1
|
Liu Y, Zhou Y, Li Y, Kang W, Zhang Y, Xia X, Wang W. Notch Pathway Deactivation Sensitizes Breast Cancer Stem Cells toward Chemotherapy Using NIR Light-Responsive Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39689353 DOI: 10.1021/acsami.4c16278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Chemotherapy remains a major therapeutic approach to cancer treatment. However, its effectiveness can be compromised by the heterogeneity of a solid tumor, in which different cancer cell populations display varied responses to chemotherapy. Such an intratumor heterogeneous structure is maintained by the cancer stem-like cells (CSCs) with inherent capacities for self-renewal and differentiation, giving rise to diverse cell populations. To address this, we proposed a combinational strategy in which tumor lesion-targeted Notch signaling regulation was achieved to disrupt CSC-mediated cancer heterogeneity, thereby sensitizing solid tumors toward paclitaxel (PTX). Specifically, gamma-secretase inhibitor LY-411,575 was co-delivered with PTX using a near-infrared (NIR) light-controlled drug delivery system to realize targeted ablation of both differentiated cancer cells and undifferentiated CSCs. By enabling precise regulation of the Notch pathway at the tumor site through NIR light, we observed significantly elevated efficacy of chemotherapy and notable prevention of postsurgical tumor relapse while minimizing systemic side effects. The devised strategy shows promise in addressing the nonspecific inhibition of stemness across various organs, a challenge that hampers the clinical translation of gamma-secretase inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Yuwei Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Yang Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Yunong Li
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Weirong Kang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Yaming Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Xiaojiao Xia
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Iweala EEJ, Amuji DN, Oluwajembola AM, Ugbogu EA. Targeting c-Met in breast cancer: From mechanisms of chemoresistance to novel therapeutic strategies. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100204. [PMID: 39524211 PMCID: PMC11543557 DOI: 10.1016/j.crphar.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/28/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer presents a significant challenge due to its heterogeneity and propensity for developing chemoresistance, particularly in the triple-negative subtype. c-Mesenchymal epithelial transition factor (c-Met), a receptor tyrosine kinase, presents a promising target for breast cancer therapy due to its involvement in disease progression and poor prognosis. However, the heterogeneous expression of c-Met within breast cancer subtypes and individual tumors complicates targeted therapy. Also, cancer cells can develop resistance to c-Met inhibitors through various mechanisms, including bypass signaling pathways and genetic mutations. The off-target effects of c-Met inhibitors further limit their clinical utility, necessitating the development of more selective agents. To overcome these challenges, personalized treatment approaches and combination therapies are being explored to improve treatment efficacy while minimizing adverse effects. Novel c-Met inhibitors with improved selectivity and reduced off-target toxicity show promise in preclinical studies. Additionally, targeted delivery systems aim to enhance drug localization and reduce systemic toxicity. Future directions involve refining inhibitor design and integrating c-Met inhibition into personalized treatment regimens guided by molecular profiling. This review explores the mechanisms by which c-Met contributes to chemoresistance in breast cancer and current challenges in targeting c-Met for breast cancer therapy. It discusses strategies to optimize treatment outcomes, ultimately improving patient prognosis and reducing mortality rates associated with this devastating disease.
Collapse
Affiliation(s)
- Emeka Eze Joshua Iweala
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Doris Nnenna Amuji
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Abimbola Mary Oluwajembola
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | | |
Collapse
|
3
|
Alniss HY, Saber-Ayad MM, Ramadan WS, Manasa Bhamidimarri P, Msallam YA, Al-Jubeh HM, Ravi A, Menon V, Hamoudi R, El-Awady R. Transcriptomic analysis of MCF7 breast cancer cells treated with MGBs reveals a profound inhibition of estrogen receptor genes. Bioorg Chem 2024; 151:107680. [PMID: 39084151 DOI: 10.1016/j.bioorg.2024.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Breast cancer poses a significant health risk worldwide. However, the effectiveness of current chemotherapy is limited due to increasing drug resistance and side effects, making it crucial to develop new compounds with novel mechanism of action that can surpass these limitations. As a consequence of their reversible and targeted mechanism, DNA minor groove binders (MGBs) are considered as a relatively safer and more effective alternative. In this study, transcriptomic analysis was conducted to reveal the dysregulated genes and signaling pathways in MCF7 cancer cells following treatment with novel MGB ligands to gain insights into the mechanism of action of MGBs at the molecular level. The transcriptomic results were validated using real-time PCR. The findings of this study indicate that the investigated MGBs primarily inhibit the genes associated with the estrogen receptor. Remarkably, ligand 5 showed downregulation of 34 out of the 35 genes regulated by estrogen receptor, highlighting its potential as a promising candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Hasan Y Alniss
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Maha M Saber-Ayad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Poorna Manasa Bhamidimarri
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yousef A Msallam
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hadeel M Al-Jubeh
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Varsha Menon
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Center of Excellence for Precision Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah 27272, United Arab Emirates; Division of Surgery and Interventional Science, Faculty of Medicine, University College London, London, United Kingdom
| | - Raafat El-Awady
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
4
|
Ma Y, Jiang Z, Pan L, Zhou Y, Xia R, Liu Z, Yuan L. Current development of molecular classifications of gastric cancer based on omics (Review). Int J Oncol 2024; 65:89. [PMID: 39092559 DOI: 10.3892/ijo.2024.5677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Gastric cancer (GC) is a complex and heterogeneous disease with significant phenotypic and genetic variation. Traditional classification systems rely mainly on the evaluation of clinical pathological features and conventional biomarkers and might not capture the diverse clinical processes of individual GCs. The latest discoveries in omics technologies such as next‑generation sequencing, proteomics and metabolomics have provided crucial insights into potential genetic alterations and biological events in GC. Clustering strategies for identifying subtypes of GC might offer new tools for improving GC treatment and clinical trial outcomes by enabling the development of therapies tailored to specific subtypes. However, the feasibility and therapeutic significance of implementing molecular classifications of GC in clinical practice need to addressed. The present review examines the current molecular classifications, delineates the prevailing landscape of clinically relevant molecular features, analyzes their correlations with traditional GC classifications, and discusses potential clinical applications.
Collapse
Affiliation(s)
- Yubo Ma
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhengchen Jiang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Libin Pan
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310005, P.R. China
| | - Ying Zhou
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310005, P.R. China
| | - Ruihong Xia
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhuo Liu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Li Yuan
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
5
|
Zou Z, Luo T, Wang X, Wang B, Li Q. Exploring the interplay between triple-negative breast cancer stem cells and tumor microenvironment for effective therapeutic strategies. J Cell Physiol 2024; 239:e31278. [PMID: 38807378 DOI: 10.1002/jcp.31278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic malignancy with poor treatment outcomes. The interaction between the tumor microenvironment (TME) and breast cancer stem cells (BCSCs) plays an important role in the development of TNBC. Owing to their ability of self-renewal and multidirectional differentiation, BCSCs maintain tumor growth, drive metastatic colonization, and facilitate the development of drug resistance. TME is the main factor regulating the phenotype and metastasis of BCSCs. Immune cells, cancer-related fibroblasts (CAFs), cytokines, mesenchymal cells, endothelial cells, and extracellular matrix within the TME form a complex communication network, exert highly selective pressure on the tumor, and provide a conducive environment for the formation of BCSC niches. Tumor growth and metastasis can be controlled by targeting the TME to eliminate BCSC niches or targeting BCSCs to modify the TME. These approaches may improve the treatment outcomes and possess great application potential in clinical settings. In this review, we summarized the relationship between BCSCs and the progression and drug resistance of TNBC, especially focusing on the interaction between BCSCs and TME. In addition, we discussed therapeutic strategies that target the TME to inhibit or eliminate BCSCs, providing valuable insights into the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Zhuoling Zou
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, China
| | - Tinglan Luo
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Xinyuan Wang
- Department of Clinical Medicine, The Second Clinical College of Chongqing Medicine University, Chongqing, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Qing Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Guo Q, Jin Y, Lin M, Zeng C, Zhang J. NF-κB signaling in therapy resistance of breast cancer: Mechanisms, approaches, and challenges. Life Sci 2024; 348:122684. [PMID: 38710275 DOI: 10.1016/j.lfs.2024.122684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Breast cancer is the most common type of cancer and is the second leading cause of cancer-related mortality in women. Chemotherapy, targeted therapy, endocrine therapy, and radiotherapy are all effective in destroying tumor cells, but they also activate the defense and protection systems of cancer cells, leading to treatment resistance. Breast cancer is characterized by a highly inflammatory tumor microenvironment. The NF-κB pathway is essential for connecting inflammation and cancer, as well as for tumor growth and therapy resistance. An increase in NF-κB signaling boosts the growth potential of breast cancer cells and facilitates the spread of tumors to bone, lymph nodes, lungs, and liver. This review focuses on the mechanisms by which chemotherapy, targeted therapy, endocrine therapy, and radiotherapy induce breast cancer resistance through NF-κB signaling. Additionally, we investigate therapeutic regimens, including single agents or in combination with target inhibitors, plant extracts, nanomedicines, and miRNAs, that have been reported in clinical trials, in vivo, and in vitro to reverse resistance. In particular, NF-κB inhibitors combined with tamoxifen were shown to significantly increase the sensitivity of breast cancer cells to tamoxifen. Combination therapy of miRNA-34a with doxorubicin was also found to synergistically inhibit the progression of doxorubicin-resistant breast cancer by inhibiting Notch/NF-κB signaling.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Loh JJ, Ma S. Hallmarks of cancer stemness. Cell Stem Cell 2024; 31:617-639. [PMID: 38701757 DOI: 10.1016/j.stem.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Cancer stemness is recognized as a key component of tumor development. Previously coined "cancer stem cells" (CSCs) and believed to be a rare population with rigid hierarchical organization, there is good evidence to suggest that these cells exhibit a plastic cellular state influenced by dynamic CSC-niche interplay. This revelation underscores the need to reevaluate the hallmarks of cancer stemness. Herein, we summarize the techniques used to identify and characterize the state of these cells and discuss their defining and emerging hallmarks, along with their enabling and associated features. We also highlight potential future directions in this field of research.
Collapse
Affiliation(s)
- Jia-Jian Loh
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Synthetic Chemistry and Chemical Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China; Centre for Translational and Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| |
Collapse
|
8
|
Li Q, Chen Y, Chen Y, Hua Z, Gong B, Liu Z, Thiele CJ, Li Z. Novel small molecule DMAMCL induces differentiation in rhabdomyosarcoma by downregulating of DLL1. Biomed Pharmacother 2024; 174:116562. [PMID: 38626518 DOI: 10.1016/j.biopha.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/18/2024] Open
Abstract
Rhabdomyosarcoma (RMS), a mesenchymal tumor occurring in the soft tissue of children, is associated with a defect in differentiation. This study unveils a novel anti-tumor mechanism of dimethylaminomicheliolide (DMAMCL), which is a water-soluble derivative of Micheliolide. First, we demonstrate that DMAMCL inhibits RMS cell growth without obvious cell death, leading to morphological alterations, enhanced expression of muscle differentiation markers, and a shift from a malignant to a more benign metabolic phenotype. Second, we detected decreased expression of DLL1 in RMS cells after DMAMCL treatment, known as a pivotal ligand in the Notch signaling pathway. Downregulation of DLL1 inhibits RMS cell growth and induces morphological changes similar to the effects of DMAMCL. Furthermore, DMAMCL treatment or loss of DLL1 expression also inhibits RMS xenograft tumor growth and augmented the expression of differentiation markers. Surprisingly, in C2C12 cells DMAMCL treatment or DLL1 downregulation also induces cell growth inhibition and an elevation in muscle differentiation marker expression. These data indicated that DMAMCL induced RMS differentiation and DLL1 is an important factor for RMS differentiation, opening a new window for the clinical use of DMAMCL as an agent for differentiation-inducing therapy for RMS treatment.
Collapse
Affiliation(s)
- Qi Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yexi Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yang Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhongyan Hua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Baocheng Gong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhihui Liu
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Carol J Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Zhijie Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
9
|
Wang MJ, Xia Y, Gao QL. DNA Damage-driven Inflammatory Cytokines: Reprogramming of Tumor Immune Microenvironment and Application of Oncotherapy. Curr Med Sci 2024; 44:261-272. [PMID: 38561595 DOI: 10.1007/s11596-024-2859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
DNA damage occurs across tumorigenesis and tumor development. Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orchestrate the tumor immune microenvironment (TIME) and dominate tumor progression. Accumulating evidence documents that multiple signaling pathways, including cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) and ataxia telangiectasia-mutated protein/ataxia telangiectasia and Rad3-related protein (ATM/ATR), are activated downstream of DNA damage and they are associated with the secretion of diverse cytokines. These cytokines possess multifaced functions in the anti-tumor immune response. Thus, it is necessary to deeply interpret the complex TIME reshaped by damaged DNA and tumor-derived cytokines, critical for the development of effective tumor therapies. This manuscript comprehensively reviews the relationship between the DNA damage response and related cytokines in tumors and depicts the dual immunoregulatory roles of these cytokines. We also summarize clinical trials targeting signaling pathways and cytokines associated with DNA damage and provide future perspectives on emerging technologies.
Collapse
Affiliation(s)
- Meng-Jie Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Xia
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qing-Lei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Li Y, Zhao B, Peng J, Tang H, Wang S, Peng S, Ye F, Wang J, Ouyang K, Li J, Cai M, Chen Y. Inhibition of NF-κB signaling unveils novel strategies to overcome drug resistance in cancers. Drug Resist Updat 2024; 73:101042. [PMID: 38219532 DOI: 10.1016/j.drup.2023.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
Drug resistance in cancer remains a major challenge in oncology, impeding the effectiveness of various treatment modalities. The nuclear factor-kappa B (NF-κB) signaling pathway has emerged as a critical player in the development of drug resistance in cancer cells. This comprehensive review explores the intricate relationship between NF-κB and drug resistance in cancer. We delve into the molecular mechanisms through which NF-κB activation contributes to resistance against chemotherapeutic agents, targeted therapies, and immunotherapies. Additionally, we discuss potential strategies to overcome this resistance by targeting NF-κB signaling, such as small molecule inhibitors and combination therapies. Understanding the multifaceted interactions between NF-κB and drug resistance is crucial for the development of more effective cancer treatment strategies. By dissecting the complex signaling network of NF-κB, we hope to shed light on novel therapeutic approaches that can enhance treatment outcomes, ultimately improving the prognosis for cancer patients. This review aims to provide a comprehensive overview of the current state of knowledge on NF-κB and its role in drug resistance, offering insights that may guide future research and therapeutic interventions in the fight against cancer.
Collapse
Affiliation(s)
- Yuanfang Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Baiwei Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Juzheng Peng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sicheng Wang
- School of Medicine, Sun Yat-sen University, China
| | - Sicheng Peng
- School of Medicine, Sun Yat-sen University, China
| | - Feng Ye
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Junye Wang
- School of Medicine, Sun Yat-sen University, China
| | - Kai Ouyang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jianjun Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Manbo Cai
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Yongming Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
11
|
Karimifard SA, Salehzadeh-Yazdi A, Taghizadeh-Tabarsi R, Akbari-Birgani S. Mechanical effects modulate drug resistance in MCF-7-derived organoids: Insights into the wnt/β-catenin pathway. Biochem Biophys Res Commun 2024; 695:149420. [PMID: 38154263 DOI: 10.1016/j.bbrc.2023.149420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Addressing drug resistance poses a significant challenge in cancer treatment, as cancer cells develop diverse mechanisms to evade chemotherapy drugs, leading to treatment failure and disease relapse. Three-dimensional (3D) cell culture has emerged as a valuable model for studying drug resistance, although the underlying mechanisms remain elusive. By obtaining a better understanding of drug resistance within the 3D culture environment, we can develop more effective strategies to overcome it and improve the success of cancer treatments. Notably, the physical structure undergoes notable changes in 3D culture, with mechanical effects believed to play a pivotal role in drug resistance. Hence, our study aimed to explore the influence of mechanical effects on drug resistance by analyzing data related to "drug resistance" and "mechanobiology". Through this analysis, we identified β-catenin and JNK1 as potential factors, which were further examined in MCF-7 cells cultivated under both 2D and 3D culture conditions. Our findings demonstrate that β-catenin is activated through canonical and non-canonical pathways and associated with the drug resistance, particularly in organoids obtained under 3D culture.
Collapse
Affiliation(s)
- Seyed Ali Karimifard
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | | | - Reza Taghizadeh-Tabarsi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| |
Collapse
|
12
|
de Castro LR, de Oliveira LD, Milan TM, Eskenazi APE, Bighetti-Trevisan RL, de Almeida OGG, Amorim MLM, Squarize CH, Castilho RM, de Almeida LO. Up-regulation of TNF-alpha/NFkB/SIRT1 axis drives aggressiveness and cancer stem cells accumulation in chemoresistant oral squamous cell carcinoma. J Cell Physiol 2024; 239:e31164. [PMID: 38149816 DOI: 10.1002/jcp.31164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/03/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023]
Abstract
Tumor resistance remains an obstacle to successfully treating oral squamous cell carcinoma (OSCC). Cisplatin is widely used as a cytotoxic drug to treat solid tumors, including advanced OSCC, but with low efficacy due to chemoresistance. Therefore, identifying the pathways that contribute to chemoresistance may show new possibilities for improving the treatment. This work explored the role of the tumor necrosis factor-alpha (TNF-alpha)/NFkB signaling in driving the cisplatin resistance of OSCC and its potential as a pharmacological target to overcome chemoresistance. Differential accessibility analysis demonstrated the enrichment of opened chromatin regions in members of the TNF-alpha/NFkB signaling pathway, and RNA-Seq confirmed the upregulation of TNF-alpha/NFkB signaling in cisplatin-resistant cell lines. NFkB was accumulated in cisplatin-resistant cell lines and in cancer stem cells (CSC), and the administration of TNF-alpha increased the CSC, suggesting that TNF-alpha/NFkB signaling is involved in the accumulation of CSC. TNF-alpha stimulation also increased the histone deacetylases HDAC1 and SIRT1. Cisplatin-resistant cell lines were sensitive to the pharmacological inhibition of NFkB, and low doses of the NFkB inhibitors, CBL0137, and emetine, efficiently reduced the CSC and the levels of SIRT1, increasing histone acetylation. The NFkB inhibitors decreased stemness potential, clonogenicity, migration, and invasion of cisplatin-resistant cell lines. The administration of the emetine significantly reduced the tumor growth of cisplatin-resistant xenograft models, decreasing NFkB and SIRT1, increasing histone acetylation, and decreasing CSC. TNF-alpha/NFkB/SIRT1 signaling regulates the epigenetic machinery by modulating histone acetylation, CSC, and aggressiveness of cisplatin-resistant OSCC and the NFkB inhibition is a potential strategy to treat chemoresistant OSCC.
Collapse
Affiliation(s)
- Letícia Rodrigues de Castro
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas Dias de Oliveira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thaís Moré Milan
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Toxicology and Food Science, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Patrícia Espaladori Eskenazi
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rayana Longo Bighetti-Trevisan
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Otávio Guilherme Gonçalves de Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Toxicology and Food Science, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcio Luis Munhoz Amorim
- Department of Electrical Engineering, School of Engineering of São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Luciana Oliveira de Almeida
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
13
|
Chen X, Hu K, Shi HZ, Zhang YJ, Chen L, He SM, Wang DD. Syk/BLNK/NF-κB signaling promotes pancreatic injury induced by tacrolimus and potential protective effect from rapamycin. Biomed Pharmacother 2024; 171:116125. [PMID: 38183743 DOI: 10.1016/j.biopha.2024.116125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND The treatment of tacrolimus-induced post-transplantation diabetes mellitus (PTDM) has become a hot topic to improve the long-term survival of organ transplant patients, however whose pathogenesis has not been fully elucidated. In pancreas, the up-regulation of NF-κB has been reported to stimulate cytokine IL-1β/TNF-α secretion, inducing pancreatic injury, meanwhile other studies have reported the inhibitory effect of rapamycin on NF-κB. PURPOSE The aim of this study was to clarify the mechanism of tacrolimus-induced pancreatic injury and to explore the potential effect from small dose of sirolimus. METHODS Wistar rats were randomly divided normal control (NC) group, PTDM group, sirolimus intervention (SIR) group. Transcriptomic analysis was used to screen potential mechanism of PTDM. Biochemical index detections were used to test the indicators of pancreatic injury. Pathological staining, immumohistochemical staining, immunofluorescent staining, western blot were used to verify the underlying mechanism. RESULTS Compared with NC group, the level of insulin was significant reduction (P < 0.01), inversely the level of glucagon was significantly increase (P < 0.01) in PTDM group. Transcriptomic analysis indicated Syk/BLNK/NF-κB signaling was significantly up-regulated in PTDM group. Pathological staining, immumohistochemical staining, immunofluorescent staining, western blot verified Syk/BLNK/NF-κB and TNF-α/IL-1β were all significantly increased (P < 0.05 or P < 0.01), demonstrating the mechanism of tacrolimus-induced pancreatic injury via Syk/BLNK/NF-κB signaling. In addition, compared with PTDM group, the levels of weight, FPG, AMY, and GSP in SIR group were significant ameliorative (P < 0.05 or P < 0.01), and the expressions of p-NF-κB, TNF-α/IL-1β in SIR group were significantly reduction (P < 0.05 or P < 0.01), showing Syk/BLNK/NF-κB signaling promoted pancreatic injury induced by tacrolimus and potential protective effect from rapamycin reducing NF-κB. CONCLUSION Syk/BLNK/NF-κB signaling promotes pancreatic injury induced by tacrolimus and rapamycin has a potentially protective effect by down-regulating NF-κB. Further validation and clinical studies are needed in the future.
Collapse
Affiliation(s)
- Xiao Chen
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ke Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hao-Zhe Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi-Jia Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Liang Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Su-Mei He
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu 215153, China.
| | - Dong-Dong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
14
|
Feng M, Santhanam RK, Xing H, Zhou M, Jia H. Inhibition of γ-secretase/Notch pathway as a potential therapy for reversing cancer drug resistance. Biochem Pharmacol 2024; 220:115991. [PMID: 38135129 DOI: 10.1016/j.bcp.2023.115991] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
The mechanism of tumor drug resistance is complex and may involve stem cell maintenance, epithelial-mesenchymal transition, the activation of survival signaling pathways, transporter protein expression, and tumor microenvironment remodeling, all of which are linked to γ-secretase/Notch signaling. Increasing evidence has shown that the activation of the γ-secretase/Notch pathway is a key driver of cancer progression and drug resistance development and that γ-secretase inhibitors (GSIs) may be the most promising agents for reversing chemotherapy resistance of tumors by targeting the γ-secretase/Notch pathway. Here, we systematically summarize the roles in supporting γ-secretase/Notch activation-associated transformation of cancer cells into cancer stem cells, promotion of the EMT process, PI3K/Akt, MEK/ERK and NF-κB activation, enhancement of ABC transporter protein expression, and TME alteration in mediating tumor drug resistance. Subsequently, we analyze the mechanism of GSIs targeting the γ-secretase/Notch pathway to reverse tumor drug resistance and propose the outstanding advantages of GSIs in treating breast cancer drug resistance over other tumors. Finally, we emphasize that the development of GSIs for reversing tumor drug resistance is promising.
Collapse
Affiliation(s)
- Mei Feng
- Science and Experimental Research Center of Shenyang Medical College, Shenyang 110034, China; Shenyang Key Laboratory of Vascular Biology, Shenyang 110034, China
| | - Ramesh Kumar Santhanam
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Huan Xing
- Science and Experimental Research Center of Shenyang Medical College, Shenyang 110034, China
| | - Mingsheng Zhou
- Science and Experimental Research Center of Shenyang Medical College, Shenyang 110034, China; Shenyang Key Laboratory of Vascular Biology, Shenyang 110034, China.
| | - Hui Jia
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang 110034, China.
| |
Collapse
|
15
|
Cong B, Stamou E, Pennel K, Mckenzie M, Matly A, Gopinath S, Edwards J, Cagan R. WNT Signalling Promotes NF-κB Activation and Drug Resistance in KRAS-Mutant Colorectal Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572810. [PMID: 38187607 PMCID: PMC10769410 DOI: 10.1101/2023.12.21.572810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Approximately 40% of colorectal cancer (CRC) cases are characterized by KRAS mutations, rendering them insensitive to most CRC therapies. While the reasons for this resistance remain incompletely understood, one key aspect is genetic complexity: in CRC, oncogenic KRAS is most commonly paired with mutations that alter WNT and P53 activities ("RAP"). Here, we demonstrate that elevated WNT activity upregulates canonical (NF-κB) signalling in both Drosophila and human RAS mutant tumours. This upregulation required Toll-1 and Toll-9 and resulted in reduced efficacy of RAS pathway targeted drugs such as the MEK inhibitor trametinib. Inhibiting WNT activity pharmacologically significantly suppressed trametinib resistance in RAP tumours and more genetically complex RAP-containing 'patient avatar' models. WNT/MEK drug inhibitor combinations were further improved by targeting brm, shg, ago, rhoGAPp190 and upf1, highlighting these genes as candidate biomarkers for patients sensitive to this duel approach. These findings shed light on how genetic complexity impacts drug resistance and proposes a therapeutic strategy to reverse this resistance.
Collapse
Affiliation(s)
- Bojie Cong
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| | - Evangelia Stamou
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| | - Kathryn Pennel
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| | - Molly Mckenzie
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| | - Amna Matly
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| | - Sindhura Gopinath
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 25-82 Annenberg Building; Box 1020, One Gustave L. Levy Place, New York, NY 10029
| | - Joanne Edwards
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| | - Ross Cagan
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| |
Collapse
|
16
|
Gil-Gas C, Sánchez-Díez M, Honrubia-Gómez P, Sánchez-Sánchez JL, Alvarez-Simón CB, Sabater S, Sánchez-Sánchez F, Ramírez-Castillejo C. Self-Renewal Inhibition in Breast Cancer Stem Cells: Moonlight Role of PEDF in Breast Cancer. Cancers (Basel) 2023; 15:5422. [PMID: 38001682 PMCID: PMC10670784 DOI: 10.3390/cancers15225422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer is the leading cause of death among females in developed countries. Although the implementation of screening tests and the development of new therapies have increased the probability of remission, relapse rates remain high. Numerous studies have indicated the connection between cancer-initiating cells and slow cellular cycle cells, identified by their capacity to retain long labeling (LT+). In this study, we perform new assays showing how stem cell self-renewal modulating proteins, such as PEDF, can modify the properties, percentage of biomarker-expressing cells, and carcinogenicity of cancer stem cells. The PEDF signaling pathway could be a useful tool for controlling cancer stem cells' self-renewal and therefore control patient relapse, as PEDF enhances resistance in breast cancer patient cells' in vitro culture. We have designed a peptide consisting of the C-terminal part of this protein, which acts by blocking endogenous PEDF in cell culture assays. We demonstrate that it is possible to interfere with the self-renewal capacity of cancer stem cells, induce anoikis in vivo, and reduce resistance against docetaxel treatment in cancer patient cells in in vitro culture. We have also demonstrated that this modified PEDF protein produces a significant decrease in the percentage of expressed cancer stem cell markers.
Collapse
Affiliation(s)
- Carmen Gil-Gas
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
| | - Marta Sánchez-Díez
- HST Group, Department Biotechnology-BV, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Paloma Honrubia-Gómez
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
| | - Jose Luis Sánchez-Sánchez
- Oncology Unit, Hospital General de Almansa, 02640 Albacete, Spain;
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Carmen B. Alvarez-Simón
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Sebastia Sabater
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Francisco Sánchez-Sánchez
- Laboratory of Medical Genetic, Faculty of Medicine, Instituto de Investigaciones en Discapacidades Neurológicas (IDINE), University of Castilla La-Mancha, 02006 Albacete, Spain
| | - Carmen Ramírez-Castillejo
- HST Group, Department Biotechnology-BV, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Oncology Group, Instituto de Investigación Sanitaria San Carlos, 28040 Madrid, Spain
| |
Collapse
|
17
|
Luo Y, Zhu Q, Xiang S, Wang Q, Li J, Chen X, Yan W, Feng J, Zu X. Downregulated circPOKE promotes breast cancer metastasis through activation of the USP10-Snail axis. Oncogene 2023; 42:3236-3251. [PMID: 37717099 DOI: 10.1038/s41388-023-02823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer-related death among females. Metastasis accounts for the majority of BC related deaths. One feasible strategy to solve this challenging problem is to disrupt the capabilities required for tumor metastasis. Herein, we verified a novel metastasis suppressive circRNA, circPOKE in BC. circPOKE was downregulated in primary and metastatic BC tissues and overexpression of circPOKE inhibited the metastatic potential but not the proliferative ability of BC cells in vitro and in vivo. Mechanistically, circPOKE competitively binds to USP10, and reduces its binding to Snail, a key transcriptional regulator of EMT, thereby inhibiting Snail stability via the protein-ubiquitination degradation pathway. In addition, we found that circPOKE could be secreted into the extracellular space via exosomes and that exosome-carried circPOKE significantly inhibited the invasive capabilities of BC cells in vitro and in vivo. Furthermore, the levels of circPOKE, USP10 and Snail are clinically relevant in BC, suggesting that circPOKE may be used as a potential therapeutic target for patients with BC metastasis.
Collapse
Affiliation(s)
- Yan Luo
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Qingyun Zhu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Shasha Xiang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Qi Wang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jun Li
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Xiguang Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Wen Yan
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jianbo Feng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
18
|
Ordaz-Ramos A, Tellez-Jimenez O, Vazquez-Santillan K. Signaling pathways governing the maintenance of breast cancer stem cells and their therapeutic implications. Front Cell Dev Biol 2023; 11:1221175. [PMID: 37492224 PMCID: PMC10363614 DOI: 10.3389/fcell.2023.1221175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Breast cancer stem cells (BCSCs) represent a distinct subpopulation of cells with the ability to self-renewal and differentiate into phenotypically diverse tumor cells. The involvement of CSC in treatment resistance and cancer recurrence has been well established. Numerous studies have provided compelling evidence that the self-renewal ability of cancer stem cells is tightly regulated by specific signaling pathways, which exert critical roles to maintain an undifferentiated phenotype and prevent the differentiation of CSCs. Signaling pathways such as Wnt/β-catenin, NF-κB, Notch, Hedgehog, TGF-β, and Hippo have been implicated in the promotion of self-renewal of many normal and cancer stem cells. Given the pivotal role of BCSCs in driving breast cancer aggressiveness, targeting self-renewal signaling pathways holds promise as a viable therapeutic strategy for combating this disease. In this review, we will discuss the main signaling pathways involved in the maintenance of the self-renewal ability of BCSC, while also highlighting current strategies employed to disrupt the signaling molecules associated with stemness.
Collapse
Affiliation(s)
- Alejandro Ordaz-Ramos
- Innovation in Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, México
| | - Olivia Tellez-Jimenez
- Innovation in Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, México
| | - Karla Vazquez-Santillan
- Innovation in Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, México
| |
Collapse
|
19
|
To HTN, Park JH, Kim JW, Kang D. Delta/Notch-like Epidermal Growth Factor-Related Receptor (DNER), a Potential Prognostic Marker of Gastric Cancer Regulates Cell Survival and Cell Cycle Progression. Int J Mol Sci 2023; 24:10077. [PMID: 37373228 DOI: 10.3390/ijms241210077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Upregulation of the expression of Delta/notch-like epidermal growth factor-related receptor (DNER) and its oncogenic role have been reported in several cancers, including gastric, breast, and prostate cancers. This study aimed to investigate the oncogenic role of DNER and the mechanisms behind its oncogenic role in gastric cancer. Analysis of the RNASeq data of gastric cancer tissues obtained from the TCGA database revealed that the expression of DNER was associated with the pathology of advanced gastric cancer and the prognosis of patients. DNER expression was increased upon stem cell-enriching cancer spheroid culture. Knockdown of DNER expression inhibited cell proliferation and invasion, induced apoptosis, enhanced chemosensitivity, and decreased spheroid formation of SNU-638 gastric cancer cells. DNER silencing elevated the expression of p53, p21cip/waf, and p27, and increased G1 phase cells at the expense of S phase cells. Knockdown of p21cip/waf expression in the DNER-silenced cells partially restored cell viability and S phase progression. DNER silencing also induced the apoptosis of SNU-638 cells. While both cleaved caspases-8 and 9 were detected in adherent cells, only cleaved caspase-8 was found to have increased in spheroid-cultured cells, suggesting a distinct activation pattern of caspase activation depending on the growth condition. Knockdown of p53 expression rescued the DNER-silenced cells from apoptosis and partially restored cell viability. In contrast, overexpression of the Notch intracellular domain (NICD) decreased the expression of p53, p21cip/waf, and cleaved caspase-3 in DNER-silenced cells. Moreover, NICD expression fully reverted the cell viability reduction, arrest in the G1 phase, and elevated apoptosis caused by DNER silencing, thereby suggesting activation of Notch signaling by DNER. Expression of a membrane-unbound mutant of mDNER also decreased cell viability and induced apoptosis. On the other hand, TGF-β signals were found to be involved in DNER expression in both adherent and spheroid-cultured cells. DNER could therefore be a link connecting TGF-β signaling to Notch signaling. Taken together, DNER regulates cell proliferation, survival, and invasive capacity of the gastric cancer cells through the activation of Notch signaling, which may facilitate tumor progression into an advanced stage. This study provides evidences suggesting that DNER could be a potential prognostic marker, a therapeutic target, and a drug candidate in the form of a cell-free mutant.
Collapse
Affiliation(s)
- Han Thi Ngoc To
- Ilsong Institute of Life Science, Hallym University, Beodeunaru-ro 55, Yeongdeungpo-gu, Seoul 07247, Republic of Korea
- Department of Biomedical Gerontology, Hallym University Graduate School, Chuncheon 24252, Republic of Korea
| | - Ji-Hong Park
- Ilsong Institute of Life Science, Hallym University, Beodeunaru-ro 55, Yeongdeungpo-gu, Seoul 07247, Republic of Korea
- Department of Biomedical Gerontology, Hallym University Graduate School, Chuncheon 24252, Republic of Korea
| | - Jeong Won Kim
- Department of Pathology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07441, Republic of Korea
| | - Dongchul Kang
- Ilsong Institute of Life Science, Hallym University, Beodeunaru-ro 55, Yeongdeungpo-gu, Seoul 07247, Republic of Korea
- Department of Biomedical Gerontology, Hallym University Graduate School, Chuncheon 24252, Republic of Korea
| |
Collapse
|
20
|
Preclinical and Clinical Trials of New Treatment Strategies Targeting Cancer Stem Cells in Subtypes of Breast Cancer. Cells 2023; 12:cells12050720. [PMID: 36899854 PMCID: PMC10001180 DOI: 10.3390/cells12050720] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Breast cancer (BC) can be classified into various histological subtypes, each associated with different prognoses and treatment options, including surgery, radiation, chemotherapy, and endocrine therapy. Despite advances in this area, many patients still face treatment failure, the risk of metastasis, and disease recurrence, which can ultimately lead to death. Mammary tumors, like other solid tumors, contain a population of small cells known as cancer stem-like cells (CSCs) that have high tumorigenic potential and are involved in cancer initiation, progression, metastasis, tumor recurrence, and resistance to therapy. Therefore, designing therapies specifically targeting at CSCs could help to control the growth of this cell population, leading to increased survival rates for BC patients. In this review, we discuss the characteristics of CSCs, their surface biomarkers, and the active signaling pathways associated with the acquisition of stemness in BC. We also cover preclinical and clinical studies that focus on evaluating new therapy systems targeted at CSCs in BC through various combinations of treatments, targeted delivery systems, and potential new drugs that inhibit the properties that allow these cells to survive and proliferate.
Collapse
|
21
|
Sharma U, Tuli HS, Uttam V, Choudhary R, Sharma B, Sharma U, Prakash H, Jain A. Role of Hedgehog and Hippo signaling pathways in cancer: A special focus on non-coding RNAs. Pharmacol Res 2022; 186:106523. [DOI: 10.1016/j.phrs.2022.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
|
22
|
Manni W, Min W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm (Beijing) 2022; 3:e176. [PMID: 36226253 PMCID: PMC9534377 DOI: 10.1002/mco2.176] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
Cancer stem cells (CSCs) are defined as a subpopulation of malignant tumor cells with selective capacities for tumor initiation, self-renewal, metastasis, and unlimited growth into bulks, which are believed as a major cause of progressive tumor phenotypes, including recurrence, metastasis, and treatment failure. A number of signaling pathways are involved in the maintenance of stem cell properties and survival of CSCs, including well-established intrinsic pathways, such as the Notch, Wnt, and Hedgehog signaling, and extrinsic pathways, such as the vascular microenvironment and tumor-associated immune cells. There is also intricate crosstalk between these signal cascades and other oncogenic pathways. Thus, targeting pathway molecules that regulate CSCs provides a new option for the treatment of therapy-resistant or -refractory tumors. These treatments include small molecule inhibitors, monoclonal antibodies that target key signaling in CSCs, as well as CSC-directed immunotherapies that harness the immune systems to target CSCs. This review aims to provide an overview of the regulating networks and their immune interactions involved in CSC development. We also address the update on the development of CSC-directed therapeutics, with a special focus on those with application approval or under clinical evaluation.
Collapse
Affiliation(s)
- Wang Manni
- Department of Biotherapy, Cancer Center, West China HospitalSichuan UniversityChengduP. R. China
| | - Wu Min
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| |
Collapse
|
23
|
Li J, Qiu J, Han J, Li X, Jiang Y. Tumor Microenvironment Characterization in Breast Cancer Identifies Prognostic Pathway Signatures. Genes (Basel) 2022; 13:1976. [PMID: 36360212 PMCID: PMC9690299 DOI: 10.3390/genes13111976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 01/07/2024] Open
Abstract
Breast cancer is one of the most common female malignancies worldwide. Due to its early metastases formation and a high degree of malignancy, the 10 year-survival rate of metastatic breast cancer does not exceed 30%. Thus, more precise biomarkers are urgently needed. In our study, we first estimated the tumor microenvironment (TME) infiltration using the xCell algorithm. Based on TME infiltration, the three main TME clusters were identified using consensus clustering. Our results showed that the three main TME clusters cause significant differences in survival rates and TME infiltration patterns (log-rank test, p = 0.006). Then, multiple machine learning algorithms were used to develop a nine-pathway-based TME-related risk model to predict the prognosis of breast cancer (BRCA) patients (the immune-related pathway-based risk score, defined as IPRS). Based on the IPRS, BRCA patients were divided into two subgroups, and patients in the IPRS-low group presented significantly better overall survival (OS) rates than the IPRS-high group (log-rank test, p < 0.0001). Correlation analysis revealed that the IPRS-low group was characterized by increases in immune-related scores (cytolytic activity (CYT), major histocompatibility complex (MHC), T cell-inflamed immune gene expression profile (GEP), ESTIMATE, immune, and stromal scores) while exhibiting decreases in tumor purity, suggesting IPRS-low patients may have a strong immune response. Additionally, the gene-set enrichment analysis (GSEA) result confirmed that the IPRS-low patients were significantly enriched in several immune-associated signaling pathways. Furthermore, multivariate Cox analysis revealed that the IPRS was an independent prognostic biomarker after adjustment by clinicopathologic characteristics. The prognostic value of the IPRS model was further validated in three external validation cohorts. Altogether, our findings demonstrated that the IPRS was a powerful predictor to screen out certain populations with better prognosis in breast cancer and may serve as a potential biomarker guiding clinical treatment decisions.
Collapse
Affiliation(s)
- Ji Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jiayue Qiu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiangmei Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ying Jiang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
24
|
Hashemi M, Hasani S, Hajimazdarany S, Mirmazloomi SR, Makvandy S, Zabihi A, Goldoost Y, Gholinia N, Kakavand A, Tavakolpournegari A, Salimimoghadam S, Nabavi N, Zarrabi A, Taheriazam A, Entezari M, Hushmandi K. Non-coding RNAs targeting notch signaling pathway in cancer: From proliferation to cancer therapy resistance. Int J Biol Macromol 2022; 222:1151-1167. [DOI: 10.1016/j.ijbiomac.2022.09.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
|
25
|
ZEB1: Catalyst of immune escape during tumor metastasis. Biomed Pharmacother 2022; 153:113490. [DOI: 10.1016/j.biopha.2022.113490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
|
26
|
Jiang N, Hu Y, Wang M, Zhao Z, Li M. The Notch Signaling Pathway Contributes to Angiogenesis and Tumor Immunity in Breast Cancer. BREAST CANCER: TARGETS AND THERAPY 2022; 14:291-309. [PMID: 36193236 PMCID: PMC9526507 DOI: 10.2147/bctt.s376873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
Breast cancer in women is the first leading tumor in terms of incidence worldwide. Some subtypes of BC lack distinct molecular targets and exhibit therapeutic resistance; these patients have a poor prognosis. Thus, the search for new molecular targets is an ongoing challenge for BC therapy. The Notch signaling pathway is found in both vertebrates and invertebrates, and it is a highly conserved in the evolution of the species, controlling cellular fates such as death, proliferation, and differentiation. Numerous studies have shown that improper activation of Notch signaling may lead to excessive cell proliferation and cancer, with tumor-promoting and tumor-suppressive effects in various carcinomas. Thus, inhibitors of Notch signaling are actively being investigated for the treatment of various tumors. The role of Notch signaling in BC has been widely studied in recent years. There is a growing body of evidence suggesting that Notch signaling has a pro-oncogenic role in BC, and the tumor-promoting effect is largely a result of the diverse nature of tumor immunity. Immunological abnormality is also a factor involved in the pathogenesis of BC, suggesting that Notch signaling could be a target for BC immunotherapies. Furthermore, angiogenesis is essential for BC growth and metastasis, and the Notch signaling pathway has been implicated in angiogenesis, so studying the role of Notch signaling in BC angiogenesis will provide new prospects for the treatment of BC. We summarize the potential roles of the current Notch signaling pathway and its inhibitors in BC angiogenesis and the immune response in this review and describe the pharmacological targets of Notch signaling in BC, which may serve as a theoretical foundation for future research into exploring this pathway for novel BC therapies.
Collapse
Affiliation(s)
- Nina Jiang
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Ye Hu
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Meiling Wang
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Zuowei Zhao
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Correspondence: Zuowei Zhao, Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China, Tel +86-0411-84671291, Fax +86-0411-84671230, Email
| | - Man Li
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Man Li, Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China, Tel +86-0411-84671291, Fax +86-0411-84671230, Email
| |
Collapse
|
27
|
刘 俊, 石 宇, 吴 敏, 徐 梦, 张 凤, 何 志, 唐 敏. [JAG1 promotes migration, invasion, and adhesion of triple-negative breast cancer cells by promoting angiogenesis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1100-1108. [PMID: 35869777 PMCID: PMC9308863 DOI: 10.12122/j.issn.1673-4254.2022.07.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of JAG1 on the malignant phenotype of triple-negative breast cancer (TNBC) and its role in angiogenesis in breast cancer microenvironment. METHODS The expressions of Notch molecules were detected in human TNBC 231 and 231B cells using RT-qPCR. Five female nude mice were inoculated with 231 cells and another 5 with 231B cells into the mammary fat pads, and 4-6 weeks later, the tumors were collected for immunohistochemical and immunofluorescence tests. 231 cells and 231B cells were treated with recombinant JAG (rJAG) protein and DAPT, respectively, and changes in their malignant phenotypes were assessed using CCK-8 assay, Hoechst 33258 staining, wound healing assay, Transwell chamber assay and endothelial cell adhesion assay. Western blotting was used to detect the changes in the expressions of proteins related with the malignant phenotypes of 231 and 231B cells. The effects of conditioned medium (CM) derived from untreated 231 and 231 B cells, rJAG1-treated 231 cells and DAPT-treated 231B cells on proliferation and tube formation ability of cultured human umbilical vein endothelial cells (HUVECs) were evaluated using CCK-8 assay and tube-forming assay. RESULTS The expression of JAG1 was higher in 231B cells than in 231 cells (P < 0.05). Tumor 231B showed higher expression of VEGFA and CD31. Compared with 231-Blank group, the migration, invasion and adhesion of 231 cells in 231-rJAG1 were significantly enhanced (P < 0.05). Protein levels of Twist1 and Snail increased (P < 0.01), anti-apoptotic protein Bcl-2 increased (P < 0.05), while DAPT inhibited the related phenomena and indicators of 231B. The 231-rJAG1-CM increased the cell number and tubule number of HUVEC (P < 0.05). CONCLUSION JAG1 may affect the malignant phenotype of TNBC and promote angiogenesis in the tumor microenvironment.
Collapse
Affiliation(s)
- 俊平 刘
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 宇彤 石
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 敏敏 吴
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 梦岐 徐
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 凤梅 张
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 志强 何
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 敏 唐
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
28
|
Ling Q, Wu S, Liao X, Liu C, Chen Y. Anesthetic propofol enhances cisplatin-sensitivity of non-small cell lung cancer cells through N6-methyladenosine-dependently regulating the miR-486-5p/RAP1-NF-κB axis. BMC Cancer 2022; 22:765. [PMID: 35836137 PMCID: PMC9281112 DOI: 10.1186/s12885-022-09848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/30/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Drug resistance is a considerable challenge for chemotherapy in non-small cell lung cancer (NSCLC). Propofol, a commonly used intravenous anesthetics, has been reported to suppress the malignancy of various cancers. However, the effects of propofol on cisplatin (DDP) sensitivity in NSCLC and its molecular mechanisms have not been clearly clarified yet, and the present study aimed to resolve this problem. METHODS NSCLC cells were co-treated with propofol and DDP, Cell Counting kit-8 assay, colony formation assay and flow cytometry were conducted to test the role of propofol in regulating DDP-resistance in NSCLC. Next, through conducting quantitative real-time polymerase chain reaction, dual-luciferase gene reporter system and western blot, the responsible molecular axis in propofol regulating the DDP sensitivity in NSCLC was uncovered, and the function verification experiments were performed by transfection with the inhibitors or small interfering RNAs of those molecules. RESULTS Propofol suppressed cell viability, colony formation ability, tumorigenesis, and promoted cell apoptosis to enhance DDP-sensitivity in NSCLC in vitro and in vivo. Propofol increased miR-486-5p level in NSCLC cells and xenograft tumors tissues in a N6-methyladenosine (m6A)-dependent manner, thus inactivating the Ras-associated protein1 (RAP1)-NF-kappaB (NF-κB) axis. Propofol regulated the miR-486-5p/RAP1-NF-κB axis to improve DDP-sensitivity in NSCLC. CONCLUSIONS Taken together, this study firstly investigates the detailed molecular mechanisms by which propofol enhanced DDP-sensitivity in NSCLC cells, and a novel m6A-dependent miR-486-5p/RAP1-NF-κB axis is identified to be closely associated with the process.
Collapse
Affiliation(s)
- Quan Ling
- The First Department of Anesthesia, Zhongshan City People's Hospital, No.2, Sunwen East Road, Shiqi District, Zhongshan, 528400, China
| | - Shaoyong Wu
- Department of Anesthesiology, cancer prevention and treatment center, Sun Yat Sen University, Guangzhou, 510060, China
| | - Xiaozu Liao
- The First Department of Anesthesia, Zhongshan City People's Hospital, No.2, Sunwen East Road, Shiqi District, Zhongshan, 528400, China
| | - Chiyi Liu
- The First Department of Anesthesia, Zhongshan City People's Hospital, No.2, Sunwen East Road, Shiqi District, Zhongshan, 528400, China
| | - Yong Chen
- The First Department of Anesthesia, Zhongshan City People's Hospital, No.2, Sunwen East Road, Shiqi District, Zhongshan, 528400, China.
| |
Collapse
|
29
|
Wang L, Jin Z, Master RP, Maharjan CK, Carelock ME, Reccoppa TBA, Kim MC, Kolb R, Zhang W. Breast Cancer Stem Cells: Signaling Pathways, Cellular Interactions, and Therapeutic Implications. Cancers (Basel) 2022; 14:3287. [PMID: 35805056 PMCID: PMC9265870 DOI: 10.3390/cancers14133287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer stem cells (BCSCs) constitute a small population of cells within breast cancer and are characterized by their ability to self-renew, differentiate, and recapitulate the heterogeneity of the tumor. Clinically, BCSCs have been correlated with cancer progression, metastasis, relapse, and drug resistance. The tumorigenic roles of BCSCs have been extensively reviewed and will not be the major focus of the current review. Here, we aim to highlight how the crucial intrinsic signaling pathways regulate the fate of BCSCs, including the Wnt, Notch, Hedgehog, and NF-κB signaling pathways, as well as how different cell populations crosstalk with BCSCs within the TME, including adipocytes, endothelial cells, fibroblasts, and immune cells. Based on the molecular and cellular activities of BCSCs, we will also summarize the targeting strategies for BCSCs and related clinical trials. This review will highlight that BCSC development in breast cancer is impacted by both BCSC endogenous signaling and external factors in the TME, which provides an insight into how to establish a comprehensively therapeutic strategy to target BCSCs for breast cancer treatments.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Immunology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zeng Jin
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rohan P. Master
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Chandra K. Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Madison E. Carelock
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tiffany B. A. Reccoppa
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Department of Biology, College of Liberal Arts & Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
30
|
Du F, Sun H, Sun F, Yang S, Tan H, Li X, Chai Y, Jiang Q, Han D. Knockdown of TANK-Binding Kinase 1 Enhances the Sensitivity of Hepatocellular Carcinoma Cells to Molecular-Targeted Drugs. Front Pharmacol 2022; 13:924523. [PMID: 35747750 PMCID: PMC9209752 DOI: 10.3389/fphar.2022.924523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
The protein kinase, TANK-binding kinase 1 (TBK1), not only regulates various biological processes but also functions as an important regulator of human oncogenesis. However, the detailed function and molecular mechanisms of TBK1 in hepatocellular carcinoma (HCC), especially the resistance of HCC cells to molecular-targeted drugs, are almost unknown. In the present work, the role of TBK1 in regulating the sensitivity of HCC cells to molecular-targeted drugs was measured by multiple assays. The high expression of TBK1 was identified in HCC clinical specimens compared with paired non-tumor tissues. The high level of TBK1 in advanced HCC was associated with a poor prognosis in patients with advanced HCC who received the molecular-targeted drug, sorafenib, compared to patients with advanced HCC patients and a low level of TBK1. Overexpression of TBK1 in HCC cells induced their resistance to molecular-targeted drugs, whereas knockdown of TBK1 enhanced the cells’ sensitivity to molecular-targeted dugs. Regarding the mechanism, although overexpression of TBK1 enhanced expression levels of drug-resistance and pro-survival-/anti-apoptosis-related factors, knockdown of TBK1 repressed the expression of these factors in HCC cells. Therefore, TBK1 is a promising therapeutic target for HCC treatment and knockdown of TBK1 enhanced sensitivity of HCC cells to molecular-targeted drugs.
Collapse
Affiliation(s)
- Fengxia Du
- Department of Pharmacy, Medical Support Center of PLA General Hospital, Beijing, China
| | - Huiwei Sun
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
| | - Fang Sun
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
| | - Shiwei Yang
- Organ Transplant Center and Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Haidong Tan
- Organ Transplant Center and Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xiaojuan Li
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
| | - Yantao Chai
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
| | - Qiyu Jiang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
- *Correspondence: Dongdong Han, ; Qiyu Jiang,
| | - Dongdong Han
- Organ Transplant Center and Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Dongdong Han, ; Qiyu Jiang,
| |
Collapse
|
31
|
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol 2022; 237:2770-2795. [PMID: 35561232 DOI: 10.1002/jcp.30759] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-β, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Bassiri
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Rasoul Raesi
- PhD in Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
32
|
Shi Z, Tian L, Qiang T, Li J, Xing Y, Ren X, Liu C, Liang C. From Structure Modification to Drug Launch: A Systematic Review of the Ongoing Development of Cyclin-Dependent Kinase Inhibitors for Multiple Cancer Therapy. J Med Chem 2022; 65:6390-6418. [PMID: 35485642 DOI: 10.1021/acs.jmedchem.1c02064] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we discuss more than 50 cyclin-dependent kinase (CDK) inhibitors that have been approved or have undergone clinical trials and their therapeutic application in multiple cancers. This review discusses the design strategies, structure-activity relationships, and efficacy performances of these selective or nonselective CDK inhibitors. The theoretical basis of early broad-spectrum CDK inhibitors is similar to the scope of chemotherapy, but because their toxicity is greater than the benefit, there is no clinical therapeutic window. The notion that selective CDK inhibitors have a safer therapeutic potential than pan-CDK inhibitors has been widely recognized during the research process. Four CDK4/6 inhibitors have been approved for the treatment of breast cancer or for prophylactic administration during chemotherapy to protect bone marrow and immune system function. Furthermore, the emerging strategies in the field of CDK inhibitors are summarized briefly, and CDKs continue to be widely pursued as emerging anticancer drug targets for drug discovery.
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi 830002, P. R. China
| | - Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yue Xing
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, P. R. China
| | - Chang Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Zhuhai 519030, P. R. China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| |
Collapse
|
33
|
Ansari MA, Thiruvengadam M, Venkidasamy B, Alomary MN, Salawi A, Chung IM, Shariati MA, Rebezov M. Exosome-based nanomedicine for cancer treatment by targeting inflammatory pathways: Current status and future perspectives. Semin Cancer Biol 2022; 86:678-696. [PMID: 35452820 DOI: 10.1016/j.semcancer.2022.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/23/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Cancer is one of the dreadful diseases worldwide. Surgery, radiation and chemotherapy, are the three basic standard modes of cancer treatment. However, difficulties in cancer treatment are increasing due to immune escape, spreading of cancer to other places, and resistance of cancer cells to therapies. Various signaling mechanisms, including PI3K/Akt/mTOR, RAS, WNT/β-catenin, TGF-beta, and notch pathways, are involved in cancer resistance. The adaptive inflammatory response is the initial line of defence against infection. However, chronic inflammation can lead to tumorigenesis, malignant transformation, tumor growth, invasion, and metastasis. The most commonly dysregulated inflammatory pathways linked to cancer include NF-κB, MAPK, JAK-STAT, and PI3K/AKT. To overcome major hurdles in cancer therapy, nanomedicine is receiving much attention due to its role as a vehicle for delivering chemotherapeutic agents that specifically target tumor sites. Several biocompatible nanocarriers including polymer and inorganic nanoparticles, liposomes, micellar nanoparticles, nanotubes, and exosomes have been extensively studied. Exosome has been reported as an important potential sytem that could be effectively used as a bioinspired, bioengineered, and biomimetic drug delivery solution considering its toxicity, immunogenicity, and rapid clearance by the mononuclear phagocyte system. Exosome-mimetic vesicles are receiving much interest for developing nano-sized delivery systems. In this review, exosomes in detail as well as certain other nanocarriers, and their potential therapeutic roles in cancer therapy has been thoroughly discussed. Additionally, we also reviewed on oncogenic and tumor suppressor proteins, inflammation, and their associated signaling pathways and their interference by exosomes based nanomedicine.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Mohammad N Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Mohammad Ali Shariati
- Research Department, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow 109004, Russian Federation
| | - Maksim Rebezov
- Department of Scientific Advisers, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhina St., Moscow 109316, Russian Federation
| |
Collapse
|
34
|
Saha T, Lukong KE. Breast Cancer Stem-Like Cells in Drug Resistance: A Review of Mechanisms and Novel Therapeutic Strategies to Overcome Drug Resistance. Front Oncol 2022; 12:856974. [PMID: 35392236 PMCID: PMC8979779 DOI: 10.3389/fonc.2022.856974] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most frequent type of malignancy in women worldwide, and drug resistance to the available systemic therapies remains a major challenge. At the molecular level, breast cancer is heterogeneous, where the cancer-initiating stem-like cells (bCSCs) comprise a small yet distinct population of cells within the tumor microenvironment (TME) that can differentiate into cells of multiple lineages, displaying varying degrees of cellular differentiation, enhanced metastatic potential, invasiveness, and resistance to radio- and chemotherapy. Based on the expression of estrogen and progesterone hormone receptors, expression of human epidermal growth factor receptor 2 (HER2), and/or BRCA mutations, the breast cancer molecular subtypes are identified as TNBC, HER2 enriched, luminal A, and luminal B. Management of breast cancer primarily involves resection of the tumor, followed by radiotherapy, and systemic therapies including endocrine therapies for hormone-responsive breast cancers; HER2-targeted therapy for HER2-enriched breast cancers; chemotherapy and poly (ADP-ribose) polymerase inhibitors for TNBC, and the recent development of immunotherapy. However, the complex crosstalk between the malignant cells and stromal cells in the breast TME, rewiring of the many different signaling networks, and bCSC-mediated processes, all contribute to overall drug resistance in breast cancer. However, strategically targeting bCSCs to reverse chemoresistance and increase drug sensitivity is an underexplored stream in breast cancer research. The recent identification of dysregulated miRNAs/ncRNAs/mRNAs signatures in bCSCs and their crosstalk with many cellular signaling pathways has uncovered promising molecular leads to be used as potential therapeutic targets in drug-resistant situations. Moreover, therapies that can induce alternate forms of regulated cell death including ferroptosis, pyroptosis, and immunotherapy; drugs targeting bCSC metabolism; and nanoparticle therapy are the upcoming approaches to target the bCSCs overcome drug resistance. Thus, individualizing treatment strategies will eliminate the minimal residual disease, resulting in better pathological and complete response in drug-resistant scenarios. This review summarizes basic understanding of breast cancer subtypes, concept of bCSCs, molecular basis of drug resistance, dysregulated miRNAs/ncRNAs patterns in bCSCs, and future perspective of developing anticancer therapeutics to address breast cancer drug resistance.
Collapse
Affiliation(s)
- Taniya Saha
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
35
|
Construction and Validation of a Newly Prognostic Signature for CRISPR-Cas9-Based Cancer Dependency Map Genes in Breast Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4566577. [PMID: 35096059 PMCID: PMC8791742 DOI: 10.1155/2022/4566577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Cancer Dependency Map (CDM) genes comprise an extensive series of genome-scale RNAi-based loss-of-function tests; hence, it served as a method based on the CRISPR-Cas9 technique that could assist scientists in investigating potential gene functions. These CDM genes have a role in tumor cell survival and proliferation, suggesting that they may be used as new therapeutic targets for some malignant tumors. So far, there have been less research on the involvement of CDM genes in breast cancer, and only a tiny percentage of CDM genes have been studied. In this study, information of patients with breast cancer was extracted from The Cancer Genome Atlas (TCGA), from which differentially expressed CDM genes in breast cancer were determined. A variety of bioinformatics techniques were used to assess the functions and prognostic relevance of these confirmed CDM genes. In all, 290 CDM genes were found differentially expressed. Six CDM genes (SRF, RAD51, PMF1, EXOSC3, EXOC1, and TSEN54) were found to be associated with the prognosis of breast cancer samples. Based on the expression of the identified CDM genes and their coefficients, a prognosis model was constructed for prediction, according to which patients with breast cancer were separated into two risk groups. Those with high risk had substantially poorer overall survival (OS) than patients in the other risk group in the TCGA training set, TCGA testing set, and an external cohort from Gene Expression Omnibus (GEO) database. The area under the receiver operating characteristic (ROC) curve for this prognostic signature was, respectively, 0.717 and 0.635 for TCGA training and testing sets, demonstrating its reliability in predicting the prognosis of patients with breast cancer. We next created a nomogram using the six CDM genes discovered to create a therapeutically useful model. The Human Protein Atlas database was used to acquire all immunohistochemistry staining images of the discovered CDM genes. The proportions of tumor-infiltrating immune cells, as well as the expression levels of checkpoint genes, varied substantially between the two risk groups, according to the analyses of immune response. In conclusion, the findings of this research may aid in the understanding of the prognostic value and biological roles of CDM genes in breast cancer.
Collapse
|
36
|
Zhang T, Zhou H, Wang K, Wang X, Wang M, Zhao W, Xi X, Li Y, Cai M, Zhao W, Xu Y, Shao R. Role, molecular mechanism and the potential target of breast cancer stem cells in breast cancer development. Biomed Pharmacother 2022; 147:112616. [PMID: 35008001 DOI: 10.1016/j.biopha.2022.112616] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is one of the most common malignant tumors in women globally, and its occurrence has surpassed lung cancer and become the biggest threat for women. At present, breast cancer treatment includes surgical resection or postoperative chemotherapy and radiotherapy. However, tumor relapse and metastasis usually lead to current therapy failure thanks to breast cancer stem cells (BCSCs)-mediated tumorigenicity and drug resistance. Drug resistance is mainly due to the long-term quiescent G0 phase, strong DNA repairability, and high expression of ABC transporter, and the tumorigenicity is reflected in the activation of various proliferation pathways related to BCSCs. Therefore, understanding the characteristics of BCSCs and their intracellular and extracellular molecular mechanisms is crucial for the development of targeted drugs for BCSCs. To this end, we discussed the latest developments in BCSCs research, focusing on the analysis of specific markers, critical signaling pathways that maintain the stemness of BCSCs,such as NOTCH, Wnt/β-catenin, STAT3, Hedgehog, and Hippo-YAP signaling, immunomicroenviroment and summarizes targeting therapy strategies for stemness maintenance and differentiation, which provides a theoretical basis for further exploration of treating breast cancer and preventing relapse derived from BCSCs.
Collapse
Affiliation(s)
- Tianshu Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huimin Zhou
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kexin Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaowei Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mengyan Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenxia Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoming Xi
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meilian Cai
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yanni Xu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
37
|
Liu J, Lu Y, Huang W, He Z. Comprehensive Analysis of Inhibitor of Apoptosis Protein Expression and Prognostic Significance in Non-Small Cell Lung Cancer. Front Genet 2021; 12:764270. [PMID: 34925455 PMCID: PMC8675358 DOI: 10.3389/fgene.2021.764270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Inhibitors of apoptosis proteins (IAPs) have been associated with tumor development and progression by affecting apoptosis through cell death signaling pathways. To date, eight IAPs (BIRC1-8) have been identified in mammalian cells. However, the role of IAPs in non-small cell lung cancer (NSCLC) development and progression has not been explored in depth. In this study, we used public datasets and bioinformatics tools to compare the expression, prognostic significance, and function of IAPs in NSCLC and its subtypes. Expression of IAPs in cancer and normal tissues and at different stages of NSCLC was compared with gene expression profiling interactive analysis, and their prognostic significance was analyzed with the Kaplan-Meier Plotter database. The correlations among IAPs were analyzed with the STRING database and SPSS19.0. Functional annotation of IAPs was analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment on the basis of the DAVID tool. Among patients with lung adenocarcinoma (LUAD), the expression level of BIRC5 was higher than that in normal samples, and the expression of BIRC1 and BIRC5 significantly varied in different stages. Moreover, the BIRC1-3 and BIRC5 mRNA levels were associated with overall survival (OS), and the BIRC1-2 and BIRC5-6 mRNA levels were associated with progression-free survival (PFS). Among patients with lung squamous cell carcinoma (LUSC), the expression level of BIRC1 was lower and that of BIRC5 was higher than those in normal tissues, and BIRC5 expression significantly varied in different stages. BIRC1 expression was associated with OS, whereas BIRC2 and BIRC6 expression was associated with PFS. Enrichment analysis showed that most IAPs are associated with ubiquitin- and apoptosis-related pathways. Collectively, this study suggests BIRC5 as a potential diagnostic and staging marker, BIRC1 as a potential marker of OS, and BIRC2 and BIRC6 as potential PFS markers for patients with NSCLC. These highlight new targets for the early detection, treatment, and management of NSCLC.
Collapse
Affiliation(s)
- Jun Liu
- Medical College, Jiujiang University, Jiujiang, China
| | - Yi Lu
- Medical College, Jiujiang University, Jiujiang, China
| | - Wenan Huang
- Medical College, Jiujiang University, Jiujiang, China
| | - Zhibo He
- School of Literature and Communication, Jiujiang University, Jiujiang, China
| |
Collapse
|
38
|
Jung HD, Sung YJ, Kim HU. Omics and Computational Modeling Approaches for the Effective Treatment of Drug-Resistant Cancer Cells. Front Genet 2021; 12:742902. [PMID: 34691155 PMCID: PMC8527086 DOI: 10.3389/fgene.2021.742902] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 02/05/2023] Open
Abstract
Chemotherapy is a mainstream cancer treatment, but has a constant challenge of drug resistance, which consequently leads to poor prognosis in cancer treatment. For better understanding and effective treatment of drug-resistant cancer cells, omics approaches have been widely conducted in various forms. A notable use of omics data beyond routine data mining is to use them for computational modeling that allows generating useful predictions, such as drug responses and prognostic biomarkers. In particular, an increasing volume of omics data has facilitated the development of machine learning models. In this mini review, we highlight recent studies on the use of multi-omics data for studying drug-resistant cancer cells. We put a particular focus on studies that use computational models to characterize drug-resistant cancer cells, and to predict biomarkers and/or drug responses. Computational models covered in this mini review include network-based models, machine learning models and genome-scale metabolic models. We also provide perspectives on future research opportunities for combating drug-resistant cancer cells.
Collapse
Affiliation(s)
- Hae Deok Jung
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Yoo Jin Sung
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,KAIST Institute for Artificial Intelligence, KAIST, Daejeon, South Korea.,BioProcess Engineering Research Center and BioInformatics Research Center KAIST, Daejeon, South Korea
| |
Collapse
|
39
|
Li D, Chen L, Zhang X, Wang Y, Huang C, Li J, He F, He W. miR‑125a‑5p reverses epithelial‑mesenchymal transition and restores drug sensitivity by negatively regulating TAFAZZIN signaling in breast cancer. Mol Med Rep 2021; 24:812. [PMID: 34549308 PMCID: PMC8477177 DOI: 10.3892/mmr.2021.12452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
MicroRNA (miR)‑125a‑5p represses tafazzin phospholipid‑lysophospholipid transacylases (TAFAZZIN) expression and inhibits the epithelial‑mesenchymal transition (EMT) of ovarian cancer cells. EMT was found to have a crucial role in the acquisition of chemoresistance. Thus, the present study aimed to determine whether miR‑125a‑5p reverses EMT and restores drug sensitivity by negatively regulating TAFAZZIN in breast cancer. The expression of miR‑125a‑5p/TAFAZZIN and its association with chemotherapy response were determined in tissue samples from patients with breast cancer. Furthermore, the effects of miR‑125a‑5p on breast cancer cells were elucidated using cell proliferation and cell apoptosis assays. Then, the regulatory mechanism of miR‑125a‑5p in breast cancer was investigated by reverse transcription‑quantitative PCR, western blotting, dual‑luciferase reporter and RNA immunoprecipitation assays. The results demonstrated that miR‑125a‑5p inhibited the EMT of MCF‑7/adriamycin (Adr) breast cancer cells, as well as decreased the proliferation and increased the apoptosis of breast cancer cells treated with Adr/docetaxel. In addition, miR‑125a‑5p downregulated the expression levels of TAFAZZIN, Transglutaminase 2, phosphorylated‑AKT, N‑cadherin, vimentin and proliferating cell nuclear antigen, and significantly increased those of E‑cadherin, cleaved caspase-3 and Bax in MCF7/Adr cells. Similar results were obtained with small interfering RNA‑TAFAZZIN. Moreover, TAFAZZIN was identified as a direct target of miR‑125a‑5p in MCF7/Adr breast cancer cells. In addition, increased miR‑125a‑5p expression was observed in breast tumors from patients exhibiting a chemotherapy response, and TAFAZZIN mRNA expression was elevated in patients with no chemotherapy response. Hence, miR‑125a‑5p expression was negatively correlated with TAFAZZIN mRNA expression in breast cancer tissues. All these data suggested that miR‑125a‑5p reverses EMT and restores drug sensitivity by negatively regulating TAFAZZIN in breast cancer and, therefore, has potential as a novel therapeutic target for this disease.
Collapse
Affiliation(s)
- Dongmei Li
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Limei Chen
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Xiaofang Zhang
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Yanhua Wang
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Chuansheng Huang
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Jianglong Li
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Feilong He
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Wenxing He
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| |
Collapse
|
40
|
Zhao H, Li Z, Gao Y, Li J, Zhao X, Yue W. Single-Cell RNA-Sequencing Portraying Functional Diversity and Clinical Implications of IFI6 in Ovarian Cancer. Front Cell Dev Biol 2021; 9:677697. [PMID: 34513825 PMCID: PMC8425592 DOI: 10.3389/fcell.2021.677697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is one of the most lethal gynecologic malignancies. Most patients die of metastasis due to a lack of other treatments aimed at improving the prognosis of OC patients. In the present study, we use multiple methods to identify prognostic S1 as the dominant subtype in OC, possessing the most ligand-receptor pairs with other cell types. Based on markers of S1, the consensus clustering algorithm is used to explore the clinical treatment subtype in OC. As a result, we identify two clusters associated with distinct survival and drug response. Notably, IFI6 contributes to the cluster classification and seems to be a vital gene in OC carcinogenesis. Functional enrichment analysis demonstrates that its functions involve G2M and cisplatin resistance, and downregulation of IFI6 suppresses proliferation capabilities and significantly potentiates cisplatin-induced apoptosis of OC cells in vitro. To explore possible mechanisms of IFI6 influencing OC proliferation and cisplatin resistance, GSEA is conducted and shows that IFI6 is positively correlated with the NF-κB pathway, which is validated by RT-qPCR. Significantly, we develop a prognostic model including IFI6, RiskScore, which is an independent prognostic factor and presents encouraging prognostic values. Our findings provide novel insights into elucidating the biology of OC based on single-cell RNA-sequencing. Moreover, this approach is potentially helpful for personalized anti-cancer strategies and predicting outcomes in the setting of OC.
Collapse
Affiliation(s)
- Hongyu Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Zhefeng Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yan Gao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jie Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xiaoting Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Chen W, Wei W, Yu L, Ye Z, Huang F, Zhang L, Hu S, Cai C. Mammary Development and Breast Cancer: a Notch Perspective. J Mammary Gland Biol Neoplasia 2021; 26:309-320. [PMID: 34374886 PMCID: PMC8566423 DOI: 10.1007/s10911-021-09496-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 07/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mammary gland development primarily occurs postnatally, and this unique process is complex and regulated by systemic hormones and local growth factors. The mammary gland is also a highly dynamic organ that undergoes profound changes at puberty and during the reproductive cycle. These changes are driven by mammary stem cells (MaSCs). Breast cancer is one of the most common causes of cancer-related death in women. Cancer stem cells (CSCs) play prominent roles in tumor initiation, drug resistance, tumor recurrence, and metastasis. The highly conserved Notch signaling pathway functions as a key regulator of the niche mediating mammary organogenesis and breast neoplasia. In this review, we discuss mechanisms by which Notch contributes to breast carcinoma pathology and suggest potentials for therapeutic targeting of Notch in breast cancer. In summary, we provide a comprehensive overview of Notch functions in regulating MaSCs, mammary development, and breast cancer.
Collapse
Affiliation(s)
- Weizhen Chen
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Liya Yu
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Zi Ye
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Fujing Huang
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Liyan Zhang
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Shiqi Hu
- DU-ANU Joint Science College, Shandong University, Weihai, 264200, China
| | - Cheguo Cai
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
42
|
Silva G, Sales-Dias J, Casal D, Alves S, Domenici G, Barreto C, Matos C, Lemos AR, Matias AT, Kucheryava K, Ferreira A, Moita MR, Braga S, Brito C, Cabral MG, Casalou C, Barral DC, Sousa PMF, Videira PA, Bandeiras TM, Barbas A. Development of Dl1.72, a Novel Anti-DLL1 Antibody with Anti-Tumor Efficacy against Estrogen Receptor-Positive Breast Cancer. Cancers (Basel) 2021; 13:cancers13164074. [PMID: 34439228 PMCID: PMC8392387 DOI: 10.3390/cancers13164074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Over 70% of breast cancers (BCs) are estrogen receptor-positive (ER+). The development of endocrine therapy has considerably improved patient outcomes. However, there is a clinical need for novel effective therapies against ER+ BCs, since many of these do not respond to standard therapy, and more than one-third of responders acquire resistance, experience relapse and metastasize. The Notch ligand Delta-like 1 (DLL1) is a key player in ER+ BC development and aggressiveness. Contrary to complete Notch pharmacological inhibitors, antibody-targeting of individual Notch components is expected to have superior therapeutic efficacy and be better tolerated. In this study, we developed and characterized a novel specific anti-DLL1 antibody with efficacy in inhibiting BC cell proliferation, mammosphere formation and angiogenesis, as well as anti-tumor and anti-metastatic efficacy in an ER+ BC mouse model without side effects. Thus, our data suggest that this anti-DLL1 antibody is a promising candidate for ER+ BC treatment. Abstract The Notch-signaling ligand DLL1 has emerged as an important player and promising therapeutic target in breast cancer (BC). DLL1-induced Notch activation promotes tumor cell proliferation, survival, migration, angiogenesis and BC stem cell maintenance. In BC, DLL1 overexpression is associated with poor prognosis, particularly in estrogen receptor-positive (ER+) subtypes. Directed therapy in early and advanced BC has dramatically changed the natural course of ER+ BC; however, relapse is a major clinical issue, and new therapeutic strategies are needed. Here, we report the development and characterization of a novel monoclonal antibody specific to DLL1. Using phage display technology, we selected an anti-DLL1 antibody fragment, which was converted into a full human IgG1 (Dl1.72). The Dl1.72 antibody exhibited DLL1 specificity and affinity in the low nanomolar range and significantly impaired DLL1-Notch signaling and expression of Notch target genes in ER+ BC cells. Functionally, in vitro treatment with Dl1.72 reduced MCF-7 cell proliferation, migration, mammosphere formation and endothelial tube formation. In vivo, Dl1.72 significantly inhibited tumor growth, reducing both tumor cell proliferation and liver metastases in a xenograft mouse model, without apparent toxicity. These findings suggest that anti-DLL1 Dl1.72 could be an attractive agent against ER+ BC, warranting further preclinical investigation.
Collapse
Affiliation(s)
- Gabriela Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Correspondence: ; Tel.: +351-214-469-419
| | - Joana Sales-Dias
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Diogo Casal
- Departamento de Anatomia, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (D.C.); (S.A.)
- iNOVA4Health, CEDOC, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (A.T.M.); (A.F.); (S.B.); (M.G.C.); (C.C.); (D.C.B.)
| | - Sara Alves
- Departamento de Anatomia, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (D.C.); (S.A.)
- Serviço de Anatomia Patológica, Centro Hospitalar de Lisboa Central-Hospital de São José, 1150-199 Lisbon, Portugal
| | - Giacomo Domenici
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Clara Barreto
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
| | - Carolina Matos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
| | - Ana R. Lemos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana T. Matias
- iNOVA4Health, CEDOC, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (A.T.M.); (A.F.); (S.B.); (M.G.C.); (C.C.); (D.C.B.)
| | - Khrystyna Kucheryava
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
| | - Andreia Ferreira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
| | - Maria Raquel Moita
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sofia Braga
- iNOVA4Health, CEDOC, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (A.T.M.); (A.F.); (S.B.); (M.G.C.); (C.C.); (D.C.B.)
- Unidade de Mama, Instituto CUF de Oncologia, 1998-018 Lisbon, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - M. Guadalupe Cabral
- iNOVA4Health, CEDOC, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (A.T.M.); (A.F.); (S.B.); (M.G.C.); (C.C.); (D.C.B.)
| | - Cristina Casalou
- iNOVA4Health, CEDOC, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (A.T.M.); (A.F.); (S.B.); (M.G.C.); (C.C.); (D.C.B.)
| | - Duarte C. Barral
- iNOVA4Health, CEDOC, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (A.T.M.); (A.F.); (S.B.); (M.G.C.); (C.C.); (D.C.B.)
| | - Pedro M. F. Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula A. Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Tiago M. Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Barbas
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
| |
Collapse
|
43
|
Kumar V, Vashishta M, Kong L, Wu X, Lu JJ, Guha C, Dwarakanath BS. The Role of Notch, Hedgehog, and Wnt Signaling Pathways in the Resistance of Tumors to Anticancer Therapies. Front Cell Dev Biol 2021; 9:650772. [PMID: 33968932 PMCID: PMC8100510 DOI: 10.3389/fcell.2021.650772] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Resistance to therapy is the major hurdle in the current cancer management. Cancer cells often rewire their cellular process to alternate mechanisms to resist the deleterious effect mounted by different therapeutic approaches. The major signaling pathways involved in the developmental process, such as Notch, Hedgehog, and Wnt, play a vital role in development, tumorigenesis, and also in the resistance to the various anticancer therapies. Understanding how cancer utilizes these developmental pathways in acquiring the resistance to the multi-therapeutic approach cancer can give rise to a new insight of the anti-therapy resistance mechanisms, which can be explored for the development of a novel therapeutic approach. We present a brief overview of Notch, Hedgehog, and Wnt signaling pathways in cancer and its role in providing resistance to various cancer treatment modalities such as chemotherapy, radiotherapy, molecular targeted therapy, and immunotherapy. Understanding the importance of these molecular networks will provide a rational basis for novel and safer combined anticancer therapeutic approaches for the improvement of cancer treatment by overcoming drug resistance.
Collapse
Affiliation(s)
- Vivek Kumar
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Mohit Vashishta
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lin Kong
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Xiaodong Wu
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade J Lu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Chandan Guha
- Albert Einstein College of Medicine, The Bronx, NY, United States
| | - B S Dwarakanath
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|