1
|
Pan L, Xie Y, Yang H, Bao X, Chen J, Zou M, Li RW. Omnidirectionally Stretchable Spin-Valve Sensor Array with Stable Giant Magnetoresistance Performance. ACS NANO 2025. [PMID: 39883044 DOI: 10.1021/acsnano.4c15964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Flexible magnetic sensors, which have advantages such as deformability, vector field sensing, and noncontact detection, are an important branch of flexible electronics and have significant applications in fields such as magnetosensitive electronic skin. Human skin surfaces have complicated deformations, which pose a demand for magnetic sensors that can withstand omnidirectional strain while maintaining stable performance. However, existing flexible magnetic sensor arrays can only withstand stretching along specific directions and are prone to failure under complicated deformations. Here, we demonstrate an omnidirectionally stretchable spin-valve sensor array with high stretchability and excellent performance. By integrating the modulus-distributed structure with liquid metal, the sensor can maintain its performance under complex deformations, enabling the overall system with omnidirectional stretchability. The fabricated spin-valve sensor exhibits a nearly unchanged giant magnetoresistance ratio of 8% and a maximum sensitivity of 0.93%/Oe upon omnidirectional strain up to 86% and can maintain stable performance without fatigue for over 1000 stretching cycles. Furthermore, this spin-valve sensor array is characterized by stable sensing performance for magnetic fields under complicated deformations and can be applied as a magnetosensitive electronic skin. Our results provide insights into the development of next-generation stretchable and wearable magnetoelectronics.
Collapse
Affiliation(s)
- Lili Pan
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yali Xie
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xilai Bao
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinxia Chen
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Mengting Zou
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Liu Y, Xu M, Long H, Vasiliev RB, Li S, Meng H, Chang S. Alternating current electroluminescence devices: recent advances and functional applications. MATERIALS HORIZONS 2024; 11:5147-5180. [PMID: 39034868 DOI: 10.1039/d4mh00309h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Wearable smart devices and visualisation sensors based on alternating current electroluminescence (ACEL) have received considerable attention in recent years. Due to the unique properties of ACEL devices, such as high mechanical strength, adaptability to complex environments, and no need for energy level matching, ACEL is suitable for multifunctional applications and visualisation sensing platforms. This review comprehensively outlines the latest developments in ACEL devices, starting with an analysis of the mechanism, classification, and optimisation strategies of ACEL. It introduces the functional applications of ACEL in multicolour displays, high-durability displays, stretchable and wearable displays, and autonomous function displays. Particularly, it emphasises the research progress of ACEL in sensory displays under interactive conditions such as liquid sensing, environmental factor sensing, kinetic energy sensing, and biosensing. Finally, it forecasts the challenges and new opportunities faced by future functional and interactive ACEL devices in fields such as artificial intelligence, smart robotics, and human-computer interaction.
Collapse
Affiliation(s)
- Yibin Liu
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518115, China.
- Platform for Applied Nanophotonics, Institute of Advanced Interdisciplinary Technology, Shenzhen MSU-BIT University, Shenzhen 518115, China
| | - Meili Xu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Hui Long
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518115, China.
- Department of Materials Science, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Roman B Vasiliev
- Department of Materials Science, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Shukui Li
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518115, China.
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Shuai Chang
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518115, China.
- Platform for Applied Nanophotonics, Institute of Advanced Interdisciplinary Technology, Shenzhen MSU-BIT University, Shenzhen 518115, China
| |
Collapse
|
3
|
He J, Wei R, Ma X, Wu W, Pan X, Sun J, Tang J, Xu Z, Wang C, Pan C. Contactless User-Interactive Sensing Display for Human-Human and Human-Machine Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401931. [PMID: 38573797 DOI: 10.1002/adma.202401931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Creating a large-scale contactless user-interactive sensing display (CUISD) with optimal features is challenging but crucial for efficient human-human or human-machine interactions. This study reports a CUISD based on dynamic alternating current electroluminescence (ACEL) that responds to humidity. Subsecond humidity-induced luminescence is achieved by integrating a highly responsive hydrogel into the ACEL layer. The patterned silver nanofiber electrode and luminescence layer, produced through electrospinning and microfabrication, result in a stretchable, large-scale, high-resolution, multicolor, and dynamic CUISD. The CUISD is implemented for the real-time control of a remote-controlled car, wherein the luminescence signals induced by touchless finger movements are distinguished and encoded to deliver specific commands. Moreover, the distinctive recognition of breathing facilitates the CUISD to serve as a visual signal transmitter for information interaction, which is particularly beneficial for individuals with disabilities. The paradigm shift depicts in this work is expected to reshape the way authors interact with each other and devices, discovering niche applications in virtual/augmented reality and the metaverse.
Collapse
Affiliation(s)
- Jiaqi He
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Institute of Atomic Manufacturing, Beihang University, Beijing, 100191, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruilai Wei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Xiaole Ma
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Wenqiang Wu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Xiaojun Pan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Junlu Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Jiaqi Tang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhangsheng Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunfeng Wang
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Caofeng Pan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Institute of Atomic Manufacturing, Beihang University, Beijing, 100191, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Park J, Lee Y, Cho S, Choe A, Yeom J, Ro YG, Kim J, Kang DH, Lee S, Ko H. Soft Sensors and Actuators for Wearable Human-Machine Interfaces. Chem Rev 2024; 124:1464-1534. [PMID: 38314694 DOI: 10.1021/acs.chemrev.3c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Haptic human-machine interfaces (HHMIs) combine tactile sensation and haptic feedback to allow humans to interact closely with machines and robots, providing immersive experiences and convenient lifestyles. Significant progress has been made in developing wearable sensors that accurately detect physical and electrophysiological stimuli with improved softness, functionality, reliability, and selectivity. In addition, soft actuating systems have been developed to provide high-quality haptic feedback by precisely controlling force, displacement, frequency, and spatial resolution. In this Review, we discuss the latest technological advances of soft sensors and actuators for the demonstration of wearable HHMIs. We particularly focus on highlighting material and structural approaches that enable desired sensing and feedback properties necessary for effective wearable HHMIs. Furthermore, promising practical applications of current HHMI technology in various areas such as the metaverse, robotics, and user-interactive devices are discussed in detail. Finally, this Review further concludes by discussing the outlook for next-generation HHMI technology.
Collapse
Affiliation(s)
- Jonghwa Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Youngoh Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungse Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Ayoung Choe
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jeonghee Yeom
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Yun Goo Ro
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jinyoung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Dong-Hee Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungjae Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| |
Collapse
|
5
|
Chang S, Koo JH, Yoo J, Kim MS, Choi MK, Kim DH, Song YM. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem Rev 2024; 124:768-859. [PMID: 38241488 DOI: 10.1021/acs.chemrev.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optoelectronic devices with unconventional form factors, such as flexible and stretchable light-emitting or photoresponsive devices, are core elements for the next-generation human-centric optoelectronics. For instance, these deformable devices can be utilized as closely fitted wearable sensors to acquire precise biosignals that are subsequently uploaded to the cloud for immediate examination and diagnosis, and also can be used for vision systems for human-interactive robotics. Their inception was propelled by breakthroughs in novel optoelectronic material technologies and device blueprinting methodologies, endowing flexibility and mechanical resilience to conventional rigid optoelectronic devices. This paper reviews the advancements in such soft optoelectronic device technologies, honing in on various materials, manufacturing techniques, and device design strategies. We will first highlight the general approaches for flexible and stretchable device fabrication, including the appropriate material selection for the substrate, electrodes, and insulation layers. We will then focus on the materials for flexible and stretchable light-emitting diodes, their device integration strategies, and representative application examples. Next, we will move on to the materials for flexible and stretchable photodetectors, highlighting the state-of-the-art materials and device fabrication methods, followed by their representative application examples. At the end, a brief summary will be given, and the potential challenges for further development of functional devices will be discussed as a conclusion.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hoon Koo
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), UNIST, Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, SNU, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, SNU, Seoul 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|
6
|
Jiang W, Lee S, Zan G, Zhao K, Park C. Alternating Current Electroluminescence for Human-Interactive Sensing Displays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304053. [PMID: 37696051 DOI: 10.1002/adma.202304053] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/04/2023] [Indexed: 09/13/2023]
Abstract
The development of stimuli-interactive displays based on alternating current (AC)-driven electroluminescence (EL) is of great interest, owing to their simple device architectures suitable for wearable applications requiring resilient mechanical flexibility and stretchability. AC-EL displays can serve as emerging platforms for various human-interactive sensing displays (HISDs) where human information is electrically detected and directly visualized using EL, promoting the development of the interaction of human-machine technologies. This review provides a holistic overview of the latest developments in AC-EL displays with an emphasis on their applications for HISDs. AC-EL displays based on exciton recombination or impact excitations of hot electrons are classified into four representative groups depending upon their device architecture: 1) displays without insulating layers, 2) displays with single insulating layers, 3) displays with double insulating layers, and 4) displays with EL materials embedded in an insulating matrix. State-of-the-art AC HISDs are discussed. Furthermore, emerging stimuli-interactive AC-EL displays are described, followed by a discussion of scientific and engineering challenges and perspectives for future stimuli-interactive AC-EL displays serving as photo-electronic human-machine interfaces.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seokyeong Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Guangtao Zan
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kaiying Zhao
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Spin Convergence Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02791, Republic of Korea
| |
Collapse
|
7
|
Wei X, Chun F, Liu F, Zhang X, Zheng W, Guo Y, Xing Z, An H, Lei D, Tang Y, Yan CH, Wang F. Interfacing Lanthanide Metal-Organic Frameworks with ZnO Nanowires for Alternating Current Electroluminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305251. [PMID: 37718454 DOI: 10.1002/smll.202305251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Indexed: 09/19/2023]
Abstract
Alternating current electroluminescence (ACEL) devices are attractive candidates in cost-effective lighting, sensing, and flexible displays due to their uniform luminescence, stable performance, and outstanding deformability. However, ACEL devices have suffered from limited options for the light-emitting layer, which presents a significant constraint in the progress of utilizing ACEL. Herein, a new class of ACEL phosphors based on lanthanide metal-organic frameworks (Ln-MOFs) is devised. A synthesis of lanthanide-benzenetricarboxylate (Ln-BTC) thin film on a brass grid substrate seeded with ZnO nanowires (NWs) as anchors is developed. The as-synthesized Ln-BTC thin film is employed as the emissive layer and shows visible electroluminescence driven by alternating current (2.9 V µm-1 , 1 kHz) for the first time. Mechanistic investigations reveal that the Ln-based ACEL stems from impact excitation by accelerated electrons from ZnO NWs. Fine-tuning of the ACEL color is also demonstrated by controlling the Ln-MOF compositions and introducing an extra ZnS emitting layer. The advances in these optical materials expand the application of ACEL devices in anti-counterfeiting.
Collapse
Affiliation(s)
- Xiaohe Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 518057, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Fengjun Chun
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 518057, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Feihong Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 518057, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Xin Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 518057, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Weilin Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 518057, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yang Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 518057, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhifeng Xing
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 518057, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Haiyan An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 518057, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 518057, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
8
|
Wang HL, Wang Y. Touchless Artificial Perception beyond Fingertip Probing. ACS NANO 2023; 17:20723-20733. [PMID: 37901955 DOI: 10.1021/acsnano.3c05760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Touchless perception technology allows us to acquire information beyond the contact interfaces, making it ideal for scenarios where physical engagements are not possible. Unlike tactile devices, which have so far achieved impressive results, touchless strategies are fascinating yet underdeveloped. We envisage that touchless technologies could be powerful supplements to current haptics. In this Perspective, we include emerging touchless electronics, aiming to provide a broader and comprehensive picture toward artificial perceptual realm. We overview popular touchless protocols, sketch what could be detected by touchless probing, and summarize their latest spectacular achievements. In addition, we present the promises and challenges posed by touchless technologies and discuss possible directions for their future deployments.
Collapse
Affiliation(s)
- Hai Lu Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yifan Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Singapore 637553, Singapore
| |
Collapse
|
9
|
Yu S, Park TH, Jiang W, Lee SW, Kim EH, Lee S, Park JE, Park C. Soft Human-Machine Interface Sensing Displays: Materials and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204964. [PMID: 36095261 DOI: 10.1002/adma.202204964] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The development of human-interactive sensing displays (HISDs) that simultaneously detect and visualize stimuli is important for numerous cutting-edge human-machine interface technologies. Therefore, innovative device platforms with optimized architectures of HISDs combined with novel high-performance sensing and display materials are demonstrated. This study comprehensively reviews the recent advances in HISDs, particularly the device architectures that enable scaling-down and simplifying the HISD, as well as material designs capable of directly visualizing input information received by various sensors. Various HISD platforms for integrating sensors and displays are described. HISDs consist of a sensor and display connected through a microprocessor, and attempts to assemble the two devices by eliminating the microprocessor are detailed. Single-device HISD technologies are highlighted in which input stimuli acquired by sensory components are directly visualized with various optical components, such as electroluminescence, mechanoluminescence and structural color. The review forecasts future HISD technologies that demand the development of materials with molecular-level synthetic precision that enables simultaneous sensing and visualization. Furthermore, emerging HISDs combined with artificial intelligence technologies and those enabling simultaneous detection and visualization of extrasensory information are discussed.
Collapse
Affiliation(s)
- Seunggun Yu
- Insulation Materials Research Center, Korea Electrotechnology Research Institute (KERI), Jeongiui-gil 12, Seongsan-gu, Changwon, 51543, Republic of Korea
- Electro-functional Materials Engineering, University of Science and Technology (UST), Jeongiui-gil 12, Seongsan-gu, Changwon, 51543, Republic of Korea
| | - Tae Hyun Park
- KIURI Institute, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Wei Jiang
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung Won Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eui Hyuk Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seokyeong Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jung-Eun Park
- LOTTE Chemical, Gosan-ro 56, Uiwang-si, Gyeonggi-do, 16073, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Spin Convergence Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| |
Collapse
|
10
|
Oh JW, Lee S, Han H, Allam O, Choi JI, Lee H, Jiang W, Jang J, Kim G, Mun S, Lee K, Kim Y, Park JW, Lee S, Jang SS, Park C. Dual-light emitting 3D encryption with printable fluorescent-phosphorescent metal-organic frameworks. LIGHT, SCIENCE & APPLICATIONS 2023; 12:226. [PMID: 37696793 PMCID: PMC10495391 DOI: 10.1038/s41377-023-01274-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Optical encryption technologies based on room-temperature light-emitting materials are of considerable interest. Herein, we present three-dimensional (3D) printable dual-light-emitting materials for high-performance optical pattern encryption. These are based on fluorescent perovskite nanocrystals (NCs) embedded in metal-organic frameworks (MOFs) designed for phosphorescent host-guest interactions. Notably, perovskite-containing MOFs emit a highly efficient blue phosphorescence, and perovskite NCs embedded in the MOFs emit characteristic green or red fluorescence under ultraviolet (UV) irradiation. Such dual-light-emitting MOFs with independent fluorescence and phosphorescence emissions are employed in pochoir pattern encryption, wherein actual information with transient phosphorescence is efficiently concealed behind fake information with fluorescence under UV exposure. Moreover, a 3D cubic skeleton is developed with the dual-light-emitting MOF powder dispersed in 3D-printable polymer filaments for 3D dual-pattern encryption. This article outlines a universal principle for developing MOF-based room-temperature multi-light-emitting materials and a strategy for multidimensional information encryption with enhanced capacity and security.
Collapse
Affiliation(s)
- Jin Woo Oh
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seokyeong Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyowon Han
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Omar Allam
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332-0245, USA
| | - Ji Il Choi
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332-0245, USA
| | - Hyeokjung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Wei Jiang
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jihye Jang
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Gwanho Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seungsoo Mun
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyuho Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeonji Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong Woong Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seonju Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung Soon Jang
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332-0245, USA.
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
- Spin Convergence Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
11
|
Jang J, Lee SW, Lee S, Lee CE, Kim EH, Jin W, Lee S, Kim Y, Oh JW, Jung Y, Kim H, Yong H, Park J, Lee S, Park C. Wireless Stand-Alone Trimodal Interactive Display Enabled by Direct Capacitive Coupling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204760. [PMID: 35905410 DOI: 10.1002/adma.202204760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
With recent advances in interactive displays, the development of a stand-alone interactive display with no electrical interconnection is of great interest. Here, a wireless stand-alone interactive display (WiSID), enabled by direct capacitive coupling, consisting of three layers: two in-plane metal electrodes separated by a gap, a composite layer for field-induced electroluminescence (EL) and inverse piezoelectric sound, and a stimuli-responsive layer, from bottom to top, is presented. Alternating current power necessary for field-induced EL and inverse piezoelectric sound is wirelessly transferred from a power unit, with two in-plane electrodes remotely separated from the WiSID. The unique in-plane power transfer through the stimuli-sensitive polar bridge allows stand-alone operation of the WiSID, making it suitable for the wireless dynamic monitoring of medical fluids. Moreover, a haptic wireless stand-alone trimodal interactive display mounted on a human finger is demonstrated, whereby touch is wirelessly displayed in various outputs of EL, inverse piezoelectric sound, and tactile vibration, making it suitable for a wireless three-mode smart braille display.
Collapse
Affiliation(s)
- Jihye Jang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung Won Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208-3108, USA
| | - Seokyeong Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chang Eun Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eui Hyuk Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Wookyeong Jin
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sejeong Lee
- College of Nursing and Brain Korea 21 FOUR Project, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Youngkyung Kim
- College of Nursing and Brain Korea 21 FOUR Project, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin Woo Oh
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Youngdoo Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - HoYeon Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyungseok Yong
- School of Mechanical Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjack-gu, Seoul, 156-756, Republic of Korea
| | - Jeongok Park
- College of Nursing, Mo-Im Kim Nursing Research Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjack-gu, Seoul, 156-756, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
12
|
Yang B, Zhao Y, Ali MU, Ji J, Yan H, Zhao C, Cai Y, Zhang C, Meng H. Asymmetrically Enhanced Coplanar-Electrode Electroluminescence for Information Encryption and Ultrahighly Stretchable Displays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201342. [PMID: 35641318 DOI: 10.1002/adma.202201342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Traditional alternating-current-driven electroluminescent (AC-EL) devices adopting a sandwich structure are commonly used in solid-state lighting and displays, while the emerging coplanar-electrode alternating-current-driven light-emitting variants manifest excellent application prospects in intelligent, multifunctional, and full-color displays, and sensing purposes. In this work, an asymmetrically enhanced coplanar-electrode AC-EL device with a universal and straightforward architecture is designed based on the impedance adjustment strategy. This newly devised asymmetric structure extends the functionalities of the coplanar-electrode AC-EL devices by overcoming the bottlenecks of complicated patterning procedures and high driving voltages of symmetric configuration. The developed device design enables a new type of information encryption and ultrahighly stretchable patterned displays. Notably, the novel encryption appliances demonstrate feasible encryption/decryption features, multiple encryptions, and practical applicability; the biaxially stretchable display devices achieve the highest tensile performance in the field of stretchable electroluminescent pattern displays, and outperform the ultrahighly stretchable sandwich devices in terms of simple patterning process, higher brightness, wider color gamut, and long-term stability. The proposed configuration opens up new avenues for AC-EL devices toward a plethora of smart applications in wearable electronics with intelligent displays, dynamic interaction of human-machine interface, and soft robotics.
Collapse
Affiliation(s)
- Biao Yang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Yiqian Zhao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Muhammad Umair Ali
- Tsinghua-Berkeley Shenzhen Institute(TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Junpeng Ji
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Hao Yan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Changbin Zhao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Yulu Cai
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Chaohong Zhang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| |
Collapse
|
13
|
Chromism-Integrated Sensors and Devices for Visual Indicators. SENSORS 2022; 22:s22114288. [PMID: 35684910 PMCID: PMC9185273 DOI: 10.3390/s22114288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022]
Abstract
The bifunctionality of chromism-integrated sensors and devices has been highlighted because of their reversibility, fast response, and visual indication. For example, one of the representative chromism electrochromic materials exhibits optical modulation under ion insertion/extraction by applying a potential. This operation mechanism can be integrated with various sensors (pressure, strain, biomolecules, gas, etc.) and devices (energy conversion/storage systems) as visual indicators for user-friendly operation. In this review, recent advances in the field of chromism-integrated systems for visual indicators are categorized for various chromism-integrated sensors and devices. This review can provide insights for researchers working on chromism, sensors, or devices. The integrated chromic devices are evaluated in terms of coloration-bleach operation, cycling stability, and coloration efficiency. In addition, the existing challenges and prospects for chromism-integrated sensors and devices are summarized for further research.
Collapse
|
14
|
Kim Y, Lee K, Lee J, Jang S, Kim H, Lee H, Lee SW, Wang G, Park C. Bird-Inspired Self-Navigating Artificial Synaptic Compass. ACS NANO 2021; 15:20116-20126. [PMID: 34793113 DOI: 10.1021/acsnano.1c08005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Extrasensory neuromorphic devices that can recognize, memorize, and learn stimuli imperceptible to human beings are of considerable interest in interactive intelligent electronics research. This study presents an artificially intelligent magnetoreceptive synapse inspired by the magnetocognitive ability used by birds for navigation and orientation. The proposed synaptic platform is based on arrays of ferroelectric field-effect transistors with air-suspended magneto-interactive top-gates. A suspended gate of an elastomeric composite with superparamagnetic particles laminated with an electrically conductive polymer is mechanically deformed under a magnetic field, facilitating control of the magnetic-field-dependent contact area of the suspended gate with an underlying ferroelectric layer. The remanent polarization of the ferroelectric layer is electrically programmed with the deformed suspended gate, resulting in analog conductance modulation as a function of the magnitude, number, and time interval of the input magnetic pulses. The proposed extrasensory magnetoreceptive synapse may be used as an artificially intelligent synaptic compass that facilitates barrier-adaptable navigation and mapping of a moving object.
Collapse
Affiliation(s)
- Youngwoo Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyuho Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Junseok Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seonghoon Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - HoYeon Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyunhaeng Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung Won Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gunuk Wang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
15
|
Huang J, Zhang X, Fu K, Wei G, Su Z. Stimulus-responsive nanomaterials under physical regulation for biomedical applications. J Mater Chem B 2021; 9:9642-9657. [PMID: 34807221 DOI: 10.1039/d1tb02130c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer is a growing threat to human beings. Traditional treatments for malignant tumors usually involve invasive means to healthy human tissues, such as surgical treatment and chemotherapy. In recent years the use of specific stimulus-responsive materials in combination with some non-contact, non-invasive stimuli can lead to better efficacy and has become an important area of research. It promises to develop personalized treatment systems for four types of physical stimuli: light, ultrasound, magnetic field, and temperature. Nanomaterials that are responsive to these stimuli can be used to enhance drug delivery, cancer treatment, and tissue engineering. This paper reviews the principles of the stimuli mentioned above, their effects on materials, and how they work with nanomaterials. For this aim, we focus on specific applications in controlled drug release, cancer therapy, tissue engineering, and virus detection, with particular reference to recent photothermal, photodynamic, sonodynamic, magnetothermal, radiation, and other types of therapies. It is instructive for the future development of stimulus-responsive nanomaterials for these aspects.
Collapse
Affiliation(s)
- Jinzhu Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Kun Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
16
|
High Inclusiveness and Accuracy Motion Blur Real-Time Gesture Recognition Based on YOLOv4 Model Combined Attention Mechanism and DeblurGanv2. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11219982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The combination of gesture recognition and aerospace exploration robots can realize the efficient non-contact control of the robots. In the harsh aerospace environment, the captured gesture images are usually blurred and damaged inevitably. The motion blurred images not only cause part of the transmitted information to be lost, but also affect the effect of neural network training in the later stage. To improve the speed and accuracy of motion blurred gestures recognition, the algorithm of YOLOv4 (You Only Look Once, vision 4) is studied from the two aspects of motion blurred image processing and model optimization. The DeblurGanv2 is employed to remove the motion blur of the gestures in YOLOv4 network input pictures. In terms of model structure, the K-means++ algorithm is used to cluster the priori boxes for obtaining the more appropriate size parameters of the priori boxes. The CBAM attention mechanism and SPP (spatial pyramid pooling layer) structure are added to YOLOv4 model to improve the efficiency of network learning. The dataset for network training is designed for the human–computer interaction in the aerospace space. To reduce the redundant features of the captured images and enhance the effect of model training, the Wiener filter and bilateral filter are superimposed on the blurred images in the dataset to simply remove the motion blur. The augmentation of the model is executed by imitating different environments. A YOLOv4-gesture model is built, which collaborates with K-means++ algorithm, the CBAM and SPP mechanism. A DeblurGanv2 model is built to process the input images of the YOLOv4 target recognition. The YOLOv4-motion-blur-gesture model is composed of the YOLOv4-gesture and the DeblurGanv2. The augmented and enhanced gesture data set is used to simulate the model training. The experimental results demonstrate that the YOLOv4-motion-blur-gesture model has relatively better performance. The proposed model has the high inclusiveness and accuracy recognition effect in the real-time interaction of motion blur gestures, it improves the network training speed by 30%, the target detection accuracy by 10%, and the value of mAP by about 10%. The constructed YOLOv4-motion-blur-gesture model has a stable performance. It can not only meet the real-time human–computer interaction in aerospace space under real-time complex conditions, but also can be applied to other application environments under complex backgrounds requiring real-time detection.
Collapse
|