1
|
Webster KD, Lennon JT. Dormancy in the origin, evolution and persistence of life on Earth. Proc Biol Sci 2025; 292:20242035. [PMID: 39772956 PMCID: PMC11706647 DOI: 10.1098/rspb.2024.2035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025] Open
Abstract
Life has existed on Earth for most of the planet's history, yet major gaps and unresolved questions remain about how it first arose and persisted. Early Earth posed numerous challenges for life, including harsh and fluctuating environments. Today, many organisms cope with such conditions by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy. This process protects inactive individuals and minimizes the risk of extinction by preserving information that stabilizes life-system dynamics. Here, we develop a framework for understanding dormancy on early Earth, beginning with a primer on dormancy theory and its core criteria. We hypothesize that dormancy-like mechanisms acting on chemical precursors in a prebiotic world may have facilitated the origin of life. Drawing on evidence from phylogenetic reconstructions and the fossil record, we demonstrate that dormancy is prevalent across the tree of life and throughout deep time. These observations lead us to consider how dormancy might have shaped nascent living systems by buffering stochastic processes in small populations, protecting against large-scale planetary disturbances, aiding dispersal in patchy landscapes and facilitating adaptive radiations. Given that dormancy is a fundamental and easily evolved property on Earth, it is also likely to be a feature of life elsewhere in the universe.
Collapse
Affiliation(s)
- Kevin D. Webster
- Diné College, Tsaile, AZ, USA
- Planetary Science Institute, Tucson, AZ, USA
| | | |
Collapse
|
2
|
Holt RR, Munafo JP, Salmen J, Keen CL, Mistry BS, Whiteley JM, Schmitz HH. Mycelium: A Nutrient-Dense Food To Help Address World Hunger, Promote Health, and Support a Regenerative Food System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2697-2707. [PMID: 38054424 PMCID: PMC10853969 DOI: 10.1021/acs.jafc.3c03307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
There is a need for transformational innovation within the existing food system to achieve United Nations Sustainable Development Goal 2 of ending hunger within a sustainable agricultural system by 2030. Mycelium, the vegetative growth form of filamentous fungi, may represent a convergence of several features crucial for the development of food products that are nutritious, desirable, scalable, affordable, and environmentally sustainable. Mycelium has gained interest as technology advances demonstrate its ability to provide scalable biomass for food production delivering good flavor and quality protein, fiber, and essential micronutrients urgently needed to improve public health. We review the potential of mycelium as an environmentally sustainable food to address malnutrition and undernutrition, driven by food insecurity and caloric dense diets with less than optimal macro- and micronutrient density.
Collapse
Affiliation(s)
- Roberta R. Holt
- Department
of Nutrition, University of California,
Davis, Davis, California 95616, United States
| | - John P. Munafo
- Department
of Food Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Julie Salmen
- Nutritious
Ideas, LLC, Saint John, Indiana 46373, United States
| | - Carl L. Keen
- Department
of Nutrition, University of California,
Davis, Davis, California 95616, United States
| | - Behroze S. Mistry
- Meati
Foods, 6880 Winchester
Cir Unit D, Boulder, Colorado 80301, United States
| | - Justin M. Whiteley
- Meati
Foods, 6880 Winchester
Cir Unit D, Boulder, Colorado 80301, United States
| | - Harold H. Schmitz
- March
Capital US, LLC, Davis, California 95616, United States
- T.O.P.,
LLC, Davis, California 95616, United States
- Graduate
School of Management, University of California,
Davis, Davis, California 95616, United States
| |
Collapse
|
3
|
Zheng W, Zhou A, Sahoo SK, Nolan MR, Ostrander CM, Sun R, Anbar AD, Xiao S, Chen J. Recurrent photic zone euxinia limited ocean oxygenation and animal evolution during the Ediacaran. Nat Commun 2023; 14:3920. [PMID: 37400445 DOI: 10.1038/s41467-023-39427-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023] Open
Abstract
The Ediacaran Period (~635-539 Ma) is marked by the emergence and diversification of complex metazoans linked to ocean redox changes, but the processes and mechanism of the redox evolution in the Ediacaran ocean are intensely debated. Here we use mercury isotope compositions from multiple black shale sections of the Doushantuo Formation in South China to reconstruct Ediacaran oceanic redox conditions. Mercury isotopes show compelling evidence for recurrent and spatially dynamic photic zone euxinia (PZE) on the continental margin of South China during time intervals coincident with previously identified ocean oxygenation events. We suggest that PZE was driven by increased availability of sulfate and nutrients from a transiently oxygenated ocean, but PZE may have also initiated negative feedbacks that inhibited oxygen production by promoting anoxygenic photosynthesis and limiting the habitable space for eukaryotes, hence abating the long-term rise of oxygen and restricting the Ediacaran expansion of macroscopic oxygen-demanding animals.
Collapse
Affiliation(s)
- Wang Zheng
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Anwen Zhou
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
- Department of Earth, Ocean and Atmospheric Science and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32306, USA
| | | | - Morrison R Nolan
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Chadlin M Ostrander
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ruoyu Sun
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Ariel D Anbar
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jiubin Chen
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
4
|
Luo M, Li Z, Su M, Gadd GM, Yin Z, Benton MJ, Pan Y, Zheng D, Zhao T, Li Z, Chen Y. Fungal-induced fossil biomineralization. Curr Biol 2023:S0960-9822(23)00548-1. [PMID: 37230078 DOI: 10.1016/j.cub.2023.04.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Exceptional preservation of fossils has often been attributed to the actions of bacteria that aid in the preservation of soft tissues that normally decay rapidly. However, it is well known that fungi play a major role in organic matter decomposition, biogeochemical cycling of elements, and metal-mineral transformations in modern ecosystems. Although the fungal fossil record can be traced back over a billion years, there are only a few recorded examples of fungal roles in fossilization. In this research, we have carried out a detailed geobiological investigation on early Pleistocene hyena coprolites (fossilized dung) in an attempt to ascertain possible fungal involvement in their formation. Using an advanced microscopic and mineralogical approach, we found that numerous hydroxyapatite nanofibers (25-34 nm on average), interwoven to form spheroidal structures, constituted the matrix of the coprolites in addition to food remains. These structures were found to be extremely similar in texture and mineral composition to biominerals produced during laboratory culture of a common saprophytic and geoactive fungus, Aspergillus niger, in the presence of a solid source of calcium (Ca) and phosphorus (P). This observation, and our other data obtained, strongly suggests that fungal metabolism can provide a mechanism that can result in fossil biomineralization, and we hypothesize, therefore, that this may have contributed to the formation of well-preserved fossils (Lagerstätten) in the geological record. The characteristic polycrystalline nanofibers may also have served as a potential biosignature for fungal life in early Earth and extraterrestrial environments.
Collapse
Affiliation(s)
- Mao Luo
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China.
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory for Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Mu Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK; State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, 18 Fuxue Road, Changping District, Beijing 102249, China.
| | - Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Michael J Benton
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| | - Yanhong Pan
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Centre for Research and Education on Biological Evolution and Environment and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, China
| | - Daran Zheng
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Tao Zhao
- Institute of Palaeontology, Yunnan Key Laboratory of Earth System Science, Yunnan University, Kunming 650500, Yunnan, China
| | - Zibo Li
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China
| | - Yuxuan Chen
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China
| |
Collapse
|
5
|
Little JC, Kaaronen RO, Hukkinen JI, Xiao S, Sharpee T, Farid AM, Nilchiani R, Barton CM. Earth Systems to Anthropocene Systems: An Evolutionary, System-of-Systems, Convergence Paradigm for Interdependent Societal Challenges. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5504-5520. [PMID: 37000909 DOI: 10.1021/acs.est.2c06203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Humans have made profound changes to the Earth. The resulting societal challenges of the Anthropocene (e.g., climate change and impacts, renewable energy, adaptive infrastructure, disasters, pandemics, food insecurity, and biodiversity loss) are complex and systemic, with causes, interactions, and consequences that cascade across a globally connected system of systems. In this Critical Review, we turn to our "origin story" for insight, briefly tracing the formation of the Universe and the Earth, the emergence of life, the evolution of multicellular organisms, mammals, primates, and humans, as well as the more recent societal transitions involving agriculture, urbanization, industrialization, and computerization. Focusing on the evolution of the Earth, genetic evolution, the evolution of the brain, and cultural evolution, which includes technological evolution, we identify a nested evolutionary sequence of geophysical, biophysical, sociocultural, and sociotechnical systems, emphasizing the causal mechanisms that first formed, and then transformed, Earth systems into Anthropocene systems. Describing how the Anthropocene systems coevolved, and briefly illustrating how the ensuing societal challenges became tightly integrated across multiple spatial, temporal, and organizational scales, we conclude by proposing an evolutionary, system-of-systems, convergence paradigm for the entire family of interdependent societal challenges of the Anthropocene.
Collapse
Affiliation(s)
- John C Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Roope O Kaaronen
- Sustainability Research Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Janne I Hukkinen
- Environmental Policy Research Group, Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki 00014, Finland
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tatyana Sharpee
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Amro M Farid
- School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Roshanak Nilchiani
- School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - C Michael Barton
- School of Human Evolution and Social Change, and School of Complex Adaptive Systems, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
6
|
Song H, An Z, Ye Q, Stüeken EE, Li J, Hu J, Algeo TJ, Tian L, Chu D, Song H, Xiao S, Tong J. Mid-latitudinal habitable environment for marine eukaryotes during the waning stage of the Marinoan snowball glaciation. Nat Commun 2023; 14:1564. [PMID: 37015913 PMCID: PMC10073137 DOI: 10.1038/s41467-023-37172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/06/2023] [Indexed: 04/06/2023] Open
Abstract
During the Marinoan Ice Age (ca. 654-635 Ma), one of the 'Snowball Earth' events in the Cryogenian Period, continental icesheets reached the tropical oceans. Oceanic refugia must have existed for aerobic marine eukaryotes to survive this event, as evidenced by benthic phototrophic macroalgae of the Songluo Biota preserved in black shales interbedded with glacial diamictites of the late Cryogenian Nantuo Formation in South China. However, the environmental conditions that allowed these organisms to thrive are poorly known. Here, we report carbon-nitrogen-iron geochemical data from the fossiliferous black shales and adjacent diamictites of the Nantuo Formation. Iron-speciation data document dysoxic-anoxic conditions in bottom waters, whereas nitrogen isotopes record aerobic nitrogen cycling perhaps in surface waters. These findings indicate that habitable open-ocean conditions were more extensive than previously thought, extending into mid-latitude coastal oceans and providing refugia for eukaryotic organisms during the waning stage of the Marinoan Ice Age.
Collapse
Affiliation(s)
- Huyue Song
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan, 430074, China.
| | - Zhihui An
- Wuhan Center of China Geological Survey, Wuhan, 430205, China
| | - Qin Ye
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan, 430074, China
| | - Eva E Stüeken
- School of Earth & Environmental Sciences, University of St. Andrews, St. Andrews, KY16 9AL, UK
| | - Jing Li
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan, 430074, China
| | - Jun Hu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan, 430074, China
| | - Thomas J Algeo
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan, 430074, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, 430074, China
- Department of Geosciences, University of Cincinnati, Cincinnati, OH, 45221-0013, USA
| | - Li Tian
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan, 430074, China
| | - Daoliang Chu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan, 430074, China
| | - Haijun Song
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan, 430074, China
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jinnan Tong
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
7
|
Griffiths HJ, Whittle RJ, Mitchell EG. Animal survival strategies in Neoproterozoic ice worlds. GLOBAL CHANGE BIOLOGY 2023; 29:10-20. [PMID: 36220153 PMCID: PMC10091762 DOI: 10.1111/gcb.16393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
The timing of the first appearance of animals is of crucial importance for understanding the evolution of life on Earth. Although the fossil record places the earliest metazoans at 572-602 Ma, molecular clock studies suggest a far earlier origination, as far back as ~850 Ma. The difference in these dates would place the rise of animal life into a time period punctuated by multiple colossal, potentially global, glacial events. Although the two schools of thought debate the limitations of each other's methods, little time has been dedicated to how animal life might have survived if it did arise before or during these global glacial periods. The history of recent polar biota shows that organisms have found ways of persisting on and around the ice of the Antarctic continent throughout the Last Glacial Maximum (33-14 Ka), with some endemic species present before the breakup of Gondwana (180-23 Ma). Here we discuss the survival strategies and habitats of modern polar marine organisms in environments analogous to those that could have existed during Neoproterozoic glaciations. We discuss how, despite the apparent harshness of many ice covered, sub-zero, Antarctic marine habitats, animal life thrives on, in and under the ice. Ice dominated systems and processes make some local environments more habitable through water circulation, oxygenation, terrigenous nutrient input and novel habitats. We consider how the physical conditions of Neoproterozoic glaciations would likely have dramatically impacted conditions for potential life in the shallows and erased any possible fossil evidence from the continental shelves. The recent glacial cycle has driven the evolution of Antarctica's unique fauna by acting as a "diversity pump," and the same could be true for the late Proterozoic and the evolution of animal life on Earth, and the existence of life elsewhere in the universe on icy worlds or moons.
Collapse
|
8
|
Gotting K, May DS, Sosa-Calvo J, Khadempour L, Francoeur CB, Berasategui A, Thairu MW, Sandstrom S, Carlson CM, Chevrette MG, Pupo MT, Bugni TS, Schultz TR, Johnston JS, Gerardo NM, Currie CR. Genomic diversification of the specialized parasite of the fungus-growing ant symbiosis. Proc Natl Acad Sci U S A 2022; 119:e2213096119. [PMID: 36508678 PMCID: PMC9907069 DOI: 10.1073/pnas.2213096119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/20/2022] [Indexed: 12/15/2022] Open
Abstract
Fungi shape the diversity of life. Characterizing the evolution of fungi is critical to understanding symbiotic associations across kingdoms. In this study, we investigate the genomic and metabolomic diversity of the genus Escovopsis, a specialized parasite of fungus-growing ant gardens. Based on 25 high-quality draft genomes, we show that Escovopsis forms a monophyletic group arising from a mycoparasitic fungal ancestor 61.82 million years ago (Mya). Across the evolutionary history of fungus-growing ants, the dates of origin of most clades of Escovopsis correspond to the dates of origin of the fungus-growing ants whose gardens they parasitize. We reveal that genome reduction, determined by both genomic sequencing and flow cytometry, is a consistent feature across the genus Escovopsis, largely occurring in coding regions, specifically in the form of gene loss and reductions in copy numbers of genes. All functional gene categories have reduced copy numbers, but resistance and virulence genes maintain functional diversity. Biosynthetic gene clusters (BGCs) contribute to phylogenetic differences among Escovopsis spp., and sister taxa in the Hypocreaceae. The phylogenetic patterns of co-diversification among BGCs are similarly exhibited across mass spectrometry analyses of the metabolomes of Escovopsis and their sister taxa. Taken together, our results indicate that Escovopsis spp. evolved unique genomic repertoires to specialize on the fungus-growing ant-microbe symbiosis.
Collapse
Affiliation(s)
- Kirsten Gotting
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI53706
| | - Daniel S. May
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
| | - Jeffrey Sosa-Calvo
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC20560
| | - Lily Khadempour
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ07102
| | | | | | - Margaret W. Thairu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
| | - Shelby Sandstrom
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
| | - Caitlin M. Carlson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
| | - Marc G. Chevrette
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53705
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI53705
| | - Mônica T. Pupo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP14040-903, Brazil
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI53705
| | - Ted R. Schultz
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC20560
| | | | | | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
- David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Retallack GJ. Damaged Dickinsonia specimens provide clues to Ediacaran vendobiont biology. PLoS One 2022; 17:e0269638. [PMID: 35709144 PMCID: PMC9202952 DOI: 10.1371/journal.pone.0269638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022] Open
Abstract
Recently reported specimens of the enigmatic Ediacaran fossil Dickinsonia from Russia show damage and repair that provides evidence of how they grew, and of their biological affinities. Marginal and terminal areas of wilting deformation are necrotic zones separating regenerated growth, sometimes on two divergent axes, rather than a single axis. Necrotic zones of damage to Dickinsonia are not a thick scar or callus, like a wound or amputation. Nor are they smooth transitions to a regenerated tail or arm. The wilted necrotic zone is most like damage by freezing, salt, or sunburn of leaves and lichens, compatible with evidence of terrestrial habitat from associated frigid and gypsic paleosols. Dickinsonia did not regrow by postembryonic addition of modules from a subterminal or patterned growth zone as in earthworms, myriapods, trilobites, crustaceans, and lizards. Rather Dickinsonia postembryonic regrowth from sublethal damage was from microscopic apical and lateral meristems, as in plants and lichens. Considered as fungal, Dickinsonia, and perhaps others of Class Vendobionta, were more likely Glomeromycota or Mucoromycotina, rather than Ascomycota or Basidiomycota.
Collapse
Affiliation(s)
- Gregory J. Retallack
- Department of Earth Sciences, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
10
|
Case NT, Song M, Fulford AH, Graham HV, Orphan VJ, Stajich JE, Casadevall A, Mustard J, Heitman J, Lollar BS, Cowen LE. Exploring Space via Astromycology: A Report on the CIFAR Programs Earth 4D and Fungal Kingdom Inaugural Joint Meeting. ASTROBIOLOGY 2022; 22:637-640. [PMID: 35196462 PMCID: PMC9233531 DOI: 10.1089/ast.2021.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/22/2022] [Indexed: 06/03/2023]
Abstract
"Fungi on Mars!": a popular news heading that piques public interest and makes scientists' blood boil. While such a statement is laden with misinformation and light on evidence, the search for past and present extraterrestrial life is an ongoing scientific effort. Moreover, it is one that is increasingly gaining momentum with the recent collection of martian rock cores from Jezero Crater by NASA's Perseverance rover. Despite the increasingly sophisticated approaches guiding the search for microbial life on other planets, fungi remain relatively underexplored compared to their bacterial counterparts, highlighting a gap between the astrobiological and fungal research communities. Through a meeting in April 2021, the CIFAR Earth 4D and Fungal Kingdom research programs worked to bridge this divide by uniting experts in each field. CIFAR is a Canadian-based global research organization that convenes researchers across disciplines to address important questions facing science and humanity. The CIFAR Earth 4D: Subsurface Science & Exploration and Fungal Kingdom: Threats & Opportunities research programs were launched by CIFAR in July 2019, each made up of approximately two dozen international researchers who are experts in their fields. The Earth 4D program, led by co-directors John Mustard (Brown University, USA) and Barbara Sherwood Lollar (University of Toronto, Canada), aims to understand the complex chemical, physical, and biological interactions that occur within and between Earth's surface and subsurface to explore questions on the evolution of planets and life. The Fungal Kingdom program, led by co-directors Leah Cowen (University of Toronto, Canada) and Joseph Heitman (Duke University, USA), seeks to tackle the most pressing threats fungi pose to human health, agriculture, and biodiversity and to harness their extraordinary potential. The programs met to explore areas for synergy within four major themes: (1) the origins of life; (2) the evolution and diversification of life; (3) life in diverse and extreme environments; and (4) extinction: lessons learned and threats. This report covers the research discussed during the meeting across these four themes.
Collapse
Affiliation(s)
- Nicola T. Case
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Min Song
- Department of Earth Sciences, University of Toronto, Toronto, Canada
| | | | - Heather V. Graham
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Department of Physics, Catholic University of America, Washington, DC, USA
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - John Mustard
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Segal-Kischinevzky C, Romero-Aguilar L, Alcaraz LD, López-Ortiz G, Martínez-Castillo B, Torres-Ramírez N, Sandoval G, González J. Yeasts Inhabiting Extreme Environments and Their Biotechnological Applications. Microorganisms 2022; 10:794. [PMID: 35456844 PMCID: PMC9028089 DOI: 10.3390/microorganisms10040794] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Yeasts are microscopic fungi inhabiting all Earth environments, including those inhospitable for most life forms, considered extreme environments. According to their habitats, yeasts could be extremotolerant or extremophiles. Some are polyextremophiles, depending on their growth capacity, tolerance, and survival in the face of their habitat's physical and chemical constitution. The extreme yeasts are relevant for the industrial production of value-added compounds, such as biofuels, lipids, carotenoids, recombinant proteins, enzymes, among others. This review calls attention to the importance of yeasts inhabiting extreme environments, including metabolic and adaptive aspects to tolerate conditions of cold, heat, water availability, pH, salinity, osmolarity, UV radiation, and metal toxicity, which are relevant for biotechnological applications. We explore the habitats of extreme yeasts, highlighting key species, physiology, adaptations, and molecular identification. Finally, we summarize several findings related to the industrially-important extremophilic yeasts and describe current trends in biotechnological applications that will impact the bioeconomy.
Collapse
Affiliation(s)
- Claudia Segal-Kischinevzky
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico;
| | - Luis D. Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Geovani López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico;
| | - Blanca Martínez-Castillo
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Nayeli Torres-Ramírez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Georgina Sandoval
- Laboratorio de Innovación en Bioenergéticos y Bioprocesos Avanzados (LIBBA), Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara 44270, Mexico;
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| |
Collapse
|
12
|
Bahram M, Netherway T. Fungi as mediators linking organisms and ecosystems. FEMS Microbiol Rev 2021; 46:6468741. [PMID: 34919672 PMCID: PMC8892540 DOI: 10.1093/femsre/fuab058] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Fungi form a major and diverse component of most ecosystems on Earth. They are both micro and macroorganisms with high and varying functional diversity as well as great variation in dispersal modes. With our growing knowledge of microbial biogeography, it has become increasingly clear that fungal assembly patterns and processes differ from other microorganisms such as bacteria, but also from macroorganisms such as plants. The success of fungi as organisms and their influence on the environment lies in their ability to span multiple dimensions of time, space, and biological interactions, that is not rivalled by other organism groups. There is also growing evidence that fungi mediate links between different organisms and ecosystems, with the potential to affect the macroecology and evolution of those organisms. This suggests that fungal interactions are an ecological driving force, interconnecting different levels of biological and ecological organisation of their hosts, competitors, and antagonists with the environment and ecosystem functioning. Here we review these emerging lines of evidence by focusing on the dynamics of fungal interactions with other organism groups across various ecosystems. We conclude that the mediating role of fungi through their complex and dynamic ecological interactions underlie their importance and ubiquity across Earth's ecosystems.
Collapse
Affiliation(s)
- Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51 Sweden.,Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 40 Lai St. Estonia
| | - Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51 Sweden
| |
Collapse
|