1
|
Feng G, Liu Y, Zhu Q, Feng Z, Luo S, Qin C, Chen L, Xu Y, Wang H, Zubair M, Qu K, Yang C, Hao S, Yue F, Duan C, Chu J, Tian B. Giant tunnel electroresistance through a Van der Waals junction by external ferroelectric polarization. Nat Commun 2024; 15:9701. [PMID: 39516220 PMCID: PMC11549478 DOI: 10.1038/s41467-024-54114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
The burgeoning interest in two-dimensional semiconductors stems from their potential as ultrathin platforms for next-generation transistors. Nonetheless, there persist formidable challenges in fully obtaining high-performance complementary logic components and the underlying mechanisms for the polarity modulation of transistors are not yet fully understood. Here, we exploit both ferroelectric domain-based nonvolatile modulation of Fermi level in transitional metal dichalcogenides (MoS2) and quantum tunneling through nanoscale hexagonal boron nitride (h-BN). Our prototype devices, termed as vertical tunneling ferroelectric field-effect transistor, utilizes a Van der Waals MoS2/h-BN/metal tunnel junction as the channel. The Fermi level of MoS2 is bipolarly tuned by ferroelectric domains and sensitively detected by the direct quantum tunneling strength across the junction, demonstrating an impressive electroresistance ratio of up to 109 in the vertical tunneling ferroelectric field-effect transistor. It consumes only 0.16 fJ of energy to open a ratio window exceeding 104. This work not only validates the effectiveness of tailored tunnel barriers in manipulating electronic flow but also highlights a new avenue for the design flexibility and functional versatility of advanced ferroelectric memory technology.
Collapse
Affiliation(s)
- Guangdi Feng
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| | - Yifei Liu
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, China
| | - Qiuxiang Zhu
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, China.
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, China.
| | - Zhenyu Feng
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, China
| | - Shengwen Luo
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, China
| | - Cuijie Qin
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, China
| | - Luqiu Chen
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, China
| | - Yu Xu
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, China
| | - Haonan Wang
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, China
| | - Muhammad Zubair
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, China
| | - Ke Qu
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, China
| | - Chang Yang
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, China
| | - Shenglan Hao
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, China
| | - Fangyu Yue
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, China
| | - Chungang Duan
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Shanxi, 030006, China
| | - Junhao Chu
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, China
- Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Bobo Tian
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, China.
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, China.
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China.
| |
Collapse
|
2
|
Park G, Zhigulin I, Jung H, Horder J, Yamamura K, Han Y, Cho H, Jeong HW, Watanabe K, Taniguchi T, Oh M, Lee GH, Jo MH, Aharonovich I, Kim J. Narrowband Electroluminescence from Color Centers in Hexagonal Boron Nitride. NANO LETTERS 2024. [PMID: 39431587 DOI: 10.1021/acs.nanolett.4c03824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Defects in wide bandgap materials have emerged as promising candidates for solid-state quantum optical technologies. Electrical excitation of single emitters may lead to scalable on-chip devices and therefore is highly sought after. However, most wide bandgap materials are not amenable to efficient doping, posing challenges for electrical excitation and on-chip integration. Here, we demonstrate narrowband electroluminescence from visible and near-infrared color centers in hexagonal boron nitride (hBN). We harness van der Waals tunnel junctions of graphene-hBN-graphene. Charge carriers are electrically injected into hBN, exciting localized defects that emit nonclassical light, as characterized by the second order correlation measurement. Remarkably, the devices operate at room temperature and produce robust, narrowband emission spanning from visible to the near-infrared. Our work marks an important milestone in vdW materials and their promising attributes for integrated quantum technologies and on-chip photonic circuits.
Collapse
Affiliation(s)
- Gyuna Park
- Center for Van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Ivan Zhigulin
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Hoyoung Jung
- Center for Van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jake Horder
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Karin Yamamura
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Yerin Han
- Center for Van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyunje Cho
- Center for Van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyeon-Woo Jeong
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Myungchul Oh
- Center for Van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Semiconductor Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Gil-Ho Lee
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Moon-Ho Jo
- Center for Van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Jonghwan Kim
- Center for Van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
3
|
Yu J, Han W, Suleiman AA, Han S, Miao N, Ling FCC. Recent Advances on Pulsed Laser Deposition of Large-Scale Thin Films. SMALL METHODS 2024; 8:e2301282. [PMID: 38084465 DOI: 10.1002/smtd.202301282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Indexed: 07/21/2024]
Abstract
2D thin films, possessing atomically thin thickness, are emerging as promising candidates for next-generation electronic devices, due to their novel properties and high performance. In the early years, a wide variety of 2D materials are prepared using several methods (mechanical/liquid exfoliation, chemical vapor deposition, etc.). However, the limited size of 2D flakes hinders their fundamental research and device applications, and hence the effective large-scale preparation of 2D films is still challenging. Recently, pulsed laser deposition (PLD) has appeared to be an impactful method for wafer-scale growth of 2D films, owing to target-maintained stoichiometry, high growth rate, and efficiency. In this review, the recent advances on the PLD preparation of 2D films are summarized, including the growth mechanisms, strategies, and materials classification. First, efficacious strategies of PLD growth are highlighted. Then, the growth, characterization, and device applications of various 2D films are presented, such as graphene, h-BN, MoS2, BP, oxide, perovskite, semi-metal, etc. Finally, the potential challenges and further research directions of PLD technique is envisioned.
Collapse
Affiliation(s)
- Jing Yu
- Department of Physics, The University of Hong Kong, Hong Kong, 999077, P. R. China
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
| | - Wei Han
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, P. R. China
- School of Microelectronics, Hubei University, Wuhan, 430062, P. R. China
| | - Abdulsalam Aji Suleiman
- Institute of Materials Science and Nanotechnology, Bilkent University UNAM, Ankara, 06800, Turkey
| | - Siyu Han
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Naihua Miao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | | |
Collapse
|
4
|
Wang X, Qiao R, Lu H, He W, Liu Y, Zhou T, Wan D, Wang Q, Liu Y, Guo W. 2D Memory Selectors with Giant Nonlinearity Enabled by Van der Waals Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310158. [PMID: 38573962 DOI: 10.1002/smll.202310158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/15/2024] [Indexed: 04/06/2024]
Abstract
The integration of one-selector-one-resistor crossbar arrays requires the selectors featured with high nonlinearity and bipolarity to prevent leakage currents and any crosstalk among distinct cells. However, a selector with sufficient nonlinearity especially in the frame of device miniaturization remains scarce, restricting the advance of high-density storage devices. Herein, a high-performance memory selector is reported by constructing a graphene/hBN/WSe2 heterostructure. Within the temperature range of 300-80 K, the nonlinearity of this selector varies from ≈103 - ≈104 under forward bias, and increases from ≈300 - ≈105 under reverse bias, the highest reported nonlinearity among 2D selectors. This improvement is ascribed to direct tunneling at low bias and Fowler-Nordheim tunneling at high bias. The tunneling current versus voltage curves exhibit excellent bipolarity behavior because of the comparable hole and electron tunneling barriers, and the charge transport polarity can be effectively tuned from N-type or P-type to bipolar by simply changing source-drain bias. In addition, the conceptual memory selector exhibits no sign of deterioration after 70 000 switching cycles, paving the way for assembling 2D selectors into modern memory devices.
Collapse
Affiliation(s)
- Xiaofan Wang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Ruixi Qiao
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Huan Lu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Weiwei He
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Ying Liu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Tao Zhou
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Dongyang Wan
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Qin Wang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yanpeng Liu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
5
|
Jeong J, Kiem DH, Guo D, Duan R, Watanabe K, Taniguchi T, Liu Z, Han MJ, Zheng S, Yang H. Spin-Selective Memtransistors with Magnetized Graphene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310291. [PMID: 38235929 DOI: 10.1002/adma.202310291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/08/2023] [Indexed: 01/19/2024]
Abstract
Spin-polarized bands in pristine and proximity-induced magnetic materials are promising building blocks for future devices. Conceptually new memory, logic, and neuromorphic devices are conceived based on atomically thin magnetic materials and the manipulation of their spin-polarized bands via electrical and optical methods. A critical remaining issue is the direct probe and the optimized use of the magnetic coupling effect in van der Waals heterostructures, which requires further delicate design of atomically thin magnetic materials and devices. Here, a spin-selective memtransistor with magnetized single-layered graphene on a reactive antiferromagnetic material, CrI3, is reported. The spin-dependent hybridization between graphene and CrI3 atomic layers enables the spin-selective bandgap opening in the single-layered graphene and the electric field control of magnetization in a specific CrI3 layer. The microscopic working principle is clarified by the first-principles calculations and theoretical analysis of the transport data. Reliable memtransistor operations (i.e., memory and logic device-combined operations), as well as a spin-selective probe of Landau levels in the magnetized graphene, are achieved by using the subtle manipulation of the magnetic proximity effect via electrical means.
Collapse
Affiliation(s)
- Juyeong Jeong
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Do Hoon Kiem
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Dan Guo
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Ruihuan Duan
- CINTRA CNRS/NTU/THALES, Research Techno Plaza, Nanyang Technological University, Singapore, 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kenji Watanabe
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 3030044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 3030044, Japan
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Myung Joon Han
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Shoujun Zheng
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Heejun Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| |
Collapse
|
6
|
Ma L, Wang Y, Liu Y. van der Waals Contact for Two-Dimensional Transition Metal Dichalcogenides. Chem Rev 2024; 124:2583-2616. [PMID: 38427801 DOI: 10.1021/acs.chemrev.3c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as highly promising candidates for next-generation electronics owing to their atomically thin structures and surfaces devoid of dangling bonds. However, establishing high-quality metal contacts with TMDs presents a critical challenge, primarily attributed to their ultrathin bodies and delicate lattices. These distinctive characteristics render them susceptible to physical damage and chemical reactions when conventional metallization approaches involving "high-energy" processes are implemented. To tackle this challenge, the concept of van der Waals (vdW) contacts has recently been proposed as a "low-energy" alternative. Within the vdW geometry, metal contacts can be physically laminated or gently deposited onto the 2D channel of TMDs, ensuring the formation of atomically clean and electronically sharp contact interfaces while preserving the inherent properties of the 2D TMDs. Consequently, a considerable number of vdW contact devices have been extensively investigated, revealing unprecedented transport physics or exceptional device performance that was previously unachievable. This review presents recent advancements in vdW contacts for TMD transistors, discussing the merits, limitations, and prospects associated with each device geometry. By doing so, our purpose is to offer a comprehensive understanding of the current research landscape and provide insights into future directions within this rapidly evolving field.
Collapse
Affiliation(s)
- Likuan Ma
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yiliu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Heo SJ, Shin JH, Jun BO, Jang JE. Vacuum Tunneling Transistor with Nano Vacuum Chamber for Harsh Environments. ACS NANO 2023; 17:19696-19708. [PMID: 37803487 PMCID: PMC10604106 DOI: 10.1021/acsnano.3c02916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
A nano vacuum tube which consists of a vacuum transistor and a nano vacuum chamber was demonstrated. For the device, a vacuum region is an electron transport channel, and a vacuum is a tunneling barrier. Tilted angle evaporation was studied for the formation of the nano level vacuum chamber structure. This vacuum tube was ultraminiaturized with several tens of 10-18 L scale volume and 10-6 Torr of pressure. The device structure made it possible to achieve a high integration density and to sustain the vacuum state in various real operations. In particular, the vacuum transistor performed stably in extreme external environments because the tunneling mechanism showed a wide range of working stability. The vacuum was sustained well by the sealing layer and provided a defect-free tunneling junction. In tests, the high vacuum level was maintained for more than 15 months with high reliability. The Al sealing layer and tube structure can effectively block exposed light such as visible light and UV, enabling the stable operation of the tunneling transistor. In addition, it is estimated that the structure blocks approximately 5 keV of X-ray. The device showed stable operating characteristics in a wide temperature range of 100-390 K. Therefore, the vacuum tube can be used in a wide range of applications involving integrated circuits while resolving the disadvantages of a large volume in old vacuum tubes. Additionally, it can be an important solution for next-generation devices in various fields such as aerospace, artificial intelligence, and THz applications.
Collapse
Affiliation(s)
- Su Jin Heo
- Department
of Electrical Engineering and Computer Science (EECS), Daegu Gyeongbuk Institute of Science and Technology
(DGIST), Daegu 42988, Republic
of Korea
| | - Jeong Hee Shin
- Electronic
Convergence Materials Center, Korea Institute
of Ceramic Engineering and Technology (KICET), Jinju 52851, Republic of Korea
| | - Byoung Ok Jun
- Samsung
Electronics Foundry Business Department, Hwaseong 18448, Republic of Korea
| | - Jae Eun Jang
- Department
of Electrical Engineering and Computer Science (EECS), Daegu Gyeongbuk Institute of Science and Technology
(DGIST), Daegu 42988, Republic
of Korea
| |
Collapse
|
8
|
Zheng Y, Sen D, Das S, Das S. Graphene Strain-Effect Transistor with Colossal ON/OFF Current Ratio Enabled by Reversible Nanocrack Formation in Metal Electrodes on Piezoelectric Substrates. NANO LETTERS 2023; 23:2536-2543. [PMID: 36996350 DOI: 10.1021/acs.nanolett.2c04519] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Extraordinarily high carrier mobility in graphene has led to many remarkable discoveries in physics and at the same time invoked great interest in graphene-based electronic devices and sensors. However, the poor ON/OFF current ratio observed in graphene field-effect transistors has stymied its use in many applications. Here, we introduce a graphene strain-effect transistor (GSET) with a colossal ON/OFF current ratio in excess of 107 by exploiting strain-induced reversible nanocrack formation in the source/drain metal contacts with the help of a piezoelectric gate stack. GSETs also exhibit steep switching with a subthreshold swing (SS) < 1 mV/decade averaged over ∼6 orders of magnitude change in the source-to-drain current for both electron and hole branch amidst a finite hysteresis window. We also demonstrate high device yield and strain endurance for GSETs. We believe that GSETs can significantly expand the application space for graphene-based technologies beyond what is currently envisioned.
Collapse
Affiliation(s)
- Yikai Zheng
- Department of Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania, 16802, United States
| | - Dipanjan Sen
- Department of Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania, 16802, United States
| | - Sarbashis Das
- Department of Electrical Engineering, Penn State University, University Park, Pennsylvania, 16802, United States
| | - Saptarshi Das
- Department of Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania, 16802, United States
- Department of Electrical Engineering, Penn State University, University Park, Pennsylvania, 16802, United States
- Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania, 16802, United States
- Materials Research Institute, Penn State University, University Park, Pennsylvania, 16802, United States
| |
Collapse
|
9
|
Moon S, Kim J, Park J, Im S, Kim J, Hwang I, Kim JK. Hexagonal Boron Nitride for Next-Generation Photonics and Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204161. [PMID: 35735090 DOI: 10.1002/adma.202204161] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Hexagonal boron nitride (h-BN), an insulating 2D layered material, has recently attracted tremendous interest motivated by the extraordinary properties it shows across the fields of optoelectronics, quantum optics, and electronics, being exotic material platforms for various applications. At an early stage of h-BN research, it is explored as an ideal substrate and insulating layers for other 2D materials due to its atomically flat surface that is free of dangling bonds and charged impurities, and its high thermal conductivity. Recent discoveries of structural and optical properties of h-BN have expanded potential applications into emerging electronics and photonics fields. h-BN shows a very efficient deep-ultraviolet band-edge emission despite its indirect-bandgap nature, as well as stable room-temperature single-photon emission over a wide wavelength range, showing a great potential for next-generation photonics. In addition, h-BN is extensively being adopted as active media for low-energy electronics, including nonvolatile resistive switching memory, radio-frequency devices, and low-dielectric-constant materials for next-generation electronics.
Collapse
Affiliation(s)
- Seokho Moon
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Jiye Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Jeonghyeon Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Semi Im
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Jawon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Inyong Hwang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Jong Kyu Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
10
|
Lee JH, Choi I, Jeong NB, Kim M, Yu J, Jhang SH, Chung HJ. Simulation of Figures of Merit for Barristor Based on Graphene/Insulator Junction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3029. [PMID: 36080066 PMCID: PMC9457586 DOI: 10.3390/nano12173029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
We investigated the tunneling of graphene/insulator/metal heterojunctions by revising the Tsu-Esaki model of Fowler-Nordheim tunneling and direct tunneling current. Notably, the revised equations for both tunneling currents are proportional to V3, which originates from the linear dispersion of graphene. We developed a simulation tool by adopting revised tunneling equations using MATLAB. Thereafter, we optimized the device performance of the field-emission barristor by engineering the barrier height and thickness to improve the delay time, cut-off frequency, and power-delay product.
Collapse
Affiliation(s)
- Jun-Ho Lee
- Department of Physics, Konkuk University, Seoul 05029, Korea
| | - Inchul Choi
- Department of Physics, Konkuk University, Seoul 05029, Korea
| | - Nae Bong Jeong
- Department of Physics, Konkuk University, Seoul 05029, Korea
| | - Minjeong Kim
- Department of Physics, Konkuk University, Seoul 05029, Korea
| | - Jaeho Yu
- Department of Physics, Konkuk University, Seoul 05029, Korea
| | - Sung Ho Jhang
- Department of Physics, Konkuk University, Seoul 05029, Korea
| | - Hyun-Jong Chung
- Department of Physics, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
11
|
Chakraborty SK, Kundu B, Nayak B, Dash SP, Sahoo PK. Challenges and opportunities in 2D heterostructures for electronic and optoelectronic devices. iScience 2022; 25:103942. [PMID: 35265814 PMCID: PMC8898921 DOI: 10.1016/j.isci.2022.103942] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
12
|
Song SB, Yoon S, Kim SY, Yang S, Seo SY, Cha S, Jeong HW, Watanabe K, Taniguchi T, Lee GH, Kim JS, Jo MH, Kim J. Deep-ultraviolet electroluminescence and photocurrent generation in graphene/hBN/graphene heterostructures. Nat Commun 2021; 12:7134. [PMID: 34880247 PMCID: PMC8654827 DOI: 10.1038/s41467-021-27524-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/18/2021] [Indexed: 11/15/2022] Open
Abstract
Hexagonal boron nitride (hBN) is a van der Waals semiconductor with a wide bandgap of ~ 5.96 eV. Despite the indirect bandgap characteristics of hBN, charge carriers excited by high energy electrons or photons efficiently emit luminescence at deep-ultraviolet (DUV) frequencies via strong electron-phonon interaction, suggesting potential DUV light emitting device applications. However, electroluminescence from hBN has not been demonstrated at DUV frequencies so far. In this study, we report DUV electroluminescence and photocurrent generation in graphene/hBN/graphene heterostructures at room temperature. Tunneling carrier injection from graphene electrodes into the band edges of hBN enables prominent electroluminescence at DUV frequencies. On the other hand, under DUV laser illumination and external bias voltage, graphene electrodes efficiently collect photo-excited carriers in hBN, which generates high photocurrent. Laser excitation micro-spectroscopy shows that the radiative recombination and photocarrier excitation processes in the heterostructures mainly originate from the pristine structure and the stacking faults in hBN. Our work provides a pathway toward efficient DUV light emitting and detection devices based on hBN.
Collapse
Affiliation(s)
- Su-Beom Song
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, Republic of Korea
| | - Sangho Yoon
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, Republic of Korea
| | - So Young Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, Republic of Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sera Yang
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, Republic of Korea
| | - Seung-Young Seo
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, Republic of Korea
| | - Soonyoung Cha
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, Republic of Korea
| | - Hyeon-Woo Jeong
- Department of Physics, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Gil-Ho Lee
- Department of Physics, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jun Sung Kim
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, Republic of Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Moon-Ho Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, Republic of Korea
| | - Jonghwan Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, Republic of Korea.
- Department of Physics, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
13
|
Direct growth of hexagonal boron nitride films on dielectric sapphire substrates by pulsed laser deposition for optoelectronic applications. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|