1
|
Wan L, Ke J, Zhu Y, Zhang W, Mu W. Recent advances in engineering synthetic biomolecular condensates. Biotechnol Adv 2024; 77:108452. [PMID: 39271032 DOI: 10.1016/j.biotechadv.2024.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Biomolecular condensates are intriguing entities found within living cells. These structures possess the ability to selectively concentrate specific components through phase separation, thereby playing a crucial role in the spatiotemporal regulation of a wide range of cellular processes and metabolic activities. To date, extensive studies have been dedicated to unraveling the intricate connections between molecular features, physical properties, and cellular functions of condensates. This collective effort has paved the way for deliberate engineering of tailor-made condensates with specific applications. In this review, we comprehensively examine the underpinnings governing condensate formation. Next, we summarize the material states of condensates and delve into the design of synthetic intrinsically disordered proteins with tunable phase behaviors and physical properties. Subsequently, we review the diverse biological functions demonstrated by synthetic biomolecular condensates, encompassing gene regulation, cellular behaviors, modulation of biochemical reactions, and manipulation of endogenous protein activities. Lastly, we discuss future challenges and opportunities in constructing synthetic condensates with tunable physical properties and customized cellular functions, which may shed light on the development of new types of sophisticated condensate systems with distinct functions applicable to various scenarios.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Juntao Ke
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Kim GY, Yang J, Han YH, Seo SW. Synthetic redesign of Escherichia coli W for faster metabolism of sugarcane molasses. Microb Cell Fact 2024; 23:242. [PMID: 39252026 PMCID: PMC11382391 DOI: 10.1186/s12934-024-02520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Sugarcane molasses, rich in sucrose, glucose, and fructose, offers a promising carbon source for industrial fermentation due to its abundance and low cost. However, challenges arise from the simultaneous utilization of multiple sugars and carbon catabolite repression (CCR). Despite its nutritional content, sucrose metabolism in Escherichia coli, except for W strain, remains poorly understood, hindering its use in microbial fermentation. In this study, E. coli W was engineered to enhance sugar consumption rates and overcome CCR. This was achieved through the integration of a synthetically designed csc operon and the optimization of glucose and fructose co-utilization pathways. These advancements facilitate efficient utilization of sugarcane molasses for the production of 3-hydroxypropionic acid (3-HP), contributing to sustainable biochemical production processes. RESULTS In this study, we addressed challenges associated with sugar metabolism in E. coli W, focusing on enhancing sucrose consumption and improving glucose-fructose co-utilization. Through targeted engineering of the sucrose utilization system, we achieved accelerated sucrose consumption rates by modulating the expression of the csc operon components, cscB, cscK, cscA, and cscR. Our findings revealed that monocistronic expression of the csc genes with the deletion of cscR, led to optimal sucrose utilization without significant growth burden. Furthermore, we successfully alleviated fructose catabolite repression by modulating the binding dynamics of FruR with the fructose PTS regulon, enabling near-equivalent co-utilization of glucose and fructose. To validate the industrial applicability of our engineered strain, we pursued 3-HP production from sugarcane molasses. By integrating heterologous genes and optimizing metabolic pathways, we achieved improvements in 3-HP titers compared to previous studies. Additionally, glyceraldehyde-3-phosphate dehydrogenase (gapA) repression aids in carbon flux redistribution, enhancing molasses conversion to 3-HP. CONCLUSIONS Despite limitations in sucrose metabolism, the redesigned E. coli W strain, adept at utilizing sugarcane molasses, is a valuable asset for industrial fermentation. Its synthetic csc operon enhances sucrose consumption, while mitigating CCR improves glucose-fructose co-utilization. These enhancements, coupled with repression of gapA, aim to efficiently convert sugarcane molasses into 3-HP, addressing limitations in sucrose and fructose metabolism for industrial applications.
Collapse
Affiliation(s)
- Gi Yeon Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jina Yang
- Department of Chemical Engineering, Jeju National University, 102, Jejudaehak-ro, Jeju-si, Jeju-do, 63243, Korea
| | - Yong Hee Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- School of Biological Sciences and Biotechnology, Graduate School, and School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro 77, Gwangju, 61186, South Korea
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Chemical Processes, and Bio-MAX Institute, and Institute of Bio Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
3
|
Yuan Y, Miao J. Agrochemical control of gene expression using evolved split RNA polymerase. II. PeerJ 2024; 12:e18042. [PMID: 39247540 PMCID: PMC11380473 DOI: 10.7717/peerj.18042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Agrochemical inducible gene expression system provides cost-effective and orthogonal control of energy and information flow in bacterial cells. However, the previous version of Mandipropamid inducible gene expression system (Mandi-T7) became constitutively active at room temperature. We moved the split site of the eRNAP from position LYS179 to position ILE109. This new eRNAP showed proximity dependence at 23 °C, but not at 37 °C. We built Mandi-T7-v2 system based on the new eRNAP and it worked in both Escherichia coli and Agrobacterium tumefaciens. We also induced GFP expression in Agrobacterium cells in a semi-in vivo system. The modified eRNAP when combined with the leucine zipper-based dimerization system, behaved as a cold inducible gene expression system. Our new system provides a means to broaden the application of agrochemicals for both research and agricultural application. Portions of this text were previously published as part of a preprint (https://www.biorxiv.org/content/10.1101/2024.04.02.587689v1).
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jin Miao
- Duke Kunshan University, Kunshan, Jiangsu Province, China
| |
Collapse
|
4
|
Liao J, Yeong V, Obermeyer AC. Charge-Patterned Disordered Peptides Tune Intracellular Phase Separation in Bacteria. ACS Synth Biol 2024; 13:598-612. [PMID: 38308651 DOI: 10.1021/acssynbio.3c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Subcellular phase-separated compartments, known as biomolecular condensates, play an important role in the spatiotemporal organization of cells. To understand the sequence-determinants of phase separation in bacteria, we engineered protein-based condensates in Escherichia coli using electrostatic interactions as the main driving force. Minimal cationic disordered peptides were used to supercharge negative, neutral, and positive globular model proteins, enabling their phase separation with anionic biomacromolecules in the cell. The phase behavior was governed by the interaction strength between the cationic proteins and anionic biopolymers, in addition to the protein concentration. The interaction strength primarily depended on the overall net charge of the protein, but the distribution of charge between the globular and disordered domains also had an impact. Notably, the protein charge distribution between domains could tune mesoscale attributes such as the size, number, and subcellular localization of condensates within E. coli cells. The length and charge density of the disordered peptides had significant effects on protein expression levels, ultimately influencing the formation of condensates. Taken together, charge-patterned disordered peptides provide a platform for understanding the molecular grammar underlying phase separation in bacteria.
Collapse
Affiliation(s)
- Jane Liao
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Vivian Yeong
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
5
|
Dai Y, You L, Chilkoti A. Engineering synthetic biomolecular condensates. NATURE REVIEWS BIOENGINEERING 2023; 1:1-15. [PMID: 37359769 PMCID: PMC10107566 DOI: 10.1038/s44222-023-00052-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 06/28/2023]
Abstract
The concept of phase-separation-mediated formation of biomolecular condensates provides a new framework to understand cellular organization and cooperativity-dependent cellular functions. With growing understanding of how biological systems drive phase separation and how cellular functions are encoded by biomolecular condensates, opportunities have emerged for cellular control through engineering of synthetic biomolecular condensates. In this Review, we discuss how to construct synthetic biomolecular condensates and how they can regulate cellular functions. We first describe the fundamental principles by which biomolecular components can drive phase separation. Next, we discuss the relationship between the properties of condensates and their cellular functions, which informs the design of components to create programmable synthetic condensates. Finally, we describe recent applications of synthetic biomolecular condensates for cellular control and discuss some of the design considerations and prospective applications.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| |
Collapse
|
6
|
Dai Y, Farag M, Lee D, Zeng X, Kim K, Son HI, Guo X, Su J, Peterson N, Mohammed J, Ney M, Shapiro DM, Pappu RV, Chilkoti A, You L. Programmable synthetic biomolecular condensates for cellular control. Nat Chem Biol 2023; 19:518-528. [PMID: 36747054 PMCID: PMC10786170 DOI: 10.1038/s41589-022-01252-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/21/2022] [Indexed: 02/08/2023]
Abstract
The formation of biomolecular condensates mediated by a coupling of associative and segregative phase transitions plays a critical role in controlling diverse cellular functions in nature. This has inspired the use of phase transitions to design synthetic systems. While design rules of phase transitions have been established for many synthetic intrinsically disordered proteins, most efforts have focused on investigating their phase behaviors in a test tube. Here, we present a rational engineering approach to program the formation and physical properties of synthetic condensates to achieve intended cellular functions. We demonstrate this approach through targeted plasmid sequestration and transcription regulation in bacteria and modulation of a protein circuit in mammalian cells. Our approach lays the foundation for engineering designer condensates for synthetic biology applications.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
- Duke Center for Quantitative Biodesign, Duke University, Durham, NC, USA
| | - Mina Farag
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Dongheon Lee
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Xiangze Zeng
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Kyeri Kim
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Hye-In Son
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Xiao Guo
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Jonathan Su
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Nikhil Peterson
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Javid Mohammed
- Department of Immunology, Duke University, Durham, NC, USA
| | - Max Ney
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Daniel Mark Shapiro
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA.
- Duke Center for Quantitative Biodesign, Duke University, Durham, NC, USA.
| | - Lingchong You
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA.
- Duke Center for Quantitative Biodesign, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Lu N, Duvall SW, Zhao G, Kowallis KA, Zhang C, Tan W, Sun J, Petitjean HN, Tomares DT, Zhao GP, Childers WS, Zhao W. Scaffold-Scaffold Interaction Facilitates Cell Polarity Development in Caulobacter crescentus. mBio 2023; 14:e0321822. [PMID: 36971555 PMCID: PMC10127582 DOI: 10.1128/mbio.03218-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Caulobacter crescentus
is a well-established bacterial model to study asymmetric cell division for decades. During cell development, the polarization of scaffold protein PopZ from monopolar to bipolar plays a central role in
C. crescentus
asymmetric cell division.
Collapse
|
8
|
Qian ZG, Huang SC, Xia XX. Synthetic protein condensates for cellular and metabolic engineering. Nat Chem Biol 2022; 18:1330-1340. [DOI: 10.1038/s41589-022-01203-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022]
|
9
|
Ding Q, Li Z, Guo L, Song W, Wu J, Chen X, Liu L, Gao C. Engineering Escherichia coli asymmetry distribution-based synthetic consortium for shikimate production. Biotechnol Bioeng 2022; 119:3230-3240. [PMID: 35982023 DOI: 10.1002/bit.28211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022]
Abstract
Microbial consortia constitute a promising tool for achieving high-value chemical bio-production. However, customizing the consortium ratio remains challenging. Herein, an asymmetry distribution-based synthetic consortium (ADSC) was developed to switch cell phenotypes using shikimate synthesis for proof of concept. First, the cell pole-organizing protein PopZ was screened as a mediator of asymmetric protein distribution in Escherichia coli. The ADSC was then constructed to incorporate PopZ-mediated asymmetry distribution and a TetR-based transcription repression switch to achieve the dynamical control of microbial population ratio. Finally, the ADSC was used to decouple cell growth from shikimate synthesis by effectively coordinating the ratio of growing cells and production cells at the consortium level, thereby increasing shikimate titer to 30.1 g/L in the 7.5-L bioreactor with a minimal medium. This titer was further improved to 82.5 g/L when using rich medium fermentation. Our results illustrate a novel approach to control consortium structure through ADSC-mediated regulation, highlighting its potential as an efficient strategy for controlling metabolic state in microbes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qiang Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.,School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Zhendong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
10
|
Abstract
Bacterial proteases are a promising post-translational regulation strategy in synthetic circuits because they recognize specific amino acid degradation tags (degrons) that can be fine-tuned to modulate the degradation levels of tagged proteins. For this reason, recent efforts have been made in the search for new degrons. Here we review the up-to-date applications of degradation tags for circuit engineering in bacteria. In particular, we pay special attention to the effects of degradation bottlenecks in synthetic oscillators and introduce mathematical approaches to study queueing that enable the quantitative modelling of proteolytic queues.
Collapse
Affiliation(s)
- Prajakta Jadhav
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Yanyan Chen
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio, CSIC-UV), Paterna, Valencia 46980, Spain
| | - Arantxa Urchueguía
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA.,Institute for Integrative Systems Biology (I2SysBio, CSIC-UV), Paterna, Valencia 46980, Spain
| |
Collapse
|
11
|
Yuan Y, Miao J. Agrochemical control of gene expression using evolved split RNA polymerase. PeerJ 2022; 10:e13619. [PMID: 35729907 PMCID: PMC9206840 DOI: 10.7717/peerj.13619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/02/2022] [Indexed: 01/22/2023] Open
Abstract
Chemically-inducible gene expression systems are valuable tools for rational control of gene expression both for basic research and biotechnology. However, most chemical inducers are confined to certain groups of organisms. Therefore, dissecting interactions between different organisms could be challenging using existing chemically-inducible systems. We engineered a mandipropamid-induced gene expression system (Mandi-T7) based on evolved split T7 RNAP system. As a proof-of-principle, we induced GFP expression in E. coli cells grown inside plant tissue.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jin Miao
- Duke Kunshan University, Kunshan, China
| |
Collapse
|
12
|
Hong JC, Fan HC, Yang PJ, Lin DW, Wu HC, Huang HC. Localized Proteolysis for the Construction of Intracellular Asymmetry in Escherichia coli. ACS Synth Biol 2021; 10:1830-1836. [PMID: 34374512 DOI: 10.1021/acssynbio.1c00200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-level regulations have gained importance in building synthetic circuits, as they offer a potential advantage in the speed of operation compared to gene regulation circuits. In nature, localized protein degradation is prevalent in polarizing cellular signaling. We, therefore, set out to systematically investigate whether localized proteolysis can be employed to construct intracellular asymmetry in Escherichia coli. We demonstrate that, by inserting a cognate cleavage site between the reporter and C-terminal degron, the unstable reporter can be stabilized in the presence of the tobacco etch virus protease. Furthermore, the split protease can be functionally reconstituted by the PopZ-based polarity system to exert localized proteolysis. Selective stabilization of the unstable reporter at the PopZ pole can lead to intracellular asymmetry in E. coli. Our study provides complementary evidence to support that localized proteolysis may be a strategy for polarization in developmental cell biology. Circuits designed in this study may also help to expand the synthetic biology repository for the engineering of synthetic morphogenesis, particularly for processes that require rapid control of local protein abundance.
Collapse
Affiliation(s)
- Jui-Chung Hong
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Hao-Chun Fan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Jiun Yang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Da-Wei Lin
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiao-Chun Huang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|