1
|
Brezovská B, Narasimhan S, Šiková M, Šanderová H, Kovaľ T, Borah N, Shoman M, Pospíšilová D, Vaňková Hausnerová V, Tužinčin D, Černý M, Komárek J, Janoušková M, Kambová M, Halada P, Křenková A, Hubálek M, Trundová M, Dohnálek J, Hnilicová J, Žídek L, Krásný L. MoaB2, a newly identified transcription factor, binds to σ A in Mycobacterium smegmatis. J Bacteriol 2024; 206:e0006624. [PMID: 39499088 PMCID: PMC11656743 DOI: 10.1128/jb.00066-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/18/2024] [Indexed: 11/07/2024] Open
Abstract
In mycobacteria, σA is the primary sigma factor. This essential protein binds to RNA polymerase (RNAP) and mediates transcription initiation of housekeeping genes. Our knowledge about this factor in mycobacteria is limited. Here, we performed an unbiased search for interacting partners of Mycobacterium smegmatis σA. The search revealed a number of proteins; prominent among them was MoaB2. The σA-MoaB2 interaction was validated and characterized by several approaches, revealing that it likely does not require RNAP and is specific, as alternative σ factors (e.g., closely related σB) do not interact with MoaB2. The structure of MoaB2 was solved by X-ray crystallography. By immunoprecipitation and nuclear magnetic resonance, the unique, unstructured N-terminal domain of σA was identified to play a role in the σA-MoaB2 interaction. Functional experiments then showed that MoaB2 inhibits σA-dependent (but not σB-dependent) transcription and may increase the stability of σA in the cell. We propose that MoaB2, by sequestering σA, has a potential to modulate gene expression. In summary, this study has uncovered a new binding partner of mycobacterial σA, paving the way for future investigation of this phenomenon.IMPORTANCEMycobacteria cause serious human diseases such as tuberculosis and leprosy. The mycobacterial transcription machinery is unique, containing transcription factors such as RbpA, CarD, and the RNA polymerase (RNAP) core-interacting small RNA Ms1. Here, we extend our knowledge of the mycobacterial transcription apparatus by identifying MoaB2 as an interacting partner of σA, the primary sigma factor, and characterize its effects on transcription and σA stability. This information expands our knowledge of interacting partners of subunits of mycobacterial RNAP, providing opportunities for future development of antimycobacterial compounds.
Collapse
Affiliation(s)
- Barbora Brezovská
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Subhash Narasimhan
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Michaela Šiková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomáš Kovaľ
- Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Vestec, Czechia
| | - Nabajyoti Borah
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Mahmoud Shoman
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Debora Pospíšilová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Viola Vaňková Hausnerová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague, Czechia
| | - Dávid Tužinčin
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Martin Černý
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Jan Komárek
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Martina Janoušková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Milada Kambová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Halada
- Institute of Microbiology of the Czech Academy of Sciences, Centre BIOCEV, Vestec, Czechia
| | - Alena Křenková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Mária Trundová
- Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Vestec, Czechia
| | - Jan Dohnálek
- Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Vestec, Czechia
| | - Jarmila Hnilicová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague, Czechia
| | - Lukáš Žídek
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Cooper SL, Requijo RM, Lucius AL, Schneider DA. Biochemical characterization of Mycobacterial RNA polymerases. J Bacteriol 2024; 206:e0025624. [PMID: 39315796 PMCID: PMC11505635 DOI: 10.1128/jb.00256-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Tuberculosis is caused by the bacterium Mycobacterium tuberculosis (Mtb). While eukaryotic species employ several specialized RNA polymerases (Pols) to fulfill the RNA synthesis requirements of the cell, bacterial species use a single RNA polymerase (RNAP). To contribute to the foundational understanding of how Mtb and the related non-pathogenic mycobacterial species, Mycobacterium smegmatis (Msm), perform the essential function of RNA synthesis, we performed a series of in vitro transcription experiments to define the unique enzymatic properties of Mtb and Msm RNAPs. In this study, we characterize the mechanism of nucleotide addition used by these bacterial RNAPs with comparisons to previously characterized eukaryotic Pols I, II, and III. We show that Mtb RNAP and Msm RNAP demonstrate similar enzymatic properties and nucleotide addition kinetics to each other but diverge significantly from eukaryotic Pols. We also show that Mtb RNAP and Msm RNAP uniquely bind a nucleotide analog with significantly higher affinity than canonical nucleotides, in contrast to eukaryotic RNA polymerase II. This affinity for analogs may reveal a vulnerability for selective inhibition of the pathogenic bacterial enzyme.IMPORTANCETuberculosis, caused by the bacterium Mycobacterium tuberculosis (Mtb), remains a severe global health threat. The World Health Organization (WHO) has reported that tuberculosis is second only to COVID-19 as the most lethal infection worldwide, with more annual deaths than HIV and AIDS (WHO.int). The first-line treatment for tuberculosis, Rifampin (or Rifampicin), specifically targets the Mtb RNA polymerase. This drug has been used for decades, leading to increased numbers of multi-drug-resistant infections (Stephanie, et al). To effectively treat tuberculosis, there is an urgent need for new therapeutics that selectively target vulnerabilities of the bacteria and not the host. Characterization of the differences between Mtb enzymes and host enzymes is critical to inform these ongoing drug design efforts.
Collapse
Affiliation(s)
- Stephanie L. Cooper
- Department of
Biochemistry and Molecular Genetics, Heersink School of Medicine,
University of Alabama at Birmingham,
Birmingham, Alabama,
USA
| | - Ryan M. Requijo
- Department of
Chemistry, University of Alabama at
Birmingham, Birmingham,
Alabama, USA
| | - Aaron L. Lucius
- Department of
Chemistry, University of Alabama at
Birmingham, Birmingham,
Alabama, USA
| | - David A. Schneider
- Department of
Biochemistry and Molecular Genetics, Heersink School of Medicine,
University of Alabama at Birmingham,
Birmingham, Alabama,
USA
| |
Collapse
|
3
|
Kovaľ T, Borah N, Sudzinová P, Brezovská B, Šanderová H, Vaňková Hausnerová V, Křenková A, Hubálek M, Trundová M, Adámková K, Dušková J, Schwarz M, Wiedermannová J, Dohnálek J, Krásný L, Kouba T. Mycobacterial HelD connects RNA polymerase recycling with transcription initiation. Nat Commun 2024; 15:8740. [PMID: 39384756 PMCID: PMC11464796 DOI: 10.1038/s41467-024-52891-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Mycobacterial HelD is a transcription factor that recycles stalled RNAP by dissociating it from nucleic acids and, if present, from the antibiotic rifampicin. The rescued RNAP, however, must disengage from HelD to participate in subsequent rounds of transcription. The mechanism of release is unknown. We show that HelD from Mycobacterium smegmatis forms a complex with RNAP associated with the primary sigma factor σA and transcription factor RbpA but not CarD. We solve several structures of RNAP-σA-RbpA-HelD without and with promoter DNA. These snapshots capture HelD during transcription initiation, describing mechanistic aspects of HelD release from RNAP and its protective effect against rifampicin. Biochemical evidence supports these findings, defines the role of ATP binding and hydrolysis by HelD in the process, and confirms the rifampicin-protective effect of HelD. Collectively, these results show that when HelD is present during transcription initiation, the process is protected from rifampicin until the last possible moment.
Collapse
Affiliation(s)
- Tomáš Kovaľ
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Nabajyoti Borah
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
| | - Petra Sudzinová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Barbora Brezovská
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Hana Šanderová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Viola Vaňková Hausnerová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
| | - Alena Křenková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague, Czech Republic
| | - Mária Trundová
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Kristýna Adámková
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Jarmila Dušková
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Marek Schwarz
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jana Wiedermannová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jan Dohnálek
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic.
| | - Libor Krásný
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic.
| | - Tomáš Kouba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague, Czech Republic.
| |
Collapse
|
4
|
Vaňková Hausnerová V, Shoman M, Kumar D, Schwarz M, Modrák M, Jirát Matějčková J, Mikesková E, Neva S, Herrmannová A, Šiková M, Halada P, Novotná I, Pajer P, Valášek LS, Převorovský M, Krásný L, Hnilicová J. RIP-seq reveals RNAs that interact with RNA polymerase and primary sigma factors in bacteria. Nucleic Acids Res 2024; 52:4604-4626. [PMID: 38348908 PMCID: PMC11077062 DOI: 10.1093/nar/gkae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 05/09/2024] Open
Abstract
Bacteria have evolved structured RNAs that can associate with RNA polymerase (RNAP). Two of them have been known so far-6S RNA and Ms1 RNA but it is unclear if any other types of RNAs binding to RNAP exist in bacteria. To identify all RNAs interacting with RNAP and the primary σ factors, we have established and performed native RIP-seq in Bacillus subtilis, Corynebacterium glutamicum, Streptomyces coelicolor, Mycobacterium smegmatis and the pathogenic Mycobacterium tuberculosis. Besides known 6S RNAs in B. subtilis and Ms1 in M. smegmatis, we detected MTS2823, a homologue of Ms1, on RNAP in M. tuberculosis. In C. glutamicum, we discovered novel types of structured RNAs that associate with RNAP. Furthermore, we identified other species-specific RNAs including full-length mRNAs, revealing a previously unknown landscape of RNAs interacting with the bacterial transcription machinery.
Collapse
Affiliation(s)
- Viola Vaňková Hausnerová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Mahmoud Shoman
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Dilip Kumar
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Marek Schwarz
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Martin Modrák
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Department of Bioinformatics, Second Faculty of Medicine, Charles University, Prague150 06, Czech Republic
| | - Jitka Jirát Matějčková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Eliška Mikesková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Silvia Neva
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Michaela Šiková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Petr Halada
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Vestec252 50, Czech Republic
| | - Iva Novotná
- Military Health Institute, Military Medical Agency, Prague169 02, Czech Republic
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Prague169 02, Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Prague128 00, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Jarmila Hnilicová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| |
Collapse
|
5
|
Helena-Bueno K, Chan LI, Melnikov SV. Rippling life on a dormant planet: hibernation of ribosomes, RNA polymerases, and other essential enzymes. Front Microbiol 2024; 15:1386179. [PMID: 38770025 PMCID: PMC11102965 DOI: 10.3389/fmicb.2024.1386179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/21/2024] [Indexed: 05/22/2024] Open
Abstract
Throughout the tree of life, cells and organisms enter states of dormancy or hibernation as a key feature of their biology: from a bacterium arresting its growth in response to starvation, to a plant seed anticipating placement in fertile ground, to a human oocyte poised for fertilization to create a new life. Recent research shows that when cells hibernate, many of their essential enzymes hibernate too: they disengage from their substrates and associate with a specialized group of proteins known as hibernation factors. Here, we summarize how hibernation factors protect essential cellular enzymes from undesired activity or irreparable damage in hibernating cells. We show how molecular hibernation, once viewed as rare and exclusive to certain molecules like ribosomes, is in fact a widespread property of biological molecules that is required for the sustained persistence of life on Earth.
Collapse
Affiliation(s)
| | | | - Sergey V. Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Sudzinová P, Šanderová H, Koval' T, Skálová T, Borah N, Hnilicová J, Kouba T, Dohnálek J, Krásný L. What the Hel: recent advances in understanding rifampicin resistance in bacteria. FEMS Microbiol Rev 2023; 47:fuac051. [PMID: 36549665 PMCID: PMC10719064 DOI: 10.1093/femsre/fuac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Rifampicin is a clinically important antibiotic that binds to, and blocks the DNA/RNA channel of bacterial RNA polymerase (RNAP). Stalled, nonfunctional RNAPs can be removed from DNA by HelD proteins; this is important for maintenance of genome integrity. Recently, it was reported that HelD proteins from high G+C Actinobacteria, called HelR, are able to dissociate rifampicin-stalled RNAPs from DNA and provide rifampicin resistance. This is achieved by the ability of HelR proteins to dissociate rifampicin from RNAP. The HelR-mediated mechanism of rifampicin resistance is discussed here, and the roles of HelD/HelR in the transcriptional cycle are outlined. Moreover, the possibility that the structurally similar HelD proteins from low G+C Firmicutes may be also involved in rifampicin resistance is explored. Finally, the discovery of the involvement of HelR in rifampicin resistance provides a blueprint for analogous studies to reveal novel mechanisms of bacterial antibiotic resistance.
Collapse
Affiliation(s)
- Petra Sudzinová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Tomáš Koval'
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Tereza Skálová
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Nabajyoti Borah
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Jarmila Hnilicová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Tomáš Kouba
- Cryogenic Electron Microscopy Research-Service Group, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16000 Prague, Czech Republic
| | - Jan Dohnálek
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| |
Collapse
|
7
|
Dey U, Olymon K, Banik A, Abbas E, Yella VR, Kumar A. DNA structural properties of DNA binding sites for 21 transcription factors in the mycobacterial genome. Front Cell Infect Microbiol 2023; 13:1147544. [PMID: 37396305 PMCID: PMC10312376 DOI: 10.3389/fcimb.2023.1147544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, has evolved over time into a multidrug resistance strain that poses a serious global pandemic health threat. The ability to survive and remain dormant within the host macrophage relies on multiple transcription factors contributing to virulence. To date, very limited structural insights from crystallographic and NMR studies are available for TFs and TF-DNA binding events. Understanding the role of DNA structure in TF binding is critical to deciphering MTB pathogenicity and has yet to be resolved at the genome scale. In this work, we analyzed the compositional and conformational preference of 21 mycobacterial TFs, evident at their DNA binding sites, in local and global scales. Results suggest that most TFs prefer binding to genomic regions characterized by unique DNA structural signatures, namely, high electrostatic potential, narrow minor grooves, high propeller twist, helical twist, intrinsic curvature, and DNA rigidity compared to the flanking sequences. Additionally, preference for specific trinucleotide motifs, with clear periodic signals of tetranucleotide motifs, are observed in the vicinity of the TF-DNA interactions. Altogether, our study reports nuanced DNA shape and structural preferences of 21 TFs.
Collapse
Affiliation(s)
- Upalabdha Dey
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Kaushika Olymon
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Anikesh Banik
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Eshan Abbas
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| |
Collapse
|
8
|
You L, Omollo EO, Yu C, Mooney RA, Shi J, Shen L, Wu X, Wen A, He D, Zeng Y, Feng Y, Landick R, Zhang Y. Structural basis for intrinsic transcription termination. Nature 2023; 613:783-789. [PMID: 36631609 PMCID: PMC10091898 DOI: 10.1038/s41586-022-05604-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/25/2022] [Indexed: 01/13/2023]
Abstract
Efficient and accurate termination is required for gene transcription in all living organisms1,2. Cellular RNA polymerases in both bacteria and eukaryotes can terminate their transcription through a factor-independent termination pathway3,4-called intrinsic termination transcription in bacteria-in which RNA polymerase recognizes terminator sequences, stops nucleotide addition and releases nascent RNA spontaneously. Here we report a set of single-particle cryo-electron microscopy structures of Escherichia coli transcription intrinsic termination complexes representing key intermediate states of the event. The structures show how RNA polymerase pauses at terminator sequences, how the terminator RNA hairpin folds inside RNA polymerase, and how RNA polymerase rewinds the transcription bubble to release RNA and then DNA. These macromolecular snapshots define a structural mechanism for bacterial intrinsic termination and a pathway for RNA release and DNA collapse that is relevant for factor-independent termination by all RNA polymerases.
Collapse
Affiliation(s)
- Linlin You
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Expery O Omollo
- Department of Biochemistry and Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Chengzhi Yu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rachel A Mooney
- Department of Biochemistry and Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Shi
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liqiang Shen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxian Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Aijia Wen
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei He
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zeng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Robert Landick
- Department of Biochemistry and Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
9
|
Hurst-Hess KR, Saxena A, Rudra P, Yang Y, Ghosh P. Mycobacterium abscessus HelR interacts with RNA polymerase to confer intrinsic rifamycin resistance. Mol Cell 2022; 82:3166-3177.e5. [PMID: 35905736 PMCID: PMC9444957 DOI: 10.1016/j.molcel.2022.06.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 02/08/2022] [Accepted: 06/28/2022] [Indexed: 10/16/2022]
Abstract
Rifampicin (RIF), the frontline drug against M. tuberculosis, is completely ineffective against M. abscessus, partially due to the presence of an ADP-ribosyltransferase (Arr) that inactivates RIF. Using RNA-seq, we show that exposure of M. abscessus to sublethal doses of RIF and Rifabutin (RBT), a close analog of RIF, results in an ∼25-fold upregulation of Mab_helR in laboratory and clinical isolates. An isogenic deletion in Mab_helR results in RIF/RBT hypersensitivity, and overexpression of Mab_helR confers RIF tolerance in M. tuberculosis. We demonstrate an increased HelR-RNAP association in RIF-exposed bacteria and a MabHelR-mediated dissociation of RNAP from stalled initiation complexes in vitro. Finally, we show that the tip of the PCh-loop of Mab_helR, present in proximity to RIF, is critical for conferring RIF resistance but dispensable for dissociation of stalled RNAP complexes, suggesting that HelR-mediated RIF resistance requires a step in addition to displacement of RIF-stalled RNAP.
Collapse
Affiliation(s)
- Kelley R Hurst-Hess
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Aavrati Saxena
- School of Public Health, University at Albany, Albany, NY 12208, USA
| | - Paulami Rudra
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Yong Yang
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Pallavi Ghosh
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; School of Public Health, University at Albany, Albany, NY 12208, USA.
| |
Collapse
|
10
|
Marshall CJ, Qayyum MZ, Walker JE, Murakami KS, Santangelo TJ. The structure and activities of the archaeal transcription termination factor Eta detail vulnerabilities of the transcription elongation complex. Proc Natl Acad Sci U S A 2022; 119:e2207581119. [PMID: 35917344 PMCID: PMC9371683 DOI: 10.1073/pnas.2207581119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Transcription must be properly regulated to ensure dynamic gene expression underlying growth, development, and response to environmental cues. Regulation is imposed throughout the transcription cycle, and while many efforts have detailed the regulation of transcription initiation and early elongation, the termination phase of transcription also plays critical roles in regulating gene expression. Transcription termination can be driven by only a few proteins in each domain of life. Detailing the mechanism(s) employed provides insight into the vulnerabilities of transcription elongation complexes (TECs) that permit regulated termination to control expression of many genes and operons. Here, we describe the biochemical activities and crystal structure of the superfamily 2 helicase Eta, one of two known factors capable of disrupting archaeal transcription elongation complexes. Eta retains a twin-translocase core domain common to all superfamily 2 helicases and a well-conserved C terminus wherein individual amino acid substitutions can critically abrogate termination activities. Eta variants that perturb ATPase, helicase, single-stranded DNA and double-stranded DNA translocase and termination activities identify key regions of the C terminus of Eta that, when combined with modeling Eta-TEC interactions, provide a structural model of Eta-mediated termination guided in part by structures of Mfd and the bacterial TEC. The susceptibility of TECs to disruption by termination factors that target the upstream surface of RNA polymerase and potentially drive termination through forward translocation and allosteric mechanisms that favor opening of the clamp to release the encapsulated nucleic acids emerges as a common feature of transcription termination mechanisms.
Collapse
Affiliation(s)
- Craig J. Marshall
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - M. Zuhaib Qayyum
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Julie E. Walker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Katsuhiko S. Murakami
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
11
|
Surette MD, Waglechner N, Koteva K, Wright GD. HelR is a helicase-like protein that protects RNA polymerase from rifamycin antibiotics. Mol Cell 2022; 82:3151-3165.e9. [PMID: 35907401 DOI: 10.1016/j.molcel.2022.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 03/15/2022] [Accepted: 06/12/2022] [Indexed: 10/16/2022]
Abstract
Rifamycin antibiotics such as rifampin are potent inhibitors of prokaryotic RNA polymerase (RNAP) used to treat tuberculosis and other bacterial infections. Although resistance arises in the clinic principally through mutations in RNAP, many bacteria possess highly specific enzyme-mediated resistance mechanisms that modify and inactivate rifamycins. The expression of these enzymes is controlled by a 19-bp cis-acting rifamycin-associated element (RAE). Guided by the presence of RAE sequences, we identify a helicase-like protein, HelR, in Streptomyces venezuelae that confers broad-spectrum rifamycin resistance. We show that HelR also promotes tolerance to rifamycins, enabling bacterial evasion of the toxic properties of these antibiotics. HelR forms a complex with RNAP and rescues transcription inhibition by displacing rifamycins from RNAP, thereby providing resistance by target protection . Furthermore, HelRs are broadly distributed in Actinobacteria, including several opportunistic Mycobacterial pathogens, offering yet another challenge for developing new rifamycin antibiotics.
Collapse
Affiliation(s)
- Matthew D Surette
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Nicholas Waglechner
- Toronto Invasive Bacterial Diseases Network, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Kalinka Koteva
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gerard D Wright
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
12
|
Agapov A, Olina A, Kulbachinskiy A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3018-3041. [PMID: 35323981 PMCID: PMC8989532 DOI: 10.1093/nar/gkac174] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular DNA is continuously transcribed into RNA by multisubunit RNA polymerases (RNAPs). The continuity of transcription can be disrupted by DNA lesions that arise from the activities of cellular enzymes, reactions with endogenous and exogenous chemicals or irradiation. Here, we review available data on translesion RNA synthesis by multisubunit RNAPs from various domains of life, define common principles and variations in DNA damage sensing by RNAP, and consider existing controversies in the field of translesion transcription. Depending on the type of DNA lesion, it may be correctly bypassed by RNAP, or lead to transcriptional mutagenesis, or result in transcription stalling. Various lesions can affect the loading of the templating base into the active site of RNAP, or interfere with nucleotide binding and incorporation into RNA, or impair RNAP translocation. Stalled RNAP acts as a sensor of DNA damage during transcription-coupled repair. The outcome of DNA lesion recognition by RNAP depends on the interplay between multiple transcription and repair factors, which can stimulate RNAP bypass or increase RNAP stalling, and plays the central role in maintaining the DNA integrity. Unveiling the mechanisms of translesion transcription in various systems is thus instrumental for understanding molecular pathways underlying gene regulation and genome stability.
Collapse
Affiliation(s)
- Aleksei Agapov
- Correspondence may also be addressed to Aleksei Agapov. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| | - Anna Olina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute” Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- To whom correspondence should be addressed. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| |
Collapse
|
13
|
Wood DM, Dobson RC, Horne CR. Using cryo-EM to uncover mechanisms of bacterial transcriptional regulation. Biochem Soc Trans 2021; 49:2711-2726. [PMID: 34854920 PMCID: PMC8786299 DOI: 10.1042/bst20210674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Transcription is the principal control point for bacterial gene expression, and it enables a global cellular response to an intracellular or environmental trigger. Transcriptional regulation is orchestrated by transcription factors, which activate or repress transcription of target genes by modulating the activity of RNA polymerase. Dissecting the nature and precise choreography of these interactions is essential for developing a molecular understanding of transcriptional regulation. While the contribution of X-ray crystallography has been invaluable, the 'resolution revolution' of cryo-electron microscopy has transformed our structural investigations, enabling large, dynamic and often transient transcription complexes to be resolved that in many cases had resisted crystallisation. In this review, we highlight the impact cryo-electron microscopy has had in gaining a deeper understanding of transcriptional regulation in bacteria. We also provide readers working within the field with an overview of the recent innovations available for cryo-electron microscopy sample preparation and image reconstruction of transcription complexes.
Collapse
Affiliation(s)
- David M. Wood
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C.J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Christopher R. Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
14
|
Qayyum MZ, Molodtsov V, Renda A, Murakami KS. Structural basis of RNA polymerase recycling by the Swi2/Snf2 family of ATPase RapA in Escherichia coli. J Biol Chem 2021; 297:101404. [PMID: 34774797 PMCID: PMC8666675 DOI: 10.1016/j.jbc.2021.101404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 01/27/2023] Open
Abstract
After transcription termination, cellular RNA polymerases (RNAPs) are occasionally trapped on DNA, impounded in an undefined post-termination complex (PTC), limiting the free RNAP pool and subsequently leading to inefficient transcription. In Escherichia coli, a Swi2/Snf2 family of ATPase called RapA is known to be involved in countering such inefficiency through RNAP recycling; however, the precise mechanism of this recycling is unclear. To better understand its mechanism, here we determined the structures of two sets of E. coli RapA–RNAP complexes, along with the RNAP core enzyme and the elongation complex, using cryo-EM. These structures revealed the large conformational changes of RNAP and RapA upon their association that has been implicated in the hindrance of PTC formation. Our results along with DNA-binding assays reveal that although RapA binds RNAP away from the DNA-binding main channel, its binding can allosterically close the RNAP clamp, thereby preventing its nonspecific DNA binding and PTC formation. Taken together, we propose that RapA acts as a guardian of RNAP by which RapA prevents nonspecific DNA binding of RNAP without affecting the binding of promoter DNA recognition σ factor, thereby enhancing RNAP recycling.
Collapse
Affiliation(s)
- M Zuhaib Qayyum
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Vadim Molodtsov
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew Renda
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
15
|
Abstract
To exert their functions, RNAs adopt diverse structures, ranging from simple secondary to complex tertiary and quaternary folds. In vivo, RNA folding starts with RNA transcription, and a wide variety of processes are coupled to co-transcriptional RNA folding events, including the regulation of fundamental transcription dynamics, gene regulation by mechanisms like attenuation, RNA processing or ribonucleoprotein particle formation. While co-transcriptional RNA folding and associated co-transcriptional processes are by now well accepted as pervasive regulatory principles in all organisms, investigations into the role of the transcription machinery in co-transcriptional folding processes have so far largely focused on effects of the order in which RNA regions are produced and of transcription kinetics. Recent structural and structure-guided functional analyses of bacterial transcription complexes increasingly point to an additional role of RNA polymerase and associated transcription factors in supporting co-transcriptional RNA folding by fostering or preventing strategic contacts to the nascent transcripts. In general, the results support the view that transcription complexes can act as RNA chaperones, a function that has been suggested over 30 years ago. Here, we discuss transcription complexes as RNA chaperones based on recent examples from bacterial transcription.
Collapse
Affiliation(s)
- Nelly Said
- Freie Universität Berlin, Department Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Department Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.,Helmholtz-Zentrum Berlin Für Materialien Und Energie, Macromolecular Crystallography, Berlin, Germany
| |
Collapse
|
16
|
Larsen JS, Miller M, Oakley AJ, Dixon NE, Lewis PJ. Multiple classes and isoforms of the RNA polymerase recycling motor protein HelD. Microbiologyopen 2021; 10:e1251. [PMID: 34964291 PMCID: PMC8655204 DOI: 10.1002/mbo3.1251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
Efficient control of transcription is essential in all organisms. In bacteria, where DNA replication and transcription occur simultaneously, the replication machinery is at risk of colliding with highly abundant transcription complexes. This can be exacerbated by the fact that transcription complexes pause frequently. When pauses are long-lasting, the stalled complexes must be removed to prevent collisions with either another transcription complex or the replication machinery. HelD is a protein that represents a new class of ATP-dependent motor proteins distantly related to helicases. It was first identified in the model Gram-positive bacterium Bacillus subtilis and is involved in removing and recycling stalled transcription complexes. To date, two classes of HelD have been identified: one in the low G+C and the other in the high G+C Gram-positive bacteria. In this work, we have undertaken the first comprehensive investigation of the phylogenetic diversity of HelD proteins. We show that genes in certain bacterial classes have been inherited by horizontal gene transfer, many organisms contain multiple expressed isoforms of HelD, some of which are associated with antibiotic resistance, and that there is a third class of HelD protein found in Gram-negative bacteria. In summary, HelD proteins represent an important new class of transcription factors associated with genome maintenance and antibiotic resistance that are conserved across the Eubacterial kingdom.
Collapse
Affiliation(s)
- Joachim S Larsen
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Michael Miller
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Aaron J Oakley
- School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Nicholas E Dixon
- School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Peter J Lewis
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
17
|
Wiedermannová J, Krásný L. β-CASP proteins removing RNA polymerase from DNA: when a torpedo is needed to shoot a sitting duck. Nucleic Acids Res 2021; 49:10221-10234. [PMID: 34551438 PMCID: PMC8501993 DOI: 10.1093/nar/gkab803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
During the first step of gene expression, RNA polymerase (RNAP) engages DNA to transcribe RNA, forming highly stable complexes. These complexes need to be dissociated at the end of transcription units or when RNAP stalls during elongation and becomes an obstacle (‘sitting duck’) to further transcription or replication. In this review, we first outline the mechanisms involved in these processes. Then, we explore in detail the torpedo mechanism whereby a 5′–3′ RNA exonuclease (torpedo) latches itself onto the 5′ end of RNA protruding from RNAP, degrades it and upon contact with RNAP, induces dissociation of the complex. This mechanism, originally described in Eukaryotes and executed by Xrn-type 5′–3′ exonucleases, was recently found in Bacteria and Archaea, mediated by β-CASP family exonucleases. We discuss the mechanistic aspects of this process across the three kingdoms of life and conclude that 5′–3′ exoribonucleases (β-CASP and Xrn families) involved in the ancient torpedo mechanism have emerged at least twice during evolution.
Collapse
Affiliation(s)
- Jana Wiedermannová
- Correspondence may also be addressed to Jana Wiedermannová. Tel: +44 191 208 3226; Fax: +44 191 208 3205;
| | - Libor Krásný
- To whom correspondence should be addressed. Tel: +420 241063208;
| |
Collapse
|
18
|
Pei HH, Hilal T, Chen ZA, Huang YH, Gao Y, Said N, Loll B, Rappsilber J, Belogurov GA, Artsimovitch I, Wahl MC. The δ subunit and NTPase HelD institute a two-pronged mechanism for RNA polymerase recycling. Nat Commun 2020; 11:6418. [PMID: 33339827 PMCID: PMC7749165 DOI: 10.1038/s41467-020-20159-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Cellular RNA polymerases (RNAPs) can become trapped on DNA or RNA, threatening genome stability and limiting free enzyme pools, but how RNAP recycling into active states is achieved remains elusive. In Bacillus subtilis, the RNAP δ subunit and NTPase HelD have been implicated in RNAP recycling. We structurally analyzed Bacillus subtilis RNAP-δ-HelD complexes. HelD has two long arms: a Gre cleavage factor-like coiled-coil inserts deep into the RNAP secondary channel, dismantling the active site and displacing RNA, while a unique helical protrusion inserts into the main channel, prying the β and β' subunits apart and, aided by δ, dislodging DNA. RNAP is recycled when, after releasing trapped nucleic acids, HelD dissociates from the enzyme in an ATP-dependent manner. HelD abundance during slow growth and a dimeric (RNAP-δ-HelD)2 structure that resembles hibernating eukaryotic RNAP I suggest that HelD might also modulate active enzyme pools in response to cellular cues.
Collapse
Affiliation(s)
- Hao-Hong Pei
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraβe 6, 14195, Berlin, Germany
| | - Tarek Hilal
- Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy and Core Facility BioSupraMol, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Zhuo A Chen
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Yong-Heng Huang
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraβe 6, 14195, Berlin, Germany
| | - Yuan Gao
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraβe 6, 14195, Berlin, Germany
| | - Nelly Said
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraβe 6, 14195, Berlin, Germany
| | - Bernhard Loll
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraβe 6, 14195, Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
- University of Edinburgh, Wellcome Centre for Cell Biology, Edinburgh, EH9 3BF, UK
| | | | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraβe 6, 14195, Berlin, Germany.
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, 12489, Berlin, Germany.
| |
Collapse
|
19
|
Newing TP, Oakley AJ, Miller M, Dawson CJ, Brown SHJ, Bouwer JC, Tolun G, Lewis PJ. Molecular basis for RNA polymerase-dependent transcription complex recycling by the helicase-like motor protein HelD. Nat Commun 2020; 11:6420. [PMID: 33339820 PMCID: PMC7749167 DOI: 10.1038/s41467-020-20157-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
In bacteria, transcription complexes stalled on DNA represent a major source of roadblocks for the DNA replication machinery that must be removed in order to prevent damaging collisions. Gram-positive bacteria contain a transcription factor HelD that is able to remove and recycle stalled complexes, but it was not known how it performed this function. Here, using single particle cryo-electron microscopy, we have determined the structures of Bacillus subtilis RNA polymerase (RNAP) elongation and HelD complexes, enabling analysis of the conformational changes that occur in RNAP driven by HelD interaction. HelD has a 2-armed structure which penetrates deep into the primary and secondary channels of RNA polymerase. One arm removes nucleic acids from the active site, and the other induces a large conformational change in the primary channel leading to removal and recycling of the stalled polymerase, representing a novel mechanism for recycling transcription complexes in bacteria.
Collapse
Affiliation(s)
- Timothy P Newing
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Aaron J Oakley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Michael Miller
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Catherine J Dawson
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Simon H J Brown
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - James C Bouwer
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Gökhan Tolun
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| | - Peter J Lewis
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|