1
|
Fu Y, Wang C, Gao Z, Liao Y, Peng M, Fu F, Li G, Su D, Guo J, Shan Y. Microbes: Drivers of Chenpi manufacturing, biotransformation, and physiological effects. Food Chem 2025; 464:141631. [PMID: 39454433 DOI: 10.1016/j.foodchem.2024.141631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Chenpi holds a rich history of both edible and medicinal applications worldwide, garnering increased attention from researchers in recent years due to its diverse physiological effects. While current research predominantly exploresed its chemical composition and physiological effects, there remains a notable gap in knowledge concerning its manufacturing, characteristic chemical substances, and the underlying mechanisms driving its physiological effects. In this review, the impacts of microbes on the manufacturing, biotransformation, and physiological effects of Chenpi were summarized, as well as the present status of product development. Furthermore, this review engaged in an in-depth discussion highlighting the challenges and shortcomings in recent research, while proposing potential directions and prospects. Additionally, the claim that "The longer the aging, the better the quality" of Chenpi was scientifically evaluated for the first time, providing a solid theoretical foundation for advancing the Chenpi industry.
Collapse
Affiliation(s)
- Yanjiao Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Chao Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhipeng Gao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Yanfang Liao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingfang Peng
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Fuhua Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Donglin Su
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
2
|
Niu W, Liu J, Duan Y, Zhong L, Pang L, Zhong G, Zhang Y, Bian X. Biosynthesis of Nonribosomal Peptides Chitinimides Reveal a Special Type of Thioesterase Domains. Chemistry 2024; 30:e202402763. [PMID: 39298149 DOI: 10.1002/chem.202402763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Indexed: 11/01/2024]
Abstract
Non-ribosomal peptide synthetases (NRPSs) and their tailored enzymes have diverse biological functions. In this study, we investigated the biosynthesis and function of chitinimides, which belong to the non-ribosomal peptide (NRP) subfamily featuring a pyrrolidine-containing part (X part) connected to the polypeptide chain via an ester bond. A conserved gene cassette, chmHIJK, is responsible for oxyacylation of the pyrrolidine moiety in the X part. The thioesterase (TE) domain of ChmC (ChmC-TE) catalyzes transesterification reactions with a free X part or methanol as a nucleophilic reagent to form different chitinimides. The crucial amino acid residues in the ChmC-TE domains responsible for the specific recognition of the X part were identified, and they were conserved in all the biosynthetic pathways of this NRP subfamily to form a signature motif, YNHNR, suggesting a special type of TE domain in NRPSs. Chitinimides demonstrate the biological function of promoting the swarming ability of the native producer. This study provides deep insights into the biosynthesis of this special NRP subfamily, and shows that the special TE domain could be used to generate diverse NRPs by combinatorial biosynthesis.
Collapse
Affiliation(s)
- Weijing Niu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Jiaqi Liu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Yuwei Duan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Lin Zhong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Linlin Pang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Guannan Zhong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
3
|
Wang Y, Shi YN, Xiang H, Shi YM. Exploring nature's battlefield: organismic interactions in the discovery of bioactive natural products. Nat Prod Rep 2024; 41:1630-1651. [PMID: 39316448 DOI: 10.1039/d4np00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Covering: up to March 2024.Microbial natural products have historically been a cornerstone for the discovery of therapeutic agents. Advanced (meta)genome sequencing technologies have revealed that microbes harbor far greater biosynthetic capabilities than previously anticipated. However, despite the application of CRISPR/Cas-based gene editing and high-throughput technologies to activate silent biosynthetic gene clusters, the rapid identification of new natural products has not led to a proportional increase in the discovery rate of lead compounds or drugs. A crucial issue in this gap may be insufficient knowledge about the inherent biological and physiological functions of microbial natural products. Addressing this gap necessitates recognizing that the generation of functional natural products is deeply rooted in the interactions between the producing microbes and other (micro)organisms within their ecological contexts, an understanding that is essential for harnessing their potential therapeutic benefits. In this review, we highlight the discovery of functional microbial natural products from diverse niches, including those associated with humans, nematodes, insects, fungi, protozoa, plants, and marine animals. Many of these findings result from an organismic-interaction-guided strategy using multi-omic approaches. The current importance of this topic lies in its potential to advance drug discovery in an era marked by increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Yuyang Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yan-Ni Shi
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Hao Xiang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Ming Shi
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Pistorius D, Richard E, Buntin K, Dresen K, Wollbrett S, Weber E, Haberkorn A, Manchado E, Petersen F. Condensation Domain Editing of the FR900359 Assembly Line Yields a Novel Analog Amenable to Late-Stage Functionalization. Chembiochem 2024; 25:e202400491. [PMID: 39076125 DOI: 10.1002/cbic.202400491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
The natural product FR900359 (FR) has generated significant attention lately, due to its characteristics as potent and selective inhibitor of Gq/11 mediated signal transduction of associated G protein-coupled receptors (GPCRs). This makes FR both a widely used pharmacological tool compound and a lead molecule for targeted cancer therapy. The exploration of structure-activity-relationship (SAR) of the scaffold by total synthesis has been complicated by its structural complexity and its incompatibility with standard approaches of solid-phase peptide synthesis. Options for late-stage functionalization of FR are limited due to a lack of tractable functional groups. Here we present a mixed approach combining (i) genetic engineering of the FR-assembly line in Chromobacterium vaccinii, to obtain a novel FR analog featuring a primary amine, with (ii) its subsequent synthetic modification and biological profiling for further SAR exploration of the FR scaffold.
Collapse
Affiliation(s)
- Dominik Pistorius
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Etienne Richard
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Kathrin Buntin
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Kathrin Dresen
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Séverine Wollbrett
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Eric Weber
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Anne Haberkorn
- Oncology Disease Area, Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Eusebio Manchado
- Oncology Disease Area, Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Frank Petersen
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| |
Collapse
|
5
|
Dreckmann TM, Fritz L, Kaiser CF, Bouhired SM, Wirtz DA, Rausch M, Müller A, Schneider T, König GM, Crüsemann M. Biosynthesis of the corallorazines, a widespread class of antibiotic cyclic lipodipeptides. RSC Chem Biol 2024:d4cb00157e. [PMID: 39184525 PMCID: PMC11342130 DOI: 10.1039/d4cb00157e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Corallorazines are cyclic lipodipeptide natural products produced by the myxobacterium Corallococcus coralloides B035. To decipher the basis of corallorazine biosynthesis, the corallorazine nonribosomal peptide synthetase (NRPS) biosynthetic gene cluster crz was identified and analyzed in detail. Here, we present a model of corallorazine biosynthesis, supported by bioinformatic analyses and in vitro investigations on the bimodular NRPS synthesizing the corallorazine core. Corallorazine biosynthesis shows several distinct features, such as the presence of a dehydrating condensation domain, and a unique split adenylation domain on two open reading frames. Using an alternative fatty acyl starter unit, the first steps of corallorazine biosynthesis were characterized in vitro, supporting our biosynthetic model. The dehydrating condensation domain was bioinformatically analyzed in detail and compared to other modifying C domains, revealing unreported specific sequence motives for this domain subfamily. Using global bioinformatics analyses, we show that the crz gene cluster family is widespread among bacteria and encodes notable chemical diversity. Corallorazine A displays moderate antimicrobial activity against selected Gram-positive and Gram-negative bacteria. Mode of action studies comprising whole cell analysis and in vitro test systems revealed that corallorazine A inhibits bacterial transcription by targeting the DNA-dependent RNA polymerase.
Collapse
Affiliation(s)
- Teresa M Dreckmann
- Institute of Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Lisa Fritz
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn Meckenheimer Allee 168 53115 Bonn Germany
| | - Christian F Kaiser
- Institute of Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Sarah M Bouhired
- Institute of Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Daniel A Wirtz
- Institute of Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Marvin Rausch
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn Meckenheimer Allee 168 53115 Bonn Germany
| | - Anna Müller
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn Meckenheimer Allee 168 53115 Bonn Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn Meckenheimer Allee 168 53115 Bonn Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne Bonn Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| |
Collapse
|
6
|
Bonifer C, Hanke W, Mühle J, Löhr F, Becker-Baldus J, Nagel J, Schertler GFX, Müller CE, König GM, Hilger D, Glaubitz C. Structural response of G protein binding to the cyclodepsipeptide inhibitor FR900359 probed by NMR spectroscopy. Chem Sci 2024; 15:12939-12956. [PMID: 39148790 PMCID: PMC11323312 DOI: 10.1039/d4sc01950d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024] Open
Abstract
The cyclodepsipeptide FR900359 (FR) and its analogs are able to selectively inhibit the class of Gq proteins by blocking GDP/GTP exchange. The inhibitor binding site of Gq has been characterized by X-ray crystallography, and various binding and functional studies have determined binding kinetics and mode of inhibition. Here we investigate isotope-labeled FR bound to the membrane-anchored G protein heterotrimer by solid-state nuclear magnetic resonance (ssNMR) and in solution by liquid-state NMR. The resulting data allowed us to identify regions of the inhibitor which show especially pronounced effects upon binding and revealed a generally rigid binding mode in the cis conformation under native-like conditions. The inclusion of the membrane environment allowed us to show a deep penetration of FR into the lipid bilayer illustrating a possible access mode of FR into the cell. Dynamic nuclear polarization (DNP)-enhanced ssNMR was used to observe the structural response of specific segments of the Gα subunit to inhibitor binding. This revealed rigidification of the switch I binding site and an allosteric response in the α5 helix as well as suppression of structural changes induced by nucleotide exchange due to inhibition by FR. Our NMR studies of the FR-G protein complex conducted directly within a native membrane environment provide important insights into the inhibitors access via the lipid membrane, binding mode, and structural allosteric effects.
Collapse
Affiliation(s)
- Christian Bonifer
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Wiebke Hanke
- Institute for Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Jonas Mühle
- Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute Forschungsstr. 111, 5232 Villigen PSI Switzerland
| | - Frank Löhr
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Johanna Becker-Baldus
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Jessica Nagel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Gebhard F X Schertler
- Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute Forschungsstr. 111, 5232 Villigen PSI Switzerland
| | - Christa E Müller
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Daniel Hilger
- Department of Pharmaceutical Chemistry, University of Marburg 35037 Marburg Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| |
Collapse
|
7
|
Chekan JR, Mydy LS, Pasquale MA, Kersten RD. Plant peptides - redefining an area of ribosomally synthesized and post-translationally modified peptides. Nat Prod Rep 2024; 41:1020-1059. [PMID: 38411572 PMCID: PMC11253845 DOI: 10.1039/d3np00042g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 02/28/2024]
Abstract
Covering 1965 to February 2024Plants are prolific peptide chemists and are known to make thousands of different peptidic molecules. These peptides vary dramatically in their size, chemistry, and bioactivity. Despite their differences, all plant peptides to date are biosynthesized as ribosomally synthesized and post-translationally modified peptides (RiPPs). Decades of research in plant RiPP biosynthesis have extended the definition and scope of RiPPs from microbial sources, establishing paradigms and discovering new families of biosynthetic enzymes. The discovery and elucidation of plant peptide pathways is challenging due to repurposing and evolution of housekeeping genes as both precursor peptides and biosynthetic enzymes and due to the low rates of gene clustering in plants. In this review, we highlight the chemistry, biosynthesis, and function of the known RiPP classes from plants and recommend a nomenclature for the recent addition of BURP-domain-derived RiPPs termed burpitides. Burpitides are an emerging family of cyclic plant RiPPs characterized by macrocyclic crosslinks between tyrosine or tryptophan side chains and other amino acid side chains or their peptide backbone that are formed by copper-dependent BURP-domain-containing proteins termed burpitide cyclases. Finally, we review the discovery of plant RiPPs through bioactivity-guided, structure-guided, and gene-guided approaches.
Collapse
Affiliation(s)
- Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Michael A Pasquale
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Paquette AR, Brazeau-Henrie JT, Boddy CN. Thioesterases as tools for chemoenzymatic synthesis of macrolactones. Chem Commun (Camb) 2024; 60:3379-3388. [PMID: 38456624 DOI: 10.1039/d4cc00401a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Macrocycles are a key functional group that can impart unique properties into molecules. Their synthesis has led to the development of many outstanding chemical methodologies and yet still remains challenging. Thioesterase (TE) domains are frequently responsible for macrocyclization in natural product biosynthesis and provide unique strengths for the enzymatic synthesis of macrocycles. In this feature article, we describe our work to characterize the substrate selectivity of TEs and to use these enzymes as biocatalysts. Our efforts have shown that the linear thioester activated substrates are loaded on TEs with limited substrate selectivity to generate acyl-enzyme intermediates. We show that cyclization of the acyl-enzyme intermediates can be highly selective, with competing hydrolysis of the acyl-enzyme intermediates. The mechanisms controlling TE-mediated macrocyclization versus hydrolysis are a significant unsolved problem in TE biochemistry. The potential of TEs as biocatalysts was demonstrated by using them in the chemoenzymatic total synthesis of macrocyclic depsipeptide natural products. This article highlights the strengths and potential of TEs as biocatalysts as well as their limitations, opening exciting research opportunities including TE engineering to optimize these powerful biocatalysts.
Collapse
Affiliation(s)
- André R Paquette
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada K1N 6N5.
| | - Jordan T Brazeau-Henrie
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada K1N 6N5.
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada K1N 6N5.
| |
Collapse
|
9
|
Hashimoto T, Suenaga H, Amagai K, Hashimoto J, Kozone I, Takahashi S, Shin-Ya K. In Vitro Module Editing Of NRPS Enables Production Of Highly Potent G q -Signaling Inhibitor FR900359 Derived From Unculturable Plant Symbiont. Angew Chem Int Ed Engl 2024; 63:e202317805. [PMID: 38238265 DOI: 10.1002/anie.202317805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 02/03/2024]
Abstract
Heterotrimeric G proteins are key mediators in the signaling of G protein-coupled receptors (GPCR) that are involved in a plethora of important physiological processes and thus major targets of pharmaceutical drugs. The cyclic depsipeptides YM-254890 and FR900359 are strong and selective inhibitors of the Gq subfamily of G proteins. FR900359 was first reported to be produced by unculturable plant symbiont, however, a culturable FR900359 producer was discovered recently by the standard strategy, screening of the producing strain from the environment. As another strategy, we introduce herein the different way to supply natural compounds of unculturable microorganism origin. We therefore embarked on constructing an artificial biosynthetic gene cluster (BGC) for FR900359 with YM-254890 BGC as a template using "in vitro module editing" technology, first developed for the modification of type-I PKS BGCs, to edit YM-254890 BGC. The resulting artificial BGCs coding FR900359 were heterologously expressed in the Pseudomonas putida KT2440 host strain.
Collapse
Affiliation(s)
- Takuya Hashimoto
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hikaru Suenaga
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Keita Amagai
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Ikuko Kozone
- Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| |
Collapse
|
10
|
Wang S, Wu K, Tang YJ, Deng H. Dehydroamino acid residues in bioactive natural products. Nat Prod Rep 2024; 41:273-297. [PMID: 37942836 PMCID: PMC10880069 DOI: 10.1039/d3np00041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 11/10/2023]
Abstract
Covering: 2000 to up to 2023α,β-Dehydroamino acids (dhAAs) are unsaturated nonproteinogenic amino acids found in a wide array of naturally occurring peptidyl metabolites, predominantly those from bacteria. Other organisms, such as fungi, higher plants and marine invertebrates, have also been found to produce dhAA-containing peptides. The α,β-unsaturation in dhAAs has profound effects on the properties of these molecules. They display significant synthetic flexibility, readily undergoing reactions such as Michael additions, transition-metal-catalysed cross-couplings, and cycloadditions. These residues in peptides/proteins also exhibit great potential in bioorthogonal applications using click chemistry. Peptides containing contiguous dhAA residues have been extensively investigated in the field of foldamers, self-assembling supermolecules that mimic biomacromolecules such as proteins to fold into well-defined conformations. dhAA residues in these peptidyl materials tend to form a 2.05-helix. As a result, stretches of dhAA residues arrange in an extended conformation. In particular, peptidyl foldamers containing β-enamino acid units display interesting conformational, electronic, and supramolecular aggregation properties that can be modulated by light-dependent E-Z isomerization. Among approximately 40 dhAAs found in the natural product inventory, dehydroalanine (Dha) and dehydrobutyrine (Dhb) are the most abundant. Dha is the simplest dehydro-α-amino acid, or α-dhAA, without any geometrical isomers, while its re-arranged isomer, 3-aminoacrylic acid (Aaa or ΔβAla), is the simplest dehydro-β-amino acid, or β-enamino acid, and displays E/Z isomerism. Dhb is the simplest α-dhAA that exhibits E/Z isomerism. The Z-isomer of Dhb (Z-Dhb) is sterically favourable and is present in the majority of naturally occurring peptides containing Dhb residues. Dha and Z-Dhb motifs are commonly found in ribosomally synthesized and post-translationally modified peptides (RiPPs). In the last decade, the formation of Dha and Dhb motifs in RiPPs has been extensively investigated, which will be briefly discussed in this review. The formation of other dhAA residues in natural products (NPs) is, however, less understood. In this review, we will discuss recent advances in the biosynthesis of peptidyl NPs containing unusual dhAA residues and cryptic dhAA residues. The proposed biosynthetic pathways of these natural products will also be discussed.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Kewen Wu
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| |
Collapse
|
11
|
Voss JH. Recommended Tool Compounds: Application of YM-254890 and FR900359 to Interrogate Gα q/11-Mediated Signaling Pathways. ACS Pharmacol Transl Sci 2023; 6:1790-1800. [PMID: 38093837 PMCID: PMC10714435 DOI: 10.1021/acsptsci.3c00214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2024]
Abstract
The macrocyclic depsipeptides YM-254890 (YM) and FR900359 (FR) are natural products, which inhibit heterotrimeric Gαq/11 proteins with high potency and outstanding selectivity. Historically, pharmacological modulation of Gα proteins was only achieved by treatment with pertussis toxin and cholera toxin, whose application can be tedious and is restricted to the inhibition of Gαi/o proteins and activation of Gαs proteins, respectively. The breakthrough discovery and characterization of YM and FR rendered the closely related Gαq, Gα11, and Gα14 proteins amenable to pharmacological inhibition, and since then, both compounds have become widely used in molecular pharmacology and were also proven to be efficacious in animal models of disease. In the past years, both YM and FR were thoroughly characterized and have substantially contributed to an improved understanding of Gαq/11 signaling on a molecular and cellular level. Yet, the possibilities to interrogate Gαq/11 signaling in complex systems have only been exploited in a very limited number of studies, whose promising initial results warrant further application of YM and FR in basic and translational research. As both compounds have become commercially available as of late, this review focuses on their application in cell-based assays and in vivo systems, highlighting their qualities as tool compounds and providing instructions for their use.
Collapse
Affiliation(s)
- Jan Hendrik Voss
- Department of Physiology and Pharmacology,
Section of Receptor Biology and Signaling, Karolinska Institutet, S-171 65 Stockholm, Sweden
| |
Collapse
|
12
|
Hanke W, Alenfelder J, Liu J, Gutbrod P, Kehraus S, Crüsemann M, Dörmann P, Kostenis E, Scholz M, König GM. The Bacterial G q Signal Transduction Inhibitor FR900359 Impairs Soil-Associated Nematodes. J Chem Ecol 2023; 49:549-569. [PMID: 37453001 PMCID: PMC10725363 DOI: 10.1007/s10886-023-01442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
The cyclic depsipeptide FR900359 (FR) is derived from the soil bacterium Chromobacterium vaccinii and known to bind Gq proteins of mammals and insects, thereby abolishing the signal transduction of their Gq protein-coupled receptors, a process that leads to severe physiological consequences. Due to their highly conserved structure, Gq family of proteins are a superior ecological target for FR producing organisms, resulting in a defense towards a broad range of harmful organisms. Here, we focus on the question whether bacteria like C. vaccinii are important factors in soil in that their secondary metabolites impair, e.g., plant harming organisms like nematodes. We prove that the Gq inhibitor FR is produced under soil-like conditions. Furthermore, FR inhibits heterologously expressed Gαq proteins of the nematodes Caenorhabditis elegans and Heterodera schachtii in the micromolar range. Additionally, in vivo experiments with C. elegans and the plant parasitic cyst nematode H. schachtii demonstrated that FR reduces locomotion of C. elegans and H. schachtii. Finally, egg-laying of C. elegans and hatching of juvenile stage 2 of H. schachtii from its cysts is inhibited by FR, suggesting that FR might reduce nematode dispersion and proliferation. This study supports the idea that C. vaccinii and its excreted metabolome in the soil might contribute to an ecological equilibrium, maintaining and establishing the successful growth of plants.
Collapse
Affiliation(s)
- Wiebke Hanke
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Jun Liu
- Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - CAESAR, Ludwig-Erhard-Allee 2, D-53175, Bonn, Germany
| | - Philipp Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
- Bonn International Graduate School - Land and Food, University of Bonn, Katzenburgweg 9, D-53115, Bonn, Germany
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Monika Scholz
- Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - CAESAR, Ludwig-Erhard-Allee 2, D-53175, Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany.
| |
Collapse
|
13
|
Wirtz DA, Schneberger N, Klöppel S, Richarz R, Geyer M, König GM, Hagelueken G, Crüsemann M. Adenylation Domain-Guided Recruitment of Trans-Acting Nonheme Monooxygenases in Nonribosomal Peptide Biosynthesis. ACS Chem Biol 2023; 18:1748-1759. [PMID: 37366538 DOI: 10.1021/acschembio.3c00106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Nonheme diiron monooxygenases (NHDMs) interact with nonribosomal peptide synthetase (NRPS) assembly lines to install β-hydroxylations at thiolation-domain-bound amino acids during nonribosomal peptide biosynthesis. The high potential of this enzyme family to diversify the products of engineered assembly lines is disproportionate to the currently small knowledge about their structures and mechanisms of substrate recognition. Here, we report the crystal structure of FrsH, the NHDM which catalyzes the β-hydroxylation of l-leucines during biosynthesis of the depsipeptide G protein inhibitor FR900359. Using biophysical approaches, we provide evidence that FrsH interacts with the cognate monomodular NRPS FrsA. By AlphaFold modeling and mutational studies, we detect and examine structural features within the assembly line crucial to recruit FrsH for leucine β-hydroxylation. These are, in contrast to cytochrome-dependent NRPS β-hydroxylases, not located on the thiolation domain, but on the adenylation domain. FrsH can be functionally substituted by homologous enzymes from biosyntheses of the cell-wall-targeting antibiotics lysobactin and hypeptin, indicating that these features are generally applicable to members of the family of trans-acting NHDMs. These insights give important directions for the construction of artificial assembly lines to yield bioactive and chemically complex peptide products.
Collapse
Affiliation(s)
- Daniel A Wirtz
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Niels Schneberger
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Sophie Klöppel
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - René Richarz
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Gregor Hagelueken
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
14
|
Voss JH, Crüsemann M, Bartling CR, Kehraus S, Inoue A, König GM, Strømgaard K, Müller CE. Structure-affinity and structure-residence time relationships of macrocyclic Gα q protein inhibitors. iScience 2023; 26:106492. [PMID: 37091255 PMCID: PMC10119753 DOI: 10.1016/j.isci.2023.106492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
The macrocyclic depsipeptides YM-254890 (YM) and FR900359 (FR) are potent inhibitors of Gαq/11 proteins. They are important pharmacological tools and have potential as therapeutic drugs. The hydrogenated, tritium-labeled YM and FR derivatives display largely different residence times despite similar structures. In the present study we established a competition-association binding assay to determine the dissociation kinetics of unlabeled Gq protein inhibitors. Structure-affinity and structure-residence time relationships were analyzed. Small structural modifications had a large impact on residence time. YM and FR exhibited 4- to 10-fold higher residence times than their hydrogenated derivatives. While FR showed pseudo-irreversible binding, YM displayed much faster dissociation from its target. The isopropyl anchor present in FR and some derivatives was essential for slow dissociation. These data provide a basis for future drug design toward modulating residence times of macrocyclic Gq protein inhibitors, which has been recognized as a crucial determinant for therapeutic outcome.
Collapse
Affiliation(s)
- Jan H. Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Christian R.O. Bartling
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Stefan Kehraus
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Asuka Inoue
- Tohoku University, Graduate School of Pharmaceutical Sciences, Sendai, Miyagi 980-8578, Japan
| | - Gabriele M. König
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Corresponding author
| |
Collapse
|
15
|
Pistorius D, Buntin K, Richard E, Rust M, Bouquet C, Wollbrett S, Weber E, Dietschin D, Bruccoleri R, Oakeley E, Petersen F. Valhidepsin Lipopeptides from Chromobacterium vaccinii: Structures, Biosynthesis, and Coregulation with FR900359 Production. JOURNAL OF NATURAL PRODUCTS 2023; 86:246-255. [PMID: 36745695 DOI: 10.1021/acs.jnatprod.2c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microbial secondary metabolites continue to provide a valuable source of both chemical matter and inspiration for drug discovery in a broad range of therapeutic areas. Beyond this, the corresponding microorganisms represent a sustainable modality for biotechnological production of structurally complex molecules at the quantities required for drug development or even commercial manufacturing. Chromobacterium vaccinii, which has recently been reported as a producer of the pharmacologically highly important Gq inhibitor FR900359 (FR), represents such an example. The characterization of an orphan biosynthetic gene cluster (BGC) located directly downstream of the frs BCG led to the discovery of eight new lipopeptides, valhidepsins A-H (1-8), produced by C. vaccinii. Their chemical structures were elucidated through analysis of 1D and 2D NMR data and high-resolution MS/MS fragmentation methods. The valhidepsins did not display significant antibiotic nor cytotoxic activities but showed surfactant properties. The cluster-compound correlation was demonstrated by generation of a knockout mutant, which abolished production of valhidepsins. This knockout mutant yielded a significantly increased isolated yield of FR.
Collapse
Affiliation(s)
- Dominik Pistorius
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Kathrin Buntin
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Etienne Richard
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Michael Rust
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Caroline Bouquet
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Séverine Wollbrett
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Eric Weber
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Daniele Dietschin
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | | | - Edward Oakeley
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Frank Petersen
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| |
Collapse
|
16
|
Medcalf MR, Krueger RL, Medcalf ZT, Rosston PA, Zhu Y, Kaltenbronn KM, Blumer KJ, Moeller KD. Building Chemical Probes Based on the Natural Products YM-254890 and FR900359: Advances toward Scalability. SYNTHESIS-STUTTGART 2023; 55:90-106. [PMID: 36644007 PMCID: PMC9838186 DOI: 10.1055/a-1873-6891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The biological activity of natural products YM-254890 (YM) and FR900359 (FR) has led to significant interest in both their synthesis and the construction of more simplified analogs. While the simplified analogs lose much of the potency of the natural products, they are of interest in their own right, and their synthesis has revealed synthetic barriers to the family of molecules that need to be addressed if a scalable synthesis of YM and FR analogs is to be constructed. In the work described here, a synthetic route to simplified analogs of YM is examined and strategies for circumventing some of the challenges inherent to constructing the molecules are forwarded.
Collapse
Affiliation(s)
| | - Ruby L. Krueger
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Zach T. Medcalf
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Peter A. Rosston
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Yu Zhu
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Kevin M. Kaltenbronn
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kendall J. Blumer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin D. Moeller
- Department of Chemistry, Washington University, St. Louis, MO, USA
| |
Collapse
|
17
|
Fraley AE, Dieterich CL, Mabesoone MFJ, Minas HA, Meoded RA, Hemmerling F, Piel J. Structure of a Promiscuous Thioesterase Domain Responsible for Branching Acylation in Polyketide Biosynthesis. Angew Chem Int Ed Engl 2022; 61:e202206385. [DOI: 10.1002/anie.202206385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Amy E. Fraley
- Department of Biology, Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Cora L. Dieterich
- Department of Biology, Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Mathijs F. J. Mabesoone
- Department of Biology, Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Hannah A. Minas
- Department of Biology, Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Roy A Meoded
- Department of Biology, Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Franziska Hemmerling
- Department of Biology, Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Jörn Piel
- Department of Biology, Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
18
|
Fraley AE, Dieterich C, Mabesoone M, Minas HA, Meoded RA, Hemmerling F, Piel J. Structure of a promiscuous thioesterase domain responsible for branching acylation in polyketide biosynthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amy E. Fraley
- Eidgenossische Technische Hochschule Zurich Institute of Microbiology SWITZERLAND
| | - Cora Dieterich
- Eidgenossische Technische Hochschule Zurich Institute of Microbiology SWITZERLAND
| | - Mathijs Mabesoone
- Eidgenossische Technische Hochschule Zurich Institute of Microbiology SWITZERLAND
| | - Hannah A. Minas
- Eidgenossische Technische Hochschule Zurich Institute of Microbiology SWITZERLAND
| | - Roy A. Meoded
- Eidgenossische Technische Hochschule Zurich Institute of Microbiology SWITZERLAND
| | - Franziska Hemmerling
- Eidgenossische Technische Hochschule Zurich Institute of Microbiology SWITZERLAND
| | - Jörn Piel
- ETH Zürich Department of Biology Vladimir-Prelog-Weg 4 8093 Zürich SWITZERLAND
| |
Collapse
|
19
|
Shi YM, Hirschmann M, Shi YN, Bode HB. Cleavage Off-Loading and Post-assembly-Line Conversions Yield Products with Unusual Termini during Biosynthesis. ACS Chem Biol 2022; 17:2221-2228. [PMID: 35860925 PMCID: PMC9396620 DOI: 10.1021/acschembio.2c00367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Piscibactins and photoxenobactins are metallophores and
virulence
factors, whose biosynthetic gene cluster, termed pxb, is the most prevalent polyketide synthase/non-ribosomal peptide
synthetase hybrid cluster across entomopathogenic bacteria. They are
structurally similar to yersiniabactin, which contributes to the virulence
of the human pathogen Yersinia pestis. However, the pxb-derived products feature various
chain lengths and unusual carboxamide, thiocarboxylic acid, and dithioperoxoate
termini, which are rarely found in thiotemplated biosyntheses. Here,
we characterize the pxb biosynthetic logic by gene
deletions, site-directed mutagenesis, and isotope labeling experiments.
Notably, we propose that it involves (1) heterocyclization domains
with various catalytic efficiencies catalyzing thiazoline and amide/thioester
bond formation and (2) putative C–N and C–S bond cleavage
off-loading manners, which lead to products with different chain lengths
and usual termini. Additionally, the post-assembly-line spontaneous
conversions of the biosynthetic end product contribute to production
titers of the other products in the culture medium. This study broadens
our knowledge of thiotemplated biosynthesis and how bacterial host
generate a chemical arsenal.
Collapse
Affiliation(s)
- Yi-Ming Shi
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.,Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Merle Hirschmann
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Yan-Ni Shi
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.,Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Helge B Bode
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.,Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.,Chemical Biology, Department of Chemistry, Philipps University Marburg, 35043 Marburg, Germany.,Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt am Main, Germany
| |
Collapse
|
20
|
Hemmerling F, Meoded RA, Fraley AE, Minas HA, Dieterich CL, Rust M, Ueoka R, Jensen K, Helfrich EJN, Bergande C, Biedermann M, Magnus N, Piechulla B, Piel J. Modular Halogenation, α-Hydroxylation, and Acylation by a Remarkably Versatile Polyketide Synthase. Angew Chem Int Ed Engl 2022; 61:e202116614. [PMID: 35020279 DOI: 10.1002/anie.202116614] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/14/2022]
Abstract
Bacterial multimodular polyketide synthases (PKSs) are large enzymatic assembly lines that synthesize many bioactive natural products of therapeutic relevance. While PKS catalysis is mostly based on fatty acid biosynthetic principles, polyketides can be further diversified by post-PKS enzymes. Here, we characterized a remarkably versatile trans-acyltransferase (trans-AT) PKS from Serratia that builds structurally complex macrolides via more than ten functionally distinct PKS modules. In the oocydin PKS, we identified a new oxygenation module that α-hydroxylates polyketide intermediates, a halogenating module catalyzing backbone γ-chlorination, and modular O-acetylation by a thioesterase-like domain. These results from a single biosynthetic assembly line highlight the expansive biochemical repertoire of trans-AT PKSs and provide diverse modular tools for engineered biosynthesis from a close relative of E. coli.
Collapse
Affiliation(s)
- Franziska Hemmerling
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Roy A Meoded
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Amy E Fraley
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Hannah A Minas
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Cora L Dieterich
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Michael Rust
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Reiko Ueoka
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.,School of Marine Bioscience, Kitasato University, 1-15-1, Kitazato, Minami-ku, Sagamirhara-shi Kanagawa, 252-0373, Japan
| | - Katja Jensen
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Eric J N Helfrich
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.,Institute of Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.,LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Cedric Bergande
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Maurice Biedermann
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Nancy Magnus
- Institute for Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Birgit Piechulla
- Institute for Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| |
Collapse
|
21
|
Duban M, Cociancich S, Leclère V. Nonribosomal Peptide Synthesis Definitely Working Out of the Rules. Microorganisms 2022; 10:577. [PMID: 35336152 PMCID: PMC8949500 DOI: 10.3390/microorganisms10030577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Nonribosomal peptides are microbial secondary metabolites exhibiting a tremendous structural diversity and a broad range of biological activities useful in the medical and agro-ecological fields. They are built up by huge multimodular enzymes called nonribosomal peptide synthetases. These synthetases are organized in modules constituted of adenylation, thiolation, and condensation core domains. As such, each module governs, according to the collinearity rule, the incorporation of a monomer within the growing peptide. The release of the peptide from the assembly chain is finally performed by a terminal core thioesterase domain. Secondary domains with modifying catalytic activities such as epimerization or methylation are sometimes included in the assembly lines as supplementary domains. This assembly line structure is analyzed by bioinformatics tools to predict the sequence and structure of the final peptides according to the sequence of the corresponding synthetases. However, a constantly expanding literature unravels new examples of nonribosomal synthetases exhibiting very rare domains and noncanonical organizations of domains and modules, leading to several amazing strategies developed by microorganisms to synthesize nonribosomal peptides. In this review, through several examples, we aim at highlighting these noncanonical pathways in order for the readers to perceive their complexity.
Collapse
Affiliation(s)
- Matthieu Duban
- Université de Lille, Université de Liège, UMRT 1158 BioEcoAgro, Métabolites Secondaires d’origine Microbienne, Institut Charles Viollette, F-59000 Lille, France;
| | - Stéphane Cociancich
- CIRAD, UMR PHIM, F-34398 Montpellier, France;
- PHIM, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, F-34398 Montpellier, France
| | - Valérie Leclère
- Université de Lille, Université de Liège, UMRT 1158 BioEcoAgro, Métabolites Secondaires d’origine Microbienne, Institut Charles Viollette, F-59000 Lille, France;
| |
Collapse
|
22
|
Modular Halogenation, α‐Hydroxylation, and Acylation by a Remarkably Versatile Polyketide Synthase. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Lapadula D, Benovic JL. Targeting Oncogenic Gα q/11 in Uveal Melanoma. Cancers (Basel) 2021; 13:6195. [PMID: 34944815 PMCID: PMC8699590 DOI: 10.3390/cancers13246195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Uveal melanoma is the most common intraocular cancer in adults and arises from the transformation of melanocytes in the uveal tract. While treatment of the primary tumor is often effective, 36-50% of patients develop metastatic disease primarily to the liver. While various strategies have been used to treat the metastatic disease, there remain no effective treatments that improve survival. Significant insight has been gained into the pathways that are altered in uveal melanoma, with mutually exclusive activating mutations in the GNAQ and GNA11 genes being found in over 90% of patients. These genes encode the alpha subunits of the hetetrotrimeric G proteins, Gq and G11, and mutations result in activation of several important signaling pathways, including phospholipase C and activation of the transcription factor YAP. In this review, we discuss current efforts to target various signaling pathways in the treatment of uveal melanoma including recent efforts to target Gq and G11 in mouse models. While selective targeting of Gq and G11 provides a potential therapeutic strategy to treat uveal melanoma, it is evident that improved inhibitors and methods of delivery are needed.
Collapse
Affiliation(s)
| | - Jeffrey L. Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
24
|
Pistorius D, Buntin K, Weber E, Richard E, Bouquet C, Wollbrett S, Regenass H, Peón V, Böhm M, Kessler R, Gempeler T, Haberkorn A, Wimmer L, Lanshoeft C, Davis J, Hainzl D, D'Alessio JA, Manchado E, Petersen F. Promoter-Driven Overexpression in Chromobacterium vaccinii Facilitates Access to FR900359 and Yields Novel Low Abundance Analogs. Chemistry 2021; 28:e202103888. [PMID: 34878202 DOI: 10.1002/chem.202103888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 11/11/2022]
Abstract
Access to the cyclic depsipeptide FR900359 (FR), a selective Gq/11 protein inhibitor of high pharmacological interest and a potential lead molecule for targeted therapy of cancers with oncogenic GNAQ or GNA11 mutations (encoding Gq and G11 respectively), has been challenging ever since its initial discovery more than three decades ago. The recent discovery of Chromobacterium vaccinii as a cultivable FR producer enables the development of approaches leading to a high-yielding, scalable and sustainable biotechnological process for production of FR, thereby removing this bottleneck. Here we characterize different promoters in exchange of the native promoter of the FR assembly line, resulting in an overexpression mutant with significantly increased production of FR. Thereby, the isolation and structure elucidation of novel FR analogs of low abundance is enabled. Further, we explore the antiproliferative activities of fifteen chromodepsins against uveal melanoma cell lines harboring Gq/11 mutations and characterize the major metabolite of FR formed in plasma.
Collapse
Affiliation(s)
- Dominik Pistorius
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Kathrin Buntin
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Eric Weber
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Etienne Richard
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Caroline Bouquet
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Séverine Wollbrett
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Hugo Regenass
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Victor Peón
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Marcel Böhm
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Régis Kessler
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Thomas Gempeler
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Anne Haberkorn
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Laurin Wimmer
- Chemical & Analytical Development, Technical Research & Development, Global Drug Development, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Christian Lanshoeft
- Pharmakokinetic Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - John Davis
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Dominik Hainzl
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Joseph Anthony D'Alessio
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Eusebio Manchado
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Frank Petersen
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| |
Collapse
|
25
|
Klöppel S, Richarz R, Wirtz DA, Vasenda N, König GM, Crüsemann M. A Specialized Dehydrogenase Provides l-Phenyllactate for FR900359 Biosynthesis. Chembiochem 2021; 23:e202100569. [PMID: 34846772 PMCID: PMC9299796 DOI: 10.1002/cbic.202100569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Indexed: 11/30/2022]
Abstract
d‐Phenyllactate (PLA) is a component of the selective Gq protein inhibitor and nonribosomal cyclic depsipeptide FR900359 (FR). Here we report a detailed biochemical investigation of pla biosynthesis and its incorporation into the natural product FR. The enzyme FrsC, member of the lactate/malate dehydrogenase superfamily, was shown to catalyze the formation of l‐PLA from phenylpyruvate. FrsC was kinetically characterized and its substrate specificity determined. Incorporation of l‐PLA was probed by assaying the adenylation domain FrsE‐A3 and feeding studies with a Chromobacterium vaccinii ΔfrsC mutant, confirming preferred activation of l‐PLA followed by on‐line epimerization to d‐pla. Finally, detailed bioinformatic analyses of FrsC revealed its close relation to malate dehydrogenases from primary metabolism and suggest extensions in the substrate binding loop to be responsible for its adaptation to accepting larger aromatic substrates with high specificity.
Collapse
Affiliation(s)
- Sophie Klöppel
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - René Richarz
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Daniel A Wirtz
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Natalia Vasenda
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| |
Collapse
|
26
|
Robinson SL, Piel J, Sunagawa S. A roadmap for metagenomic enzyme discovery. Nat Prod Rep 2021; 38:1994-2023. [PMID: 34821235 PMCID: PMC8597712 DOI: 10.1039/d1np00006c] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 12/13/2022]
Abstract
Covering: up to 2021Metagenomics has yielded massive amounts of sequencing data offering a glimpse into the biosynthetic potential of the uncultivated microbial majority. While genome-resolved information about microbial communities from nearly every environment on earth is now available, the ability to accurately predict biocatalytic functions directly from sequencing data remains challenging. Compared to primary metabolic pathways, enzymes involved in secondary metabolism often catalyze specialized reactions with diverse substrates, making these pathways rich resources for the discovery of new enzymology. To date, functional insights gained from studies on environmental DNA (eDNA) have largely relied on PCR- or activity-based screening of eDNA fragments cloned in fosmid or cosmid libraries. As an alternative, shotgun metagenomics holds underexplored potential for the discovery of new enzymes directly from eDNA by avoiding common biases introduced through PCR- or activity-guided functional metagenomics workflows. However, inferring new enzyme functions directly from eDNA is similar to searching for a 'needle in a haystack' without direct links between genotype and phenotype. The goal of this review is to provide a roadmap to navigate shotgun metagenomic sequencing data and identify new candidate biosynthetic enzymes. We cover both computational and experimental strategies to mine metagenomes and explore protein sequence space with a spotlight on natural product biosynthesis. Specifically, we compare in silico methods for enzyme discovery including phylogenetics, sequence similarity networks, genomic context, 3D structure-based approaches, and machine learning techniques. We also discuss various experimental strategies to test computational predictions including heterologous expression and screening. Finally, we provide an outlook for future directions in the field with an emphasis on meta-omics, single-cell genomics, cell-free expression systems, and sequence-independent methods.
Collapse
Affiliation(s)
| | - Jörn Piel
- Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| | | |
Collapse
|
27
|
Schindler F, Fragner L, Herpell JB, Berger A, Brenner M, Tischler S, Bellaire A, Schönenberger J, Li W, Sun X, Schinnerl J, Brecker L, Weckwerth W. Dissecting Metabolism of Leaf Nodules in Ardisia crenata and Psychotria punctata. Front Mol Biosci 2021; 8:683671. [PMID: 34395523 PMCID: PMC8362603 DOI: 10.3389/fmolb.2021.683671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Root-microbe interaction and its specialized root nodule structures and functions are well studied. In contrast, leaf nodules harboring microbial endophytes in special glandular leaf structures have only recently gained increased interest as plant-microbe phyllosphere interactions. Here, we applied a comprehensive metabolomics platform in combination with natural product isolation and characterization to dissect leaf and leaf nodule metabolism and functions in Ardisia crenata (Primulaceae) and Psychotria punctata (Rubiaceae). The results indicate that abiotic stress resilience plays an important part within the leaf nodule symbiosis of both species. Both species showed metabolic signatures of enhanced nitrogen assimilation/dissimilation pattern and increased polyamine levels in nodules compared to leaf lamina tissue potentially involved in senescence processes and photosynthesis. Multiple links to cytokinin and REDOX-active pathways were found. Our results further demonstrate that secondary metabolite production by endophytes is a key feature of this symbiotic system. Multiple anhydromuropeptides (AhMP) and their derivatives were identified as highly characteristic biomarkers for nodulation within both species. A novel epicatechin derivative was structurally elucidated with NMR and shown to be enriched within the leaf nodules of A. crenata. This enrichment within nodulated tissues was also observed for catechin and other flavonoids indicating that flavonoid metabolism may play an important role for leaf nodule symbiosis of A. crenata. In contrast, pavettamine was only detected in P. punctata and showed no nodule specific enrichment but a developmental effect. Further natural products were detected, including three putative unknown depsipeptide structures in A. crenata leaf nodules. The analysis presents a first metabolomics reference data set for the intimate interaction of microbes and plants in leaf nodules, reveals novel metabolic processes of plant-microbe interaction as well as the potential of natural product discovery in these systems.
Collapse
Affiliation(s)
- Florian Schindler
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Lena Fragner
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Johannes B Herpell
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Andreas Berger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Martin Brenner
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria.,Department of Pharmaceutical Sciences/Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Sonja Tischler
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Anke Bellaire
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Weimin Li
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Xiaoliang Sun
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Hanke W, Patt J, Alenfelder J, Voss JH, Zdouc MM, Kehraus S, Kim JB, Grujičić GV, Namasivayam V, Reher R, Müller CE, Kostenis E, Crüsemann M, König GM. Feature-Based Molecular Networking for the Targeted Identification of G q-Inhibiting FR900359 Derivatives. JOURNAL OF NATURAL PRODUCTS 2021; 84:1941-1953. [PMID: 34197116 DOI: 10.1021/acs.jnatprod.1c00194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Both the soil bacterium Chromobacterium vaccinii and the bacterial endosymbiont Candidatus Burkholderia crenata of the plant Ardisia crenata are producers of FR900359 (FR). This cyclic depsipeptide is a potent and selective Gq protein inhibitor used extensively to investigate the intracellular signaling of G protein coupled receptors (GPCRs). In this study, the metabolomes of both FR producers were investigated and compared using feature-based molecular networking (FBMN). As a result, 30 previously unknown FR derivatives were identified, one-third being unique to C. vaccinii. Guided by MS, a novel FR derivative, FR-6 (compound 1), was isolated, and its structure unambiguously established. In a whole-cell biosensing assay based on detection of dynamic mass redistribution (DMR) as readout for Gq inhibition, FR-6 suppressed Gq signaling with micromolar potency (pIC50 = 5.56). This functional activity was confirmed in radioligand binding assays (pKi = 7.50). This work demonstrates the power of molecular networking, guiding the way to a novel Gq-inhibiting FR derivative and underlining the potency of FR as a Gq inhibitor.
Collapse
Affiliation(s)
- Wiebke Hanke
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Julian Patt
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Judith Alenfelder
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Jan H Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Mitja M Zdouc
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Stefan Kehraus
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Jung Bong Kim
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Goran V Grujičić
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Raphael Reher
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Evi Kostenis
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| |
Collapse
|
29
|
Ióca LP, Dai Y, Kunakom S, Diaz‐Espinosa J, Krunic A, Crnkovic CM, Orjala J, Sanchez LM, Ferreira AG, Berlinck RGS, Eustáquio AS. A Family of Nonribosomal Peptides Modulate Collective Behavior in
Pseudovibrio
Bacteria Isolated from Marine Sponges**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laura P. Ióca
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Instituto de Química de São Carlos Universidade de São Paulo São Carlos SP 13560-970 Brazil
| | - Yitao Dai
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Sylvia Kunakom
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Jennifer Diaz‐Espinosa
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Aleksej Krunic
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Camila M. Crnkovic
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Jimmy Orjala
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Laura M. Sanchez
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Antonio G. Ferreira
- Departamento de Química Universidade Federal de São Carlos São Carlos SP 13565-905 Brazil
| | - Roberto G. S. Berlinck
- Instituto de Química de São Carlos Universidade de São Paulo São Carlos SP 13560-970 Brazil
| | - Alessandra S. Eustáquio
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| |
Collapse
|
30
|
Ióca LP, Dai Y, Kunakom S, Diaz-Espinosa J, Krunic A, Crnkovic CM, Orjala J, Sanchez LM, Ferreira AG, Berlinck RGS, Eustáquio AS. A Family of Nonribosomal Peptides Modulate Collective Behavior in Pseudovibrio Bacteria Isolated from Marine Sponges*. Angew Chem Int Ed Engl 2021; 60:15891-15898. [PMID: 33961724 PMCID: PMC8269750 DOI: 10.1002/anie.202017320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Indexed: 11/08/2022]
Abstract
Although swarming motility and biofilms are opposed collective behaviors, both contribute to bacterial survival and host colonization. Pseudovibrio bacteria have attracted attention because they are part of the microbiome of healthy marine sponges. Two-thirds of Pseudovibrio genomes contain a member of a nonribosomal peptide synthetase-polyketide synthase gene cluster family, which is also found sporadically in Pseudomonas pathogens of insects and plants. After developing reverse genetics for Pseudovibrio, we isolated heptapeptides with an ureido linkage and related nonadepsipeptides we termed pseudovibriamides A and B, respectively. A combination of genetics and imaging mass spectrometry experiments showed heptapetides were excreted, promoting motility and reducing biofilm formation. In contrast to lipopeptides widely known to affect motility/biofilms, pseudovibriamides are not surfactants. Our results expand current knowledge on metabolites mediating bacterial collective behavior.
Collapse
Affiliation(s)
- Laura P. Ióca
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13560-970, Brazil
| | - Yitao Dai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sylvia Kunakom
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jennifer Diaz-Espinosa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Aleksej Krunic
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Camila M. Crnkovic
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jimmy Orjala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Laura M. Sanchez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Antonio G. Ferreira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil
| | - Roberto G. S. Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13560-970, Brazil
| | - Alessandra S. Eustáquio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
31
|
Wirtz DA, Ludwig KC, Arts M, Marx CE, Krannich S, Barac P, Kehraus S, Josten M, Henrichfreise B, Müller A, König GM, Peoples AJ, Nitti A, Spoering AL, Ling LL, Lewis K, Crüsemann M, Schneider T. Biosynthesis and Mechanism of Action of the Cell Wall Targeting Antibiotic Hypeptin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel A. Wirtz
- Institute for Pharmaceutical Biology University of Bonn Nussallee 6 53115 Bonn Germany
| | - Kevin C. Ludwig
- Institute for Pharmaceutical Microbiology University of Bonn University Clinic Bonn Meckenheimer Allee 168 53115 Bonn Germany
- DZIF German Center for Infectious Research, partner site Bonn-Cologne Germany
| | - Melina Arts
- Institute for Pharmaceutical Microbiology University of Bonn University Clinic Bonn Meckenheimer Allee 168 53115 Bonn Germany
| | - Carina E. Marx
- Institute for Pharmaceutical Microbiology University of Bonn University Clinic Bonn Meckenheimer Allee 168 53115 Bonn Germany
| | - Sebastian Krannich
- Institute for Pharmaceutical Microbiology University of Bonn University Clinic Bonn Meckenheimer Allee 168 53115 Bonn Germany
| | - Paul Barac
- Institute for Pharmaceutical Biology University of Bonn Nussallee 6 53115 Bonn Germany
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology University of Bonn Nussallee 6 53115 Bonn Germany
| | - Michaele Josten
- DZIF German Center for Infectious Research, partner site Bonn-Cologne Germany
- Institute for Medical Microbiology, Immunology and Parasitology University Hospital Bonn Venusberg Campus 1 53127 Bonn Germany
| | - Beate Henrichfreise
- Institute for Pharmaceutical Microbiology University of Bonn University Clinic Bonn Meckenheimer Allee 168 53115 Bonn Germany
| | - Anna Müller
- Institute for Pharmaceutical Microbiology University of Bonn University Clinic Bonn Meckenheimer Allee 168 53115 Bonn Germany
| | - Gabriele M. König
- Institute for Pharmaceutical Biology University of Bonn Nussallee 6 53115 Bonn Germany
| | | | | | | | | | - Kim Lewis
- Department of Biology Antimicrobial Discovery Center Northeastern University Boston MA 02115 USA
| | - Max Crüsemann
- Institute for Pharmaceutical Biology University of Bonn Nussallee 6 53115 Bonn Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology University of Bonn University Clinic Bonn Meckenheimer Allee 168 53115 Bonn Germany
| |
Collapse
|
32
|
Wirtz DA, Ludwig KC, Arts M, Marx CE, Krannich S, Barac P, Kehraus S, Josten M, Henrichfreise B, Müller A, König GM, Peoples AJ, Nitti A, Spoering AL, Ling LL, Lewis K, Crüsemann M, Schneider T. Biosynthesis and Mechanism of Action of the Cell Wall Targeting Antibiotic Hypeptin. Angew Chem Int Ed Engl 2021; 60:13579-13586. [PMID: 33768646 PMCID: PMC8252469 DOI: 10.1002/anie.202102224] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Hypeptin is a cyclodepsipeptide antibiotic produced by Lysobacter sp. K5869, isolated from an environmental sample by the iChip technology, dedicated to the cultivation of previously uncultured microorganisms. Hypeptin shares structural features with teixobactin and exhibits potent activity against a broad spectrum of gram‐positive pathogens. Using comprehensive in vivo and in vitro analyses, we show that hypeptin blocks bacterial cell wall biosynthesis by binding to multiple undecaprenyl pyrophosphate‐containing biosynthesis intermediates, forming a stoichiometric 2:1 complex. Resistance to hypeptin did not readily develop in vitro. Analysis of the hypeptin biosynthetic gene cluster (BGC) supported a model for the synthesis of the octapeptide. Within the BGC, two hydroxylases were identified and characterized, responsible for the stereoselective β‐hydroxylation of four building blocks when bound to peptidyl carrier proteins. In vitro hydroxylation assays corroborate the biosynthetic hypothesis and lead to the proposal of a refined structure for hypeptin.
Collapse
Affiliation(s)
- Daniel A Wirtz
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Kevin C Ludwig
- Institute for Pharmaceutical Microbiology, University of Bonn, University Clinic Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany.,DZIF, German Center for Infectious Research, partner site Bonn-Cologne, Germany
| | - Melina Arts
- Institute for Pharmaceutical Microbiology, University of Bonn, University Clinic Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany
| | - Carina E Marx
- Institute for Pharmaceutical Microbiology, University of Bonn, University Clinic Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany
| | - Sebastian Krannich
- Institute for Pharmaceutical Microbiology, University of Bonn, University Clinic Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany
| | - Paul Barac
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Michaele Josten
- DZIF, German Center for Infectious Research, partner site Bonn-Cologne, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Beate Henrichfreise
- Institute for Pharmaceutical Microbiology, University of Bonn, University Clinic Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany
| | - Anna Müller
- Institute for Pharmaceutical Microbiology, University of Bonn, University Clinic Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | | | - Anthony Nitti
- NovoBiotic Pharmaceuticals, Cambridge, MA, 02138, USA
| | | | - Losee L Ling
- NovoBiotic Pharmaceuticals, Cambridge, MA, 02138, USA
| | - Kim Lewis
- Department of Biology, Antimicrobial Discovery Center, Northeastern University, Boston, MA, 02115, USA
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, University Clinic Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany
| |
Collapse
|
33
|
Hermes C, König GM, Crüsemann M. The chromodepsins - chemistry, biology and biosynthesis of a selective Gq inhibitor natural product family. Nat Prod Rep 2021; 38:2276-2292. [PMID: 33998635 DOI: 10.1039/d1np00005e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to April 2021The bacterial cyclic depsipeptides FR900359 (FR) and YM-254890 (YM) were shown to selectively inhibit Gαq proteins with high potency and selectivity and have recently emerged as valuable pharmacological tools due to their effective mechanism of action. Here, we summarize important aspects of this small and specialized natural product family, for which we propose the name chromodepsins, starting from their discovery, producing organisms and structural variety. We then review biosynthesis, structure-activity relationships and ecological and evolutionary aspects of the chromodepsins. Lastly, we discuss their mechanism of action, potential medicinal applications and future opportunities and challenges for further use and development of these complex inhibitor molecules from nature.
Collapse
Affiliation(s)
- Cornelia Hermes
- Institute of Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany.
| | - Gabriele M König
- Institute of Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany.
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
34
|
Schlegel JG, Tahoun M, Seidinger A, Voss JH, Kuschak M, Kehraus S, Schneider M, Matthey M, Fleischmann BK, König GM, Wenzel D, Müller CE. Macrocyclic Gq Protein Inhibitors FR900359 and/or YM-254890-Fit for Translation? ACS Pharmacol Transl Sci 2021; 4:888-897. [PMID: 33860209 DOI: 10.1021/acsptsci.1c00021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Guanine nucleotide-binding proteins (G proteins) transduce extracellular signals received by G protein-coupled receptors (GPCRs) to intracellular signaling cascades. While GPCRs represent the largest class of drug targets, G protein inhibition has only recently been recognized as a novel strategy for treating complex diseases such as asthma, inflammation, and cancer. The structurally similar macrocyclic depsipeptides FR900359 (FR) and YM-254890 (YM) are potent selective inhibitors of the Gq subfamily of G proteins. FR and YM differ in two positions, FR being more lipophilic than YM. Both compounds are utilized as pharmacological tools to block Gq proteins in vitro and in vivo. However, no detailed characterization of FR and YM has been performed, which is a prerequisite for the compounds' translation into clinical application. Here, we performed a thorough study of both compounds' physicochemical, pharmacokinetic, and pharmacological properties. Chemical stability was high across a large range of pH values, with FR being somewhat more stable than YM. Oral bioavailability and brain penetration of both depsipeptides were low. FR showed lower plasma protein binding and was metabolized significantly faster than YM by human and mouse liver microsomes. FR accumulated in lung after chronic intratracheal or intraperitoneal application, while YM was more distributed to other organs. Most strikingly, the previously observed longer residence time of FR resulted in a significantly prolonged pharmacologic effect as compared to YM in a methacholine-induced bronchoconstriction mouse model. These results prove that changes within a molecule which seem marginal compared to its structural complexity can lead to crucial pharmacological differences.
Collapse
Affiliation(s)
- Jonathan G Schlegel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Mariam Tahoun
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Alexander Seidinger
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jan H Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Markus Kuschak
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Marion Schneider
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michaela Matthey
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Daniela Wenzel
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany.,Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|