consistently decreased following tumor resection and throughout chemoradiation in patients monitored longitudinally. Our early experience with this strategy demonstrates the potential for intracranial CSF D-2-HG as a monitoring biomarker for IDH-mutant gliomas.
Collapse
|
30
|
Eibl RH, Schneemann M. Medulloblastoma: From TP53 Mutations to Molecular Classification and Liquid Biopsy. BIOLOGY 2023; 12:267. [PMID: 36829544 PMCID: PMC9952923 DOI: 10.3390/biology12020267] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
A recent paradigm shift in the diagnostics of medulloblastoma allowed the distinction of four major groups defined by genetic data rather than histology. This new molecular classification correlates better with prognosis and will allow for the better clinical management of therapies targeting druggable mutations, but also offer a new combination of monitoring tumor development in real-time and treatment response by sequential liquid biopsy. This review highlights recent developments after a century of milestones in neurosurgery and radio- and chemotherapy, but also controversial theories on the cell of origin, animal models, and the use of liquid biopsy.
Collapse
Affiliation(s)
- Robert H. Eibl
- c/o M. Schneemann; Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| | - Markus Schneemann
- Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| |
Collapse
|
31
|
Quraish RU, Hirahata T, Quraish AU, ul Quraish S. An Overview: Genetic Tumor Markers for Early Detection and Current Gene Therapy Strategies. Cancer Inform 2023; 22:11769351221150772. [PMID: 36762284 PMCID: PMC9903029 DOI: 10.1177/11769351221150772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/24/2022] [Indexed: 02/04/2023] Open
Abstract
Genomic instability is considered a fundamental factor involved in any neoplastic disease. Consequently, the genetically unstable cells contribute to intratumoral genetic heterogeneity and phenotypic diversity of cancer. These genetic alterations can be detected by several diagnostic techniques of molecular biology and the detection of alteration in genomic integrity may serve as reliable genetic molecular markers for the early detection of cancer or cancer-related abnormal changes in the body cells. These genetic molecular markers can detect cancer earlier than any other method of cancer diagnosis, once a tumor is diagnosed, then replacement or therapeutic manipulation of these cancer-related abnormal genetic changes can be possible, which leads toward effective and target-specific cancer treatment and in many cases, personalized treatment of cancer could be performed without the adverse effects of chemotherapy and radiotherapy. In this review, we describe how these genetic molecular markers can be detected and the possible ways for the application of this gene diagnosis for gene therapy that can attack cancerous cells, directly or indirectly, which lead to overall improved management and quality of life for a cancer patient.
Collapse
Affiliation(s)
| | - Tetsuyuki Hirahata
- Tetsuyuki Hirahata, Hirahata Gene Therapy Laboratory, HIC Clinic #1105, Itocia Office Tower 11F, 2-7-1, Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan.
| | | | | |
Collapse
|
32
|
Riviere-Cazaux C, Lacey JM, Carlstrom LP, Laxen WJ, Munoz-Casabella A, Hoplin MD, Ikram S, Zubair AB, Andersen KM, Warrington AE, Decker PA, Kaufmann TJ, Campian JL, Eckel-Passow JE, Kizilbash SH, Tortorelli S, Burns TC. Cerebrospinal fluid 2-hydroxyglutarate as a monitoring biomarker for IDH-mutant gliomas. Neurooncol Adv 2023; 5:vdad061. [PMID: 37313502 PMCID: PMC10259246 DOI: 10.1093/noajnl/vdad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Affiliation(s)
- Cecile Riviere-Cazaux
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jean M Lacey
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lucas P Carlstrom
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - William J Laxen
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Amanda Munoz-Casabella
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew D Hoplin
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samar Ikram
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Abdullah Bin Zubair
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Katherine M Andersen
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Arthur E Warrington
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul A Decker
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Timothy J Kaufmann
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jian L Campian
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeanette E Eckel-Passow
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sani H Kizilbash
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Silvia Tortorelli
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Terry C Burns
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
33
|
Lehner KR, Jiang K, Rincon-Torroella J, Perera R, Bettegowda C. Cerebrospinal Fluid biomarkers in pediatric brain tumors: A systematic review. Neoplasia 2022; 35:100852. [PMID: 36516487 PMCID: PMC9764249 DOI: 10.1016/j.neo.2022.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022] Open
Abstract
Central nervous system (CNS) tumors are the leading cause of cancer death in pediatric patients. Though these tumors typically require invasive surgical procedures to diagnose, cerebrospinal fluid (CSF) liquid biopsy presents a potential method for rapid and noninvasive detection of markers of CNS malignancy. To characterize molecular biomarkers that can be used in the diagnosis, prognosis, and monitoring of pediatric cancer patients, a literature review was conducted in accordance with PRISMA guidelines. PubMed and EMBASE were searched for the terms biomarkers, liquid biopsy, cerebrospinal fluid, pediatric central nervous system tumor, and their synonyms. Studies including pediatric patients with CSF sampling for tumor evaluation were included. Studies were excluded if they did not have full text or if they were case studies, methodology reports, in languages other than English, or animal studies. Our search revealed 163 articles of which 42 were included. Proteomic, genomic, and small molecule markers associated with CNS tumors were identified for further analysis and development of detection tools.
Collapse
Affiliation(s)
- Kurt R. Lehner
- Department of Neurosurgery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Kelly Jiang
- Department of Neurosurgery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Ranjan Perera
- Johns Hopkins All Children's Hospital, 600 5th St. South, St.Petersburg, FL 33701, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA,Corresponding author.
| |
Collapse
|
34
|
Miller AM, Karajannis MA. Current Role and Future Potential of CSF ctDNA for the Diagnosis and Clinical Management of Pediatric Central Nervous System Tumors. J Natl Compr Canc Netw 2022; 20:1363-1369. [PMID: 36509077 PMCID: PMC10050207 DOI: 10.6004/jnccn.2022.7093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022]
Abstract
Most pediatric central nervous system (CNS) tumors are located in eloquent anatomic areas, making surgical resection and, in some cases, even biopsy risky or impossible. This diagnostic predicament coupled with the move toward molecular classification for diagnosis has exposed an urgent need to develop a minimally invasive means to obtain diagnostic information. In non-CNS solid tumors, the detection of circulating tumor DNA (ctDNA) in plasma and other bodily fluids has been incorporated into routine practice and clinical trial design for selection of molecular targeted therapy and longitudinal monitoring. For primary CNS tumors, however, detection of ctDNA in plasma has been challenging. This is likely related at least in part to anatomic factors such as the blood-brain barrier. Due to the proximity of primary CNS tumors to the cerebrospinal fluid (CSF) space, our group and others have turned to CSF as a rich alternative source of ctDNA. Although multiple studies at this time have demonstrated the feasibility of CSF ctDNA detection across multiple types of pediatric CNS tumors, the optimal role and utility of CSF ctDNA in the clinical setting has not been established. This review discusses the work-to-date on CSF ctDNA liquid biopsy in pediatric CNS tumors and the associated technical challenges, and reviews the promising opportunities that lie ahead for integration of CSF ctDNA liquid biopsy into clinical care and clinical trial design.
Collapse
Affiliation(s)
- Alexandra M. Miller
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
35
|
Stankunaite R, Marshall LV, Carceller F, Chesler L, Hubank M, George SL. Liquid biopsy for children with central nervous system tumours: Clinical integration and technical considerations. Front Pediatr 2022; 10:957944. [PMID: 36467471 PMCID: PMC9709284 DOI: 10.3389/fped.2022.957944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) analysis has the potential to revolutionise the care of patients with cancer and is already moving towards standard of care in some adult malignancies. Evidence for the utility of cfDNA analysis in paediatric cancer patients is also accumulating. In this review we discuss the limitations of blood-based assays in patients with brain tumours and describe the evidence supporting cerebrospinal fluid (CSF) cfDNA analysis. We make recommendations for CSF cfDNA processing to aid the standardisation and technical validation of future assays. We discuss the considerations for interpretation of cfDNA analysis and highlight promising future directions. Overall, cfDNA profiling shows great potential as an adjunct to the analysis of biopsy tissue in paediatric cancer patients, with the potential to provide a genetic molecular profile of the tumour when tissue biopsy is not feasible. However, to fully realise the potential of cfDNA analysis for children with brain tumours larger prospective studies incorporating serial CSF sampling are required.
Collapse
Affiliation(s)
- Reda Stankunaite
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Clinical Genomics, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Evolutionary Genomics and Modelling, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Lynley V. Marshall
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Fernando Carceller
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Louis Chesler
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Michael Hubank
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Clinical Genomics, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Sally L. George
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
36
|
Friedman JS, Hertz CAJ, Karajannis MA, Miller AM. Tapping into the genome: the role of CSF ctDNA liquid biopsy in glioma. Neurooncol Adv 2022; 4:ii33-ii40. [PMID: 36380863 PMCID: PMC9650472 DOI: 10.1093/noajnl/vdac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Liquid biopsy has emerged as a novel noninvasive tool in cancer diagnostics. While significant strides have been made in other malignancies using liquid biopsy for diagnosis, disease monitoring, and treatment selection, development of these assays has been more challenging for brain tumors. Recently, research in primary and metastatic brain tumors has begun to harness the potential utility of liquid biopsy-particularly using circulating tumor DNA (ctDNA). Initial studies to identify ctDNA in plasma of brain tumor patients have shown feasibility, but the yield of ctDNA is far below that for other malignancies. Attention has therefore turned to the cerebrospinal fluid (CSF) as a more robust source of ctDNA. This review discusses the unique considerations in liquid biopsy for glioma and places them in the context of the work to date. We address the utility of CSF liquid biopsy for diagnosis, longitudinal monitoring, tracking tumor evolution, clinical trial eligibility, and prognostication. We discuss the differences in assay requirements for each clinical application to best optimize factors such as efficacy, cost, and speed. Ultimately, CSF liquid biopsy has the potential to transform how we manage primary brain tumor patients.
Collapse
Affiliation(s)
- Joshua S Friedman
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Charli Ann J Hertz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alexandra M Miller
- Corresponding Author: Alexandra M. Miller, MD, PhD, Department of Neurology and Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York NY 10065, USA ()
| |
Collapse
|
37
|
Lazow MA, Palmer JD, Fouladi M, Salloum R. Medulloblastoma in the Modern Era: Review of Contemporary Trials, Molecular Advances, and Updates in Management. Neurotherapeutics 2022; 19:1733-1751. [PMID: 35859223 PMCID: PMC9723091 DOI: 10.1007/s13311-022-01273-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2022] [Indexed: 12/13/2022] Open
Abstract
Critical discoveries over the past two decades have transformed our understanding of medulloblastoma from a single entity into a clinically and biologically heterogeneous disease composed of at least four molecularly distinct subgroups with prognostically and therapeutically relevant genomic signatures. Contemporary clinical trials also have provided valuable insight guiding appropriate treatment strategies. Despite therapeutic and biological advances, medulloblastoma patients across the age spectrum experience tumor- and treatment-related morbidity and mortality. Using an updated risk stratification approach integrating both clinical and molecular features, ongoing research seeks to (1) cautiously reduce therapy and mitigate toxicity in low-average risk patients, and (2) thoughtfully intensify treatment with incorporation of novel, biologically guided agents for patients with high-risk disease. Herein, we review important historical and contemporary studies, discuss management updates, and summarize current knowledge of the biological landscape across unique pediatric, infant, young adult, and relapsed medulloblastoma populations.
Collapse
Affiliation(s)
- Margot A Lazow
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joshua D Palmer
- The Ohio State University College of Medicine, Columbus, OH, USA
- The James Cancer Centre, Ohio State University, Columbus, OH, USA
| | - Maryam Fouladi
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ralph Salloum
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
38
|
Tivey A, Church M, Rothwell D, Dive C, Cook N. Circulating tumour DNA - looking beyond the blood. Nat Rev Clin Oncol 2022; 19:600-612. [PMID: 35915225 PMCID: PMC9341152 DOI: 10.1038/s41571-022-00660-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 02/06/2023]
Abstract
Over the past decade, various liquid biopsy techniques have emerged as viable alternatives to the analysis of traditional tissue biopsy samples. Such surrogate 'biopsies' offer numerous advantages, including the relative ease of obtaining serial samples and overcoming the issues of interpreting one or more small tissue samples that might not reflect the entire tumour burden. To date, the majority of research in the area of liquid biopsies has focused on blood-based biomarkers, predominantly using plasma-derived circulating tumour DNA (ctDNA). However, ctDNA can also be obtained from various non-blood sources and these might offer unique advantages over plasma ctDNA. In this Review, we discuss advances in the analysis of ctDNA from non-blood sources, focusing on urine, cerebrospinal fluid, and pleural or peritoneal fluid, but also consider other sources of ctDNA. We discuss how these alternative sources can have a distinct yet complementary role to that of blood ctDNA analysis and consider various technical aspects of non-blood ctDNA assay development. We also reflect on the settings in which non-blood ctDNA can offer distinct advantages over plasma ctDNA and explore some of the challenges associated with translating these alternative assays from academia into clinical use.
Collapse
Affiliation(s)
- Ann Tivey
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Matt Church
- The Christie NHS Foundation Trust, Manchester, UK
| | - Dominic Rothwell
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Manchester, UK
| | - Caroline Dive
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Manchester, UK
| | - Natalie Cook
- Division of Cancer Sciences, The University of Manchester, Manchester, UK.
- The Christie NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
39
|
Duffy MJ, Crown J. Circulating Tumor DNA as a Biomarker for Monitoring Patients with Solid Cancers: Comparison with Standard Protein Biomarkers. Clin Chem 2022; 68:1381-1390. [PMID: 35962648 DOI: 10.1093/clinchem/hvac121] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Protein-based biomarkers are widely used in monitoring patients with diagnosed cancer. These biomarkers however, lack specificity for cancer and have poor sensitivity in detecting early recurrences and monitoring therapy effectiveness. Emerging data suggest that the use of circulating tumor DNA (ctDNA) has several advantages over standard biomarkers. CONTENT Following curative-intent surgery for cancer, the presence of ctDNA is highly predictive of early disease recurrence, while in metastatic cancer an early decline in ctDNA following the initiation of treatment is predictive of good outcome. Compared with protein biomarkers, ctDNA provides greater cancer specificity and sensitivity for detecting early recurrent/metastatic disease. Thus, in patients with surgically resected colorectal cancer, multiple studies have shown that ctDNA is superior to carcinoembryonic antigen (CEA) in detecting residual disease and early recurrence. Similarly, in breast cancer, ctDNA was shown to be more accurate than carbohydrate antigen 15-3 (CA 15-3) in detecting early recurrences. Other advantages of ctDNA over protein biomarkers in monitoring cancer patients include a shorter half-life in plasma and an ability to predict likely response to specific therapies and identify mechanisms of therapy resistance. However, in contrast to proteins, ctDNA biomarkers are more expensive to measure, less widely available, and have longer turnaround times for reporting. Furthermore, ctDNA assays are less well standardized. SUMMARY Because of their advantages, it is likely that ctDNA measurements will enter clinical use in the future, where they will complement existing biomarkers and imaging in managing patients with cancer. Hopefully, these combined approaches will lead to a better outcome for patients.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
40
|
Fisch AS, Church AJ. Special Considerations in the Molecular Diagnostics of Pediatric Neoplasms. Clin Lab Med 2022; 42:349-365. [DOI: 10.1016/j.cll.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Pediatric CNS cancer genomics and immunogenomics. Curr Opin Genet Dev 2022; 75:101918. [PMID: 35617766 DOI: 10.1016/j.gde.2022.101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022]
Abstract
Large-scale genomic discovery in pediatric cancers established the importance of multiple platform-based characterizations of DNA and RNA to obtain a complete molecular landscape of these cancers, including actionable variants, diagnostic or prognostic evidence, and germline susceptibility. While these discoveries set the stage for pediatric cancer precision medicine, broad-based implementation has been quite slow compared with the adult-cancer precision medicine setting, due largely to the rarity of pediatric cancer. Here, we survey several large-cohort studies that utilize multiplex clinical characterization, including pediatric patients diagnosed with central nervous system (CNS) malignancies. The reported results demonstrate that molecularly guided precision therapeutics yield clinical benefit for these patients, establishing one important component needed for precision therapeutics to enter the pediatric CNS setting.
Collapse
|
42
|
Doculara L, Trahair TN, Bayat N, Lock RB. Circulating Tumor DNA in Pediatric Cancer. Front Mol Biosci 2022; 9:885597. [PMID: 35647029 PMCID: PMC9133724 DOI: 10.3389/fmolb.2022.885597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The measurement of circulating tumor DNA (ctDNA) has gained increasing prominence as a minimally invasive tool for the detection of cancer-specific markers in plasma. In adult cancers, ctDNA detection has shown value for disease-monitoring applications including tumor mutation profiling, risk stratification, relapse prediction, and treatment response evaluation. To date, there are ctDNA tests used as companion diagnostics for adult cancers and it is not understood why the same cannot be said about childhood cancer, despite the marked differences between adult and pediatric oncology. In this review, we discuss the current understanding of ctDNA as a disease monitoring biomarker in the context of pediatric malignancies, including the challenges associated with ctDNA detection in liquid biopsies. The data and conclusions from pediatric cancer studies of ctDNA are summarized, highlighting treatment response, disease monitoring and the detection of subclonal disease as applications of ctDNA. While the data from retrospective studies highlight the potential of ctDNA, large clinical trials are required for ctDNA analysis for routine clinical use in pediatric cancers. We outline the requirements for the standardization of ctDNA detection in pediatric cancers, including sample handling and reproducibility of results. With better understanding of the advantages and limitations of ctDNA and improved detection methods, ctDNA analysis may become the standard of care for patient monitoring in childhood cancers.
Collapse
Affiliation(s)
- Louise Doculara
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Toby N. Trahair
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Narges Bayat
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Richard B. Lock
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
- *Correspondence: Richard B. Lock,
| |
Collapse
|
43
|
Berlanga P, Pierron G, Lacroix L, Chicard M, Adam de Beaumais T, Marchais A, Harttrampf AC, Iddir Y, Larive A, Soriano Fernandez A, Hezam I, Chevassus C, Bernard V, Cotteret S, Scoazec JY, Gauthier A, Abbou S, Corradini N, André N, Aerts I, Thebaud E, Casanova M, Owens C, Hladun-Alvaro R, Michiels S, Delattre O, Vassal G, Schleiermacher G, Geoerger B. The European MAPPYACTS Trial: Precision Medicine Program in Pediatric and Adolescent Patients with Recurrent Malignancies. Cancer Discov 2022; 12:1266-1281. [PMID: 35292802 PMCID: PMC9394403 DOI: 10.1158/2159-8290.cd-21-1136] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT MAPPYACTS (NCT02613962) is an international prospective precision medicine trial aiming to define tumor molecular profiles in pediatric patients with recurrent/refractory malignancies in order to suggest the most adapted salvage treatment. From February 2016 to July 2020, 787 patients were included in France, Italy, Ireland, and Spain. At least one genetic alteration leading to a targeted treatment suggestion was identified in 436 patients (69%) with successful sequencing; 10% of these alterations were considered "ready for routine use." Of 356 patients with follow-up beyond 12 months, 107 (30%) received one or more matched targeted therapies-56% of them within early clinical trials-mainly in the AcSé-ESMART platform trial (NCT02813135). Overall, matched treatment resulted in a 17% objective response rate, and of those patients with ready for routine use alterations, it was 38%. In patients with extracerebral tumors, 76% of actionable alterations detected in tumor tissue were also identified in circulating cell-free DNA (cfDNA). SIGNIFICANCE MAPPYACTS underlines the feasibility of molecular profiling at cancer recurrence in children on a multicenter, international level and demonstrates benefit for patients with selected key drivers. The use of cfDNA deserves validation in prospective studies. Our study highlights the need for innovative therapeutic proof-of-concept trials that address the underlying cancer complexity. This article is highlighted in the In This Issue feature, p. 1171.
Collapse
Affiliation(s)
- Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Gaelle Pierron
- Unité de Génétique Somatique, Service de Génétique, Hospital Group, Institut Curie, Paris, France
| | - Ludovic Lacroix
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Mathieu Chicard
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Research Center, PSL Research University, Institut Curie, Paris, France
| | - Tiphaine Adam de Beaumais
- Clinical Research Direction, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Anne C. Harttrampf
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Yasmine Iddir
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Research Center, PSL Research University, Institut Curie, Paris, France.,Equipe SiRIC RTOP Recherche Translationelle en Oncologie Pédiatrique, Institut Curie, Paris, France
| | - Alicia Larive
- Biostatistics and Epidemiology Unit, Gustave Roussy Cancer Campus, INSERM U1018, CESP, Université Paris-Saclay, Villejuif, France
| | - Aroa Soriano Fernandez
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - Imene Hezam
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Cecile Chevassus
- Biostatistics and Epidemiology Unit, Gustave Roussy Cancer Campus, INSERM U1018, CESP, Université Paris-Saclay, Villejuif, France
| | - Virginie Bernard
- Institut Curie Genomics of Excellence (ICGex) Platform, Research Center, Institut Curie, Paris, France
| | - Sophie Cotteret
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Jean-Yves Scoazec
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Arnaud Gauthier
- Department of Pathology, PSL Research University, Institut Curie, Paris, France
| | - Samuel Abbou
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Nadege Corradini
- Department of Pediatric Oncology, Institut d'Hematologie et d'Oncologie Pédiatrique/Centre Léon Bérard, Lyon, France
| | - Nicolas André
- Department of Pediatric Hematology and Oncology, Hôpital de La Timone, AP-HM, Marseille, France.,UMR Inserm 1068, CNRS UMR 7258, Aix Marseille Université U105, Marseille Cancer Research Center (CRCM), Marseille, France
| | - Isabelle Aerts
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, PSL Research University, Paris, France
| | - Estelle Thebaud
- Department of Pediatric Oncology, Centre Hospitalier Universitaire, Nantes, France
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Cormac Owens
- Paediatric Haematology/Oncology, Children's Health Ireland, Crumlin, Dublin, Republic of Ireland
| | - Raquel Hladun-Alvaro
- Division of Paediatric Haematology and Oncology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Stefan Michiels
- Biostatistics and Epidemiology Unit, Gustave Roussy Cancer Campus, INSERM U1018, CESP, Université Paris-Saclay, Villejuif, France
| | - Olivier Delattre
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Research Center, PSL Research University, Institut Curie, Paris, France.,Institut Curie Genomics of Excellence (ICGex) Platform, Research Center, Institut Curie, Paris, France.,SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, PSL Research University, Paris, France
| | - Gilles Vassal
- Clinical Research Direction, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Gudrun Schleiermacher
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Research Center, PSL Research University, Institut Curie, Paris, France.,SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, PSL Research University, Paris, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Corresponding Author: Birgit Geoerger, Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, 114 Rue Eduard Vaillant, 94805 Villejuif, France. Phone: 33-1-42-11-46-61; Fax: 33-1-42-11-52-75; E-mail:
| |
Collapse
|
44
|
Liquid biopsy: early and accurate diagnosis of brain tumor. J Cancer Res Clin Oncol 2022; 148:2347-2373. [PMID: 35451698 DOI: 10.1007/s00432-022-04011-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
Noninvasive examination is an emerging area in the field of neuro-oncology. Liquid biopsy captures the landscape of genomic alterations of brain tumors and revolutionizes the traditional diagnosis approaches. Rapidly changing sequencing technologies and more affordable prices put the screws on more application of liquid biopsy in clinical settings. In the past few years, extensive application of liquid biopsy has been seen throughout the whole diagnosis and treatment process of brain tumors, including early and accurate detection, characterization and dynamic monitoring. Here, we summarized and compared the most advanced techniques and target molecules or macrostructures related to brain tumor liquid biopsy. We further reviewed and emphasized recent progression in different clinical settings for brain tumors in blood and CSF. The preferred protocol, potential novel biomarkers and future development are discussed in the last part.
Collapse
|
45
|
Wadden J, Ravi K, John V, Babila CM, Koschmann C. Cell-Free Tumor DNA (cf-tDNA) Liquid Biopsy: Current Methods and Use in Brain Tumor Immunotherapy. Front Immunol 2022; 13:882452. [PMID: 35464472 PMCID: PMC9018987 DOI: 10.3389/fimmu.2022.882452] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022] Open
Abstract
Gliomas are tumors derived from mutations in glial brain cells. Gliomas cause significant morbidity and mortality and development of precision diagnostics and novel targeted immunotherapies are critically important. Radiographic imaging is the most common technique to diagnose and track response to treatment, but is an imperfect tool. Imaging does not provide molecular information, which is becoming critically important for identifying targeted immunotherapies and monitoring tumor evolution. Furthermore, immunotherapy induced inflammation can masquerade as tumor progression in images (pseudoprogression) and confound clinical decision making. More recently, circulating cell free tumor DNA (cf-tDNA) has been investigated as a promising biomarker for minimally invasive glioma diagnosis and disease monitoring. cf-tDNA is shed by gliomas into surrounding biofluids (e.g. cerebrospinal fluid and plasma) and, if precisely quantified, might provide a quantitative measure of tumor burden to help resolve pseudoprogression. cf-tDNA can also identify tumor genetic mutations to help guide targeted therapies. However, due to low concentrations of cf-tDNA, recovery and analysis remains challenging. Plasma cf-tDNA typically represents <1% of total cf-DNA due to the blood-brain barrier, limiting their usefulness in practice and motivating the development and use of highly sensitive and specific detection methods. This mini review summarizes the current and future trends of various approaches for cf-tDNA detection and analysis, including new methods that promise more rapid, lower-cost, and accessible diagnostics. We also review the most recent clinical case studies for longitudinal disease monitoring and highlight focus areas, such as novel accurate detection methodologies, as critical research priorities to enable translation to clinic.
Collapse
Affiliation(s)
- Jack Wadden
- Department of Pediatric Hematology and Oncology, Michigan Medicine, Ann Arbor, MI, United States
| | | | | | | | - Carl Koschmann
- Department of Pediatric Hematology and Oncology, Michigan Medicine, Ann Arbor, MI, United States
| |
Collapse
|
46
|
Transcending Blood—Opportunities for Alternate Liquid Biopsies in Oncology. Cancers (Basel) 2022; 14:cancers14051309. [PMID: 35267615 PMCID: PMC8909855 DOI: 10.3390/cancers14051309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cell-free DNA—DNA that has been expelled from cells and can be isolated from blood plasma and other body fluids—is a useful tool in medicine, with applications as a biomarker in diagnosis, prognosis, disease profiling, and treatment selection. In oncology, the ease of access to the tumour genome is a major advantage of cell-free DNA, but while this has led to significant research in blood, other body fluids have not received equal attention. This review article summarises the current research into cell-free DNA in non-blood body fluids, highlighting its values and limitations, and suggesting the direction of future studies. We conclude that cell-free DNA from non-blood body fluids may provide additional information to supplement traditional biopsies, allowing informative and improved patient care across many cancer types. Abstract Cell-free DNA (cfDNA) is a useful molecular biomarker in oncology research and treatment, but while research into its properties in blood has flourished, there remains much to be discovered about cfDNA in other body fluids. The cfDNA from saliva, sputum, cerebrospinal fluid, urine, faeces, pleural effusions, and ascites has unique advantages over blood, and has potential as an alternative ‘liquid biopsy’ template. This review summarises the state of current knowledge and identifies the gaps in our understanding of non-blood liquid biopsies; where their advantages lie, where caution is needed, where they might fit clinically, and where research should focus in order to accelerate clinical implementation. An emphasis is placed on ascites and pleural effusions, being pathological fluids directly associated with cancer. We conclude that non-blood fluids are viable sources of cfDNA in situations where solid tissue biopsies are inaccessible, or only accessible from dated archived specimens. In addition, we show that due to the abundance of cfDNA in non-blood fluids, they can outperform blood in many circumstances. We demonstrate multiple instances in which DNA from various sources can provide additional information, and thus we advocate for analysing non-blood sources as a complement to blood and/or tissue. Further research into these fluids will highlight opportunities to improve patient outcomes across cancer types.
Collapse
|
47
|
Lee B, Mohamad I, Pokhrel R, Murad R, Yuan M, Stapleton S, Bettegowda C, Jallo G, Eberhart CG, Garrett T, Perera RJ. Medulloblastoma cerebrospinal fluid reveals metabolites and lipids indicative of hypoxia and cancer-specific RNAs. Acta Neuropathol Commun 2022; 10:25. [PMID: 35209946 PMCID: PMC8867780 DOI: 10.1186/s40478-022-01326-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 02/07/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. There remains an unmet need for diagnostics to sensitively detect the disease, particularly recurrences. Cerebrospinal fluid (CSF) provides a window into the central nervous system, and liquid biopsy of CSF could provide a relatively non-invasive means for disease diagnosis. There has yet to be an integrated analysis of the transcriptomic, metabolomic, and lipidomic changes occurring in the CSF of children with MB. CSF samples from patients with (n = 40) or without (n = 11; no cancer) MB were subjected to RNA-sequencing and high-resolution mass spectrometry to identify RNA, metabolite, and lipid profiles. Differentially expressed transcripts, metabolites, and lipids were identified and their biological significance assessed by pathway analysis. The DIABLO multivariate analysis package (R package mixOmics) was used to integrate the molecular changes characterizing the CSF of MB patients. Differentially expressed transcripts, metabolites, and lipids in CSF were discriminatory for the presence of MB but not the exact molecular subtype. One hundred and ten genes and ten circular RNAs were differentially expressed in MB CSF compared with normal, representing TGF-β signaling, TNF-α signaling via NF-kB, and adipogenesis pathways. Tricarboxylic acid cycle and other metabolites (malate, fumarate, succinate, α-ketoglutarate, hydroxypyruvate, N-acetyl-aspartate) and total triacylglycerols were significantly upregulated in MB CSF compared with normal CSF. Although separating MBs into subgroups using transcriptomic, metabolomic, and lipid signatures in CSF was challenging, we were able to identify a group of omics signatures that could separate cancer from normal CSF. Metabolic and lipidomic profiles both contained indicators of tumor hypoxia. Our approach provides several candidate signatures that deserve further validation, including the novel circular RNA circ_463, and insights into the impact of MB on the CSF microenvironment.
Collapse
Affiliation(s)
- Bongyong Lee
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD 21231 USA ,grid.413611.00000 0004 0467 2330Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701 USA
| | - Iqbal Mohamad
- grid.15276.370000 0004 1936 8091Department Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, 1395 Center Drive, Gainesville, FL 32610 USA ,grid.240145.60000 0001 2291 4776Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Rudramani Pokhrel
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD 21231 USA ,grid.413611.00000 0004 0467 2330Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701 USA
| | - Rabi Murad
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037 USA
| | - Menglang Yuan
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD 21231 USA ,grid.413611.00000 0004 0467 2330Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701 USA
| | - Stacie Stapleton
- grid.413611.00000 0004 0467 2330Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701 USA
| | - Chetan Bettegowda
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD 21231 USA ,grid.21107.350000 0001 2171 9311Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - George Jallo
- grid.413611.00000 0004 0467 2330Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701 USA
| | - Charles G. Eberhart
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD 21231 USA ,grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205 USA
| | - Timothy Garrett
- Department Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, 1395 Center Drive, Gainesville, FL, 32610, USA.
| | - Ranjan J. Perera
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD 21231 USA ,grid.413611.00000 0004 0467 2330Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701 USA
| |
Collapse
|
48
|
Miller AM, Szalontay L, Bouvier N, Hill K, Ahmad H, Rafailov J, Lee AJ, Rodriguez-Sanchez MI, Yildirim O, Patel A, Bale TA, Benhamida JK, Benayed R, Arcila ME, Donzelli M, Dunkel IJ, Gilheeney SW, Khakoo Y, Kramer K, Sait SF, Greenfield JP, Souweidane MM, Haque S, Mauguen A, Berger MF, Mellinghoff IK, Karajannis MA. Next-generation sequencing of cerebrospinal fluid for clinical molecular diagnostics in pediatric, adolescent and young adult brain tumor patients. Neuro Oncol 2022; 24:1763-1772. [PMID: 35148412 PMCID: PMC9527510 DOI: 10.1093/neuonc/noac035] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Safe sampling of central nervous system tumor tissue for diagnostic purposes may be difficult if not impossible, especially in pediatric patients, and an unmet need exists to develop less invasive diagnostic tests. METHODS We report our clinical experience with minimally invasive molecular diagnostics using a clinically validated assay for sequencing of cerebrospinal fluid (CSF) cell-free DNA (cfDNA). All CSF samples were collected as part of clinical care, and results reported to both clinicians and patients/families. RESULTS We analyzed 64 CSF samples from 45 pediatric, adolescent and young adult (AYA) patients (pediatric = 25; AYA = 20) with primary and recurrent brain tumors across 12 histopathological subtypes including high-grade glioma (n = 10), medulloblastoma (n = 10), pineoblastoma (n = 5), low-grade glioma (n = 4), diffuse leptomeningeal glioneuronal tumor (DLGNT) (n = 4), retinoblastoma (n = 4), ependymoma (n = 3), and other (n = 5). Somatic alterations were detected in 30/64 samples (46.9%) and in at least one sample per unique patient in 21/45 patients (46.6%). CSF cfDNA positivity was strongly associated with the presence of disseminated disease at the time of collection (81.5% of samples from patients with disseminated disease were positive). No association was seen between CSF cfDNA positivity and the timing of CSF collection during the patient's disease course. CONCLUSIONS We identified three general categories where CSF cfDNA testing provided additional relevant diagnostic, prognostic, and/or therapeutic information, impacting clinical assessment and decision making: (1) diagnosis and/or identification of actionable alterations; (2) monitor response to therapy; and (3) tracking tumor evolution. Our findings support broader implementation of clinical CSF cfDNA testing in this population to improve care.
Collapse
Affiliation(s)
| | | | - Nancy Bouvier
- Pediatric Translational Medicine Program, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Katherine Hill
- Pediatric Translational Medicine Program, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hamza Ahmad
- Pediatric Translational Medicine Program, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Johnathan Rafailov
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alex J Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - M Irene Rodriguez-Sanchez
- Pediatric Translational Medicine Program, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Onur Yildirim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Arti Patel
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jamal K Benhamida
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria Donzelli
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ira J Dunkel
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stephen W Gilheeney
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yasmin Khakoo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sameer F Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jeffrey P Greenfield
- Department of Pediatrics, Weill Cornell Medical College, New York, New York, USA,Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Department of Neurological Surgery, Weill Cornell Medical College, New York, New York, USA,Department of Neurological Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Mark M Souweidane
- Department of Pediatrics, Weill Cornell Medical College, New York, New York, USA,Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Department of Neurological Surgery, Weill Cornell Medical College, New York, New York, USA,Department of Neurological Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Sofia Haque
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael F Berger
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ingo K Mellinghoff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Matthias A Karajannis
- Corresponding Author: Matthias A. Karajannis, MD, MS, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA ()
| |
Collapse
|
49
|
Active demethylation upregulates CD147 expression promoting non-small cell lung cancer invasion and metastasis. Oncogene 2022; 41:1780-1794. [PMID: 35132181 PMCID: PMC8933279 DOI: 10.1038/s41388-022-02213-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a fatal disease, and its metastatic process is poorly understood. Although aberrant methylation is involved in tumor progression, the mechanisms underlying dynamic DNA methylation remain to be elucidated. It is significant to study the molecular mechanism of NSCLC metastasis and identify new biomarkers for NSCLC early diagnosis. Here, we performed MeDIP-seq and hMeDIP-seq analyses to detect the genes regulated by dynamic DNA methylation. Comparison of the 5mC and 5hmC sites revealed that the CD147 gene underwent active demethylation in NSCLC tissues compared with normal tissues, and this demethylation upregulated CD147 expression. Significantly high levels of CD147 expression and low levels of promoter methylation were observed in NSCLC tissues. Then, we identified the CD147 promoter as a target of KLF6, MeCP2, and DNMT3A. Treatment of cells with TGF-β triggered active demethylation involving loss of KLF6/MeCP2/DNMT3A and recruitment of Sp1, Tet1, TDG, and SMAD2/3 transcription complexes. A dCas9-SunTag-DNMAT3A-sgCD147-targeted methylation system was constructed to reverse CD147 expression. The targeted methylation system downregulated CD147 expression and inhibited NSCLC proliferation and metastasis in vitro and in vivo. Accordingly, we used cfDNA to detect the levels of CD147 methylation in NSCLC tissues and found that the CD147 methylation levels exhibited an inverse relationship with tumor size, lymphatic metastasis, and TNM stage. In conclusion, this study clarified the mechanism of active demethylation of CD147 and suggested that the targeted methylation of CD147 could inhibit NSCLC invasion and metastasis, providing a highly promising therapeutic target for NSCLC.
Collapse
|
50
|
Liu APY, Northcott PA, Robinson GW, Gajjar A. Circulating tumor DNA profiling for childhood brain tumors: Technical challenges and evidence for utility. J Transl Med 2022; 102:134-142. [PMID: 34934181 DOI: 10.1038/s41374-021-00719-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/09/2022] Open
Abstract
Cell-free DNA (cfDNA) profiling as liquid biopsy has proven value in adult-onset malignancies, serving as a patient-specific surrogate for residual disease and providing a non-invasive tool for serial interrogation of tumor genomics. However, its application in neoplasms of the central nervous system (CNS) has not been as extensively studied. Unique considerations and methodological challenges exist, which need to be addressed before cfDNA studies can be incorporated as a clinical assay for primary CNS diseases. Here, we review the current status of applying cfDNA analysis in patients with CNS tumors, with special attention to diagnosis in pediatric patients. Technical concerns, evidence for utility, and potential developments are discussed.
Collapse
Affiliation(s)
- Anthony Pak-Yin Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, SAR, China.
| | - Paul A Northcott
- Division of Brain Tumor Research, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Giles W Robinson
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Amar Gajjar
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| |
Collapse
|